My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

chitu_crypt.py 3.1KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. #
  2. # chitu_crypt.py
  3. # Customizations for Chitu boards
  4. #
  5. import pioutil
  6. if pioutil.is_pio_build():
  7. import os,random,struct,uuid,marlin
  8. # Relocate firmware from 0x08000000 to 0x08008800
  9. marlin.relocate_firmware("0x08008800")
  10. def calculate_crc(contents, seed):
  11. accumulating_xor_value = seed;
  12. for i in range(0, len(contents), 4):
  13. value = struct.unpack('<I', contents[ i : i + 4])[0]
  14. accumulating_xor_value = accumulating_xor_value ^ value
  15. return accumulating_xor_value
  16. def xor_block(r0, r1, block_number, block_size, file_key):
  17. # This is the loop counter
  18. loop_counter = 0x0
  19. # This is the key length
  20. key_length = 0x18
  21. # This is an initial seed
  22. xor_seed = 0x4BAD
  23. # This is the block counter
  24. block_number = xor_seed * block_number
  25. #load the xor key from the file
  26. r7 = file_key
  27. for loop_counter in range(0, block_size):
  28. # meant to make sure different bits of the key are used.
  29. xor_seed = int(loop_counter / key_length)
  30. # IP is a scratch register / R12
  31. ip = loop_counter - (key_length * xor_seed)
  32. # xor_seed = (loop_counter * loop_counter) + block_number
  33. xor_seed = (loop_counter * loop_counter) + block_number
  34. # shift the xor_seed left by the bits in IP.
  35. xor_seed = xor_seed >> ip
  36. # load a byte into IP
  37. ip = r0[loop_counter]
  38. # XOR the seed with r7
  39. xor_seed = xor_seed ^ r7
  40. # and then with IP
  41. xor_seed = xor_seed ^ ip
  42. #Now store the byte back
  43. r1[loop_counter] = xor_seed & 0xFF
  44. #increment the loop_counter
  45. loop_counter = loop_counter + 1
  46. def encrypt_file(input, output_file, file_length):
  47. input_file = bytearray(input.read())
  48. block_size = 0x800
  49. key_length = 0x18
  50. uid_value = uuid.uuid4()
  51. file_key = int(uid_value.hex[0:8], 16)
  52. xor_crc = 0xEF3D4323;
  53. # the input file is exepcted to be in chunks of 0x800
  54. # so round the size
  55. while len(input_file) % block_size != 0:
  56. input_file.extend(b'0x0')
  57. # write the file header
  58. output_file.write(struct.pack(">I", 0x443D2D3F))
  59. # encrypt the contents using a known file header key
  60. # write the file_key
  61. output_file.write(struct.pack("<I", file_key))
  62. #TODO - how to enforce that the firmware aligns to block boundaries?
  63. block_count = int(len(input_file) / block_size)
  64. print ("Block Count is ", block_count)
  65. for block_number in range(0, block_count):
  66. block_offset = (block_number * block_size)
  67. block_end = block_offset + block_size
  68. block_array = bytearray(input_file[block_offset: block_end])
  69. xor_block(block_array, block_array, block_number, block_size, file_key)
  70. for n in range (0, block_size):
  71. input_file[block_offset + n] = block_array[n]
  72. # update the expected CRC value.
  73. xor_crc = calculate_crc(block_array, xor_crc)
  74. # write CRC
  75. output_file.write(struct.pack("<I", xor_crc))
  76. # finally, append the encrypted results.
  77. output_file.write(input_file)
  78. return
  79. # Encrypt ${PROGNAME}.bin and save it as 'update.cbd'
  80. def encrypt(source, target, env):
  81. firmware = open(target[0].path, "rb")
  82. update = open(target[0].dir.path + '/update.cbd', "wb")
  83. length = os.path.getsize(target[0].path)
  84. encrypt_file(firmware, update, length)
  85. firmware.close()
  86. update.close()
  87. marlin.add_post_action(encrypt);