123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * temperature.h - temperature controller
- */
-
- #ifndef TEMPERATURE_H
- #define TEMPERATURE_H
-
- #include "thermistortables.h"
-
- #include "MarlinConfig.h"
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- #include "stepper.h"
- #endif
-
- #ifndef SOFT_PWM_SCALE
- #define SOFT_PWM_SCALE 0
- #endif
-
- #define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
-
- #if HOTENDS == 1
- #define HOTEND_INDEX 0
- #define EXTRUDER_IDX 0
- #else
- #define HOTEND_INDEX e
- #define EXTRUDER_IDX active_extruder
- #endif
-
- /**
- * States for ADC reading in the ISR
- */
- enum ADCSensorState {
- #if HAS_TEMP_0
- PrepareTemp_0,
- MeasureTemp_0,
- #endif
- #if HAS_TEMP_1
- PrepareTemp_1,
- MeasureTemp_1,
- #endif
- #if HAS_TEMP_2
- PrepareTemp_2,
- MeasureTemp_2,
- #endif
- #if HAS_TEMP_3
- PrepareTemp_3,
- MeasureTemp_3,
- #endif
- #if HAS_TEMP_4
- PrepareTemp_4,
- MeasureTemp_4,
- #endif
- #if HAS_TEMP_BED
- PrepareTemp_BED,
- MeasureTemp_BED,
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- Prepare_FILWIDTH,
- Measure_FILWIDTH,
- #endif
- #if ENABLED(ADC_KEYPAD)
- Prepare_ADC_KEY,
- Measure_ADC_KEY,
- #endif
- SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
- StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
- };
-
- // Minimum number of Temperature::ISR loops between sensor readings.
- // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
- // get all oversampled sensor readings
- #define MIN_ADC_ISR_LOOPS 10
-
- #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
-
- #if !HAS_HEATER_BED
- constexpr int16_t target_temperature_bed = 0;
- #endif
-
- class Temperature {
-
- public:
-
- static float current_temperature[HOTENDS],
- current_temperature_bed;
- static int16_t current_temperature_raw[HOTENDS],
- target_temperature[HOTENDS],
- current_temperature_bed_raw;
-
- #if HAS_HEATER_BED
- static int16_t target_temperature_bed;
- #endif
-
- static volatile bool in_temp_isr;
-
- static uint8_t soft_pwm_amount[HOTENDS],
- soft_pwm_amount_bed;
-
- #if ENABLED(FAN_SOFT_PWM)
- static uint8_t soft_pwm_amount_fan[FAN_COUNT],
- soft_pwm_count_fan[FAN_COUNT];
- #endif
-
- #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
- #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0 / 256.0))
- #endif
-
- #if ENABLED(PIDTEMP)
-
- #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
-
- static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
- #if ENABLED(PID_EXTRUSION_SCALING)
- static float Kc[HOTENDS];
- #endif
- #define PID_PARAM(param, h) Temperature::param[h]
-
- #else
-
- static float Kp, Ki, Kd;
- #if ENABLED(PID_EXTRUSION_SCALING)
- static float Kc;
- #endif
- #define PID_PARAM(param, h) Temperature::param
-
- #endif // PID_PARAMS_PER_HOTEND
-
- // Apply the scale factors to the PID values
- #define scalePID_i(i) ( (i) * PID_dT )
- #define unscalePID_i(i) ( (i) / PID_dT )
- #define scalePID_d(d) ( (d) / PID_dT )
- #define unscalePID_d(d) ( (d) * PID_dT )
-
- #endif
-
- #if ENABLED(PIDTEMPBED)
- static float bedKp, bedKi, bedKd;
- #endif
-
- #if ENABLED(BABYSTEPPING)
- static volatile int babystepsTodo[3];
- #endif
-
- #if WATCH_HOTENDS
- static uint16_t watch_target_temp[HOTENDS];
- static millis_t watch_heater_next_ms[HOTENDS];
- #endif
-
- #if WATCH_THE_BED
- static uint16_t watch_target_bed_temp;
- static millis_t watch_bed_next_ms;
- #endif
-
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- static bool allow_cold_extrude;
- static int16_t extrude_min_temp;
- static bool tooColdToExtrude(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
- }
- #else
- static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
- #endif
-
- private:
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- static uint16_t redundant_temperature_raw;
- static float redundant_temperature;
- #endif
-
- static volatile bool temp_meas_ready;
-
- #if ENABLED(PIDTEMP)
- static float temp_iState[HOTENDS],
- temp_dState[HOTENDS],
- pTerm[HOTENDS],
- iTerm[HOTENDS],
- dTerm[HOTENDS];
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- static float cTerm[HOTENDS];
- static long last_e_position;
- static long lpq[LPQ_MAX_LEN];
- static int lpq_ptr;
- #endif
-
- static float pid_error[HOTENDS];
- static bool pid_reset[HOTENDS];
- #endif
-
- #if ENABLED(PIDTEMPBED)
- static float temp_iState_bed,
- temp_dState_bed,
- pTerm_bed,
- iTerm_bed,
- dTerm_bed,
- pid_error_bed;
- #else
- static millis_t next_bed_check_ms;
- #endif
-
- static uint16_t raw_temp_value[MAX_EXTRUDERS],
- raw_temp_bed_value;
-
- // Init min and max temp with extreme values to prevent false errors during startup
- static int16_t minttemp_raw[HOTENDS],
- maxttemp_raw[HOTENDS],
- minttemp[HOTENDS],
- maxttemp[HOTENDS];
-
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- static uint8_t consecutive_low_temperature_error[HOTENDS];
- #endif
-
- #ifdef MILLISECONDS_PREHEAT_TIME
- static millis_t preheat_end_time[HOTENDS];
- #endif
-
- #ifdef BED_MINTEMP
- static int16_t bed_minttemp_raw;
- #endif
-
- #ifdef BED_MAXTEMP
- static int16_t bed_maxttemp_raw;
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static int8_t meas_shift_index; // Index of a delayed sample in buffer
- #endif
-
- #if HAS_AUTO_FAN
- static millis_t next_auto_fan_check_ms;
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
- #endif
-
- #if ENABLED(PROBING_HEATERS_OFF)
- static bool paused;
- #endif
-
- #if HEATER_IDLE_HANDLER
- static millis_t heater_idle_timeout_ms[HOTENDS];
- static bool heater_idle_timeout_exceeded[HOTENDS];
- #if HAS_TEMP_BED
- static millis_t bed_idle_timeout_ms;
- static bool bed_idle_timeout_exceeded;
- #endif
- #endif
-
- public:
- #if ENABLED(ADC_KEYPAD)
- static uint32_t current_ADCKey_raw;
- static uint8_t ADCKey_count;
- #endif
-
- /**
- * Instance Methods
- */
-
- Temperature();
-
- void init();
-
- /**
- * Static (class) methods
- */
- static float analog2temp(int raw, uint8_t e);
- static float analog2tempBed(int raw);
-
- /**
- * Called from the Temperature ISR
- */
- static void isr();
-
- /**
- * Call periodically to manage heaters
- */
- static void manage_heater() _O2; // Added _O2 to work around a compiler error
-
- /**
- * Preheating hotends
- */
- #ifdef MILLISECONDS_PREHEAT_TIME
- static bool is_preheating(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
- }
- static void start_preheat_time(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
- }
- static void reset_preheat_time(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- preheat_end_time[HOTEND_INDEX] = 0;
- }
- #else
- #define is_preheating(n) (false)
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static float analog2widthFil(); // Convert raw Filament Width to millimeters
- static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
- #endif
-
-
- //high level conversion routines, for use outside of temperature.cpp
- //inline so that there is no performance decrease.
- //deg=degreeCelsius
-
- static float degHotend(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return current_temperature[HOTEND_INDEX];
- }
- static float degBed() { return current_temperature_bed; }
-
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- static int16_t rawHotendTemp(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return current_temperature_raw[HOTEND_INDEX];
- }
- static int16_t rawBedTemp() { return current_temperature_bed_raw; }
- #endif
-
- static int16_t degTargetHotend(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return target_temperature[HOTEND_INDEX];
- }
-
- static int16_t degTargetBed() { return target_temperature_bed; }
-
- #if WATCH_HOTENDS
- static void start_watching_heater(uint8_t e = 0);
- #endif
-
- #if WATCH_THE_BED
- static void start_watching_bed();
- #endif
-
- static void setTargetHotend(const int16_t celsius, uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- #ifdef MILLISECONDS_PREHEAT_TIME
- if (celsius == 0)
- reset_preheat_time(HOTEND_INDEX);
- else if (target_temperature[HOTEND_INDEX] == 0)
- start_preheat_time(HOTEND_INDEX);
- #endif
- target_temperature[HOTEND_INDEX] = celsius;
- #if WATCH_HOTENDS
- start_watching_heater(HOTEND_INDEX);
- #endif
- }
-
- static void setTargetBed(const int16_t celsius) {
- #if HAS_HEATER_BED
- target_temperature_bed =
- #ifdef BED_MAXTEMP
- min(celsius, BED_MAXTEMP)
- #else
- celsius
- #endif
- ;
- #if WATCH_THE_BED
- start_watching_bed();
- #endif
- #endif
- }
-
- static bool isHeatingHotend(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
- }
- static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
-
- static bool isCoolingHotend(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
- }
- static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
-
- /**
- * The software PWM power for a heater
- */
- static int getHeaterPower(int heater);
-
- /**
- * Switch off all heaters, set all target temperatures to 0
- */
- static void disable_all_heaters();
-
- /**
- * Perform auto-tuning for hotend or bed in response to M303
- */
- #if HAS_PID_HEATING
- static void PID_autotune(float temp, int hotend, int ncycles, bool set_result=false);
- #endif
-
- /**
- * Update the temp manager when PID values change
- */
- static void updatePID();
-
- #if ENABLED(BABYSTEPPING)
-
- static void babystep_axis(const AxisEnum axis, const int distance) {
- if (axis_known_position[axis]) {
- #if IS_CORE
- #if ENABLED(BABYSTEP_XY)
- switch (axis) {
- case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
- babystepsTodo[CORE_AXIS_1] += distance * 2;
- babystepsTodo[CORE_AXIS_2] += distance * 2;
- break;
- case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
- babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
- babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
- break;
- case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
- babystepsTodo[NORMAL_AXIS] += distance;
- break;
- }
- #elif CORE_IS_XZ || CORE_IS_YZ
- // Only Z stepping needs to be handled here
- babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
- babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
- #else
- babystepsTodo[Z_AXIS] += distance;
- #endif
- #else
- babystepsTodo[axis] += distance;
- #endif
- }
- }
-
- #endif // BABYSTEPPING
-
- #if ENABLED(PROBING_HEATERS_OFF)
- static void pause(const bool p);
- static bool is_paused() { return paused; }
- #endif
-
- #if HEATER_IDLE_HANDLER
- static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
- heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
- }
-
- static void reset_heater_idle_timer(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- heater_idle_timeout_ms[HOTEND_INDEX] = 0;
- heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
- #if WATCH_HOTENDS
- start_watching_heater(HOTEND_INDEX);
- #endif
- }
-
- static bool is_heater_idle(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- return heater_idle_timeout_exceeded[HOTEND_INDEX];
- }
-
- #if HAS_TEMP_BED
- static void start_bed_idle_timer(millis_t timeout_ms) {
- bed_idle_timeout_ms = millis() + timeout_ms;
- bed_idle_timeout_exceeded = false;
- }
-
- static void reset_bed_idle_timer() {
- bed_idle_timeout_ms = 0;
- bed_idle_timeout_exceeded = false;
- #if WATCH_THE_BED
- start_watching_bed();
- #endif
- }
-
- static bool is_bed_idle() {
- return bed_idle_timeout_exceeded;
- }
- #endif
- #endif
-
- private:
-
- static void set_current_temp_raw();
-
- static void updateTemperaturesFromRawValues();
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- static int read_max6675();
- #endif
-
- static void checkExtruderAutoFans();
-
- static float get_pid_output(const int8_t e);
-
- #if ENABLED(PIDTEMPBED)
- static float get_pid_output_bed();
- #endif
-
- static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
- static void min_temp_error(const int8_t e);
- static void max_temp_error(const int8_t e);
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
-
- typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
-
- static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- static TRState thermal_runaway_state_machine[HOTENDS];
- static millis_t thermal_runaway_timer[HOTENDS];
- #endif
-
- #if HAS_THERMALLY_PROTECTED_BED
- static TRState thermal_runaway_bed_state_machine;
- static millis_t thermal_runaway_bed_timer;
- #endif
-
- #endif // THERMAL_PROTECTION
-
- };
-
- extern Temperature thermalManager;
-
- #endif // TEMPERATURE_H
|