My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 289KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G90 - Use Absolute Coordinates
  108. * G91 - Use Relative Coordinates
  109. * G92 - Set current position to coordinates given
  110. *
  111. * "M" Codes
  112. *
  113. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  114. * M1 - Same as M0
  115. * M17 - Enable/Power all stepper motors
  116. * M18 - Disable all stepper motors; same as M84
  117. * M20 - List SD card. (Requires SDSUPPORT)
  118. * M21 - Init SD card. (Requires SDSUPPORT)
  119. * M22 - Release SD card. (Requires SDSUPPORT)
  120. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  121. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  122. * M25 - Pause SD print. (Requires SDSUPPORT)
  123. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  124. * M27 - Report SD print status. (Requires SDSUPPORT)
  125. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  126. * M29 - Stop SD write. (Requires SDSUPPORT)
  127. * M30 - Delete file from SD: "M30 /path/file.gco"
  128. * M31 - Report time since last M109 or SD card start to serial.
  129. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  130. * Use P to run other files as sub-programs: "M32 P !filename#"
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  133. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  134. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  135. * M75 - Start the print job timer.
  136. * M76 - Pause the print job timer.
  137. * M77 - Stop the print job timer.
  138. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  139. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  140. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  141. * M82 - Set E codes absolute (default).
  142. * M83 - Set E codes relative while in Absolute (G90) mode.
  143. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  144. * duration after which steppers should turn off. S0 disables the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  147. * M104 - Set extruder target temp.
  148. * M105 - Report current temperatures.
  149. * M106 - Fan on.
  150. * M107 - Fan off.
  151. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number. (Used by host printing)
  156. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  157. * M112 - Emergency stop.
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  159. * M114 - Report current position.
  160. * M115 - Report capabilities.
  161. * M117 - Display a message on the controller screen. (Requires an LCD)
  162. * M119 - Report endstops status.
  163. * M120 - Enable endstops detection.
  164. * M121 - Disable endstops detection.
  165. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  166. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  167. * M128 - EtoP Open. (Requires BARICUDA)
  168. * M129 - EtoP Closed. (Requires BARICUDA)
  169. * M140 - Set bed target temp. S<temp>
  170. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  172. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  173. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  174. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  175. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  176. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  177. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  178. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  179. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  180. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  181. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  182. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  183. * M205 - Set advanced settings. Current units apply:
  184. S<print> T<travel> minimum speeds
  185. B<minimum segment time>
  186. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  187. * M206 - Set additional homing offset.
  188. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  189. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  190. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  191. Every normal extrude-only move will be classified as retract depending on the direction.
  192. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  193. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  194. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  195. * M221 - Set Flow Percentage: "M221 S<percent>"
  196. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  197. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  198. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  199. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  200. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  201. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  202. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  203. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  204. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  205. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  206. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  207. * M400 - Finish all moves.
  208. * M401 - Lower Z probe. (Requires a probe)
  209. * M402 - Raise Z probe. (Requires a probe)
  210. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  211. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  213. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M410 - Quickstop. Abort all planned moves.
  215. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING)
  216. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  217. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  218. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  219. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  220. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  221. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  222. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  223. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  224. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  225. * M666 - Set delta endstop adjustment. (Requires DELTA)
  226. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  227. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  228. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  229. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  230. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  231. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  232. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  233. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  234. *
  235. * ************ SCARA Specific - This can change to suit future G-code regulations
  236. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  237. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  238. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  239. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  240. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  241. * ************* SCARA End ***************
  242. *
  243. * ************ Custom codes - This can change to suit future G-code regulations
  244. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  245. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  246. * M999 - Restart after being stopped by error
  247. *
  248. * "T" Codes
  249. *
  250. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  251. *
  252. */
  253. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  254. void gcode_M100();
  255. #endif
  256. #if ENABLED(SDSUPPORT)
  257. CardReader card;
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. TWIBus i2c;
  261. #endif
  262. bool Running = true;
  263. uint8_t marlin_debug_flags = DEBUG_NONE;
  264. float current_position[NUM_AXIS] = { 0.0 };
  265. static float destination[NUM_AXIS] = { 0.0 };
  266. bool axis_known_position[XYZ] = { false };
  267. bool axis_homed[XYZ] = { false };
  268. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  269. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  270. static char* current_command, *current_command_args;
  271. static uint8_t cmd_queue_index_r = 0,
  272. cmd_queue_index_w = 0,
  273. commands_in_queue = 0;
  274. #if ENABLED(INCH_MODE_SUPPORT)
  275. float linear_unit_factor = 1.0;
  276. float volumetric_unit_factor = 1.0;
  277. #endif
  278. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  279. TempUnit input_temp_units = TEMPUNIT_C;
  280. #endif
  281. /**
  282. * Feed rates are often configured with mm/m
  283. * but the planner and stepper like mm/s units.
  284. */
  285. float constexpr homing_feedrate_mm_s[] = {
  286. #if ENABLED(DELTA)
  287. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  288. #else
  289. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  290. #endif
  291. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  292. };
  293. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  294. int feedrate_percentage = 100, saved_feedrate_percentage;
  295. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  296. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  297. bool volumetric_enabled = false;
  298. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  299. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  300. // The distance that XYZ has been offset by G92. Reset by G28.
  301. float position_shift[XYZ] = { 0 };
  302. // This offset is added to the configured home position.
  303. // Set by M206, M428, or menu item. Saved to EEPROM.
  304. float home_offset[XYZ] = { 0 };
  305. // Software Endstops are based on the configured limits.
  306. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  307. bool soft_endstops_enabled = true;
  308. #endif
  309. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  310. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  311. #if FAN_COUNT > 0
  312. int fanSpeeds[FAN_COUNT] = { 0 };
  313. #endif
  314. // The active extruder (tool). Set with T<extruder> command.
  315. uint8_t active_extruder = 0;
  316. // Relative Mode. Enable with G91, disable with G90.
  317. static bool relative_mode = false;
  318. volatile bool wait_for_heatup = true;
  319. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  320. volatile bool wait_for_user = false;
  321. #endif
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static int serial_count = 0;
  326. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  327. static char* seen_pointer;
  328. // Next Immediate GCode Command pointer. NULL if none.
  329. const char* queued_commands_P = NULL;
  330. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  331. // Inactivity shutdown
  332. millis_t previous_cmd_ms = 0;
  333. static millis_t max_inactive_time = 0;
  334. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  335. // Print Job Timer
  336. #if ENABLED(PRINTCOUNTER)
  337. PrintCounter print_job_timer = PrintCounter();
  338. #else
  339. Stopwatch print_job_timer = Stopwatch();
  340. #endif
  341. // Buzzer - I2C on the LCD or a BEEPER_PIN
  342. #if ENABLED(LCD_USE_I2C_BUZZER)
  343. #define BUZZ(d,f) lcd_buzz(d, f)
  344. #elif HAS_BUZZER
  345. Buzzer buzzer;
  346. #define BUZZ(d,f) buzzer.tone(d, f)
  347. #else
  348. #define BUZZ(d,f) NOOP
  349. #endif
  350. static uint8_t target_extruder;
  351. #if HAS_BED_PROBE
  352. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  353. #endif
  354. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  355. #if HAS_ABL
  356. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  357. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  358. #elif defined(XY_PROBE_SPEED)
  359. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  360. #else
  361. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  362. #endif
  363. #if ENABLED(Z_DUAL_ENDSTOPS)
  364. float z_endstop_adj = 0;
  365. #endif
  366. // Extruder offsets
  367. #if HOTENDS > 1
  368. float hotend_offset[][HOTENDS] = {
  369. HOTEND_OFFSET_X,
  370. HOTEND_OFFSET_Y
  371. #ifdef HOTEND_OFFSET_Z
  372. , HOTEND_OFFSET_Z
  373. #endif
  374. };
  375. #endif
  376. #if HAS_Z_SERVO_ENDSTOP
  377. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  378. #endif
  379. #if ENABLED(BARICUDA)
  380. int baricuda_valve_pressure = 0;
  381. int baricuda_e_to_p_pressure = 0;
  382. #endif
  383. #if ENABLED(FWRETRACT)
  384. bool autoretract_enabled = false;
  385. bool retracted[EXTRUDERS] = { false };
  386. bool retracted_swap[EXTRUDERS] = { false };
  387. float retract_length = RETRACT_LENGTH;
  388. float retract_length_swap = RETRACT_LENGTH_SWAP;
  389. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  390. float retract_zlift = RETRACT_ZLIFT;
  391. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  392. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  393. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  394. #endif // FWRETRACT
  395. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  396. bool powersupply =
  397. #if ENABLED(PS_DEFAULT_OFF)
  398. false
  399. #else
  400. true
  401. #endif
  402. ;
  403. #endif
  404. #if ENABLED(DELTA)
  405. #define SIN_60 0.8660254037844386
  406. #define COS_60 0.5
  407. float delta[ABC],
  408. endstop_adj[ABC] = { 0 };
  409. // these are the default values, can be overriden with M665
  410. float delta_radius = DELTA_RADIUS,
  411. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  412. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  413. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  414. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  415. delta_tower3_x = 0, // back middle tower
  416. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  417. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  418. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  419. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  420. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  421. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  422. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  423. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  424. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  425. delta_clip_start_height = Z_MAX_POS;
  426. float delta_safe_distance_from_top();
  427. #else
  428. static bool home_all_axis = true;
  429. #endif
  430. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  431. int bilinear_grid_spacing[2] = { 0 };
  432. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  433. #endif
  434. #if IS_SCARA
  435. // Float constants for SCARA calculations
  436. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  437. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  438. L2_2 = sq(float(L2));
  439. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  440. delta[ABC];
  441. #endif
  442. float cartes[XYZ] = { 0 };
  443. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  444. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  445. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  446. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  447. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  448. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  449. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  450. #endif
  451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  452. static bool filament_ran_out = false;
  453. #endif
  454. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  455. FilamentChangeMenuResponse filament_change_menu_response;
  456. #endif
  457. #if ENABLED(MIXING_EXTRUDER)
  458. float mixing_factor[MIXING_STEPPERS];
  459. #if MIXING_VIRTUAL_TOOLS > 1
  460. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  461. #endif
  462. #endif
  463. static bool send_ok[BUFSIZE];
  464. #if HAS_SERVOS
  465. Servo servo[NUM_SERVOS];
  466. #define MOVE_SERVO(I, P) servo[I].move(P)
  467. #if HAS_Z_SERVO_ENDSTOP
  468. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  469. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  470. #endif
  471. #endif
  472. #ifdef CHDK
  473. millis_t chdkHigh = 0;
  474. boolean chdkActive = false;
  475. #endif
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. int lpq_len = 20;
  478. #endif
  479. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  480. static MarlinBusyState busy_state = NOT_BUSY;
  481. static millis_t next_busy_signal_ms = 0;
  482. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  483. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  484. #else
  485. #define host_keepalive() ;
  486. #define KEEPALIVE_STATE(n) ;
  487. #endif // HOST_KEEPALIVE_FEATURE
  488. #define DEFINE_PGM_READ_ANY(type, reader) \
  489. static inline type pgm_read_any(const type *p) \
  490. { return pgm_read_##reader##_near(p); }
  491. DEFINE_PGM_READ_ANY(float, float);
  492. DEFINE_PGM_READ_ANY(signed char, byte);
  493. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  494. static const PROGMEM type array##_P[XYZ] = \
  495. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  496. static inline type array(int axis) \
  497. { return pgm_read_any(&array##_P[axis]); }
  498. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  499. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  500. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  502. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  503. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  504. /**
  505. * ***************************************************************************
  506. * ******************************** FUNCTIONS ********************************
  507. * ***************************************************************************
  508. */
  509. void stop();
  510. void get_available_commands();
  511. void process_next_command();
  512. void prepare_move_to_destination();
  513. void get_cartesian_from_steppers();
  514. void set_current_from_steppers_for_axis(const AxisEnum axis);
  515. #if ENABLED(ARC_SUPPORT)
  516. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  517. #endif
  518. #if ENABLED(BEZIER_CURVE_SUPPORT)
  519. void plan_cubic_move(const float offset[4]);
  520. #endif
  521. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  522. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  523. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  525. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  529. static void report_current_position();
  530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  531. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  532. serialprintPGM(prefix);
  533. SERIAL_ECHOPAIR("(", x);
  534. SERIAL_ECHOPAIR(", ", y);
  535. SERIAL_ECHOPAIR(", ", z);
  536. SERIAL_ECHOPGM(")");
  537. if (suffix) serialprintPGM(suffix);
  538. else SERIAL_EOL;
  539. }
  540. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  541. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  542. }
  543. #if HAS_ABL
  544. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  545. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  546. }
  547. #endif
  548. #define DEBUG_POS(SUFFIX,VAR) do { \
  549. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  550. #endif
  551. /**
  552. * sync_plan_position
  553. *
  554. * Set the planner/stepper positions directly from current_position with
  555. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  556. */
  557. inline void sync_plan_position() {
  558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  559. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  560. #endif
  561. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  562. }
  563. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  564. #if IS_KINEMATIC
  565. inline void sync_plan_position_kinematic() {
  566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  567. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  568. #endif
  569. inverse_kinematics(current_position);
  570. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  571. }
  572. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  573. #else
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  575. #endif
  576. #if ENABLED(SDSUPPORT)
  577. #include "SdFatUtil.h"
  578. int freeMemory() { return SdFatUtil::FreeRam(); }
  579. #else
  580. extern "C" {
  581. extern unsigned int __bss_end;
  582. extern unsigned int __heap_start;
  583. extern void* __brkval;
  584. int freeMemory() {
  585. int free_memory;
  586. if ((int)__brkval == 0)
  587. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  588. else
  589. free_memory = ((int)&free_memory) - ((int)__brkval);
  590. return free_memory;
  591. }
  592. }
  593. #endif //!SDSUPPORT
  594. #if ENABLED(DIGIPOT_I2C)
  595. extern void digipot_i2c_set_current(int channel, float current);
  596. extern void digipot_i2c_init();
  597. #endif
  598. /**
  599. * Inject the next "immediate" command, when possible.
  600. * Return true if any immediate commands remain to inject.
  601. */
  602. static bool drain_queued_commands_P() {
  603. if (queued_commands_P != NULL) {
  604. size_t i = 0;
  605. char c, cmd[30];
  606. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  607. cmd[sizeof(cmd) - 1] = '\0';
  608. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  609. cmd[i] = '\0';
  610. if (enqueue_and_echo_command(cmd)) { // success?
  611. if (c) // newline char?
  612. queued_commands_P += i + 1; // advance to the next command
  613. else
  614. queued_commands_P = NULL; // nul char? no more commands
  615. }
  616. }
  617. return (queued_commands_P != NULL); // return whether any more remain
  618. }
  619. /**
  620. * Record one or many commands to run from program memory.
  621. * Aborts the current queue, if any.
  622. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  623. */
  624. void enqueue_and_echo_commands_P(const char* pgcode) {
  625. queued_commands_P = pgcode;
  626. drain_queued_commands_P(); // first command executed asap (when possible)
  627. }
  628. void clear_command_queue() {
  629. cmd_queue_index_r = cmd_queue_index_w;
  630. commands_in_queue = 0;
  631. }
  632. /**
  633. * Once a new command is in the ring buffer, call this to commit it
  634. */
  635. inline void _commit_command(bool say_ok) {
  636. send_ok[cmd_queue_index_w] = say_ok;
  637. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  638. commands_in_queue++;
  639. }
  640. /**
  641. * Copy a command directly into the main command buffer, from RAM.
  642. * Returns true if successfully adds the command
  643. */
  644. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  645. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  646. strcpy(command_queue[cmd_queue_index_w], cmd);
  647. _commit_command(say_ok);
  648. return true;
  649. }
  650. void enqueue_and_echo_command_now(const char* cmd) {
  651. while (!enqueue_and_echo_command(cmd)) idle();
  652. }
  653. /**
  654. * Enqueue with Serial Echo
  655. */
  656. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  657. if (_enqueuecommand(cmd, say_ok)) {
  658. SERIAL_ECHO_START;
  659. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  660. SERIAL_ECHOLNPGM("\"");
  661. return true;
  662. }
  663. return false;
  664. }
  665. void setup_killpin() {
  666. #if HAS_KILL
  667. SET_INPUT(KILL_PIN);
  668. WRITE(KILL_PIN, HIGH);
  669. #endif
  670. }
  671. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  672. void setup_filrunoutpin() {
  673. SET_INPUT(FIL_RUNOUT_PIN);
  674. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  675. WRITE(FIL_RUNOUT_PIN, HIGH);
  676. #endif
  677. }
  678. #endif
  679. // Set home pin
  680. void setup_homepin(void) {
  681. #if HAS_HOME
  682. SET_INPUT(HOME_PIN);
  683. WRITE(HOME_PIN, HIGH);
  684. #endif
  685. }
  686. void setup_photpin() {
  687. #if HAS_PHOTOGRAPH
  688. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  689. #endif
  690. }
  691. void setup_powerhold() {
  692. #if HAS_SUICIDE
  693. OUT_WRITE(SUICIDE_PIN, HIGH);
  694. #endif
  695. #if HAS_POWER_SWITCH
  696. #if ENABLED(PS_DEFAULT_OFF)
  697. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  698. #else
  699. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  700. #endif
  701. #endif
  702. }
  703. void suicide() {
  704. #if HAS_SUICIDE
  705. OUT_WRITE(SUICIDE_PIN, LOW);
  706. #endif
  707. }
  708. void servo_init() {
  709. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  710. servo[0].attach(SERVO0_PIN);
  711. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  712. #endif
  713. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  714. servo[1].attach(SERVO1_PIN);
  715. servo[1].detach();
  716. #endif
  717. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  718. servo[2].attach(SERVO2_PIN);
  719. servo[2].detach();
  720. #endif
  721. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  722. servo[3].attach(SERVO3_PIN);
  723. servo[3].detach();
  724. #endif
  725. #if HAS_Z_SERVO_ENDSTOP
  726. /**
  727. * Set position of Z Servo Endstop
  728. *
  729. * The servo might be deployed and positioned too low to stow
  730. * when starting up the machine or rebooting the board.
  731. * There's no way to know where the nozzle is positioned until
  732. * homing has been done - no homing with z-probe without init!
  733. *
  734. */
  735. STOW_Z_SERVO();
  736. #endif
  737. }
  738. /**
  739. * Stepper Reset (RigidBoard, et.al.)
  740. */
  741. #if HAS_STEPPER_RESET
  742. void disableStepperDrivers() {
  743. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  744. }
  745. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  746. #endif
  747. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  748. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  749. i2c.receive(bytes);
  750. }
  751. void i2c_on_request() { // just send dummy data for now
  752. i2c.reply("Hello World!\n");
  753. }
  754. #endif
  755. void gcode_line_error(const char* err, bool doFlush = true) {
  756. SERIAL_ERROR_START;
  757. serialprintPGM(err);
  758. SERIAL_ERRORLN(gcode_LastN);
  759. //Serial.println(gcode_N);
  760. if (doFlush) FlushSerialRequestResend();
  761. serial_count = 0;
  762. }
  763. inline void get_serial_commands() {
  764. static char serial_line_buffer[MAX_CMD_SIZE];
  765. static boolean serial_comment_mode = false;
  766. // If the command buffer is empty for too long,
  767. // send "wait" to indicate Marlin is still waiting.
  768. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  769. static millis_t last_command_time = 0;
  770. millis_t ms = millis();
  771. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  772. SERIAL_ECHOLNPGM(MSG_WAIT);
  773. last_command_time = ms;
  774. }
  775. #endif
  776. /**
  777. * Loop while serial characters are incoming and the queue is not full
  778. */
  779. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  780. char serial_char = MYSERIAL.read();
  781. /**
  782. * If the character ends the line
  783. */
  784. if (serial_char == '\n' || serial_char == '\r') {
  785. serial_comment_mode = false; // end of line == end of comment
  786. if (!serial_count) continue; // skip empty lines
  787. serial_line_buffer[serial_count] = 0; // terminate string
  788. serial_count = 0; //reset buffer
  789. char* command = serial_line_buffer;
  790. while (*command == ' ') command++; // skip any leading spaces
  791. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  792. char* apos = strchr(command, '*');
  793. if (npos) {
  794. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  795. if (M110) {
  796. char* n2pos = strchr(command + 4, 'N');
  797. if (n2pos) npos = n2pos;
  798. }
  799. gcode_N = strtol(npos + 1, NULL, 10);
  800. if (gcode_N != gcode_LastN + 1 && !M110) {
  801. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  802. return;
  803. }
  804. if (apos) {
  805. byte checksum = 0, count = 0;
  806. while (command[count] != '*') checksum ^= command[count++];
  807. if (strtol(apos + 1, NULL, 10) != checksum) {
  808. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  809. return;
  810. }
  811. // if no errors, continue parsing
  812. }
  813. else {
  814. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  815. return;
  816. }
  817. gcode_LastN = gcode_N;
  818. // if no errors, continue parsing
  819. }
  820. else if (apos) { // No '*' without 'N'
  821. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  822. return;
  823. }
  824. // Movement commands alert when stopped
  825. if (IsStopped()) {
  826. char* gpos = strchr(command, 'G');
  827. if (gpos) {
  828. int codenum = strtol(gpos + 1, NULL, 10);
  829. switch (codenum) {
  830. case 0:
  831. case 1:
  832. case 2:
  833. case 3:
  834. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  835. LCD_MESSAGEPGM(MSG_STOPPED);
  836. break;
  837. }
  838. }
  839. }
  840. #if DISABLED(EMERGENCY_PARSER)
  841. // If command was e-stop process now
  842. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  843. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  844. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  845. #endif
  846. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  847. last_command_time = ms;
  848. #endif
  849. // Add the command to the queue
  850. _enqueuecommand(serial_line_buffer, true);
  851. }
  852. else if (serial_count >= MAX_CMD_SIZE - 1) {
  853. // Keep fetching, but ignore normal characters beyond the max length
  854. // The command will be injected when EOL is reached
  855. }
  856. else if (serial_char == '\\') { // Handle escapes
  857. if (MYSERIAL.available() > 0) {
  858. // if we have one more character, copy it over
  859. serial_char = MYSERIAL.read();
  860. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  861. }
  862. // otherwise do nothing
  863. }
  864. else { // it's not a newline, carriage return or escape char
  865. if (serial_char == ';') serial_comment_mode = true;
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. } // queue has space, serial has data
  869. }
  870. #if ENABLED(SDSUPPORT)
  871. inline void get_sdcard_commands() {
  872. static bool stop_buffering = false,
  873. sd_comment_mode = false;
  874. if (!card.sdprinting) return;
  875. /**
  876. * '#' stops reading from SD to the buffer prematurely, so procedural
  877. * macro calls are possible. If it occurs, stop_buffering is triggered
  878. * and the buffer is run dry; this character _can_ occur in serial com
  879. * due to checksums, however, no checksums are used in SD printing.
  880. */
  881. if (commands_in_queue == 0) stop_buffering = false;
  882. uint16_t sd_count = 0;
  883. bool card_eof = card.eof();
  884. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  885. int16_t n = card.get();
  886. char sd_char = (char)n;
  887. card_eof = card.eof();
  888. if (card_eof || n == -1
  889. || sd_char == '\n' || sd_char == '\r'
  890. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  891. ) {
  892. if (card_eof) {
  893. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  894. card.printingHasFinished();
  895. card.checkautostart(true);
  896. }
  897. else if (n == -1) {
  898. SERIAL_ERROR_START;
  899. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  900. }
  901. if (sd_char == '#') stop_buffering = true;
  902. sd_comment_mode = false; //for new command
  903. if (!sd_count) continue; //skip empty lines
  904. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  905. sd_count = 0; //clear buffer
  906. _commit_command(false);
  907. }
  908. else if (sd_count >= MAX_CMD_SIZE - 1) {
  909. /**
  910. * Keep fetching, but ignore normal characters beyond the max length
  911. * The command will be injected when EOL is reached
  912. */
  913. }
  914. else {
  915. if (sd_char == ';') sd_comment_mode = true;
  916. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  917. }
  918. }
  919. }
  920. #endif // SDSUPPORT
  921. /**
  922. * Add to the circular command queue the next command from:
  923. * - The command-injection queue (queued_commands_P)
  924. * - The active serial input (usually USB)
  925. * - The SD card file being actively printed
  926. */
  927. void get_available_commands() {
  928. // if any immediate commands remain, don't get other commands yet
  929. if (drain_queued_commands_P()) return;
  930. get_serial_commands();
  931. #if ENABLED(SDSUPPORT)
  932. get_sdcard_commands();
  933. #endif
  934. }
  935. inline bool code_has_value() {
  936. int i = 1;
  937. char c = seen_pointer[i];
  938. while (c == ' ') c = seen_pointer[++i];
  939. if (c == '-' || c == '+') c = seen_pointer[++i];
  940. if (c == '.') c = seen_pointer[++i];
  941. return NUMERIC(c);
  942. }
  943. inline float code_value_float() {
  944. float ret;
  945. char* e = strchr(seen_pointer, 'E');
  946. if (e) {
  947. *e = 0;
  948. ret = strtod(seen_pointer + 1, NULL);
  949. *e = 'E';
  950. }
  951. else
  952. ret = strtod(seen_pointer + 1, NULL);
  953. return ret;
  954. }
  955. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  956. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  957. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  958. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  959. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  960. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  961. #if ENABLED(INCH_MODE_SUPPORT)
  962. inline void set_input_linear_units(LinearUnit units) {
  963. switch (units) {
  964. case LINEARUNIT_INCH:
  965. linear_unit_factor = 25.4;
  966. break;
  967. case LINEARUNIT_MM:
  968. default:
  969. linear_unit_factor = 1.0;
  970. break;
  971. }
  972. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  973. }
  974. inline float axis_unit_factor(int axis) {
  975. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  976. }
  977. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  978. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  979. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  980. #else
  981. inline float code_value_linear_units() { return code_value_float(); }
  982. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  983. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  984. #endif
  985. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  986. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  987. float code_value_temp_abs() {
  988. switch (input_temp_units) {
  989. case TEMPUNIT_C:
  990. return code_value_float();
  991. case TEMPUNIT_F:
  992. return (code_value_float() - 32) * 0.5555555556;
  993. case TEMPUNIT_K:
  994. return code_value_float() - 272.15;
  995. default:
  996. return code_value_float();
  997. }
  998. }
  999. float code_value_temp_diff() {
  1000. switch (input_temp_units) {
  1001. case TEMPUNIT_C:
  1002. case TEMPUNIT_K:
  1003. return code_value_float();
  1004. case TEMPUNIT_F:
  1005. return code_value_float() * 0.5555555556;
  1006. default:
  1007. return code_value_float();
  1008. }
  1009. }
  1010. #else
  1011. float code_value_temp_abs() { return code_value_float(); }
  1012. float code_value_temp_diff() { return code_value_float(); }
  1013. #endif
  1014. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1015. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1016. bool code_seen(char code) {
  1017. seen_pointer = strchr(current_command_args, code);
  1018. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1019. }
  1020. /**
  1021. * Set target_extruder from the T parameter or the active_extruder
  1022. *
  1023. * Returns TRUE if the target is invalid
  1024. */
  1025. bool get_target_extruder_from_command(int code) {
  1026. if (code_seen('T')) {
  1027. if (code_value_byte() >= EXTRUDERS) {
  1028. SERIAL_ECHO_START;
  1029. SERIAL_CHAR('M');
  1030. SERIAL_ECHO(code);
  1031. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1032. return true;
  1033. }
  1034. target_extruder = code_value_byte();
  1035. }
  1036. else
  1037. target_extruder = active_extruder;
  1038. return false;
  1039. }
  1040. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1041. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1042. #endif
  1043. #if ENABLED(DUAL_X_CARRIAGE)
  1044. #define DXC_FULL_CONTROL_MODE 0
  1045. #define DXC_AUTO_PARK_MODE 1
  1046. #define DXC_DUPLICATION_MODE 2
  1047. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1048. static float x_home_pos(int extruder) {
  1049. if (extruder == 0)
  1050. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1051. else
  1052. /**
  1053. * In dual carriage mode the extruder offset provides an override of the
  1054. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1055. * This allow soft recalibration of the second extruder offset position
  1056. * without firmware reflash (through the M218 command).
  1057. */
  1058. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1059. }
  1060. static int x_home_dir(int extruder) {
  1061. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1062. }
  1063. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1064. static bool active_extruder_parked = false; // used in mode 1 & 2
  1065. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1066. static millis_t delayed_move_time = 0; // used in mode 1
  1067. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1068. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1069. #endif //DUAL_X_CARRIAGE
  1070. /**
  1071. * Software endstops can be used to monitor the open end of
  1072. * an axis that has a hardware endstop on the other end. Or
  1073. * they can prevent axes from moving past endstops and grinding.
  1074. *
  1075. * To keep doing their job as the coordinate system changes,
  1076. * the software endstop positions must be refreshed to remain
  1077. * at the same positions relative to the machine.
  1078. */
  1079. void update_software_endstops(AxisEnum axis) {
  1080. float offs = LOGICAL_POSITION(0, axis);
  1081. #if ENABLED(DUAL_X_CARRIAGE)
  1082. if (axis == X_AXIS) {
  1083. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1084. if (active_extruder != 0) {
  1085. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1086. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1087. return;
  1088. }
  1089. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1090. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1091. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1092. return;
  1093. }
  1094. }
  1095. else
  1096. #endif
  1097. {
  1098. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1099. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1100. }
  1101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1102. if (DEBUGGING(LEVELING)) {
  1103. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1104. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1105. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1106. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1107. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1108. }
  1109. #endif
  1110. #if ENABLED(DELTA)
  1111. if (axis == Z_AXIS)
  1112. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1113. #endif
  1114. }
  1115. /**
  1116. * Change the home offset for an axis, update the current
  1117. * position and the software endstops to retain the same
  1118. * relative distance to the new home.
  1119. *
  1120. * Since this changes the current_position, code should
  1121. * call sync_plan_position soon after this.
  1122. */
  1123. static void set_home_offset(AxisEnum axis, float v) {
  1124. current_position[axis] += v - home_offset[axis];
  1125. home_offset[axis] = v;
  1126. update_software_endstops(axis);
  1127. }
  1128. /**
  1129. * Set an axis' current position to its home position (after homing).
  1130. *
  1131. * For Core and Cartesian robots this applies one-to-one when an
  1132. * individual axis has been homed.
  1133. *
  1134. * DELTA should wait until all homing is done before setting the XYZ
  1135. * current_position to home, because homing is a single operation.
  1136. * In the case where the axis positions are already known and previously
  1137. * homed, DELTA could home to X or Y individually by moving either one
  1138. * to the center. However, homing Z always homes XY and Z.
  1139. *
  1140. * SCARA should wait until all XY homing is done before setting the XY
  1141. * current_position to home, because neither X nor Y is at home until
  1142. * both are at home. Z can however be homed individually.
  1143. *
  1144. */
  1145. static void set_axis_is_at_home(AxisEnum axis) {
  1146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1147. if (DEBUGGING(LEVELING)) {
  1148. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1149. SERIAL_ECHOLNPGM(")");
  1150. }
  1151. #endif
  1152. axis_known_position[axis] = axis_homed[axis] = true;
  1153. position_shift[axis] = 0;
  1154. update_software_endstops(axis);
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1157. if (active_extruder != 0)
  1158. current_position[X_AXIS] = x_home_pos(active_extruder);
  1159. else
  1160. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1161. update_software_endstops(X_AXIS);
  1162. return;
  1163. }
  1164. #endif
  1165. #if ENABLED(MORGAN_SCARA)
  1166. /**
  1167. * Morgan SCARA homes XY at the same time
  1168. */
  1169. if (axis == X_AXIS || axis == Y_AXIS) {
  1170. float homeposition[XYZ];
  1171. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1172. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1173. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1174. /**
  1175. * Get Home position SCARA arm angles using inverse kinematics,
  1176. * and calculate homing offset using forward kinematics
  1177. */
  1178. inverse_kinematics(homeposition);
  1179. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1180. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1181. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1182. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1183. /**
  1184. * SCARA home positions are based on configuration since the actual
  1185. * limits are determined by the inverse kinematic transform.
  1186. */
  1187. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1189. }
  1190. else
  1191. #endif
  1192. {
  1193. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1194. }
  1195. /**
  1196. * Z Probe Z Homing? Account for the probe's Z offset.
  1197. */
  1198. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1199. if (axis == Z_AXIS) {
  1200. #if HOMING_Z_WITH_PROBE
  1201. current_position[Z_AXIS] -= zprobe_zoffset;
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (DEBUGGING(LEVELING)) {
  1204. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1205. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1206. }
  1207. #endif
  1208. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1209. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1210. #endif
  1211. }
  1212. #endif
  1213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1214. if (DEBUGGING(LEVELING)) {
  1215. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1216. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1217. DEBUG_POS("", current_position);
  1218. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1219. SERIAL_ECHOLNPGM(")");
  1220. }
  1221. #endif
  1222. }
  1223. /**
  1224. * Some planner shorthand inline functions
  1225. */
  1226. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1227. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1228. int hbd = homing_bump_divisor[axis];
  1229. if (hbd < 1) {
  1230. hbd = 10;
  1231. SERIAL_ECHO_START;
  1232. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1233. }
  1234. return homing_feedrate_mm_s[axis] / hbd;
  1235. }
  1236. //
  1237. // line_to_current_position
  1238. // Move the planner to the current position from wherever it last moved
  1239. // (or from wherever it has been told it is located).
  1240. //
  1241. inline void line_to_current_position() {
  1242. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1243. }
  1244. //
  1245. // line_to_destination
  1246. // Move the planner, not necessarily synced with current_position
  1247. //
  1248. inline void line_to_destination(float fr_mm_s) {
  1249. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1250. }
  1251. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1252. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1253. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1254. #if IS_KINEMATIC
  1255. /**
  1256. * Calculate delta, start a line, and set current_position to destination
  1257. */
  1258. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1261. #endif
  1262. if ( current_position[X_AXIS] == destination[X_AXIS]
  1263. && current_position[Y_AXIS] == destination[Y_AXIS]
  1264. && current_position[Z_AXIS] == destination[Z_AXIS]
  1265. && current_position[E_AXIS] == destination[E_AXIS]
  1266. ) return;
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif // IS_KINEMATIC
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #elif IS_SCARA
  1329. set_destination_to_current();
  1330. // If Z needs to raise, do it before moving XY
  1331. if (destination[Z_AXIS] < z) {
  1332. destination[Z_AXIS] = z;
  1333. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1334. }
  1335. destination[X_AXIS] = x;
  1336. destination[Y_AXIS] = y;
  1337. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1338. // If Z needs to lower, do it after moving XY
  1339. if (destination[Z_AXIS] > z) {
  1340. destination[Z_AXIS] = z;
  1341. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1342. }
  1343. #else
  1344. // If Z needs to raise, do it before moving XY
  1345. if (current_position[Z_AXIS] < z) {
  1346. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1347. current_position[Z_AXIS] = z;
  1348. line_to_current_position();
  1349. }
  1350. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1351. current_position[X_AXIS] = x;
  1352. current_position[Y_AXIS] = y;
  1353. line_to_current_position();
  1354. // If Z needs to lower, do it after moving XY
  1355. if (current_position[Z_AXIS] > z) {
  1356. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1357. current_position[Z_AXIS] = z;
  1358. line_to_current_position();
  1359. }
  1360. #endif
  1361. stepper.synchronize();
  1362. feedrate_mm_s = old_feedrate_mm_s;
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1365. #endif
  1366. }
  1367. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1368. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1369. }
  1370. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1371. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1372. }
  1373. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1374. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1375. }
  1376. //
  1377. // Prepare to do endstop or probe moves
  1378. // with custom feedrates.
  1379. //
  1380. // - Save current feedrates
  1381. // - Reset the rate multiplier
  1382. // - Reset the command timeout
  1383. // - Enable the endstops (for endstop moves)
  1384. //
  1385. static void setup_for_endstop_or_probe_move() {
  1386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1388. #endif
  1389. saved_feedrate_mm_s = feedrate_mm_s;
  1390. saved_feedrate_percentage = feedrate_percentage;
  1391. feedrate_percentage = 100;
  1392. refresh_cmd_timeout();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate_mm_s = saved_feedrate_mm_s;
  1399. feedrate_percentage = saved_feedrate_percentage;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. /**
  1404. * Raise Z to a minimum height to make room for a probe to move
  1405. */
  1406. inline void do_probe_raise(float z_raise) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) {
  1409. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1410. SERIAL_ECHOLNPGM(")");
  1411. }
  1412. #endif
  1413. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1414. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1415. if (z_dest > current_position[Z_AXIS])
  1416. do_blocking_move_to_z(z_dest);
  1417. }
  1418. #endif //HAS_BED_PROBE
  1419. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1420. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1421. const bool xx = x && !axis_homed[X_AXIS],
  1422. yy = y && !axis_homed[Y_AXIS],
  1423. zz = z && !axis_homed[Z_AXIS];
  1424. if (xx || yy || zz) {
  1425. SERIAL_ECHO_START;
  1426. SERIAL_ECHOPGM(MSG_HOME " ");
  1427. if (xx) SERIAL_ECHOPGM(MSG_X);
  1428. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1429. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1430. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1431. #if ENABLED(ULTRA_LCD)
  1432. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1433. strcat_P(message, PSTR(MSG_HOME " "));
  1434. if (xx) strcat_P(message, PSTR(MSG_X));
  1435. if (yy) strcat_P(message, PSTR(MSG_Y));
  1436. if (zz) strcat_P(message, PSTR(MSG_Z));
  1437. strcat_P(message, PSTR(" " MSG_FIRST));
  1438. lcd_setstatus(message);
  1439. #endif
  1440. return true;
  1441. }
  1442. return false;
  1443. }
  1444. #endif
  1445. #if ENABLED(Z_PROBE_SLED)
  1446. #ifndef SLED_DOCKING_OFFSET
  1447. #define SLED_DOCKING_OFFSET 0
  1448. #endif
  1449. /**
  1450. * Method to dock/undock a sled designed by Charles Bell.
  1451. *
  1452. * stow[in] If false, move to MAX_X and engage the solenoid
  1453. * If true, move to MAX_X and release the solenoid
  1454. */
  1455. static void dock_sled(bool stow) {
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) {
  1458. SERIAL_ECHOPAIR("dock_sled(", stow);
  1459. SERIAL_ECHOLNPGM(")");
  1460. }
  1461. #endif
  1462. // Dock sled a bit closer to ensure proper capturing
  1463. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1464. #if PIN_EXISTS(SLED)
  1465. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1466. #endif
  1467. }
  1468. #endif // Z_PROBE_SLED
  1469. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1470. void run_deploy_moves_script() {
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1515. #endif
  1516. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1522. #endif
  1523. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1524. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1525. #endif
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1528. #endif
  1529. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1530. #endif
  1531. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1532. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1533. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1534. #endif
  1535. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1536. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1537. #endif
  1538. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1539. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1540. #endif
  1541. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1542. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1543. #endif
  1544. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1545. #endif
  1546. }
  1547. void run_stow_moves_script() {
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1595. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1598. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1601. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1607. #endif
  1608. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1609. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1610. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1613. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1616. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1619. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1620. #endif
  1621. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1622. #endif
  1623. }
  1624. #endif
  1625. #if HAS_BED_PROBE
  1626. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1627. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1628. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1629. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1630. #else
  1631. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1632. #endif
  1633. #endif
  1634. #define DEPLOY_PROBE() set_probe_deployed(true)
  1635. #define STOW_PROBE() set_probe_deployed(false)
  1636. #if ENABLED(BLTOUCH)
  1637. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1638. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1639. }
  1640. #endif
  1641. // returns false for ok and true for failure
  1642. static bool set_probe_deployed(bool deploy) {
  1643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1644. if (DEBUGGING(LEVELING)) {
  1645. DEBUG_POS("set_probe_deployed", current_position);
  1646. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1647. }
  1648. #endif
  1649. if (endstops.z_probe_enabled == deploy) return false;
  1650. // Make room for probe
  1651. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1652. // When deploying make sure BLTOUCH is not already triggered
  1653. #if ENABLED(BLTOUCH)
  1654. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1655. #endif
  1656. #if ENABLED(Z_PROBE_SLED)
  1657. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1658. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1659. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1660. #endif
  1661. float oldXpos = current_position[X_AXIS],
  1662. oldYpos = current_position[Y_AXIS];
  1663. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1664. // If endstop is already false, the Z probe is deployed
  1665. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1666. // Would a goto be less ugly?
  1667. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1668. // for a triggered when stowed manual probe.
  1669. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1670. // otherwise an Allen-Key probe can't be stowed.
  1671. #endif
  1672. #if ENABLED(Z_PROBE_SLED)
  1673. dock_sled(!deploy);
  1674. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1675. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1676. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1677. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1678. #endif
  1679. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1680. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1681. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1682. if (IsRunning()) {
  1683. SERIAL_ERROR_START;
  1684. SERIAL_ERRORLNPGM("Z-Probe failed");
  1685. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1686. }
  1687. stop();
  1688. return true;
  1689. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1690. #endif
  1691. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1692. endstops.enable_z_probe(deploy);
  1693. return false;
  1694. }
  1695. static void do_probe_move(float z, float fr_mm_m) {
  1696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1697. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1698. #endif
  1699. // Deploy BLTouch at the start of any probe
  1700. #if ENABLED(BLTOUCH)
  1701. set_bltouch_deployed(true);
  1702. #endif
  1703. // Move down until probe triggered
  1704. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1705. // Retract BLTouch immediately after a probe
  1706. #if ENABLED(BLTOUCH)
  1707. set_bltouch_deployed(false);
  1708. #endif
  1709. // Clear endstop flags
  1710. endstops.hit_on_purpose();
  1711. // Tell the planner where we actually are
  1712. planner.sync_from_steppers();
  1713. // Get Z where the steppers were interrupted
  1714. set_current_from_steppers_for_axis(Z_AXIS);
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1717. #endif
  1718. }
  1719. // Do a single Z probe and return with current_position[Z_AXIS]
  1720. // at the height where the probe triggered.
  1721. static float run_z_probe() {
  1722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1723. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1724. #endif
  1725. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1726. refresh_cmd_timeout();
  1727. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1728. // Do a first probe at the fast speed
  1729. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1730. // move up by the bump distance
  1731. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1732. #else
  1733. // If the nozzle is above the travel height then
  1734. // move down quickly before doing the slow probe
  1735. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1736. if (z < current_position[Z_AXIS])
  1737. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1738. #endif
  1739. // move down slowly to find bed
  1740. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1742. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1743. #endif
  1744. return current_position[Z_AXIS];
  1745. }
  1746. //
  1747. // - Move to the given XY
  1748. // - Deploy the probe, if not already deployed
  1749. // - Probe the bed, get the Z position
  1750. // - Depending on the 'stow' flag
  1751. // - Stow the probe, or
  1752. // - Raise to the BETWEEN height
  1753. // - Return the probed Z position
  1754. //
  1755. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1757. if (DEBUGGING(LEVELING)) {
  1758. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1759. SERIAL_ECHOPAIR(", ", y);
  1760. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1761. SERIAL_ECHOLNPGM(")");
  1762. DEBUG_POS("", current_position);
  1763. }
  1764. #endif
  1765. float old_feedrate_mm_s = feedrate_mm_s;
  1766. // Ensure a minimum height before moving the probe
  1767. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1768. // Move to the XY where we shall probe
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) {
  1771. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1772. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1773. SERIAL_ECHOLNPGM(")");
  1774. }
  1775. #endif
  1776. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1777. // Move the probe to the given XY
  1778. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1779. if (DEPLOY_PROBE()) return NAN;
  1780. float measured_z = run_z_probe();
  1781. if (!stow)
  1782. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1783. else
  1784. if (STOW_PROBE()) return NAN;
  1785. if (verbose_level > 2) {
  1786. SERIAL_PROTOCOLPGM("Bed X: ");
  1787. SERIAL_PROTOCOL_F(x, 3);
  1788. SERIAL_PROTOCOLPGM(" Y: ");
  1789. SERIAL_PROTOCOL_F(y, 3);
  1790. SERIAL_PROTOCOLPGM(" Z: ");
  1791. SERIAL_PROTOCOL_F(measured_z, 3);
  1792. SERIAL_EOL;
  1793. }
  1794. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1795. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1796. #endif
  1797. feedrate_mm_s = old_feedrate_mm_s;
  1798. return measured_z;
  1799. }
  1800. #endif // HAS_BED_PROBE
  1801. #if HAS_ABL
  1802. /**
  1803. * Reset calibration results to zero.
  1804. *
  1805. * TODO: Proper functions to disable / enable
  1806. * bed leveling via a flag, correcting the
  1807. * current position in each case.
  1808. */
  1809. void reset_bed_level() {
  1810. planner.abl_enabled = false;
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1813. #endif
  1814. #if ABL_PLANAR
  1815. planner.bed_level_matrix.set_to_identity();
  1816. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1817. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1818. #endif
  1819. }
  1820. #endif // HAS_ABL
  1821. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1822. /**
  1823. * Extrapolate a single point from its neighbors
  1824. */
  1825. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1826. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1827. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1828. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1829. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1830. // Median is robust (ignores outliers).
  1831. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1832. : ((c < b) ? b : (a < c) ? a : c);
  1833. }
  1834. /**
  1835. * Fill in the unprobed points (corners of circular print surface)
  1836. * using linear extrapolation, away from the center.
  1837. */
  1838. static void extrapolate_unprobed_bed_level() {
  1839. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1840. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1841. for (uint8_t y = 0; y <= half_y; y++) {
  1842. for (uint8_t x = 0; x <= half_x; x++) {
  1843. if (x + y < 3) continue;
  1844. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1845. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1846. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1847. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1848. }
  1849. }
  1850. }
  1851. /**
  1852. * Print calibration results for plotting or manual frame adjustment.
  1853. */
  1854. static void print_bed_level() {
  1855. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1856. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1857. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1858. SERIAL_PROTOCOLCHAR(' ');
  1859. }
  1860. SERIAL_EOL;
  1861. }
  1862. }
  1863. #endif // AUTO_BED_LEVELING_BILINEAR
  1864. /**
  1865. * Home an individual linear axis
  1866. */
  1867. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  1868. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1869. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  1870. if (deploy_bltouch) set_bltouch_deployed(true);
  1871. #endif
  1872. // Tell the planner we're at Z=0
  1873. current_position[axis] = 0;
  1874. #if IS_SCARA
  1875. SYNC_PLAN_POSITION_KINEMATIC();
  1876. current_position[axis] = distance;
  1877. inverse_kinematics(current_position);
  1878. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1879. #else
  1880. sync_plan_position();
  1881. current_position[axis] = distance;
  1882. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1883. #endif
  1884. stepper.synchronize();
  1885. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1886. if (deploy_bltouch) set_bltouch_deployed(false);
  1887. #endif
  1888. endstops.hit_on_purpose();
  1889. }
  1890. /**
  1891. * Home an individual "raw axis" to its endstop.
  1892. * This applies to XYZ on Cartesian and Core robots, and
  1893. * to the individual ABC steppers on DELTA and SCARA.
  1894. *
  1895. * At the end of the procedure the axis is marked as
  1896. * homed and the current position of that axis is updated.
  1897. * Kinematic robots should wait till all axes are homed
  1898. * before updating the current position.
  1899. */
  1900. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1901. static void homeaxis(AxisEnum axis) {
  1902. #if IS_SCARA
  1903. // Only Z homing (with probe) is permitted
  1904. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1905. #else
  1906. #define CAN_HOME(A) \
  1907. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1908. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1909. #endif
  1910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1911. if (DEBUGGING(LEVELING)) {
  1912. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1913. SERIAL_ECHOLNPGM(")");
  1914. }
  1915. #endif
  1916. int axis_home_dir =
  1917. #if ENABLED(DUAL_X_CARRIAGE)
  1918. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1919. #endif
  1920. home_dir(axis);
  1921. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1922. #if HOMING_Z_WITH_PROBE
  1923. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1924. #endif
  1925. // Set a flag for Z motor locking
  1926. #if ENABLED(Z_DUAL_ENDSTOPS)
  1927. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1928. #endif
  1929. // Fast move towards endstop until triggered
  1930. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1931. // When homing Z with probe respect probe clearance
  1932. const float bump = axis_home_dir * (
  1933. #if HOMING_Z_WITH_PROBE
  1934. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  1935. #endif
  1936. home_bump_mm(axis)
  1937. );
  1938. // If a second homing move is configured...
  1939. if (bump) {
  1940. // Move away from the endstop by the axis HOME_BUMP_MM
  1941. do_homing_move(axis, -bump);
  1942. // Slow move towards endstop until triggered
  1943. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  1944. }
  1945. #if ENABLED(Z_DUAL_ENDSTOPS)
  1946. if (axis == Z_AXIS) {
  1947. float adj = fabs(z_endstop_adj);
  1948. bool lockZ1;
  1949. if (axis_home_dir > 0) {
  1950. adj = -adj;
  1951. lockZ1 = (z_endstop_adj > 0);
  1952. }
  1953. else
  1954. lockZ1 = (z_endstop_adj < 0);
  1955. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1956. // Move to the adjusted endstop height
  1957. do_homing_move(axis, adj);
  1958. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1959. stepper.set_homing_flag(false);
  1960. } // Z_AXIS
  1961. #endif
  1962. #if IS_SCARA
  1963. set_axis_is_at_home(axis);
  1964. SYNC_PLAN_POSITION_KINEMATIC();
  1965. #elif ENABLED(DELTA)
  1966. // Delta has already moved all three towers up in G28
  1967. // so here it re-homes each tower in turn.
  1968. // Delta homing treats the axes as normal linear axes.
  1969. // retrace by the amount specified in endstop_adj
  1970. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1971. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1972. if (DEBUGGING(LEVELING)) {
  1973. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1974. DEBUG_POS("", current_position);
  1975. }
  1976. #endif
  1977. do_homing_move(axis, endstop_adj[axis]);
  1978. }
  1979. #else
  1980. // For cartesian/core machines,
  1981. // set the axis to its home position
  1982. set_axis_is_at_home(axis);
  1983. sync_plan_position();
  1984. destination[axis] = current_position[axis];
  1985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1986. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1987. #endif
  1988. #endif
  1989. // Put away the Z probe
  1990. #if HOMING_Z_WITH_PROBE
  1991. if (axis == Z_AXIS && STOW_PROBE()) return;
  1992. #endif
  1993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1994. if (DEBUGGING(LEVELING)) {
  1995. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1996. SERIAL_ECHOLNPGM(")");
  1997. }
  1998. #endif
  1999. } // homeaxis()
  2000. #if ENABLED(FWRETRACT)
  2001. void retract(bool retracting, bool swapping = false) {
  2002. if (retracting == retracted[active_extruder]) return;
  2003. float old_feedrate_mm_s = feedrate_mm_s;
  2004. set_destination_to_current();
  2005. if (retracting) {
  2006. feedrate_mm_s = retract_feedrate_mm_s;
  2007. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2008. sync_plan_position_e();
  2009. prepare_move_to_destination();
  2010. if (retract_zlift > 0.01) {
  2011. current_position[Z_AXIS] -= retract_zlift;
  2012. SYNC_PLAN_POSITION_KINEMATIC();
  2013. prepare_move_to_destination();
  2014. }
  2015. }
  2016. else {
  2017. if (retract_zlift > 0.01) {
  2018. current_position[Z_AXIS] += retract_zlift;
  2019. SYNC_PLAN_POSITION_KINEMATIC();
  2020. }
  2021. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2022. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2023. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2024. sync_plan_position_e();
  2025. prepare_move_to_destination();
  2026. }
  2027. feedrate_mm_s = old_feedrate_mm_s;
  2028. retracted[active_extruder] = retracting;
  2029. } // retract()
  2030. #endif // FWRETRACT
  2031. #if ENABLED(MIXING_EXTRUDER)
  2032. void normalize_mix() {
  2033. float mix_total = 0.0;
  2034. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2035. float v = mixing_factor[i];
  2036. if (v < 0) v = mixing_factor[i] = 0;
  2037. mix_total += v;
  2038. }
  2039. // Scale all values if they don't add up to ~1.0
  2040. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2041. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2042. float mix_scale = 1.0 / mix_total;
  2043. for (int i = 0; i < MIXING_STEPPERS; i++)
  2044. mixing_factor[i] *= mix_scale;
  2045. }
  2046. }
  2047. #if ENABLED(DIRECT_MIXING_IN_G1)
  2048. // Get mixing parameters from the GCode
  2049. // Factors that are left out are set to 0
  2050. // The total "must" be 1.0 (but it will be normalized)
  2051. void gcode_get_mix() {
  2052. const char* mixing_codes = "ABCDHI";
  2053. for (int i = 0; i < MIXING_STEPPERS; i++)
  2054. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2055. normalize_mix();
  2056. }
  2057. #endif
  2058. #endif
  2059. /**
  2060. * ***************************************************************************
  2061. * ***************************** G-CODE HANDLING *****************************
  2062. * ***************************************************************************
  2063. */
  2064. /**
  2065. * Set XYZE destination and feedrate from the current GCode command
  2066. *
  2067. * - Set destination from included axis codes
  2068. * - Set to current for missing axis codes
  2069. * - Set the feedrate, if included
  2070. */
  2071. void gcode_get_destination() {
  2072. LOOP_XYZE(i) {
  2073. if (code_seen(axis_codes[i]))
  2074. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2075. else
  2076. destination[i] = current_position[i];
  2077. }
  2078. if (code_seen('F') && code_value_linear_units() > 0.0)
  2079. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2080. #if ENABLED(PRINTCOUNTER)
  2081. if (!DEBUGGING(DRYRUN))
  2082. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2083. #endif
  2084. // Get ABCDHI mixing factors
  2085. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2086. gcode_get_mix();
  2087. #endif
  2088. }
  2089. void unknown_command_error() {
  2090. SERIAL_ECHO_START;
  2091. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2092. SERIAL_ECHOLNPGM("\"");
  2093. }
  2094. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2095. /**
  2096. * Output a "busy" message at regular intervals
  2097. * while the machine is not accepting commands.
  2098. */
  2099. void host_keepalive() {
  2100. millis_t ms = millis();
  2101. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2102. if (PENDING(ms, next_busy_signal_ms)) return;
  2103. switch (busy_state) {
  2104. case IN_HANDLER:
  2105. case IN_PROCESS:
  2106. SERIAL_ECHO_START;
  2107. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2108. break;
  2109. case PAUSED_FOR_USER:
  2110. SERIAL_ECHO_START;
  2111. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2112. break;
  2113. case PAUSED_FOR_INPUT:
  2114. SERIAL_ECHO_START;
  2115. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2116. break;
  2117. default:
  2118. break;
  2119. }
  2120. }
  2121. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2122. }
  2123. #endif //HOST_KEEPALIVE_FEATURE
  2124. bool position_is_reachable(float target[XYZ]
  2125. #if HAS_BED_PROBE
  2126. , bool by_probe=false
  2127. #endif
  2128. ) {
  2129. float dx = RAW_X_POSITION(target[X_AXIS]),
  2130. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2131. #if HAS_BED_PROBE
  2132. if (by_probe) {
  2133. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2134. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2135. }
  2136. #endif
  2137. #if IS_SCARA
  2138. #if MIDDLE_DEAD_ZONE_R > 0
  2139. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2140. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2141. #else
  2142. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2143. #endif
  2144. #elif ENABLED(DELTA)
  2145. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2146. #else
  2147. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2148. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2149. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2150. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2151. #endif
  2152. }
  2153. /**************************************************
  2154. ***************** GCode Handlers *****************
  2155. **************************************************/
  2156. /**
  2157. * G0, G1: Coordinated movement of X Y Z E axes
  2158. */
  2159. inline void gcode_G0_G1(
  2160. #if IS_SCARA
  2161. bool fast_move=false
  2162. #endif
  2163. ) {
  2164. if (IsRunning()) {
  2165. gcode_get_destination(); // For X Y Z E F
  2166. #if ENABLED(FWRETRACT)
  2167. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2168. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2169. // Is this move an attempt to retract or recover?
  2170. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2171. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2172. sync_plan_position_e(); // AND from the planner
  2173. retract(!retracted[active_extruder]);
  2174. return;
  2175. }
  2176. }
  2177. #endif //FWRETRACT
  2178. #if IS_SCARA
  2179. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2180. #else
  2181. prepare_move_to_destination();
  2182. #endif
  2183. }
  2184. }
  2185. /**
  2186. * G2: Clockwise Arc
  2187. * G3: Counterclockwise Arc
  2188. *
  2189. * This command has two forms: IJ-form and R-form.
  2190. *
  2191. * - I specifies an X offset. J specifies a Y offset.
  2192. * At least one of the IJ parameters is required.
  2193. * X and Y can be omitted to do a complete circle.
  2194. * The given XY is not error-checked. The arc ends
  2195. * based on the angle of the destination.
  2196. * Mixing I or J with R will throw an error.
  2197. *
  2198. * - R specifies the radius. X or Y is required.
  2199. * Omitting both X and Y will throw an error.
  2200. * X or Y must differ from the current XY.
  2201. * Mixing R with I or J will throw an error.
  2202. *
  2203. * Examples:
  2204. *
  2205. * G2 I10 ; CW circle centered at X+10
  2206. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2207. */
  2208. #if ENABLED(ARC_SUPPORT)
  2209. inline void gcode_G2_G3(bool clockwise) {
  2210. if (IsRunning()) {
  2211. #if ENABLED(SF_ARC_FIX)
  2212. bool relative_mode_backup = relative_mode;
  2213. relative_mode = true;
  2214. #endif
  2215. gcode_get_destination();
  2216. #if ENABLED(SF_ARC_FIX)
  2217. relative_mode = relative_mode_backup;
  2218. #endif
  2219. float arc_offset[2] = { 0.0, 0.0 };
  2220. if (code_seen('R')) {
  2221. const float r = code_value_axis_units(X_AXIS),
  2222. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2223. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2224. if (r && (x2 != x1 || y2 != y1)) {
  2225. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2226. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2227. d = HYPOT(dx, dy), // Linear distance between the points
  2228. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2229. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2230. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2231. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2232. arc_offset[X_AXIS] = cx - x1;
  2233. arc_offset[Y_AXIS] = cy - y1;
  2234. }
  2235. }
  2236. else {
  2237. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2238. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2239. }
  2240. if (arc_offset[0] || arc_offset[1]) {
  2241. // Send an arc to the planner
  2242. plan_arc(destination, arc_offset, clockwise);
  2243. refresh_cmd_timeout();
  2244. }
  2245. else {
  2246. // Bad arguments
  2247. SERIAL_ERROR_START;
  2248. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2249. }
  2250. }
  2251. }
  2252. #endif
  2253. /**
  2254. * G4: Dwell S<seconds> or P<milliseconds>
  2255. */
  2256. inline void gcode_G4() {
  2257. millis_t dwell_ms = 0;
  2258. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2259. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2260. stepper.synchronize();
  2261. refresh_cmd_timeout();
  2262. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2263. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2264. while (PENDING(millis(), dwell_ms)) idle();
  2265. }
  2266. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2267. /**
  2268. * Parameters interpreted according to:
  2269. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2270. * However I, J omission is not supported at this point; all
  2271. * parameters can be omitted and default to zero.
  2272. */
  2273. /**
  2274. * G5: Cubic B-spline
  2275. */
  2276. inline void gcode_G5() {
  2277. if (IsRunning()) {
  2278. gcode_get_destination();
  2279. float offset[] = {
  2280. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2281. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2282. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2283. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2284. };
  2285. plan_cubic_move(offset);
  2286. }
  2287. }
  2288. #endif // BEZIER_CURVE_SUPPORT
  2289. #if ENABLED(FWRETRACT)
  2290. /**
  2291. * G10 - Retract filament according to settings of M207
  2292. * G11 - Recover filament according to settings of M208
  2293. */
  2294. inline void gcode_G10_G11(bool doRetract=false) {
  2295. #if EXTRUDERS > 1
  2296. if (doRetract) {
  2297. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2298. }
  2299. #endif
  2300. retract(doRetract
  2301. #if EXTRUDERS > 1
  2302. , retracted_swap[active_extruder]
  2303. #endif
  2304. );
  2305. }
  2306. #endif //FWRETRACT
  2307. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2308. /**
  2309. * G12: Clean the nozzle
  2310. */
  2311. inline void gcode_G12() {
  2312. // Don't allow nozzle cleaning without homing first
  2313. if (axis_unhomed_error(true, true, true)) { return; }
  2314. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2315. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2316. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2317. Nozzle::clean(pattern, strokes, objects);
  2318. }
  2319. #endif
  2320. #if ENABLED(INCH_MODE_SUPPORT)
  2321. /**
  2322. * G20: Set input mode to inches
  2323. */
  2324. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2325. /**
  2326. * G21: Set input mode to millimeters
  2327. */
  2328. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2329. #endif
  2330. #if ENABLED(NOZZLE_PARK_FEATURE)
  2331. /**
  2332. * G27: Park the nozzle
  2333. */
  2334. inline void gcode_G27() {
  2335. // Don't allow nozzle parking without homing first
  2336. if (axis_unhomed_error(true, true, true)) { return; }
  2337. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2338. Nozzle::park(z_action);
  2339. }
  2340. #endif // NOZZLE_PARK_FEATURE
  2341. #if ENABLED(QUICK_HOME)
  2342. static void quick_home_xy() {
  2343. // Pretend the current position is 0,0
  2344. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2345. sync_plan_position();
  2346. int x_axis_home_dir =
  2347. #if ENABLED(DUAL_X_CARRIAGE)
  2348. x_home_dir(active_extruder)
  2349. #else
  2350. home_dir(X_AXIS)
  2351. #endif
  2352. ;
  2353. float mlx = max_length(X_AXIS),
  2354. mly = max_length(Y_AXIS),
  2355. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2356. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2357. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2358. endstops.hit_on_purpose(); // clear endstop hit flags
  2359. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2360. }
  2361. #endif // QUICK_HOME
  2362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2363. void log_machine_info() {
  2364. SERIAL_ECHOPGM("Machine Type: ");
  2365. #if ENABLED(DELTA)
  2366. SERIAL_ECHOLNPGM("Delta");
  2367. #elif IS_SCARA
  2368. SERIAL_ECHOLNPGM("SCARA");
  2369. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2370. SERIAL_ECHOLNPGM("Core");
  2371. #else
  2372. SERIAL_ECHOLNPGM("Cartesian");
  2373. #endif
  2374. SERIAL_ECHOPGM("Probe: ");
  2375. #if ENABLED(FIX_MOUNTED_PROBE)
  2376. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2377. #elif HAS_Z_SERVO_ENDSTOP
  2378. SERIAL_ECHOLNPGM("SERVO PROBE");
  2379. #elif ENABLED(BLTOUCH)
  2380. SERIAL_ECHOLNPGM("BLTOUCH");
  2381. #elif ENABLED(Z_PROBE_SLED)
  2382. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2383. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2384. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2385. #else
  2386. SERIAL_ECHOLNPGM("NONE");
  2387. #endif
  2388. #if HAS_BED_PROBE
  2389. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2390. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2391. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2392. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2393. SERIAL_ECHOPGM(" (Right");
  2394. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2395. SERIAL_ECHOPGM(" (Left");
  2396. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2397. SERIAL_ECHOPGM(" (Middle");
  2398. #else
  2399. SERIAL_ECHOPGM(" (Aligned With");
  2400. #endif
  2401. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2402. SERIAL_ECHOPGM("-Back");
  2403. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2404. SERIAL_ECHOPGM("-Front");
  2405. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2406. SERIAL_ECHOPGM("-Center");
  2407. #endif
  2408. if (zprobe_zoffset < 0)
  2409. SERIAL_ECHOPGM(" & Below");
  2410. else if (zprobe_zoffset > 0)
  2411. SERIAL_ECHOPGM(" & Above");
  2412. else
  2413. SERIAL_ECHOPGM(" & Same Z as");
  2414. SERIAL_ECHOLNPGM(" Nozzle)");
  2415. #endif
  2416. }
  2417. #endif // DEBUG_LEVELING_FEATURE
  2418. #if ENABLED(DELTA)
  2419. /**
  2420. * A delta can only safely home all axes at the same time
  2421. * This is like quick_home_xy() but for 3 towers.
  2422. */
  2423. inline void home_delta() {
  2424. // Init the current position of all carriages to 0,0,0
  2425. memset(current_position, 0, sizeof(current_position));
  2426. sync_plan_position();
  2427. // Move all carriages together linearly until an endstop is hit.
  2428. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2429. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2430. line_to_current_position();
  2431. stepper.synchronize();
  2432. endstops.hit_on_purpose(); // clear endstop hit flags
  2433. // Probably not needed. Double-check this line:
  2434. memset(current_position, 0, sizeof(current_position));
  2435. // At least one carriage has reached the top.
  2436. // Now back off and re-home each carriage separately.
  2437. HOMEAXIS(A);
  2438. HOMEAXIS(B);
  2439. HOMEAXIS(C);
  2440. // Set all carriages to their home positions
  2441. // Do this here all at once for Delta, because
  2442. // XYZ isn't ABC. Applying this per-tower would
  2443. // give the impression that they are the same.
  2444. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2445. SYNC_PLAN_POSITION_KINEMATIC();
  2446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2447. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2448. #endif
  2449. }
  2450. #endif // DELTA
  2451. #if ENABLED(Z_SAFE_HOMING)
  2452. inline void home_z_safely() {
  2453. // Disallow Z homing if X or Y are unknown
  2454. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2455. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2456. SERIAL_ECHO_START;
  2457. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2458. return;
  2459. }
  2460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2461. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2462. #endif
  2463. SYNC_PLAN_POSITION_KINEMATIC();
  2464. /**
  2465. * Move the Z probe (or just the nozzle) to the safe homing point
  2466. */
  2467. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2468. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2469. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2470. if (position_is_reachable(
  2471. destination
  2472. #if HOMING_Z_WITH_PROBE
  2473. , true
  2474. #endif
  2475. )
  2476. ) {
  2477. #if HOMING_Z_WITH_PROBE
  2478. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2479. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2480. #endif
  2481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2482. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2483. #endif
  2484. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2485. HOMEAXIS(Z);
  2486. }
  2487. else {
  2488. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2489. SERIAL_ECHO_START;
  2490. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2491. }
  2492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2493. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2494. #endif
  2495. }
  2496. #endif // Z_SAFE_HOMING
  2497. /**
  2498. * G28: Home all axes according to settings
  2499. *
  2500. * Parameters
  2501. *
  2502. * None Home to all axes with no parameters.
  2503. * With QUICK_HOME enabled XY will home together, then Z.
  2504. *
  2505. * Cartesian parameters
  2506. *
  2507. * X Home to the X endstop
  2508. * Y Home to the Y endstop
  2509. * Z Home to the Z endstop
  2510. *
  2511. */
  2512. inline void gcode_G28() {
  2513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2514. if (DEBUGGING(LEVELING)) {
  2515. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2516. log_machine_info();
  2517. }
  2518. #endif
  2519. // Wait for planner moves to finish!
  2520. stepper.synchronize();
  2521. // For auto bed leveling, clear the level matrix
  2522. #if HAS_ABL
  2523. reset_bed_level();
  2524. #endif
  2525. // Always home with tool 0 active
  2526. #if HOTENDS > 1
  2527. uint8_t old_tool_index = active_extruder;
  2528. tool_change(0, 0, true);
  2529. #endif
  2530. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2531. extruder_duplication_enabled = false;
  2532. #endif
  2533. /**
  2534. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2535. * on again when homing all axis
  2536. */
  2537. #if ENABLED(MESH_BED_LEVELING)
  2538. float pre_home_z = MESH_HOME_SEARCH_Z;
  2539. if (mbl.active()) {
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2542. #endif
  2543. // Save known Z position if already homed
  2544. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2545. pre_home_z = current_position[Z_AXIS];
  2546. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2547. }
  2548. mbl.set_active(false);
  2549. current_position[Z_AXIS] = pre_home_z;
  2550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2551. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2552. #endif
  2553. }
  2554. #endif
  2555. setup_for_endstop_or_probe_move();
  2556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2557. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2558. #endif
  2559. endstops.enable(true); // Enable endstops for next homing move
  2560. #if ENABLED(DELTA)
  2561. home_delta();
  2562. #else // NOT DELTA
  2563. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2564. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2565. set_destination_to_current();
  2566. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2567. if (home_all_axis || homeZ) {
  2568. HOMEAXIS(Z);
  2569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2570. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2571. #endif
  2572. }
  2573. #else
  2574. if (home_all_axis || homeX || homeY) {
  2575. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2576. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2577. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2579. if (DEBUGGING(LEVELING))
  2580. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2581. #endif
  2582. do_blocking_move_to_z(destination[Z_AXIS]);
  2583. }
  2584. }
  2585. #endif
  2586. #if ENABLED(QUICK_HOME)
  2587. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2588. #endif
  2589. #if ENABLED(HOME_Y_BEFORE_X)
  2590. // Home Y
  2591. if (home_all_axis || homeY) {
  2592. HOMEAXIS(Y);
  2593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2594. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2595. #endif
  2596. }
  2597. #endif
  2598. // Home X
  2599. if (home_all_axis || homeX) {
  2600. #if ENABLED(DUAL_X_CARRIAGE)
  2601. int tmp_extruder = active_extruder;
  2602. active_extruder = !active_extruder;
  2603. HOMEAXIS(X);
  2604. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2605. active_extruder = tmp_extruder;
  2606. HOMEAXIS(X);
  2607. // reset state used by the different modes
  2608. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2609. delayed_move_time = 0;
  2610. active_extruder_parked = true;
  2611. #else
  2612. HOMEAXIS(X);
  2613. #endif
  2614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2615. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2616. #endif
  2617. }
  2618. #if DISABLED(HOME_Y_BEFORE_X)
  2619. // Home Y
  2620. if (home_all_axis || homeY) {
  2621. HOMEAXIS(Y);
  2622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2623. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2624. #endif
  2625. }
  2626. #endif
  2627. // Home Z last if homing towards the bed
  2628. #if Z_HOME_DIR < 0
  2629. if (home_all_axis || homeZ) {
  2630. #if ENABLED(Z_SAFE_HOMING)
  2631. home_z_safely();
  2632. #else
  2633. HOMEAXIS(Z);
  2634. #endif
  2635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2636. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2637. #endif
  2638. } // home_all_axis || homeZ
  2639. #endif // Z_HOME_DIR < 0
  2640. SYNC_PLAN_POSITION_KINEMATIC();
  2641. #endif // !DELTA (gcode_G28)
  2642. endstops.not_homing();
  2643. // Enable mesh leveling again
  2644. #if ENABLED(MESH_BED_LEVELING)
  2645. if (mbl.has_mesh()) {
  2646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2647. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2648. #endif
  2649. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2651. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2652. #endif
  2653. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2654. #if Z_HOME_DIR > 0
  2655. + Z_MAX_POS
  2656. #endif
  2657. ;
  2658. SYNC_PLAN_POSITION_KINEMATIC();
  2659. mbl.set_active(true);
  2660. #if ENABLED(MESH_G28_REST_ORIGIN)
  2661. current_position[Z_AXIS] = 0.0;
  2662. set_destination_to_current();
  2663. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2664. stepper.synchronize();
  2665. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2666. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2667. #endif
  2668. #else
  2669. planner.unapply_leveling(current_position);
  2670. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2671. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2672. #endif
  2673. #endif
  2674. }
  2675. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2676. current_position[Z_AXIS] = pre_home_z;
  2677. SYNC_PLAN_POSITION_KINEMATIC();
  2678. mbl.set_active(true);
  2679. planner.unapply_leveling(current_position);
  2680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2681. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2682. #endif
  2683. }
  2684. }
  2685. #endif
  2686. #if ENABLED(DELTA)
  2687. // move to a height where we can use the full xy-area
  2688. do_blocking_move_to_z(delta_clip_start_height);
  2689. #endif
  2690. clean_up_after_endstop_or_probe_move();
  2691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2692. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2693. #endif
  2694. // Restore the active tool after homing
  2695. #if HOTENDS > 1
  2696. tool_change(old_tool_index, 0, true);
  2697. #endif
  2698. report_current_position();
  2699. }
  2700. #if HAS_PROBING_PROCEDURE
  2701. void out_of_range_error(const char* p_edge) {
  2702. SERIAL_PROTOCOLPGM("?Probe ");
  2703. serialprintPGM(p_edge);
  2704. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2705. }
  2706. #endif
  2707. #if ENABLED(MESH_BED_LEVELING)
  2708. inline void _mbl_goto_xy(float x, float y) {
  2709. float old_feedrate_mm_s = feedrate_mm_s;
  2710. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2711. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2712. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2713. + Z_CLEARANCE_BETWEEN_PROBES
  2714. #elif Z_HOMING_HEIGHT > 0
  2715. + Z_HOMING_HEIGHT
  2716. #endif
  2717. ;
  2718. line_to_current_position();
  2719. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2720. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2721. line_to_current_position();
  2722. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2723. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2724. line_to_current_position();
  2725. #endif
  2726. feedrate_mm_s = old_feedrate_mm_s;
  2727. stepper.synchronize();
  2728. }
  2729. /**
  2730. * G29: Mesh-based Z probe, probes a grid and produces a
  2731. * mesh to compensate for variable bed height
  2732. *
  2733. * Parameters With MESH_BED_LEVELING:
  2734. *
  2735. * S0 Produce a mesh report
  2736. * S1 Start probing mesh points
  2737. * S2 Probe the next mesh point
  2738. * S3 Xn Yn Zn.nn Manually modify a single point
  2739. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2740. * S5 Reset and disable mesh
  2741. *
  2742. * The S0 report the points as below
  2743. *
  2744. * +----> X-axis 1-n
  2745. * |
  2746. * |
  2747. * v Y-axis 1-n
  2748. *
  2749. */
  2750. inline void gcode_G29() {
  2751. static int probe_point = -1;
  2752. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2753. if (state < 0 || state > 5) {
  2754. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2755. return;
  2756. }
  2757. int8_t px, py;
  2758. switch (state) {
  2759. case MeshReport:
  2760. if (mbl.has_mesh()) {
  2761. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2762. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2763. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2764. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2765. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2766. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2767. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2768. SERIAL_PROTOCOLPGM(" ");
  2769. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2770. }
  2771. SERIAL_EOL;
  2772. }
  2773. }
  2774. else
  2775. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2776. break;
  2777. case MeshStart:
  2778. mbl.reset();
  2779. probe_point = 0;
  2780. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2781. break;
  2782. case MeshNext:
  2783. if (probe_point < 0) {
  2784. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2785. return;
  2786. }
  2787. // For each G29 S2...
  2788. if (probe_point == 0) {
  2789. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2790. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2791. #if Z_HOME_DIR > 0
  2792. + Z_MAX_POS
  2793. #endif
  2794. ;
  2795. SYNC_PLAN_POSITION_KINEMATIC();
  2796. }
  2797. else {
  2798. // For G29 S2 after adjusting Z.
  2799. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2800. }
  2801. // If there's another point to sample, move there with optional lift.
  2802. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2803. mbl.zigzag(probe_point, px, py);
  2804. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2805. probe_point++;
  2806. }
  2807. else {
  2808. // One last "return to the bed" (as originally coded) at completion
  2809. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2810. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2811. + Z_CLEARANCE_BETWEEN_PROBES
  2812. #elif Z_HOMING_HEIGHT > 0
  2813. + Z_HOMING_HEIGHT
  2814. #endif
  2815. ;
  2816. line_to_current_position();
  2817. stepper.synchronize();
  2818. // After recording the last point, activate the mbl and home
  2819. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2820. probe_point = -1;
  2821. mbl.set_has_mesh(true);
  2822. enqueue_and_echo_commands_P(PSTR("G28"));
  2823. }
  2824. break;
  2825. case MeshSet:
  2826. if (code_seen('X')) {
  2827. px = code_value_int() - 1;
  2828. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2829. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2830. return;
  2831. }
  2832. }
  2833. else {
  2834. SERIAL_PROTOCOLLNPGM("X not entered.");
  2835. return;
  2836. }
  2837. if (code_seen('Y')) {
  2838. py = code_value_int() - 1;
  2839. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2840. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2841. return;
  2842. }
  2843. }
  2844. else {
  2845. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2846. return;
  2847. }
  2848. if (code_seen('Z')) {
  2849. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2850. }
  2851. else {
  2852. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2853. return;
  2854. }
  2855. break;
  2856. case MeshSetZOffset:
  2857. if (code_seen('Z')) {
  2858. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2859. }
  2860. else {
  2861. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2862. return;
  2863. }
  2864. break;
  2865. case MeshReset:
  2866. if (mbl.active()) {
  2867. current_position[Z_AXIS] +=
  2868. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2869. mbl.reset();
  2870. SYNC_PLAN_POSITION_KINEMATIC();
  2871. }
  2872. else
  2873. mbl.reset();
  2874. } // switch(state)
  2875. report_current_position();
  2876. }
  2877. #elif HAS_ABL
  2878. /**
  2879. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2880. * Will fail if the printer has not been homed with G28.
  2881. *
  2882. * Enhanced G29 Auto Bed Leveling Probe Routine
  2883. *
  2884. * Parameters With ABL_GRID:
  2885. *
  2886. * P Set the size of the grid that will be probed (P x P points).
  2887. * Not supported by non-linear delta printer bed leveling.
  2888. * Example: "G29 P4"
  2889. *
  2890. * S Set the XY travel speed between probe points (in units/min)
  2891. *
  2892. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2893. * or clean the rotation Matrix. Useful to check the topology
  2894. * after a first run of G29.
  2895. *
  2896. * V Set the verbose level (0-4). Example: "G29 V3"
  2897. *
  2898. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2899. * This is useful for manual bed leveling and finding flaws in the bed (to
  2900. * assist with part placement).
  2901. * Not supported by non-linear delta printer bed leveling.
  2902. *
  2903. * F Set the Front limit of the probing grid
  2904. * B Set the Back limit of the probing grid
  2905. * L Set the Left limit of the probing grid
  2906. * R Set the Right limit of the probing grid
  2907. *
  2908. * Global Parameters:
  2909. *
  2910. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2911. * Include "E" to engage/disengage the Z probe for each sample.
  2912. * There's no extra effect if you have a fixed Z probe.
  2913. * Usage: "G29 E" or "G29 e"
  2914. *
  2915. */
  2916. inline void gcode_G29() {
  2917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2918. if (DEBUGGING(LEVELING)) {
  2919. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2920. DEBUG_POS("", current_position);
  2921. log_machine_info();
  2922. }
  2923. #endif
  2924. // Don't allow auto-leveling without homing first
  2925. if (axis_unhomed_error(true, true, true)) return;
  2926. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2927. if (verbose_level < 0 || verbose_level > 4) {
  2928. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2929. return;
  2930. }
  2931. bool dryrun = code_seen('D'),
  2932. stow_probe_after_each = code_seen('E');
  2933. #if ABL_GRID
  2934. #if ABL_PLANAR
  2935. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2936. #endif
  2937. if (verbose_level > 0) {
  2938. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2939. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2940. }
  2941. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2942. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2943. #if ABL_PLANAR
  2944. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2945. if (abl_grid_points_x < 2) {
  2946. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2947. return;
  2948. }
  2949. #endif
  2950. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2951. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2952. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2953. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2954. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2955. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2956. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2957. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2958. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2959. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2960. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2961. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2962. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2963. if (left_out || right_out || front_out || back_out) {
  2964. if (left_out) {
  2965. out_of_range_error(PSTR("(L)eft"));
  2966. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2967. }
  2968. if (right_out) {
  2969. out_of_range_error(PSTR("(R)ight"));
  2970. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2971. }
  2972. if (front_out) {
  2973. out_of_range_error(PSTR("(F)ront"));
  2974. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2975. }
  2976. if (back_out) {
  2977. out_of_range_error(PSTR("(B)ack"));
  2978. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2979. }
  2980. return;
  2981. }
  2982. #endif // ABL_GRID
  2983. stepper.synchronize();
  2984. // Disable auto bed leveling during G29
  2985. bool abl_should_reenable = planner.abl_enabled;
  2986. planner.abl_enabled = false;
  2987. if (!dryrun) {
  2988. // Re-orient the current position without leveling
  2989. // based on where the steppers are positioned.
  2990. get_cartesian_from_steppers();
  2991. memcpy(current_position, cartes, sizeof(cartes));
  2992. // Inform the planner about the new coordinates
  2993. SYNC_PLAN_POSITION_KINEMATIC();
  2994. }
  2995. setup_for_endstop_or_probe_move();
  2996. // Deploy the probe. Probe will raise if needed.
  2997. if (DEPLOY_PROBE()) {
  2998. planner.abl_enabled = abl_should_reenable;
  2999. return;
  3000. }
  3001. float xProbe = 0, yProbe = 0, measured_z = 0;
  3002. #if ABL_GRID
  3003. // probe at the points of a lattice grid
  3004. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3005. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3006. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3007. float zoffset = zprobe_zoffset;
  3008. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3009. if (xGridSpacing != bilinear_grid_spacing[X_AXIS] || yGridSpacing != bilinear_grid_spacing[Y_AXIS]) {
  3010. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3011. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3012. // Can't re-enable (on error) until the new grid is written
  3013. abl_should_reenable = false;
  3014. }
  3015. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3016. /**
  3017. * solve the plane equation ax + by + d = z
  3018. * A is the matrix with rows [x y 1] for all the probed points
  3019. * B is the vector of the Z positions
  3020. * the normal vector to the plane is formed by the coefficients of the
  3021. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3022. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3023. */
  3024. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3025. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3026. probePointCounter = -1;
  3027. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3028. eqnBVector[abl2], // "B" vector of Z points
  3029. mean = 0.0;
  3030. #endif // AUTO_BED_LEVELING_LINEAR
  3031. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3032. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3033. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3034. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3035. int8_t xStart, xStop, xInc;
  3036. if (zig) {
  3037. xStart = 0;
  3038. xStop = abl_grid_points_x;
  3039. xInc = 1;
  3040. }
  3041. else {
  3042. xStart = abl_grid_points_x - 1;
  3043. xStop = -1;
  3044. xInc = -1;
  3045. }
  3046. zig = !zig;
  3047. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3048. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3049. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3050. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3051. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3052. #endif
  3053. #if IS_KINEMATIC
  3054. // Avoid probing outside the round or hexagonal area
  3055. float pos[XYZ] = { xProbe, yProbe, 0 };
  3056. if (!position_is_reachable(pos, true)) continue;
  3057. #endif
  3058. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3059. if (measured_z == NAN) {
  3060. planner.abl_enabled = abl_should_reenable;
  3061. return;
  3062. }
  3063. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3064. mean += measured_z;
  3065. eqnBVector[probePointCounter] = measured_z;
  3066. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3067. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3068. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3069. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3070. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3071. #endif
  3072. idle();
  3073. } //xProbe
  3074. } //yProbe
  3075. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3077. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3078. #endif
  3079. // Probe at 3 arbitrary points
  3080. vector_3 points[3] = {
  3081. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3082. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3083. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3084. };
  3085. for (uint8_t i = 0; i < 3; ++i) {
  3086. // Retain the last probe position
  3087. xProbe = LOGICAL_X_POSITION(points[i].x);
  3088. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3089. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3090. }
  3091. if (measured_z == NAN) {
  3092. planner.abl_enabled = abl_should_reenable;
  3093. return;
  3094. }
  3095. if (!dryrun) {
  3096. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3097. if (planeNormal.z < 0) {
  3098. planeNormal.x *= -1;
  3099. planeNormal.y *= -1;
  3100. planeNormal.z *= -1;
  3101. }
  3102. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3103. // Can't re-enable (on error) until the new grid is written
  3104. abl_should_reenable = false;
  3105. }
  3106. #endif // AUTO_BED_LEVELING_3POINT
  3107. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3108. if (STOW_PROBE()) {
  3109. planner.abl_enabled = abl_should_reenable;
  3110. return;
  3111. }
  3112. //
  3113. // Unless this is a dry run, auto bed leveling will
  3114. // definitely be enabled after this point
  3115. //
  3116. // Restore state after probing
  3117. clean_up_after_endstop_or_probe_move();
  3118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3119. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3120. #endif
  3121. // Calculate leveling, print reports, correct the position
  3122. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3123. if (!dryrun) extrapolate_unprobed_bed_level();
  3124. print_bed_level();
  3125. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3126. // For LINEAR leveling calculate matrix, print reports, correct the position
  3127. // solve lsq problem
  3128. float plane_equation_coefficients[3];
  3129. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3130. mean /= abl2;
  3131. if (verbose_level) {
  3132. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3133. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3134. SERIAL_PROTOCOLPGM(" b: ");
  3135. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3136. SERIAL_PROTOCOLPGM(" d: ");
  3137. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3138. SERIAL_EOL;
  3139. if (verbose_level > 2) {
  3140. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3141. SERIAL_PROTOCOL_F(mean, 8);
  3142. SERIAL_EOL;
  3143. }
  3144. }
  3145. // Create the matrix but don't correct the position yet
  3146. if (!dryrun) {
  3147. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3148. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3149. );
  3150. }
  3151. // Show the Topography map if enabled
  3152. if (do_topography_map) {
  3153. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3154. " +--- BACK --+\n"
  3155. " | |\n"
  3156. " L | (+) | R\n"
  3157. " E | | I\n"
  3158. " F | (-) N (+) | G\n"
  3159. " T | | H\n"
  3160. " | (-) | T\n"
  3161. " | |\n"
  3162. " O-- FRONT --+\n"
  3163. " (0,0)");
  3164. float min_diff = 999;
  3165. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3166. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3167. int ind = indexIntoAB[xx][yy];
  3168. float diff = eqnBVector[ind] - mean,
  3169. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3170. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3171. z_tmp = 0;
  3172. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3173. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3174. if (diff >= 0.0)
  3175. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3176. else
  3177. SERIAL_PROTOCOLCHAR(' ');
  3178. SERIAL_PROTOCOL_F(diff, 5);
  3179. } // xx
  3180. SERIAL_EOL;
  3181. } // yy
  3182. SERIAL_EOL;
  3183. if (verbose_level > 3) {
  3184. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3185. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3186. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3187. int ind = indexIntoAB[xx][yy];
  3188. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3189. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3190. z_tmp = 0;
  3191. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3192. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3193. if (diff >= 0.0)
  3194. SERIAL_PROTOCOLPGM(" +");
  3195. // Include + for column alignment
  3196. else
  3197. SERIAL_PROTOCOLCHAR(' ');
  3198. SERIAL_PROTOCOL_F(diff, 5);
  3199. } // xx
  3200. SERIAL_EOL;
  3201. } // yy
  3202. SERIAL_EOL;
  3203. }
  3204. } //do_topography_map
  3205. #endif // AUTO_BED_LEVELING_LINEAR
  3206. #if ABL_PLANAR
  3207. // For LINEAR and 3POINT leveling correct the current position
  3208. if (verbose_level > 0)
  3209. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3210. if (!dryrun) {
  3211. //
  3212. // Correct the current XYZ position based on the tilted plane.
  3213. //
  3214. // 1. Get the distance from the current position to the reference point.
  3215. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3216. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3217. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3218. z_zero = 0;
  3219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3220. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3221. #endif
  3222. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3223. // 2. Apply the inverse matrix to the distance
  3224. // from the reference point to X, Y, and zero.
  3225. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3226. // 3. Get the matrix-based corrected Z.
  3227. // (Even if not used, get it for comparison.)
  3228. float new_z = z_real + z_zero;
  3229. // 4. Use the last measured distance to the bed, if possible
  3230. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3231. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3232. ) {
  3233. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3235. if (DEBUGGING(LEVELING)) {
  3236. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3237. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3238. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3239. }
  3240. #endif
  3241. new_z = simple_z;
  3242. }
  3243. // 5. The rotated XY and corrected Z are now current_position
  3244. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3245. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3246. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3247. SYNC_PLAN_POSITION_KINEMATIC();
  3248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3249. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3250. #endif
  3251. }
  3252. #endif // ABL_PLANAR
  3253. #ifdef Z_PROBE_END_SCRIPT
  3254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3255. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3256. #endif
  3257. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3258. stepper.synchronize();
  3259. #endif
  3260. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3261. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3262. #endif
  3263. report_current_position();
  3264. KEEPALIVE_STATE(IN_HANDLER);
  3265. // Auto Bed Leveling is complete! Enable if possible.
  3266. planner.abl_enabled = dryrun ? abl_should_reenable : true;
  3267. }
  3268. #endif // HAS_ABL
  3269. #if HAS_BED_PROBE
  3270. /**
  3271. * G30: Do a single Z probe at the current XY
  3272. */
  3273. inline void gcode_G30() {
  3274. #if HAS_ABL
  3275. reset_bed_level();
  3276. #endif
  3277. setup_for_endstop_or_probe_move();
  3278. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3279. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3280. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3281. true, 1);
  3282. SERIAL_PROTOCOLPGM("Bed X: ");
  3283. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3284. SERIAL_PROTOCOLPGM(" Y: ");
  3285. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3286. SERIAL_PROTOCOLPGM(" Z: ");
  3287. SERIAL_PROTOCOL(measured_z + 0.0001);
  3288. SERIAL_EOL;
  3289. clean_up_after_endstop_or_probe_move();
  3290. report_current_position();
  3291. }
  3292. #if ENABLED(Z_PROBE_SLED)
  3293. /**
  3294. * G31: Deploy the Z probe
  3295. */
  3296. inline void gcode_G31() { DEPLOY_PROBE(); }
  3297. /**
  3298. * G32: Stow the Z probe
  3299. */
  3300. inline void gcode_G32() { STOW_PROBE(); }
  3301. #endif // Z_PROBE_SLED
  3302. #endif // HAS_BED_PROBE
  3303. /**
  3304. * G92: Set current position to given X Y Z E
  3305. */
  3306. inline void gcode_G92() {
  3307. bool didXYZ = false,
  3308. didE = code_seen('E');
  3309. if (!didE) stepper.synchronize();
  3310. LOOP_XYZE(i) {
  3311. if (code_seen(axis_codes[i])) {
  3312. #if IS_SCARA
  3313. current_position[i] = code_value_axis_units(i);
  3314. if (i != E_AXIS) didXYZ = true;
  3315. #else
  3316. float p = current_position[i],
  3317. v = code_value_axis_units(i);
  3318. current_position[i] = v;
  3319. if (i != E_AXIS) {
  3320. didXYZ = true;
  3321. position_shift[i] += v - p; // Offset the coordinate space
  3322. update_software_endstops((AxisEnum)i);
  3323. }
  3324. #endif
  3325. }
  3326. }
  3327. if (didXYZ)
  3328. SYNC_PLAN_POSITION_KINEMATIC();
  3329. else if (didE)
  3330. sync_plan_position_e();
  3331. report_current_position();
  3332. }
  3333. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3334. /**
  3335. * M0: Unconditional stop - Wait for user button press on LCD
  3336. * M1: Conditional stop - Wait for user button press on LCD
  3337. */
  3338. inline void gcode_M0_M1() {
  3339. char* args = current_command_args;
  3340. millis_t codenum = 0;
  3341. bool hasP = false, hasS = false;
  3342. if (code_seen('P')) {
  3343. codenum = code_value_millis(); // milliseconds to wait
  3344. hasP = codenum > 0;
  3345. }
  3346. if (code_seen('S')) {
  3347. codenum = code_value_millis_from_seconds(); // seconds to wait
  3348. hasS = codenum > 0;
  3349. }
  3350. #if ENABLED(ULTIPANEL)
  3351. if (!hasP && !hasS && *args != '\0')
  3352. lcd_setstatus(args, true);
  3353. else {
  3354. LCD_MESSAGEPGM(MSG_USERWAIT);
  3355. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3356. dontExpireStatus();
  3357. #endif
  3358. }
  3359. lcd_ignore_click();
  3360. #else
  3361. if (!hasP && !hasS && *args != '\0') {
  3362. SERIAL_ECHO_START;
  3363. SERIAL_ECHOLN(args);
  3364. }
  3365. #endif
  3366. stepper.synchronize();
  3367. refresh_cmd_timeout();
  3368. #if ENABLED(ULTIPANEL)
  3369. if (codenum > 0) {
  3370. codenum += previous_cmd_ms; // wait until this time for a click
  3371. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3372. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3373. lcd_ignore_click(false);
  3374. }
  3375. else if (lcd_detected()) {
  3376. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3377. while (!lcd_clicked()) idle();
  3378. }
  3379. else return;
  3380. if (IS_SD_PRINTING)
  3381. LCD_MESSAGEPGM(MSG_RESUMING);
  3382. else
  3383. LCD_MESSAGEPGM(WELCOME_MSG);
  3384. #else
  3385. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3386. wait_for_user = true;
  3387. if (codenum > 0) {
  3388. codenum += previous_cmd_ms; // wait until this time for an M108
  3389. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3390. }
  3391. else while (wait_for_user) idle();
  3392. wait_for_user = false;
  3393. #endif
  3394. KEEPALIVE_STATE(IN_HANDLER);
  3395. }
  3396. #endif // ULTIPANEL || EMERGENCY_PARSER
  3397. /**
  3398. * M17: Enable power on all stepper motors
  3399. */
  3400. inline void gcode_M17() {
  3401. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3402. enable_all_steppers();
  3403. }
  3404. #if ENABLED(SDSUPPORT)
  3405. /**
  3406. * M20: List SD card to serial output
  3407. */
  3408. inline void gcode_M20() {
  3409. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3410. card.ls();
  3411. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3412. }
  3413. /**
  3414. * M21: Init SD Card
  3415. */
  3416. inline void gcode_M21() { card.initsd(); }
  3417. /**
  3418. * M22: Release SD Card
  3419. */
  3420. inline void gcode_M22() { card.release(); }
  3421. /**
  3422. * M23: Open a file
  3423. */
  3424. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3425. /**
  3426. * M24: Start SD Print
  3427. */
  3428. inline void gcode_M24() {
  3429. card.startFileprint();
  3430. print_job_timer.start();
  3431. }
  3432. /**
  3433. * M25: Pause SD Print
  3434. */
  3435. inline void gcode_M25() { card.pauseSDPrint(); }
  3436. /**
  3437. * M26: Set SD Card file index
  3438. */
  3439. inline void gcode_M26() {
  3440. if (card.cardOK && code_seen('S'))
  3441. card.setIndex(code_value_long());
  3442. }
  3443. /**
  3444. * M27: Get SD Card status
  3445. */
  3446. inline void gcode_M27() { card.getStatus(); }
  3447. /**
  3448. * M28: Start SD Write
  3449. */
  3450. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3451. /**
  3452. * M29: Stop SD Write
  3453. * Processed in write to file routine above
  3454. */
  3455. inline void gcode_M29() {
  3456. // card.saving = false;
  3457. }
  3458. /**
  3459. * M30 <filename>: Delete SD Card file
  3460. */
  3461. inline void gcode_M30() {
  3462. if (card.cardOK) {
  3463. card.closefile();
  3464. card.removeFile(current_command_args);
  3465. }
  3466. }
  3467. #endif // SDSUPPORT
  3468. /**
  3469. * M31: Get the time since the start of SD Print (or last M109)
  3470. */
  3471. inline void gcode_M31() {
  3472. char buffer[21];
  3473. duration_t elapsed = print_job_timer.duration();
  3474. elapsed.toString(buffer);
  3475. lcd_setstatus(buffer);
  3476. SERIAL_ECHO_START;
  3477. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3478. thermalManager.autotempShutdown();
  3479. }
  3480. #if ENABLED(SDSUPPORT)
  3481. /**
  3482. * M32: Select file and start SD Print
  3483. */
  3484. inline void gcode_M32() {
  3485. if (card.sdprinting)
  3486. stepper.synchronize();
  3487. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3488. if (!namestartpos)
  3489. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3490. else
  3491. namestartpos++; //to skip the '!'
  3492. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3493. if (card.cardOK) {
  3494. card.openFile(namestartpos, true, call_procedure);
  3495. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3496. card.setIndex(code_value_long());
  3497. card.startFileprint();
  3498. // Procedure calls count as normal print time.
  3499. if (!call_procedure) print_job_timer.start();
  3500. }
  3501. }
  3502. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3503. /**
  3504. * M33: Get the long full path of a file or folder
  3505. *
  3506. * Parameters:
  3507. * <dospath> Case-insensitive DOS-style path to a file or folder
  3508. *
  3509. * Example:
  3510. * M33 miscel~1/armchair/armcha~1.gco
  3511. *
  3512. * Output:
  3513. * /Miscellaneous/Armchair/Armchair.gcode
  3514. */
  3515. inline void gcode_M33() {
  3516. card.printLongPath(current_command_args);
  3517. }
  3518. #endif
  3519. /**
  3520. * M928: Start SD Write
  3521. */
  3522. inline void gcode_M928() {
  3523. card.openLogFile(current_command_args);
  3524. }
  3525. #endif // SDSUPPORT
  3526. /**
  3527. * M42: Change pin status via GCode
  3528. *
  3529. * P<pin> Pin number (LED if omitted)
  3530. * S<byte> Pin status from 0 - 255
  3531. */
  3532. inline void gcode_M42() {
  3533. if (!code_seen('S')) return;
  3534. int pin_status = code_value_int();
  3535. if (pin_status < 0 || pin_status > 255) return;
  3536. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3537. if (pin_number < 0) return;
  3538. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3539. if (pin_number == sensitive_pins[i]) {
  3540. SERIAL_ERROR_START;
  3541. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3542. return;
  3543. }
  3544. pinMode(pin_number, OUTPUT);
  3545. digitalWrite(pin_number, pin_status);
  3546. analogWrite(pin_number, pin_status);
  3547. #if FAN_COUNT > 0
  3548. switch (pin_number) {
  3549. #if HAS_FAN0
  3550. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3551. #endif
  3552. #if HAS_FAN1
  3553. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3554. #endif
  3555. #if HAS_FAN2
  3556. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3557. #endif
  3558. }
  3559. #endif
  3560. }
  3561. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3562. /**
  3563. * M48: Z probe repeatability measurement function.
  3564. *
  3565. * Usage:
  3566. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3567. * P = Number of sampled points (4-50, default 10)
  3568. * X = Sample X position
  3569. * Y = Sample Y position
  3570. * V = Verbose level (0-4, default=1)
  3571. * E = Engage Z probe for each reading
  3572. * L = Number of legs of movement before probe
  3573. * S = Schizoid (Or Star if you prefer)
  3574. *
  3575. * This function assumes the bed has been homed. Specifically, that a G28 command
  3576. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3577. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3578. * regenerated.
  3579. */
  3580. inline void gcode_M48() {
  3581. if (axis_unhomed_error(true, true, true)) return;
  3582. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3583. if (verbose_level < 0 || verbose_level > 4) {
  3584. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3585. return;
  3586. }
  3587. if (verbose_level > 0)
  3588. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3589. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3590. if (n_samples < 4 || n_samples > 50) {
  3591. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3592. return;
  3593. }
  3594. float X_current = current_position[X_AXIS],
  3595. Y_current = current_position[Y_AXIS];
  3596. bool stow_probe_after_each = code_seen('E');
  3597. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3598. #if DISABLED(DELTA)
  3599. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3600. out_of_range_error(PSTR("X"));
  3601. return;
  3602. }
  3603. #endif
  3604. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3605. #if DISABLED(DELTA)
  3606. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3607. out_of_range_error(PSTR("Y"));
  3608. return;
  3609. }
  3610. #else
  3611. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3612. if (!position_is_reachable(pos, true)) {
  3613. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3614. return;
  3615. }
  3616. #endif
  3617. bool seen_L = code_seen('L');
  3618. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3619. if (n_legs > 15) {
  3620. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3621. return;
  3622. }
  3623. if (n_legs == 1) n_legs = 2;
  3624. bool schizoid_flag = code_seen('S');
  3625. if (schizoid_flag && !seen_L) n_legs = 7;
  3626. /**
  3627. * Now get everything to the specified probe point So we can safely do a
  3628. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3629. * we don't want to use that as a starting point for each probe.
  3630. */
  3631. if (verbose_level > 2)
  3632. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3633. // Disable bed level correction in M48 because we want the raw data when we probe
  3634. #if HAS_ABL
  3635. reset_bed_level();
  3636. #endif
  3637. setup_for_endstop_or_probe_move();
  3638. // Move to the first point, deploy, and probe
  3639. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3640. randomSeed(millis());
  3641. double mean = 0, sigma = 0, sample_set[n_samples];
  3642. for (uint8_t n = 0; n < n_samples; n++) {
  3643. if (n_legs) {
  3644. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3645. float angle = random(0.0, 360.0),
  3646. radius = random(
  3647. #if ENABLED(DELTA)
  3648. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3649. #else
  3650. 5, X_MAX_LENGTH / 8
  3651. #endif
  3652. );
  3653. if (verbose_level > 3) {
  3654. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3655. SERIAL_ECHOPAIR(" angle: ", angle);
  3656. SERIAL_ECHOPGM(" Direction: ");
  3657. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3658. SERIAL_ECHOLNPGM("Clockwise");
  3659. }
  3660. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3661. double delta_angle;
  3662. if (schizoid_flag)
  3663. // The points of a 5 point star are 72 degrees apart. We need to
  3664. // skip a point and go to the next one on the star.
  3665. delta_angle = dir * 2.0 * 72.0;
  3666. else
  3667. // If we do this line, we are just trying to move further
  3668. // around the circle.
  3669. delta_angle = dir * (float) random(25, 45);
  3670. angle += delta_angle;
  3671. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3672. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3673. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3674. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3675. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3676. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3677. #if DISABLED(DELTA)
  3678. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3679. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3680. #else
  3681. // If we have gone out too far, we can do a simple fix and scale the numbers
  3682. // back in closer to the origin.
  3683. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3684. X_current /= 1.25;
  3685. Y_current /= 1.25;
  3686. if (verbose_level > 3) {
  3687. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3688. SERIAL_ECHOLNPAIR(", ", Y_current);
  3689. }
  3690. }
  3691. #endif
  3692. if (verbose_level > 3) {
  3693. SERIAL_PROTOCOLPGM("Going to:");
  3694. SERIAL_ECHOPAIR(" X", X_current);
  3695. SERIAL_ECHOPAIR(" Y", Y_current);
  3696. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3697. }
  3698. do_blocking_move_to_xy(X_current, Y_current);
  3699. } // n_legs loop
  3700. } // n_legs
  3701. // Probe a single point
  3702. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3703. /**
  3704. * Get the current mean for the data points we have so far
  3705. */
  3706. double sum = 0.0;
  3707. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3708. mean = sum / (n + 1);
  3709. /**
  3710. * Now, use that mean to calculate the standard deviation for the
  3711. * data points we have so far
  3712. */
  3713. sum = 0.0;
  3714. for (uint8_t j = 0; j <= n; j++)
  3715. sum += sq(sample_set[j] - mean);
  3716. sigma = sqrt(sum / (n + 1));
  3717. if (verbose_level > 0) {
  3718. if (verbose_level > 1) {
  3719. SERIAL_PROTOCOL(n + 1);
  3720. SERIAL_PROTOCOLPGM(" of ");
  3721. SERIAL_PROTOCOL((int)n_samples);
  3722. SERIAL_PROTOCOLPGM(" z: ");
  3723. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3724. if (verbose_level > 2) {
  3725. SERIAL_PROTOCOLPGM(" mean: ");
  3726. SERIAL_PROTOCOL_F(mean, 6);
  3727. SERIAL_PROTOCOLPGM(" sigma: ");
  3728. SERIAL_PROTOCOL_F(sigma, 6);
  3729. }
  3730. }
  3731. SERIAL_EOL;
  3732. }
  3733. } // End of probe loop
  3734. if (STOW_PROBE()) return;
  3735. if (verbose_level > 0) {
  3736. SERIAL_PROTOCOLPGM("Mean: ");
  3737. SERIAL_PROTOCOL_F(mean, 6);
  3738. SERIAL_EOL;
  3739. }
  3740. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3741. SERIAL_PROTOCOL_F(sigma, 6);
  3742. SERIAL_EOL; SERIAL_EOL;
  3743. clean_up_after_endstop_or_probe_move();
  3744. report_current_position();
  3745. }
  3746. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3747. /**
  3748. * M75: Start print timer
  3749. */
  3750. inline void gcode_M75() { print_job_timer.start(); }
  3751. /**
  3752. * M76: Pause print timer
  3753. */
  3754. inline void gcode_M76() { print_job_timer.pause(); }
  3755. /**
  3756. * M77: Stop print timer
  3757. */
  3758. inline void gcode_M77() { print_job_timer.stop(); }
  3759. #if ENABLED(PRINTCOUNTER)
  3760. /**
  3761. * M78: Show print statistics
  3762. */
  3763. inline void gcode_M78() {
  3764. // "M78 S78" will reset the statistics
  3765. if (code_seen('S') && code_value_int() == 78)
  3766. print_job_timer.initStats();
  3767. else
  3768. print_job_timer.showStats();
  3769. }
  3770. #endif
  3771. /**
  3772. * M104: Set hot end temperature
  3773. */
  3774. inline void gcode_M104() {
  3775. if (get_target_extruder_from_command(104)) return;
  3776. if (DEBUGGING(DRYRUN)) return;
  3777. #if ENABLED(SINGLENOZZLE)
  3778. if (target_extruder != active_extruder) return;
  3779. #endif
  3780. if (code_seen('S')) {
  3781. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3782. #if ENABLED(DUAL_X_CARRIAGE)
  3783. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3784. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3785. #endif
  3786. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3787. /**
  3788. * Stop the timer at the end of print, starting is managed by
  3789. * 'heat and wait' M109.
  3790. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3791. * stand by mode, for instance in a dual extruder setup, without affecting
  3792. * the running print timer.
  3793. */
  3794. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3795. print_job_timer.stop();
  3796. LCD_MESSAGEPGM(WELCOME_MSG);
  3797. }
  3798. #endif
  3799. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3800. }
  3801. }
  3802. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3803. void print_heaterstates() {
  3804. #if HAS_TEMP_HOTEND
  3805. SERIAL_PROTOCOLPGM(" T:");
  3806. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3807. SERIAL_PROTOCOLPGM(" /");
  3808. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3809. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3810. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3811. SERIAL_CHAR(')');
  3812. #endif
  3813. #endif
  3814. #if HAS_TEMP_BED
  3815. SERIAL_PROTOCOLPGM(" B:");
  3816. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3817. SERIAL_PROTOCOLPGM(" /");
  3818. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3819. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3820. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3821. SERIAL_CHAR(')');
  3822. #endif
  3823. #endif
  3824. #if HOTENDS > 1
  3825. HOTEND_LOOP() {
  3826. SERIAL_PROTOCOLPAIR(" T", e);
  3827. SERIAL_PROTOCOLCHAR(':');
  3828. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3829. SERIAL_PROTOCOLPGM(" /");
  3830. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3831. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3832. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3833. SERIAL_CHAR(')');
  3834. #endif
  3835. }
  3836. #endif
  3837. SERIAL_PROTOCOLPGM(" @:");
  3838. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3839. #if HAS_TEMP_BED
  3840. SERIAL_PROTOCOLPGM(" B@:");
  3841. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3842. #endif
  3843. #if HOTENDS > 1
  3844. HOTEND_LOOP() {
  3845. SERIAL_PROTOCOLPAIR(" @", e);
  3846. SERIAL_PROTOCOLCHAR(':');
  3847. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3848. }
  3849. #endif
  3850. }
  3851. #endif
  3852. /**
  3853. * M105: Read hot end and bed temperature
  3854. */
  3855. inline void gcode_M105() {
  3856. if (get_target_extruder_from_command(105)) return;
  3857. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3858. SERIAL_PROTOCOLPGM(MSG_OK);
  3859. print_heaterstates();
  3860. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3861. SERIAL_ERROR_START;
  3862. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3863. #endif
  3864. SERIAL_EOL;
  3865. }
  3866. #if FAN_COUNT > 0
  3867. /**
  3868. * M106: Set Fan Speed
  3869. *
  3870. * S<int> Speed between 0-255
  3871. * P<index> Fan index, if more than one fan
  3872. */
  3873. inline void gcode_M106() {
  3874. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3875. p = code_seen('P') ? code_value_ushort() : 0;
  3876. NOMORE(s, 255);
  3877. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3878. }
  3879. /**
  3880. * M107: Fan Off
  3881. */
  3882. inline void gcode_M107() {
  3883. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3884. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3885. }
  3886. #endif // FAN_COUNT > 0
  3887. #if DISABLED(EMERGENCY_PARSER)
  3888. /**
  3889. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3890. */
  3891. inline void gcode_M108() { wait_for_heatup = false; }
  3892. /**
  3893. * M112: Emergency Stop
  3894. */
  3895. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3896. /**
  3897. * M410: Quickstop - Abort all planned moves
  3898. *
  3899. * This will stop the carriages mid-move, so most likely they
  3900. * will be out of sync with the stepper position after this.
  3901. */
  3902. inline void gcode_M410() { quickstop_stepper(); }
  3903. #endif
  3904. #ifndef MIN_COOLING_SLOPE_DEG
  3905. #define MIN_COOLING_SLOPE_DEG 1.50
  3906. #endif
  3907. #ifndef MIN_COOLING_SLOPE_TIME
  3908. #define MIN_COOLING_SLOPE_TIME 60
  3909. #endif
  3910. /**
  3911. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3912. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3913. */
  3914. inline void gcode_M109() {
  3915. if (get_target_extruder_from_command(109)) return;
  3916. if (DEBUGGING(DRYRUN)) return;
  3917. #if ENABLED(SINGLENOZZLE)
  3918. if (target_extruder != active_extruder) return;
  3919. #endif
  3920. bool no_wait_for_cooling = code_seen('S');
  3921. if (no_wait_for_cooling || code_seen('R')) {
  3922. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3923. #if ENABLED(DUAL_X_CARRIAGE)
  3924. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3925. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3926. #endif
  3927. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3928. /**
  3929. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3930. * stand by mode, for instance in a dual extruder setup, without affecting
  3931. * the running print timer.
  3932. */
  3933. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3934. print_job_timer.stop();
  3935. LCD_MESSAGEPGM(WELCOME_MSG);
  3936. }
  3937. /**
  3938. * We do not check if the timer is already running because this check will
  3939. * be done for us inside the Stopwatch::start() method thus a running timer
  3940. * will not restart.
  3941. */
  3942. else print_job_timer.start();
  3943. #endif
  3944. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3945. }
  3946. #if ENABLED(AUTOTEMP)
  3947. planner.autotemp_M109();
  3948. #endif
  3949. #if TEMP_RESIDENCY_TIME > 0
  3950. millis_t residency_start_ms = 0;
  3951. // Loop until the temperature has stabilized
  3952. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3953. #else
  3954. // Loop until the temperature is very close target
  3955. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3956. #endif //TEMP_RESIDENCY_TIME > 0
  3957. float theTarget = -1.0, old_temp = 9999.0;
  3958. bool wants_to_cool = false;
  3959. wait_for_heatup = true;
  3960. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3961. KEEPALIVE_STATE(NOT_BUSY);
  3962. do {
  3963. // Target temperature might be changed during the loop
  3964. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3965. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3966. theTarget = thermalManager.degTargetHotend(target_extruder);
  3967. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3968. if (no_wait_for_cooling && wants_to_cool) break;
  3969. }
  3970. now = millis();
  3971. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3972. next_temp_ms = now + 1000UL;
  3973. print_heaterstates();
  3974. #if TEMP_RESIDENCY_TIME > 0
  3975. SERIAL_PROTOCOLPGM(" W:");
  3976. if (residency_start_ms) {
  3977. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3978. SERIAL_PROTOCOLLN(rem);
  3979. }
  3980. else {
  3981. SERIAL_PROTOCOLLNPGM("?");
  3982. }
  3983. #else
  3984. SERIAL_EOL;
  3985. #endif
  3986. }
  3987. idle();
  3988. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3989. float temp = thermalManager.degHotend(target_extruder);
  3990. #if TEMP_RESIDENCY_TIME > 0
  3991. float temp_diff = fabs(theTarget - temp);
  3992. if (!residency_start_ms) {
  3993. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3994. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3995. }
  3996. else if (temp_diff > TEMP_HYSTERESIS) {
  3997. // Restart the timer whenever the temperature falls outside the hysteresis.
  3998. residency_start_ms = now;
  3999. }
  4000. #endif //TEMP_RESIDENCY_TIME > 0
  4001. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4002. if (wants_to_cool) {
  4003. // break after MIN_COOLING_SLOPE_TIME seconds
  4004. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4005. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4006. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4007. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4008. old_temp = temp;
  4009. }
  4010. }
  4011. } while (wait_for_heatup && TEMP_CONDITIONS);
  4012. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4013. KEEPALIVE_STATE(IN_HANDLER);
  4014. }
  4015. #if HAS_TEMP_BED
  4016. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4017. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4018. #endif
  4019. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4020. #define MIN_COOLING_SLOPE_TIME_BED 60
  4021. #endif
  4022. /**
  4023. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4024. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4025. */
  4026. inline void gcode_M190() {
  4027. if (DEBUGGING(DRYRUN)) return;
  4028. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4029. bool no_wait_for_cooling = code_seen('S');
  4030. if (no_wait_for_cooling || code_seen('R')) {
  4031. thermalManager.setTargetBed(code_value_temp_abs());
  4032. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4033. if (code_value_temp_abs() > BED_MINTEMP) {
  4034. /**
  4035. * We start the timer when 'heating and waiting' command arrives, LCD
  4036. * functions never wait. Cooling down managed by extruders.
  4037. *
  4038. * We do not check if the timer is already running because this check will
  4039. * be done for us inside the Stopwatch::start() method thus a running timer
  4040. * will not restart.
  4041. */
  4042. print_job_timer.start();
  4043. }
  4044. #endif
  4045. }
  4046. #if TEMP_BED_RESIDENCY_TIME > 0
  4047. millis_t residency_start_ms = 0;
  4048. // Loop until the temperature has stabilized
  4049. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4050. #else
  4051. // Loop until the temperature is very close target
  4052. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4053. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4054. float theTarget = -1.0, old_temp = 9999.0;
  4055. bool wants_to_cool = false;
  4056. wait_for_heatup = true;
  4057. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4058. KEEPALIVE_STATE(NOT_BUSY);
  4059. target_extruder = active_extruder; // for print_heaterstates
  4060. do {
  4061. // Target temperature might be changed during the loop
  4062. if (theTarget != thermalManager.degTargetBed()) {
  4063. wants_to_cool = thermalManager.isCoolingBed();
  4064. theTarget = thermalManager.degTargetBed();
  4065. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4066. if (no_wait_for_cooling && wants_to_cool) break;
  4067. }
  4068. now = millis();
  4069. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4070. next_temp_ms = now + 1000UL;
  4071. print_heaterstates();
  4072. #if TEMP_BED_RESIDENCY_TIME > 0
  4073. SERIAL_PROTOCOLPGM(" W:");
  4074. if (residency_start_ms) {
  4075. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4076. SERIAL_PROTOCOLLN(rem);
  4077. }
  4078. else {
  4079. SERIAL_PROTOCOLLNPGM("?");
  4080. }
  4081. #else
  4082. SERIAL_EOL;
  4083. #endif
  4084. }
  4085. idle();
  4086. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4087. float temp = thermalManager.degBed();
  4088. #if TEMP_BED_RESIDENCY_TIME > 0
  4089. float temp_diff = fabs(theTarget - temp);
  4090. if (!residency_start_ms) {
  4091. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4092. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4093. }
  4094. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4095. // Restart the timer whenever the temperature falls outside the hysteresis.
  4096. residency_start_ms = now;
  4097. }
  4098. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4099. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4100. if (wants_to_cool) {
  4101. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4102. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4103. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4104. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4105. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4106. old_temp = temp;
  4107. }
  4108. }
  4109. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4110. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4111. KEEPALIVE_STATE(IN_HANDLER);
  4112. }
  4113. #endif // HAS_TEMP_BED
  4114. /**
  4115. * M110: Set Current Line Number
  4116. */
  4117. inline void gcode_M110() {
  4118. if (code_seen('N')) gcode_N = code_value_long();
  4119. }
  4120. /**
  4121. * M111: Set the debug level
  4122. */
  4123. inline void gcode_M111() {
  4124. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4125. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4126. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4127. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4128. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4129. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4131. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4132. #endif
  4133. const static char* const debug_strings[] PROGMEM = {
  4134. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4136. str_debug_32
  4137. #endif
  4138. };
  4139. SERIAL_ECHO_START;
  4140. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4141. if (marlin_debug_flags) {
  4142. uint8_t comma = 0;
  4143. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4144. if (TEST(marlin_debug_flags, i)) {
  4145. if (comma++) SERIAL_CHAR(',');
  4146. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4147. }
  4148. }
  4149. }
  4150. else {
  4151. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4152. }
  4153. SERIAL_EOL;
  4154. }
  4155. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4156. /**
  4157. * M113: Get or set Host Keepalive interval (0 to disable)
  4158. *
  4159. * S<seconds> Optional. Set the keepalive interval.
  4160. */
  4161. inline void gcode_M113() {
  4162. if (code_seen('S')) {
  4163. host_keepalive_interval = code_value_byte();
  4164. NOMORE(host_keepalive_interval, 60);
  4165. }
  4166. else {
  4167. SERIAL_ECHO_START;
  4168. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4169. }
  4170. }
  4171. #endif
  4172. #if ENABLED(BARICUDA)
  4173. #if HAS_HEATER_1
  4174. /**
  4175. * M126: Heater 1 valve open
  4176. */
  4177. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4178. /**
  4179. * M127: Heater 1 valve close
  4180. */
  4181. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4182. #endif
  4183. #if HAS_HEATER_2
  4184. /**
  4185. * M128: Heater 2 valve open
  4186. */
  4187. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4188. /**
  4189. * M129: Heater 2 valve close
  4190. */
  4191. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4192. #endif
  4193. #endif //BARICUDA
  4194. /**
  4195. * M140: Set bed temperature
  4196. */
  4197. inline void gcode_M140() {
  4198. if (DEBUGGING(DRYRUN)) return;
  4199. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4200. }
  4201. #if ENABLED(ULTIPANEL)
  4202. /**
  4203. * M145: Set the heatup state for a material in the LCD menu
  4204. * S<material> (0=PLA, 1=ABS)
  4205. * H<hotend temp>
  4206. * B<bed temp>
  4207. * F<fan speed>
  4208. */
  4209. inline void gcode_M145() {
  4210. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4211. if (material < 0 || material > 1) {
  4212. SERIAL_ERROR_START;
  4213. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4214. }
  4215. else {
  4216. int v;
  4217. switch (material) {
  4218. case 0:
  4219. if (code_seen('H')) {
  4220. v = code_value_int();
  4221. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4222. }
  4223. if (code_seen('F')) {
  4224. v = code_value_int();
  4225. preheatFanSpeed1 = constrain(v, 0, 255);
  4226. }
  4227. #if TEMP_SENSOR_BED != 0
  4228. if (code_seen('B')) {
  4229. v = code_value_int();
  4230. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4231. }
  4232. #endif
  4233. break;
  4234. case 1:
  4235. if (code_seen('H')) {
  4236. v = code_value_int();
  4237. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4238. }
  4239. if (code_seen('F')) {
  4240. v = code_value_int();
  4241. preheatFanSpeed2 = constrain(v, 0, 255);
  4242. }
  4243. #if TEMP_SENSOR_BED != 0
  4244. if (code_seen('B')) {
  4245. v = code_value_int();
  4246. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4247. }
  4248. #endif
  4249. break;
  4250. }
  4251. }
  4252. }
  4253. #endif // ULTIPANEL
  4254. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4255. /**
  4256. * M149: Set temperature units
  4257. */
  4258. inline void gcode_M149() {
  4259. if (code_seen('C')) {
  4260. set_input_temp_units(TEMPUNIT_C);
  4261. } else if (code_seen('K')) {
  4262. set_input_temp_units(TEMPUNIT_K);
  4263. } else if (code_seen('F')) {
  4264. set_input_temp_units(TEMPUNIT_F);
  4265. }
  4266. }
  4267. #endif
  4268. #if HAS_POWER_SWITCH
  4269. /**
  4270. * M80: Turn on Power Supply
  4271. */
  4272. inline void gcode_M80() {
  4273. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4274. /**
  4275. * If you have a switch on suicide pin, this is useful
  4276. * if you want to start another print with suicide feature after
  4277. * a print without suicide...
  4278. */
  4279. #if HAS_SUICIDE
  4280. OUT_WRITE(SUICIDE_PIN, HIGH);
  4281. #endif
  4282. #if ENABLED(ULTIPANEL)
  4283. powersupply = true;
  4284. LCD_MESSAGEPGM(WELCOME_MSG);
  4285. lcd_update();
  4286. #endif
  4287. }
  4288. #endif // HAS_POWER_SWITCH
  4289. /**
  4290. * M81: Turn off Power, including Power Supply, if there is one.
  4291. *
  4292. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4293. */
  4294. inline void gcode_M81() {
  4295. thermalManager.disable_all_heaters();
  4296. stepper.finish_and_disable();
  4297. #if FAN_COUNT > 0
  4298. #if FAN_COUNT > 1
  4299. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4300. #else
  4301. fanSpeeds[0] = 0;
  4302. #endif
  4303. #endif
  4304. delay(1000); // Wait 1 second before switching off
  4305. #if HAS_SUICIDE
  4306. stepper.synchronize();
  4307. suicide();
  4308. #elif HAS_POWER_SWITCH
  4309. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4310. #endif
  4311. #if ENABLED(ULTIPANEL)
  4312. #if HAS_POWER_SWITCH
  4313. powersupply = false;
  4314. #endif
  4315. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4316. lcd_update();
  4317. #endif
  4318. }
  4319. /**
  4320. * M82: Set E codes absolute (default)
  4321. */
  4322. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4323. /**
  4324. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4325. */
  4326. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4327. /**
  4328. * M18, M84: Disable all stepper motors
  4329. */
  4330. inline void gcode_M18_M84() {
  4331. if (code_seen('S')) {
  4332. stepper_inactive_time = code_value_millis_from_seconds();
  4333. }
  4334. else {
  4335. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4336. if (all_axis) {
  4337. stepper.finish_and_disable();
  4338. }
  4339. else {
  4340. stepper.synchronize();
  4341. if (code_seen('X')) disable_x();
  4342. if (code_seen('Y')) disable_y();
  4343. if (code_seen('Z')) disable_z();
  4344. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4345. if (code_seen('E')) {
  4346. disable_e0();
  4347. disable_e1();
  4348. disable_e2();
  4349. disable_e3();
  4350. }
  4351. #endif
  4352. }
  4353. }
  4354. }
  4355. /**
  4356. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4357. */
  4358. inline void gcode_M85() {
  4359. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4360. }
  4361. /**
  4362. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4363. * (Follows the same syntax as G92)
  4364. */
  4365. inline void gcode_M92() {
  4366. LOOP_XYZE(i) {
  4367. if (code_seen(axis_codes[i])) {
  4368. if (i == E_AXIS) {
  4369. float value = code_value_per_axis_unit(i);
  4370. if (value < 20.0) {
  4371. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4372. planner.max_e_jerk *= factor;
  4373. planner.max_feedrate_mm_s[i] *= factor;
  4374. planner.max_acceleration_steps_per_s2[i] *= factor;
  4375. }
  4376. planner.axis_steps_per_mm[i] = value;
  4377. }
  4378. else {
  4379. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4380. }
  4381. }
  4382. }
  4383. planner.refresh_positioning();
  4384. }
  4385. /**
  4386. * Output the current position to serial
  4387. */
  4388. static void report_current_position() {
  4389. SERIAL_PROTOCOLPGM("X:");
  4390. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4391. SERIAL_PROTOCOLPGM(" Y:");
  4392. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4393. SERIAL_PROTOCOLPGM(" Z:");
  4394. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4395. SERIAL_PROTOCOLPGM(" E:");
  4396. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4397. stepper.report_positions();
  4398. #if IS_SCARA
  4399. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4400. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4401. SERIAL_EOL;
  4402. #endif
  4403. }
  4404. /**
  4405. * M114: Output current position to serial port
  4406. */
  4407. inline void gcode_M114() { report_current_position(); }
  4408. /**
  4409. * M115: Capabilities string
  4410. */
  4411. inline void gcode_M115() {
  4412. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4413. }
  4414. /**
  4415. * M117: Set LCD Status Message
  4416. */
  4417. inline void gcode_M117() {
  4418. lcd_setstatus(current_command_args);
  4419. }
  4420. /**
  4421. * M119: Output endstop states to serial output
  4422. */
  4423. inline void gcode_M119() { endstops.M119(); }
  4424. /**
  4425. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4426. */
  4427. inline void gcode_M120() { endstops.enable_globally(true); }
  4428. /**
  4429. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4430. */
  4431. inline void gcode_M121() { endstops.enable_globally(false); }
  4432. #if ENABLED(BLINKM)
  4433. /**
  4434. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4435. */
  4436. inline void gcode_M150() {
  4437. SendColors(
  4438. code_seen('R') ? code_value_byte() : 0,
  4439. code_seen('U') ? code_value_byte() : 0,
  4440. code_seen('B') ? code_value_byte() : 0
  4441. );
  4442. }
  4443. #endif // BLINKM
  4444. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4445. /**
  4446. * M155: Send data to a I2C slave device
  4447. *
  4448. * This is a PoC, the formating and arguments for the GCODE will
  4449. * change to be more compatible, the current proposal is:
  4450. *
  4451. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4452. *
  4453. * M155 B<byte-1 value in base 10>
  4454. * M155 B<byte-2 value in base 10>
  4455. * M155 B<byte-3 value in base 10>
  4456. *
  4457. * M155 S1 ; Send the buffered data and reset the buffer
  4458. * M155 R1 ; Reset the buffer without sending data
  4459. *
  4460. */
  4461. inline void gcode_M155() {
  4462. // Set the target address
  4463. if (code_seen('A')) i2c.address(code_value_byte());
  4464. // Add a new byte to the buffer
  4465. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4466. // Flush the buffer to the bus
  4467. if (code_seen('S')) i2c.send();
  4468. // Reset and rewind the buffer
  4469. else if (code_seen('R')) i2c.reset();
  4470. }
  4471. /**
  4472. * M156: Request X bytes from I2C slave device
  4473. *
  4474. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4475. */
  4476. inline void gcode_M156() {
  4477. if (code_seen('A')) i2c.address(code_value_byte());
  4478. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4479. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4480. i2c.relay(bytes);
  4481. }
  4482. else {
  4483. SERIAL_ERROR_START;
  4484. SERIAL_ERRORLN("Bad i2c request");
  4485. }
  4486. }
  4487. #endif // EXPERIMENTAL_I2CBUS
  4488. /**
  4489. * M200: Set filament diameter and set E axis units to cubic units
  4490. *
  4491. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4492. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4493. */
  4494. inline void gcode_M200() {
  4495. if (get_target_extruder_from_command(200)) return;
  4496. if (code_seen('D')) {
  4497. // setting any extruder filament size disables volumetric on the assumption that
  4498. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4499. // for all extruders
  4500. volumetric_enabled = (code_value_linear_units() != 0.0);
  4501. if (volumetric_enabled) {
  4502. filament_size[target_extruder] = code_value_linear_units();
  4503. // make sure all extruders have some sane value for the filament size
  4504. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4505. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4506. }
  4507. }
  4508. else {
  4509. //reserved for setting filament diameter via UFID or filament measuring device
  4510. return;
  4511. }
  4512. calculate_volumetric_multipliers();
  4513. }
  4514. /**
  4515. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4516. */
  4517. inline void gcode_M201() {
  4518. LOOP_XYZE(i) {
  4519. if (code_seen(axis_codes[i])) {
  4520. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4521. }
  4522. }
  4523. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4524. planner.reset_acceleration_rates();
  4525. }
  4526. #if 0 // Not used for Sprinter/grbl gen6
  4527. inline void gcode_M202() {
  4528. LOOP_XYZE(i) {
  4529. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4530. }
  4531. }
  4532. #endif
  4533. /**
  4534. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4535. */
  4536. inline void gcode_M203() {
  4537. LOOP_XYZE(i)
  4538. if (code_seen(axis_codes[i]))
  4539. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4540. }
  4541. /**
  4542. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4543. *
  4544. * P = Printing moves
  4545. * R = Retract only (no X, Y, Z) moves
  4546. * T = Travel (non printing) moves
  4547. *
  4548. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4549. */
  4550. inline void gcode_M204() {
  4551. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4552. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4553. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4554. }
  4555. if (code_seen('P')) {
  4556. planner.acceleration = code_value_linear_units();
  4557. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4558. }
  4559. if (code_seen('R')) {
  4560. planner.retract_acceleration = code_value_linear_units();
  4561. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4562. }
  4563. if (code_seen('T')) {
  4564. planner.travel_acceleration = code_value_linear_units();
  4565. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4566. }
  4567. }
  4568. /**
  4569. * M205: Set Advanced Settings
  4570. *
  4571. * S = Min Feed Rate (units/s)
  4572. * T = Min Travel Feed Rate (units/s)
  4573. * B = Min Segment Time (µs)
  4574. * X = Max XY Jerk (units/sec^2)
  4575. * Z = Max Z Jerk (units/sec^2)
  4576. * E = Max E Jerk (units/sec^2)
  4577. */
  4578. inline void gcode_M205() {
  4579. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4580. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4581. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4582. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4583. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4584. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4585. }
  4586. /**
  4587. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4588. */
  4589. inline void gcode_M206() {
  4590. LOOP_XYZ(i)
  4591. if (code_seen(axis_codes[i]))
  4592. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4593. #if ENABLED(MORGAN_SCARA)
  4594. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4595. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4596. #endif
  4597. SYNC_PLAN_POSITION_KINEMATIC();
  4598. report_current_position();
  4599. }
  4600. #if ENABLED(DELTA)
  4601. /**
  4602. * M665: Set delta configurations
  4603. *
  4604. * L = diagonal rod
  4605. * R = delta radius
  4606. * S = segments per second
  4607. * A = Alpha (Tower 1) diagonal rod trim
  4608. * B = Beta (Tower 2) diagonal rod trim
  4609. * C = Gamma (Tower 3) diagonal rod trim
  4610. */
  4611. inline void gcode_M665() {
  4612. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4613. if (code_seen('R')) delta_radius = code_value_linear_units();
  4614. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4615. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4616. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4617. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4618. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4619. }
  4620. /**
  4621. * M666: Set delta endstop adjustment
  4622. */
  4623. inline void gcode_M666() {
  4624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4625. if (DEBUGGING(LEVELING)) {
  4626. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4627. }
  4628. #endif
  4629. LOOP_XYZ(i) {
  4630. if (code_seen(axis_codes[i])) {
  4631. endstop_adj[i] = code_value_axis_units(i);
  4632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4633. if (DEBUGGING(LEVELING)) {
  4634. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4635. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4636. }
  4637. #endif
  4638. }
  4639. }
  4640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4641. if (DEBUGGING(LEVELING)) {
  4642. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4643. }
  4644. #endif
  4645. }
  4646. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4647. /**
  4648. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4649. */
  4650. inline void gcode_M666() {
  4651. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4652. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4653. }
  4654. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4655. #if ENABLED(FWRETRACT)
  4656. /**
  4657. * M207: Set firmware retraction values
  4658. *
  4659. * S[+units] retract_length
  4660. * W[+units] retract_length_swap (multi-extruder)
  4661. * F[units/min] retract_feedrate_mm_s
  4662. * Z[units] retract_zlift
  4663. */
  4664. inline void gcode_M207() {
  4665. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4666. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4667. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4668. #if EXTRUDERS > 1
  4669. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4670. #endif
  4671. }
  4672. /**
  4673. * M208: Set firmware un-retraction values
  4674. *
  4675. * S[+units] retract_recover_length (in addition to M207 S*)
  4676. * W[+units] retract_recover_length_swap (multi-extruder)
  4677. * F[units/min] retract_recover_feedrate_mm_s
  4678. */
  4679. inline void gcode_M208() {
  4680. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4681. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4682. #if EXTRUDERS > 1
  4683. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4684. #endif
  4685. }
  4686. /**
  4687. * M209: Enable automatic retract (M209 S1)
  4688. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4689. */
  4690. inline void gcode_M209() {
  4691. if (code_seen('S')) {
  4692. autoretract_enabled = code_value_bool();
  4693. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4694. }
  4695. }
  4696. #endif // FWRETRACT
  4697. /**
  4698. * M211: Enable, Disable, and/or Report software endstops
  4699. *
  4700. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4701. */
  4702. inline void gcode_M211() {
  4703. SERIAL_ECHO_START;
  4704. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4705. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4706. #endif
  4707. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4708. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4709. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4710. #else
  4711. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4712. SERIAL_ECHOPGM(MSG_OFF);
  4713. #endif
  4714. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4715. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4716. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4717. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4718. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4719. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4720. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4721. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4722. }
  4723. #if HOTENDS > 1
  4724. /**
  4725. * M218 - set hotend offset (in linear units)
  4726. *
  4727. * T<tool>
  4728. * X<xoffset>
  4729. * Y<yoffset>
  4730. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4731. */
  4732. inline void gcode_M218() {
  4733. if (get_target_extruder_from_command(218)) return;
  4734. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4735. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4736. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4737. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4738. #endif
  4739. SERIAL_ECHO_START;
  4740. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4741. HOTEND_LOOP() {
  4742. SERIAL_CHAR(' ');
  4743. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4744. SERIAL_CHAR(',');
  4745. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4746. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4747. SERIAL_CHAR(',');
  4748. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4749. #endif
  4750. }
  4751. SERIAL_EOL;
  4752. }
  4753. #endif // HOTENDS > 1
  4754. /**
  4755. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4756. */
  4757. inline void gcode_M220() {
  4758. if (code_seen('S')) feedrate_percentage = code_value_int();
  4759. }
  4760. /**
  4761. * M221: Set extrusion percentage (M221 T0 S95)
  4762. */
  4763. inline void gcode_M221() {
  4764. if (get_target_extruder_from_command(221)) return;
  4765. if (code_seen('S'))
  4766. flow_percentage[target_extruder] = code_value_int();
  4767. }
  4768. /**
  4769. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4770. */
  4771. inline void gcode_M226() {
  4772. if (code_seen('P')) {
  4773. int pin_number = code_value_int();
  4774. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4775. if (pin_state >= -1 && pin_state <= 1) {
  4776. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4777. if (sensitive_pins[i] == pin_number) {
  4778. pin_number = -1;
  4779. break;
  4780. }
  4781. }
  4782. if (pin_number > -1) {
  4783. int target = LOW;
  4784. stepper.synchronize();
  4785. pinMode(pin_number, INPUT);
  4786. switch (pin_state) {
  4787. case 1:
  4788. target = HIGH;
  4789. break;
  4790. case 0:
  4791. target = LOW;
  4792. break;
  4793. case -1:
  4794. target = !digitalRead(pin_number);
  4795. break;
  4796. }
  4797. while (digitalRead(pin_number) != target) idle();
  4798. } // pin_number > -1
  4799. } // pin_state -1 0 1
  4800. } // code_seen('P')
  4801. }
  4802. #if HAS_SERVOS
  4803. /**
  4804. * M280: Get or set servo position. P<index> [S<angle>]
  4805. */
  4806. inline void gcode_M280() {
  4807. if (!code_seen('P')) return;
  4808. int servo_index = code_value_int();
  4809. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4810. if (code_seen('S'))
  4811. MOVE_SERVO(servo_index, code_value_int());
  4812. else {
  4813. SERIAL_ECHO_START;
  4814. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4815. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4816. }
  4817. }
  4818. else {
  4819. SERIAL_ERROR_START;
  4820. SERIAL_ECHOPAIR("Servo ", servo_index);
  4821. SERIAL_ECHOLNPGM(" out of range");
  4822. }
  4823. }
  4824. #endif // HAS_SERVOS
  4825. #if HAS_BUZZER
  4826. /**
  4827. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4828. */
  4829. inline void gcode_M300() {
  4830. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4831. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4832. // Limits the tone duration to 0-5 seconds.
  4833. NOMORE(duration, 5000);
  4834. BUZZ(duration, frequency);
  4835. }
  4836. #endif // HAS_BUZZER
  4837. #if ENABLED(PIDTEMP)
  4838. /**
  4839. * M301: Set PID parameters P I D (and optionally C, L)
  4840. *
  4841. * P[float] Kp term
  4842. * I[float] Ki term (unscaled)
  4843. * D[float] Kd term (unscaled)
  4844. *
  4845. * With PID_EXTRUSION_SCALING:
  4846. *
  4847. * C[float] Kc term
  4848. * L[float] LPQ length
  4849. */
  4850. inline void gcode_M301() {
  4851. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4852. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4853. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4854. if (e < HOTENDS) { // catch bad input value
  4855. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4856. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4857. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4858. #if ENABLED(PID_EXTRUSION_SCALING)
  4859. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4860. if (code_seen('L')) lpq_len = code_value_float();
  4861. NOMORE(lpq_len, LPQ_MAX_LEN);
  4862. #endif
  4863. thermalManager.updatePID();
  4864. SERIAL_ECHO_START;
  4865. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4866. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4867. #endif // PID_PARAMS_PER_HOTEND
  4868. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4869. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4870. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4871. #if ENABLED(PID_EXTRUSION_SCALING)
  4872. //Kc does not have scaling applied above, or in resetting defaults
  4873. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4874. #endif
  4875. SERIAL_EOL;
  4876. }
  4877. else {
  4878. SERIAL_ERROR_START;
  4879. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4880. }
  4881. }
  4882. #endif // PIDTEMP
  4883. #if ENABLED(PIDTEMPBED)
  4884. inline void gcode_M304() {
  4885. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4886. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4887. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4888. thermalManager.updatePID();
  4889. SERIAL_ECHO_START;
  4890. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4891. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4892. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4893. }
  4894. #endif // PIDTEMPBED
  4895. #if defined(CHDK) || HAS_PHOTOGRAPH
  4896. /**
  4897. * M240: Trigger a camera by emulating a Canon RC-1
  4898. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4899. */
  4900. inline void gcode_M240() {
  4901. #ifdef CHDK
  4902. OUT_WRITE(CHDK, HIGH);
  4903. chdkHigh = millis();
  4904. chdkActive = true;
  4905. #elif HAS_PHOTOGRAPH
  4906. const uint8_t NUM_PULSES = 16;
  4907. const float PULSE_LENGTH = 0.01524;
  4908. for (int i = 0; i < NUM_PULSES; i++) {
  4909. WRITE(PHOTOGRAPH_PIN, HIGH);
  4910. _delay_ms(PULSE_LENGTH);
  4911. WRITE(PHOTOGRAPH_PIN, LOW);
  4912. _delay_ms(PULSE_LENGTH);
  4913. }
  4914. delay(7.33);
  4915. for (int i = 0; i < NUM_PULSES; i++) {
  4916. WRITE(PHOTOGRAPH_PIN, HIGH);
  4917. _delay_ms(PULSE_LENGTH);
  4918. WRITE(PHOTOGRAPH_PIN, LOW);
  4919. _delay_ms(PULSE_LENGTH);
  4920. }
  4921. #endif // !CHDK && HAS_PHOTOGRAPH
  4922. }
  4923. #endif // CHDK || PHOTOGRAPH_PIN
  4924. #if HAS_LCD_CONTRAST
  4925. /**
  4926. * M250: Read and optionally set the LCD contrast
  4927. */
  4928. inline void gcode_M250() {
  4929. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4930. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4931. SERIAL_PROTOCOL(lcd_contrast);
  4932. SERIAL_EOL;
  4933. }
  4934. #endif // HAS_LCD_CONTRAST
  4935. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4936. /**
  4937. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4938. *
  4939. * S<temperature> sets the minimum extrude temperature
  4940. * P<bool> enables (1) or disables (0) cold extrusion
  4941. *
  4942. * Examples:
  4943. *
  4944. * M302 ; report current cold extrusion state
  4945. * M302 P0 ; enable cold extrusion checking
  4946. * M302 P1 ; disables cold extrusion checking
  4947. * M302 S0 ; always allow extrusion (disables checking)
  4948. * M302 S170 ; only allow extrusion above 170
  4949. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4950. */
  4951. inline void gcode_M302() {
  4952. bool seen_S = code_seen('S');
  4953. if (seen_S) {
  4954. thermalManager.extrude_min_temp = code_value_temp_abs();
  4955. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4956. }
  4957. if (code_seen('P'))
  4958. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4959. else if (!seen_S) {
  4960. // Report current state
  4961. SERIAL_ECHO_START;
  4962. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4963. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4964. SERIAL_ECHOLNPGM("C)");
  4965. }
  4966. }
  4967. #endif // PREVENT_COLD_EXTRUSION
  4968. /**
  4969. * M303: PID relay autotune
  4970. *
  4971. * S<temperature> sets the target temperature. (default 150C)
  4972. * E<extruder> (-1 for the bed) (default 0)
  4973. * C<cycles>
  4974. * U<bool> with a non-zero value will apply the result to current settings
  4975. */
  4976. inline void gcode_M303() {
  4977. #if HAS_PID_HEATING
  4978. int e = code_seen('E') ? code_value_int() : 0;
  4979. int c = code_seen('C') ? code_value_int() : 5;
  4980. bool u = code_seen('U') && code_value_bool();
  4981. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4982. if (e >= 0 && e < HOTENDS)
  4983. target_extruder = e;
  4984. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4985. thermalManager.PID_autotune(temp, e, c, u);
  4986. KEEPALIVE_STATE(IN_HANDLER);
  4987. #else
  4988. SERIAL_ERROR_START;
  4989. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4990. #endif
  4991. }
  4992. #if ENABLED(MORGAN_SCARA)
  4993. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4994. if (IsRunning()) {
  4995. forward_kinematics_SCARA(delta_a, delta_b);
  4996. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  4997. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  4998. destination[Z_AXIS] = current_position[Z_AXIS];
  4999. prepare_move_to_destination();
  5000. return true;
  5001. }
  5002. return false;
  5003. }
  5004. /**
  5005. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5006. */
  5007. inline bool gcode_M360() {
  5008. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5009. return SCARA_move_to_cal(0, 120);
  5010. }
  5011. /**
  5012. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5013. */
  5014. inline bool gcode_M361() {
  5015. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5016. return SCARA_move_to_cal(90, 130);
  5017. }
  5018. /**
  5019. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5020. */
  5021. inline bool gcode_M362() {
  5022. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5023. return SCARA_move_to_cal(60, 180);
  5024. }
  5025. /**
  5026. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5027. */
  5028. inline bool gcode_M363() {
  5029. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5030. return SCARA_move_to_cal(50, 90);
  5031. }
  5032. /**
  5033. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5034. */
  5035. inline bool gcode_M364() {
  5036. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5037. return SCARA_move_to_cal(45, 135);
  5038. }
  5039. #endif // SCARA
  5040. #if ENABLED(EXT_SOLENOID)
  5041. void enable_solenoid(uint8_t num) {
  5042. switch (num) {
  5043. case 0:
  5044. OUT_WRITE(SOL0_PIN, HIGH);
  5045. break;
  5046. #if HAS_SOLENOID_1
  5047. case 1:
  5048. OUT_WRITE(SOL1_PIN, HIGH);
  5049. break;
  5050. #endif
  5051. #if HAS_SOLENOID_2
  5052. case 2:
  5053. OUT_WRITE(SOL2_PIN, HIGH);
  5054. break;
  5055. #endif
  5056. #if HAS_SOLENOID_3
  5057. case 3:
  5058. OUT_WRITE(SOL3_PIN, HIGH);
  5059. break;
  5060. #endif
  5061. default:
  5062. SERIAL_ECHO_START;
  5063. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5064. break;
  5065. }
  5066. }
  5067. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5068. void disable_all_solenoids() {
  5069. OUT_WRITE(SOL0_PIN, LOW);
  5070. OUT_WRITE(SOL1_PIN, LOW);
  5071. OUT_WRITE(SOL2_PIN, LOW);
  5072. OUT_WRITE(SOL3_PIN, LOW);
  5073. }
  5074. /**
  5075. * M380: Enable solenoid on the active extruder
  5076. */
  5077. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5078. /**
  5079. * M381: Disable all solenoids
  5080. */
  5081. inline void gcode_M381() { disable_all_solenoids(); }
  5082. #endif // EXT_SOLENOID
  5083. /**
  5084. * M400: Finish all moves
  5085. */
  5086. inline void gcode_M400() { stepper.synchronize(); }
  5087. #if HAS_BED_PROBE
  5088. /**
  5089. * M401: Engage Z Servo endstop if available
  5090. */
  5091. inline void gcode_M401() { DEPLOY_PROBE(); }
  5092. /**
  5093. * M402: Retract Z Servo endstop if enabled
  5094. */
  5095. inline void gcode_M402() { STOW_PROBE(); }
  5096. #endif // HAS_BED_PROBE
  5097. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5098. /**
  5099. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5100. */
  5101. inline void gcode_M404() {
  5102. if (code_seen('W')) {
  5103. filament_width_nominal = code_value_linear_units();
  5104. }
  5105. else {
  5106. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5107. SERIAL_PROTOCOLLN(filament_width_nominal);
  5108. }
  5109. }
  5110. /**
  5111. * M405: Turn on filament sensor for control
  5112. */
  5113. inline void gcode_M405() {
  5114. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5115. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5116. if (code_seen('D')) meas_delay_cm = code_value_int();
  5117. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5118. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5119. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5120. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5121. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5122. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5123. }
  5124. filament_sensor = true;
  5125. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5126. //SERIAL_PROTOCOL(filament_width_meas);
  5127. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5128. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5129. }
  5130. /**
  5131. * M406: Turn off filament sensor for control
  5132. */
  5133. inline void gcode_M406() { filament_sensor = false; }
  5134. /**
  5135. * M407: Get measured filament diameter on serial output
  5136. */
  5137. inline void gcode_M407() {
  5138. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5139. SERIAL_PROTOCOLLN(filament_width_meas);
  5140. }
  5141. #endif // FILAMENT_WIDTH_SENSOR
  5142. void quickstop_stepper() {
  5143. stepper.quick_stop();
  5144. stepper.synchronize();
  5145. set_current_from_steppers_for_axis(ALL_AXES);
  5146. SYNC_PLAN_POSITION_KINEMATIC();
  5147. }
  5148. #if ENABLED(MESH_BED_LEVELING)
  5149. /**
  5150. * M420: Enable/Disable Mesh Bed Leveling
  5151. */
  5152. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5153. /**
  5154. * M421: Set a single Mesh Bed Leveling Z coordinate
  5155. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5156. */
  5157. inline void gcode_M421() {
  5158. int8_t px = 0, py = 0;
  5159. float z = 0;
  5160. bool hasX, hasY, hasZ, hasI, hasJ;
  5161. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5162. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5163. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5164. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5165. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5166. if (hasX && hasY && hasZ) {
  5167. if (px >= 0 && py >= 0)
  5168. mbl.set_z(px, py, z);
  5169. else {
  5170. SERIAL_ERROR_START;
  5171. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5172. }
  5173. }
  5174. else if (hasI && hasJ && hasZ) {
  5175. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5176. mbl.set_z(px, py, z);
  5177. else {
  5178. SERIAL_ERROR_START;
  5179. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5180. }
  5181. }
  5182. else {
  5183. SERIAL_ERROR_START;
  5184. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5185. }
  5186. }
  5187. #endif
  5188. /**
  5189. * M428: Set home_offset based on the distance between the
  5190. * current_position and the nearest "reference point."
  5191. * If an axis is past center its endstop position
  5192. * is the reference-point. Otherwise it uses 0. This allows
  5193. * the Z offset to be set near the bed when using a max endstop.
  5194. *
  5195. * M428 can't be used more than 2cm away from 0 or an endstop.
  5196. *
  5197. * Use M206 to set these values directly.
  5198. */
  5199. inline void gcode_M428() {
  5200. bool err = false;
  5201. LOOP_XYZ(i) {
  5202. if (axis_homed[i]) {
  5203. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5204. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5205. if (diff > -20 && diff < 20) {
  5206. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5207. }
  5208. else {
  5209. SERIAL_ERROR_START;
  5210. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5211. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5212. BUZZ(200, 40);
  5213. err = true;
  5214. break;
  5215. }
  5216. }
  5217. }
  5218. if (!err) {
  5219. SYNC_PLAN_POSITION_KINEMATIC();
  5220. report_current_position();
  5221. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5222. BUZZ(200, 659);
  5223. BUZZ(200, 698);
  5224. }
  5225. }
  5226. /**
  5227. * M500: Store settings in EEPROM
  5228. */
  5229. inline void gcode_M500() {
  5230. Config_StoreSettings();
  5231. }
  5232. /**
  5233. * M501: Read settings from EEPROM
  5234. */
  5235. inline void gcode_M501() {
  5236. Config_RetrieveSettings();
  5237. }
  5238. /**
  5239. * M502: Revert to default settings
  5240. */
  5241. inline void gcode_M502() {
  5242. Config_ResetDefault();
  5243. }
  5244. /**
  5245. * M503: print settings currently in memory
  5246. */
  5247. inline void gcode_M503() {
  5248. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5249. }
  5250. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5251. /**
  5252. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5253. */
  5254. inline void gcode_M540() {
  5255. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5256. }
  5257. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5258. #if HAS_BED_PROBE
  5259. inline void gcode_M851() {
  5260. SERIAL_ECHO_START;
  5261. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5262. SERIAL_CHAR(' ');
  5263. if (code_seen('Z')) {
  5264. float value = code_value_axis_units(Z_AXIS);
  5265. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5266. zprobe_zoffset = value;
  5267. SERIAL_ECHO(zprobe_zoffset);
  5268. }
  5269. else {
  5270. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5271. SERIAL_CHAR(' ');
  5272. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5273. }
  5274. }
  5275. else {
  5276. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5277. }
  5278. SERIAL_EOL;
  5279. }
  5280. #endif // HAS_BED_PROBE
  5281. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5282. /**
  5283. * M600: Pause for filament change
  5284. *
  5285. * E[distance] - Retract the filament this far (negative value)
  5286. * Z[distance] - Move the Z axis by this distance
  5287. * X[position] - Move to this X position, with Y
  5288. * Y[position] - Move to this Y position, with X
  5289. * L[distance] - Retract distance for removal (manual reload)
  5290. *
  5291. * Default values are used for omitted arguments.
  5292. *
  5293. */
  5294. inline void gcode_M600() {
  5295. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5296. SERIAL_ERROR_START;
  5297. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5298. return;
  5299. }
  5300. // Show initial message and wait for synchronize steppers
  5301. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5302. stepper.synchronize();
  5303. float lastpos[NUM_AXIS];
  5304. // Save current position of all axes
  5305. LOOP_XYZE(i)
  5306. lastpos[i] = destination[i] = current_position[i];
  5307. // Define runplan for move axes
  5308. #if IS_KINEMATIC
  5309. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5310. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5311. #else
  5312. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5313. #endif
  5314. KEEPALIVE_STATE(IN_HANDLER);
  5315. // Initial retract before move to filament change position
  5316. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5317. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5318. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5319. #endif
  5320. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5321. // Lift Z axis
  5322. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5323. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5324. FILAMENT_CHANGE_Z_ADD
  5325. #else
  5326. 0
  5327. #endif
  5328. ;
  5329. if (z_lift > 0) {
  5330. destination[Z_AXIS] += z_lift;
  5331. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5332. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5333. }
  5334. // Move XY axes to filament exchange position
  5335. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5336. #ifdef FILAMENT_CHANGE_X_POS
  5337. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5338. #endif
  5339. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5340. #ifdef FILAMENT_CHANGE_Y_POS
  5341. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5342. #endif
  5343. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5344. stepper.synchronize();
  5345. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5346. // Unload filament
  5347. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5348. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5349. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5350. #endif
  5351. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5352. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5353. stepper.synchronize();
  5354. disable_e0();
  5355. disable_e1();
  5356. disable_e2();
  5357. disable_e3();
  5358. delay(100);
  5359. #if HAS_BUZZER
  5360. millis_t next_tick = 0;
  5361. #endif
  5362. // Wait for filament insert by user and press button
  5363. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5364. while (!lcd_clicked()) {
  5365. #if HAS_BUZZER
  5366. millis_t ms = millis();
  5367. if (ms >= next_tick) {
  5368. BUZZ(300, 2000);
  5369. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5370. }
  5371. #endif
  5372. idle(true);
  5373. }
  5374. delay(100);
  5375. while (lcd_clicked()) idle(true);
  5376. delay(100);
  5377. // Show load message
  5378. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5379. // Load filament
  5380. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5381. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5382. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5383. #endif
  5384. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5385. stepper.synchronize();
  5386. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5387. do {
  5388. // Extrude filament to get into hotend
  5389. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5390. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5391. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5392. stepper.synchronize();
  5393. // Ask user if more filament should be extruded
  5394. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5395. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5396. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5397. KEEPALIVE_STATE(IN_HANDLER);
  5398. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5399. #endif
  5400. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5401. KEEPALIVE_STATE(IN_HANDLER);
  5402. // Set extruder to saved position
  5403. current_position[E_AXIS] = lastpos[E_AXIS];
  5404. destination[E_AXIS] = lastpos[E_AXIS];
  5405. planner.set_e_position_mm(current_position[E_AXIS]);
  5406. #if IS_KINEMATIC
  5407. // Move XYZ to starting position, then E
  5408. inverse_kinematics(lastpos);
  5409. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5410. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5411. #else
  5412. // Move XY to starting position, then Z, then E
  5413. destination[X_AXIS] = lastpos[X_AXIS];
  5414. destination[Y_AXIS] = lastpos[Y_AXIS];
  5415. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5416. destination[Z_AXIS] = lastpos[Z_AXIS];
  5417. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5418. #endif
  5419. stepper.synchronize();
  5420. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5421. filament_ran_out = false;
  5422. #endif
  5423. // Show status screen
  5424. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5425. }
  5426. #endif // FILAMENT_CHANGE_FEATURE
  5427. #if ENABLED(DUAL_X_CARRIAGE)
  5428. /**
  5429. * M605: Set dual x-carriage movement mode
  5430. *
  5431. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5432. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5433. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5434. * units x-offset and an optional differential hotend temperature of
  5435. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5436. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5437. *
  5438. * Note: the X axis should be homed after changing dual x-carriage mode.
  5439. */
  5440. inline void gcode_M605() {
  5441. stepper.synchronize();
  5442. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5443. switch (dual_x_carriage_mode) {
  5444. case DXC_DUPLICATION_MODE:
  5445. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5446. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5447. SERIAL_ECHO_START;
  5448. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5449. SERIAL_CHAR(' ');
  5450. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5451. SERIAL_CHAR(',');
  5452. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5453. SERIAL_CHAR(' ');
  5454. SERIAL_ECHO(duplicate_extruder_x_offset);
  5455. SERIAL_CHAR(',');
  5456. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5457. break;
  5458. case DXC_FULL_CONTROL_MODE:
  5459. case DXC_AUTO_PARK_MODE:
  5460. break;
  5461. default:
  5462. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5463. break;
  5464. }
  5465. active_extruder_parked = false;
  5466. extruder_duplication_enabled = false;
  5467. delayed_move_time = 0;
  5468. }
  5469. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5470. inline void gcode_M605() {
  5471. stepper.synchronize();
  5472. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5473. SERIAL_ECHO_START;
  5474. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5475. }
  5476. #endif // M605
  5477. #if ENABLED(LIN_ADVANCE)
  5478. /**
  5479. * M905: Set advance factor
  5480. */
  5481. inline void gcode_M905() {
  5482. stepper.synchronize();
  5483. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5484. }
  5485. #endif
  5486. /**
  5487. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5488. */
  5489. inline void gcode_M907() {
  5490. #if HAS_DIGIPOTSS
  5491. LOOP_XYZE(i)
  5492. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5493. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5494. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5495. #elif HAS_MOTOR_CURRENT_PWM
  5496. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5497. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5498. #endif
  5499. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5500. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5501. #endif
  5502. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5503. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5504. #endif
  5505. #endif
  5506. #if ENABLED(DIGIPOT_I2C)
  5507. // this one uses actual amps in floating point
  5508. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5509. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5510. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5511. #endif
  5512. #if ENABLED(DAC_STEPPER_CURRENT)
  5513. if (code_seen('S')) {
  5514. float dac_percent = code_value_float();
  5515. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5516. }
  5517. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5518. #endif
  5519. }
  5520. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5521. /**
  5522. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5523. */
  5524. inline void gcode_M908() {
  5525. #if HAS_DIGIPOTSS
  5526. stepper.digitalPotWrite(
  5527. code_seen('P') ? code_value_int() : 0,
  5528. code_seen('S') ? code_value_int() : 0
  5529. );
  5530. #endif
  5531. #ifdef DAC_STEPPER_CURRENT
  5532. dac_current_raw(
  5533. code_seen('P') ? code_value_byte() : -1,
  5534. code_seen('S') ? code_value_ushort() : 0
  5535. );
  5536. #endif
  5537. }
  5538. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5539. inline void gcode_M909() { dac_print_values(); }
  5540. inline void gcode_M910() { dac_commit_eeprom(); }
  5541. #endif
  5542. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5543. #if HAS_MICROSTEPS
  5544. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5545. inline void gcode_M350() {
  5546. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5547. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5548. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5549. stepper.microstep_readings();
  5550. }
  5551. /**
  5552. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5553. * S# determines MS1 or MS2, X# sets the pin high/low.
  5554. */
  5555. inline void gcode_M351() {
  5556. if (code_seen('S')) switch (code_value_byte()) {
  5557. case 1:
  5558. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5559. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5560. break;
  5561. case 2:
  5562. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5563. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5564. break;
  5565. }
  5566. stepper.microstep_readings();
  5567. }
  5568. #endif // HAS_MICROSTEPS
  5569. #if ENABLED(MIXING_EXTRUDER)
  5570. /**
  5571. * M163: Set a single mix factor for a mixing extruder
  5572. * This is called "weight" by some systems.
  5573. *
  5574. * S[index] The channel index to set
  5575. * P[float] The mix value
  5576. *
  5577. */
  5578. inline void gcode_M163() {
  5579. int mix_index = code_seen('S') ? code_value_int() : 0;
  5580. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5581. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5582. }
  5583. #if MIXING_VIRTUAL_TOOLS > 1
  5584. /**
  5585. * M164: Store the current mix factors as a virtual tool.
  5586. *
  5587. * S[index] The virtual tool to store
  5588. *
  5589. */
  5590. inline void gcode_M164() {
  5591. int tool_index = code_seen('S') ? code_value_int() : 0;
  5592. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5593. normalize_mix();
  5594. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5595. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5596. }
  5597. }
  5598. #endif
  5599. #if ENABLED(DIRECT_MIXING_IN_G1)
  5600. /**
  5601. * M165: Set multiple mix factors for a mixing extruder.
  5602. * Factors that are left out will be set to 0.
  5603. * All factors together must add up to 1.0.
  5604. *
  5605. * A[factor] Mix factor for extruder stepper 1
  5606. * B[factor] Mix factor for extruder stepper 2
  5607. * C[factor] Mix factor for extruder stepper 3
  5608. * D[factor] Mix factor for extruder stepper 4
  5609. * H[factor] Mix factor for extruder stepper 5
  5610. * I[factor] Mix factor for extruder stepper 6
  5611. *
  5612. */
  5613. inline void gcode_M165() { gcode_get_mix(); }
  5614. #endif
  5615. #endif // MIXING_EXTRUDER
  5616. /**
  5617. * M999: Restart after being stopped
  5618. *
  5619. * Default behaviour is to flush the serial buffer and request
  5620. * a resend to the host starting on the last N line received.
  5621. *
  5622. * Sending "M999 S1" will resume printing without flushing the
  5623. * existing command buffer.
  5624. *
  5625. */
  5626. inline void gcode_M999() {
  5627. Running = true;
  5628. lcd_reset_alert_level();
  5629. if (code_seen('S') && code_value_bool()) return;
  5630. // gcode_LastN = Stopped_gcode_LastN;
  5631. FlushSerialRequestResend();
  5632. }
  5633. #if ENABLED(SWITCHING_EXTRUDER)
  5634. inline void move_extruder_servo(uint8_t e) {
  5635. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5636. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5637. }
  5638. #endif
  5639. inline void invalid_extruder_error(const uint8_t &e) {
  5640. SERIAL_ECHO_START;
  5641. SERIAL_CHAR('T');
  5642. SERIAL_PROTOCOL_F(e, DEC);
  5643. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5644. }
  5645. /**
  5646. * Perform a tool-change, which may result in moving the
  5647. * previous tool out of the way and the new tool into place.
  5648. */
  5649. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5650. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5651. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5652. invalid_extruder_error(tmp_extruder);
  5653. return;
  5654. }
  5655. // T0-Tnnn: Switch virtual tool by changing the mix
  5656. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5657. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5658. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5659. #if HOTENDS > 1
  5660. if (tmp_extruder >= EXTRUDERS) {
  5661. invalid_extruder_error(tmp_extruder);
  5662. return;
  5663. }
  5664. float old_feedrate_mm_s = feedrate_mm_s;
  5665. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5666. if (tmp_extruder != active_extruder) {
  5667. if (!no_move && axis_unhomed_error(true, true, true)) {
  5668. SERIAL_ECHOLNPGM("No move on toolchange");
  5669. no_move = true;
  5670. }
  5671. // Save current position to destination, for use later
  5672. set_destination_to_current();
  5673. #if ENABLED(DUAL_X_CARRIAGE)
  5674. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5675. if (DEBUGGING(LEVELING)) {
  5676. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5677. switch (dual_x_carriage_mode) {
  5678. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5679. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5680. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5681. }
  5682. }
  5683. #endif
  5684. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5685. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5686. ) {
  5687. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5688. if (DEBUGGING(LEVELING)) {
  5689. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5690. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5691. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5692. }
  5693. #endif
  5694. // Park old head: 1) raise 2) move to park position 3) lower
  5695. for (uint8_t i = 0; i < 3; i++)
  5696. planner.buffer_line(
  5697. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5698. current_position[Y_AXIS],
  5699. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5700. current_position[E_AXIS],
  5701. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5702. active_extruder
  5703. );
  5704. stepper.synchronize();
  5705. }
  5706. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5707. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5708. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5709. active_extruder = tmp_extruder;
  5710. // This function resets the max/min values - the current position may be overwritten below.
  5711. set_axis_is_at_home(X_AXIS);
  5712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5713. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5714. #endif
  5715. switch (dual_x_carriage_mode) {
  5716. case DXC_FULL_CONTROL_MODE:
  5717. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5718. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5719. break;
  5720. case DXC_DUPLICATION_MODE:
  5721. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5722. if (active_extruder_parked)
  5723. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5724. else
  5725. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5726. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5727. extruder_duplication_enabled = false;
  5728. break;
  5729. default:
  5730. // record raised toolhead position for use by unpark
  5731. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5732. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5733. active_extruder_parked = true;
  5734. delayed_move_time = 0;
  5735. break;
  5736. }
  5737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5738. if (DEBUGGING(LEVELING)) {
  5739. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5740. DEBUG_POS("New extruder (parked)", current_position);
  5741. }
  5742. #endif
  5743. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5744. #else // !DUAL_X_CARRIAGE
  5745. #if ENABLED(SWITCHING_EXTRUDER)
  5746. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5747. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5748. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5749. // Always raise by some amount
  5750. planner.buffer_line(
  5751. current_position[X_AXIS],
  5752. current_position[Y_AXIS],
  5753. current_position[Z_AXIS] + z_raise,
  5754. current_position[E_AXIS],
  5755. planner.max_feedrate_mm_s[Z_AXIS],
  5756. active_extruder
  5757. );
  5758. stepper.synchronize();
  5759. move_extruder_servo(active_extruder);
  5760. delay(500);
  5761. // Move back down, if needed
  5762. if (z_raise != z_diff) {
  5763. planner.buffer_line(
  5764. current_position[X_AXIS],
  5765. current_position[Y_AXIS],
  5766. current_position[Z_AXIS] + z_diff,
  5767. current_position[E_AXIS],
  5768. planner.max_feedrate_mm_s[Z_AXIS],
  5769. active_extruder
  5770. );
  5771. stepper.synchronize();
  5772. }
  5773. #endif
  5774. /**
  5775. * Set current_position to the position of the new nozzle.
  5776. * Offsets are based on linear distance, so we need to get
  5777. * the resulting position in coordinate space.
  5778. *
  5779. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5780. * - With mesh leveling, update Z for the new position
  5781. * - Otherwise, just use the raw linear distance
  5782. *
  5783. * Software endstops are altered here too. Consider a case where:
  5784. * E0 at X=0 ... E1 at X=10
  5785. * When we switch to E1 now X=10, but E1 can't move left.
  5786. * To express this we apply the change in XY to the software endstops.
  5787. * E1 can move farther right than E0, so the right limit is extended.
  5788. *
  5789. * Note that we don't adjust the Z software endstops. Why not?
  5790. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5791. * because the bed is 1mm lower at the new position. As long as
  5792. * the first nozzle is out of the way, the carriage should be
  5793. * allowed to move 1mm lower. This technically "breaks" the
  5794. * Z software endstop. But this is technically correct (and
  5795. * there is no viable alternative).
  5796. */
  5797. #if ABL_PLANAR
  5798. // Offset extruder, make sure to apply the bed level rotation matrix
  5799. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5800. hotend_offset[Y_AXIS][tmp_extruder],
  5801. 0),
  5802. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5803. hotend_offset[Y_AXIS][active_extruder],
  5804. 0),
  5805. offset_vec = tmp_offset_vec - act_offset_vec;
  5806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5807. if (DEBUGGING(LEVELING)) {
  5808. tmp_offset_vec.debug("tmp_offset_vec");
  5809. act_offset_vec.debug("act_offset_vec");
  5810. offset_vec.debug("offset_vec (BEFORE)");
  5811. }
  5812. #endif
  5813. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5815. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5816. #endif
  5817. // Adjustments to the current position
  5818. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5819. current_position[Z_AXIS] += offset_vec.z;
  5820. #else // !ABL_PLANAR
  5821. float xydiff[2] = {
  5822. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5823. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5824. };
  5825. #if ENABLED(MESH_BED_LEVELING)
  5826. if (mbl.active()) {
  5827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5828. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5829. #endif
  5830. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5831. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5832. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5834. if (DEBUGGING(LEVELING))
  5835. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5836. #endif
  5837. }
  5838. #endif // MESH_BED_LEVELING
  5839. #endif // !HAS_ABL
  5840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5841. if (DEBUGGING(LEVELING)) {
  5842. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5843. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5844. SERIAL_ECHOLNPGM(" }");
  5845. }
  5846. #endif
  5847. // The newly-selected extruder XY is actually at...
  5848. current_position[X_AXIS] += xydiff[X_AXIS];
  5849. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5850. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5851. position_shift[i] += xydiff[i];
  5852. update_software_endstops((AxisEnum)i);
  5853. }
  5854. // Set the new active extruder
  5855. active_extruder = tmp_extruder;
  5856. #endif // !DUAL_X_CARRIAGE
  5857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5858. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5859. #endif
  5860. // Tell the planner the new "current position"
  5861. SYNC_PLAN_POSITION_KINEMATIC();
  5862. // Move to the "old position" (move the extruder into place)
  5863. if (!no_move && IsRunning()) {
  5864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5865. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5866. #endif
  5867. prepare_move_to_destination();
  5868. }
  5869. } // (tmp_extruder != active_extruder)
  5870. stepper.synchronize();
  5871. #if ENABLED(EXT_SOLENOID)
  5872. disable_all_solenoids();
  5873. enable_solenoid_on_active_extruder();
  5874. #endif // EXT_SOLENOID
  5875. feedrate_mm_s = old_feedrate_mm_s;
  5876. #else // HOTENDS <= 1
  5877. // Set the new active extruder
  5878. active_extruder = tmp_extruder;
  5879. UNUSED(fr_mm_s);
  5880. UNUSED(no_move);
  5881. #endif // HOTENDS <= 1
  5882. SERIAL_ECHO_START;
  5883. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5884. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5885. }
  5886. /**
  5887. * T0-T3: Switch tool, usually switching extruders
  5888. *
  5889. * F[units/min] Set the movement feedrate
  5890. * S1 Don't move the tool in XY after change
  5891. */
  5892. inline void gcode_T(uint8_t tmp_extruder) {
  5893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5894. if (DEBUGGING(LEVELING)) {
  5895. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5896. SERIAL_ECHOLNPGM(")");
  5897. DEBUG_POS("BEFORE", current_position);
  5898. }
  5899. #endif
  5900. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5901. tool_change(tmp_extruder);
  5902. #elif HOTENDS > 1
  5903. tool_change(
  5904. tmp_extruder,
  5905. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5906. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5907. );
  5908. #endif
  5909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5910. if (DEBUGGING(LEVELING)) {
  5911. DEBUG_POS("AFTER", current_position);
  5912. SERIAL_ECHOLNPGM("<<< gcode_T");
  5913. }
  5914. #endif
  5915. }
  5916. /**
  5917. * Process a single command and dispatch it to its handler
  5918. * This is called from the main loop()
  5919. */
  5920. void process_next_command() {
  5921. current_command = command_queue[cmd_queue_index_r];
  5922. if (DEBUGGING(ECHO)) {
  5923. SERIAL_ECHO_START;
  5924. SERIAL_ECHOLN(current_command);
  5925. }
  5926. // Sanitize the current command:
  5927. // - Skip leading spaces
  5928. // - Bypass N[-0-9][0-9]*[ ]*
  5929. // - Overwrite * with nul to mark the end
  5930. while (*current_command == ' ') ++current_command;
  5931. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5932. current_command += 2; // skip N[-0-9]
  5933. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5934. while (*current_command == ' ') ++current_command; // skip [ ]*
  5935. }
  5936. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5937. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5938. char *cmd_ptr = current_command;
  5939. // Get the command code, which must be G, M, or T
  5940. char command_code = *cmd_ptr++;
  5941. // Skip spaces to get the numeric part
  5942. while (*cmd_ptr == ' ') cmd_ptr++;
  5943. uint16_t codenum = 0; // define ahead of goto
  5944. // Bail early if there's no code
  5945. bool code_is_good = NUMERIC(*cmd_ptr);
  5946. if (!code_is_good) goto ExitUnknownCommand;
  5947. // Get and skip the code number
  5948. do {
  5949. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5950. cmd_ptr++;
  5951. } while (NUMERIC(*cmd_ptr));
  5952. // Skip all spaces to get to the first argument, or nul
  5953. while (*cmd_ptr == ' ') cmd_ptr++;
  5954. // The command's arguments (if any) start here, for sure!
  5955. current_command_args = cmd_ptr;
  5956. KEEPALIVE_STATE(IN_HANDLER);
  5957. // Handle a known G, M, or T
  5958. switch (command_code) {
  5959. case 'G': switch (codenum) {
  5960. // G0, G1
  5961. case 0:
  5962. case 1:
  5963. #if IS_SCARA
  5964. gcode_G0_G1(codenum == 0);
  5965. #else
  5966. gcode_G0_G1();
  5967. #endif
  5968. break;
  5969. // G2, G3
  5970. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5971. case 2: // G2 - CW ARC
  5972. case 3: // G3 - CCW ARC
  5973. gcode_G2_G3(codenum == 2);
  5974. break;
  5975. #endif
  5976. // G4 Dwell
  5977. case 4:
  5978. gcode_G4();
  5979. break;
  5980. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5981. // G5
  5982. case 5: // G5 - Cubic B_spline
  5983. gcode_G5();
  5984. break;
  5985. #endif // BEZIER_CURVE_SUPPORT
  5986. #if ENABLED(FWRETRACT)
  5987. case 10: // G10: retract
  5988. case 11: // G11: retract_recover
  5989. gcode_G10_G11(codenum == 10);
  5990. break;
  5991. #endif // FWRETRACT
  5992. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5993. case 12:
  5994. gcode_G12(); // G12: Nozzle Clean
  5995. break;
  5996. #endif // NOZZLE_CLEAN_FEATURE
  5997. #if ENABLED(INCH_MODE_SUPPORT)
  5998. case 20: //G20: Inch Mode
  5999. gcode_G20();
  6000. break;
  6001. case 21: //G21: MM Mode
  6002. gcode_G21();
  6003. break;
  6004. #endif // INCH_MODE_SUPPORT
  6005. #if ENABLED(NOZZLE_PARK_FEATURE)
  6006. case 27: // G27: Nozzle Park
  6007. gcode_G27();
  6008. break;
  6009. #endif // NOZZLE_PARK_FEATURE
  6010. case 28: // G28: Home all axes, one at a time
  6011. gcode_G28();
  6012. break;
  6013. #if HAS_ABL || ENABLED(MESH_BED_LEVELING)
  6014. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6015. gcode_G29();
  6016. break;
  6017. #endif // HAS_ABL
  6018. #if HAS_BED_PROBE
  6019. case 30: // G30 Single Z probe
  6020. gcode_G30();
  6021. break;
  6022. #if ENABLED(Z_PROBE_SLED)
  6023. case 31: // G31: dock the sled
  6024. gcode_G31();
  6025. break;
  6026. case 32: // G32: undock the sled
  6027. gcode_G32();
  6028. break;
  6029. #endif // Z_PROBE_SLED
  6030. #endif // HAS_BED_PROBE
  6031. case 90: // G90
  6032. relative_mode = false;
  6033. break;
  6034. case 91: // G91
  6035. relative_mode = true;
  6036. break;
  6037. case 92: // G92
  6038. gcode_G92();
  6039. break;
  6040. }
  6041. break;
  6042. case 'M': switch (codenum) {
  6043. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6044. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6045. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6046. gcode_M0_M1();
  6047. break;
  6048. #endif // ULTIPANEL
  6049. case 17:
  6050. gcode_M17();
  6051. break;
  6052. #if ENABLED(SDSUPPORT)
  6053. case 20: // M20 - list SD card
  6054. gcode_M20(); break;
  6055. case 21: // M21 - init SD card
  6056. gcode_M21(); break;
  6057. case 22: //M22 - release SD card
  6058. gcode_M22(); break;
  6059. case 23: //M23 - Select file
  6060. gcode_M23(); break;
  6061. case 24: //M24 - Start SD print
  6062. gcode_M24(); break;
  6063. case 25: //M25 - Pause SD print
  6064. gcode_M25(); break;
  6065. case 26: //M26 - Set SD index
  6066. gcode_M26(); break;
  6067. case 27: //M27 - Get SD status
  6068. gcode_M27(); break;
  6069. case 28: //M28 - Start SD write
  6070. gcode_M28(); break;
  6071. case 29: //M29 - Stop SD write
  6072. gcode_M29(); break;
  6073. case 30: //M30 <filename> Delete File
  6074. gcode_M30(); break;
  6075. case 32: //M32 - Select file and start SD print
  6076. gcode_M32(); break;
  6077. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6078. case 33: //M33 - Get the long full path to a file or folder
  6079. gcode_M33(); break;
  6080. #endif // LONG_FILENAME_HOST_SUPPORT
  6081. case 928: //M928 - Start SD write
  6082. gcode_M928(); break;
  6083. #endif //SDSUPPORT
  6084. case 31: //M31 take time since the start of the SD print or an M109 command
  6085. gcode_M31();
  6086. break;
  6087. case 42: //M42 -Change pin status via gcode
  6088. gcode_M42();
  6089. break;
  6090. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6091. case 48: // M48 Z probe repeatability
  6092. gcode_M48();
  6093. break;
  6094. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6095. case 75: // Start print timer
  6096. gcode_M75();
  6097. break;
  6098. case 76: // Pause print timer
  6099. gcode_M76();
  6100. break;
  6101. case 77: // Stop print timer
  6102. gcode_M77();
  6103. break;
  6104. #if ENABLED(PRINTCOUNTER)
  6105. case 78: // Show print statistics
  6106. gcode_M78();
  6107. break;
  6108. #endif
  6109. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6110. case 100:
  6111. gcode_M100();
  6112. break;
  6113. #endif
  6114. case 104: // M104
  6115. gcode_M104();
  6116. break;
  6117. case 110: // M110: Set Current Line Number
  6118. gcode_M110();
  6119. break;
  6120. case 111: // M111: Set debug level
  6121. gcode_M111();
  6122. break;
  6123. #if DISABLED(EMERGENCY_PARSER)
  6124. case 108: // M108: Cancel Waiting
  6125. gcode_M108();
  6126. break;
  6127. case 112: // M112: Emergency Stop
  6128. gcode_M112();
  6129. break;
  6130. case 410: // M410 quickstop - Abort all the planned moves.
  6131. gcode_M410();
  6132. break;
  6133. #endif
  6134. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6135. case 113: // M113: Set Host Keepalive interval
  6136. gcode_M113();
  6137. break;
  6138. #endif
  6139. case 140: // M140: Set bed temp
  6140. gcode_M140();
  6141. break;
  6142. case 105: // M105: Read current temperature
  6143. gcode_M105();
  6144. KEEPALIVE_STATE(NOT_BUSY);
  6145. return; // "ok" already printed
  6146. case 109: // M109: Wait for temperature
  6147. gcode_M109();
  6148. break;
  6149. #if HAS_TEMP_BED
  6150. case 190: // M190: Wait for bed heater to reach target
  6151. gcode_M190();
  6152. break;
  6153. #endif // HAS_TEMP_BED
  6154. #if FAN_COUNT > 0
  6155. case 106: // M106: Fan On
  6156. gcode_M106();
  6157. break;
  6158. case 107: // M107: Fan Off
  6159. gcode_M107();
  6160. break;
  6161. #endif // FAN_COUNT > 0
  6162. #if ENABLED(BARICUDA)
  6163. // PWM for HEATER_1_PIN
  6164. #if HAS_HEATER_1
  6165. case 126: // M126: valve open
  6166. gcode_M126();
  6167. break;
  6168. case 127: // M127: valve closed
  6169. gcode_M127();
  6170. break;
  6171. #endif // HAS_HEATER_1
  6172. // PWM for HEATER_2_PIN
  6173. #if HAS_HEATER_2
  6174. case 128: // M128: valve open
  6175. gcode_M128();
  6176. break;
  6177. case 129: // M129: valve closed
  6178. gcode_M129();
  6179. break;
  6180. #endif // HAS_HEATER_2
  6181. #endif // BARICUDA
  6182. #if HAS_POWER_SWITCH
  6183. case 80: // M80: Turn on Power Supply
  6184. gcode_M80();
  6185. break;
  6186. #endif // HAS_POWER_SWITCH
  6187. case 81: // M81: Turn off Power, including Power Supply, if possible
  6188. gcode_M81();
  6189. break;
  6190. case 82:
  6191. gcode_M82();
  6192. break;
  6193. case 83:
  6194. gcode_M83();
  6195. break;
  6196. case 18: // (for compatibility)
  6197. case 84: // M84
  6198. gcode_M18_M84();
  6199. break;
  6200. case 85: // M85
  6201. gcode_M85();
  6202. break;
  6203. case 92: // M92: Set the steps-per-unit for one or more axes
  6204. gcode_M92();
  6205. break;
  6206. case 115: // M115: Report capabilities
  6207. gcode_M115();
  6208. break;
  6209. case 117: // M117: Set LCD message text, if possible
  6210. gcode_M117();
  6211. break;
  6212. case 114: // M114: Report current position
  6213. gcode_M114();
  6214. break;
  6215. case 120: // M120: Enable endstops
  6216. gcode_M120();
  6217. break;
  6218. case 121: // M121: Disable endstops
  6219. gcode_M121();
  6220. break;
  6221. case 119: // M119: Report endstop states
  6222. gcode_M119();
  6223. break;
  6224. #if ENABLED(ULTIPANEL)
  6225. case 145: // M145: Set material heatup parameters
  6226. gcode_M145();
  6227. break;
  6228. #endif
  6229. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6230. case 149:
  6231. gcode_M149();
  6232. break;
  6233. #endif
  6234. #if ENABLED(BLINKM)
  6235. case 150: // M150
  6236. gcode_M150();
  6237. break;
  6238. #endif //BLINKM
  6239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6240. case 155:
  6241. gcode_M155();
  6242. break;
  6243. case 156:
  6244. gcode_M156();
  6245. break;
  6246. #endif //EXPERIMENTAL_I2CBUS
  6247. #if ENABLED(MIXING_EXTRUDER)
  6248. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6249. gcode_M163();
  6250. break;
  6251. #if MIXING_VIRTUAL_TOOLS > 1
  6252. case 164: // M164 S<int> save current mix as a virtual extruder
  6253. gcode_M164();
  6254. break;
  6255. #endif
  6256. #if ENABLED(DIRECT_MIXING_IN_G1)
  6257. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6258. gcode_M165();
  6259. break;
  6260. #endif
  6261. #endif
  6262. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6263. gcode_M200();
  6264. break;
  6265. case 201: // M201
  6266. gcode_M201();
  6267. break;
  6268. #if 0 // Not used for Sprinter/grbl gen6
  6269. case 202: // M202
  6270. gcode_M202();
  6271. break;
  6272. #endif
  6273. case 203: // M203 max feedrate units/sec
  6274. gcode_M203();
  6275. break;
  6276. case 204: // M204 acclereration S normal moves T filmanent only moves
  6277. gcode_M204();
  6278. break;
  6279. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6280. gcode_M205();
  6281. break;
  6282. case 206: // M206 additional homing offset
  6283. gcode_M206();
  6284. break;
  6285. #if ENABLED(DELTA)
  6286. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6287. gcode_M665();
  6288. break;
  6289. #endif
  6290. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6291. case 666: // M666 set delta / dual endstop adjustment
  6292. gcode_M666();
  6293. break;
  6294. #endif
  6295. #if ENABLED(FWRETRACT)
  6296. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6297. gcode_M207();
  6298. break;
  6299. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6300. gcode_M208();
  6301. break;
  6302. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6303. gcode_M209();
  6304. break;
  6305. #endif // FWRETRACT
  6306. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6307. gcode_M211();
  6308. break;
  6309. #if HOTENDS > 1
  6310. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6311. gcode_M218();
  6312. break;
  6313. #endif
  6314. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6315. gcode_M220();
  6316. break;
  6317. case 221: // M221 - Set Flow Percentage: S<percent>
  6318. gcode_M221();
  6319. break;
  6320. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6321. gcode_M226();
  6322. break;
  6323. #if HAS_SERVOS
  6324. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6325. gcode_M280();
  6326. break;
  6327. #endif // HAS_SERVOS
  6328. #if HAS_BUZZER
  6329. case 300: // M300 - Play beep tone
  6330. gcode_M300();
  6331. break;
  6332. #endif // HAS_BUZZER
  6333. #if ENABLED(PIDTEMP)
  6334. case 301: // M301
  6335. gcode_M301();
  6336. break;
  6337. #endif // PIDTEMP
  6338. #if ENABLED(PIDTEMPBED)
  6339. case 304: // M304
  6340. gcode_M304();
  6341. break;
  6342. #endif // PIDTEMPBED
  6343. #if defined(CHDK) || HAS_PHOTOGRAPH
  6344. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6345. gcode_M240();
  6346. break;
  6347. #endif // CHDK || PHOTOGRAPH_PIN
  6348. #if HAS_LCD_CONTRAST
  6349. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6350. gcode_M250();
  6351. break;
  6352. #endif // HAS_LCD_CONTRAST
  6353. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6354. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6355. gcode_M302();
  6356. break;
  6357. #endif // PREVENT_COLD_EXTRUSION
  6358. case 303: // M303 PID autotune
  6359. gcode_M303();
  6360. break;
  6361. #if ENABLED(MORGAN_SCARA)
  6362. case 360: // M360 SCARA Theta pos1
  6363. if (gcode_M360()) return;
  6364. break;
  6365. case 361: // M361 SCARA Theta pos2
  6366. if (gcode_M361()) return;
  6367. break;
  6368. case 362: // M362 SCARA Psi pos1
  6369. if (gcode_M362()) return;
  6370. break;
  6371. case 363: // M363 SCARA Psi pos2
  6372. if (gcode_M363()) return;
  6373. break;
  6374. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6375. if (gcode_M364()) return;
  6376. break;
  6377. #endif // SCARA
  6378. case 400: // M400 finish all moves
  6379. gcode_M400();
  6380. break;
  6381. #if HAS_BED_PROBE
  6382. case 401:
  6383. gcode_M401();
  6384. break;
  6385. case 402:
  6386. gcode_M402();
  6387. break;
  6388. #endif // HAS_BED_PROBE
  6389. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6390. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6391. gcode_M404();
  6392. break;
  6393. case 405: //M405 Turn on filament sensor for control
  6394. gcode_M405();
  6395. break;
  6396. case 406: //M406 Turn off filament sensor for control
  6397. gcode_M406();
  6398. break;
  6399. case 407: //M407 Display measured filament diameter
  6400. gcode_M407();
  6401. break;
  6402. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6403. #if ENABLED(MESH_BED_LEVELING)
  6404. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6405. gcode_M420();
  6406. break;
  6407. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6408. gcode_M421();
  6409. break;
  6410. #endif
  6411. case 428: // M428 Apply current_position to home_offset
  6412. gcode_M428();
  6413. break;
  6414. case 500: // M500 Store settings in EEPROM
  6415. gcode_M500();
  6416. break;
  6417. case 501: // M501 Read settings from EEPROM
  6418. gcode_M501();
  6419. break;
  6420. case 502: // M502 Revert to default settings
  6421. gcode_M502();
  6422. break;
  6423. case 503: // M503 print settings currently in memory
  6424. gcode_M503();
  6425. break;
  6426. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6427. case 540:
  6428. gcode_M540();
  6429. break;
  6430. #endif
  6431. #if HAS_BED_PROBE
  6432. case 851: // Set Z Probe Z Offset
  6433. gcode_M851();
  6434. break;
  6435. #endif // HAS_BED_PROBE
  6436. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6437. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6438. gcode_M600();
  6439. break;
  6440. #endif // FILAMENT_CHANGE_FEATURE
  6441. #if ENABLED(DUAL_X_CARRIAGE)
  6442. case 605:
  6443. gcode_M605();
  6444. break;
  6445. #endif // DUAL_X_CARRIAGE
  6446. #if ENABLED(LIN_ADVANCE)
  6447. case 905: // M905 Set advance factor.
  6448. gcode_M905();
  6449. break;
  6450. #endif
  6451. case 907: // M907 Set digital trimpot motor current using axis codes.
  6452. gcode_M907();
  6453. break;
  6454. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6455. case 908: // M908 Control digital trimpot directly.
  6456. gcode_M908();
  6457. break;
  6458. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6459. case 909: // M909 Print digipot/DAC current value
  6460. gcode_M909();
  6461. break;
  6462. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6463. gcode_M910();
  6464. break;
  6465. #endif
  6466. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6467. #if HAS_MICROSTEPS
  6468. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6469. gcode_M350();
  6470. break;
  6471. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6472. gcode_M351();
  6473. break;
  6474. #endif // HAS_MICROSTEPS
  6475. case 999: // M999: Restart after being Stopped
  6476. gcode_M999();
  6477. break;
  6478. }
  6479. break;
  6480. case 'T':
  6481. gcode_T(codenum);
  6482. break;
  6483. default: code_is_good = false;
  6484. }
  6485. KEEPALIVE_STATE(NOT_BUSY);
  6486. ExitUnknownCommand:
  6487. // Still unknown command? Throw an error
  6488. if (!code_is_good) unknown_command_error();
  6489. ok_to_send();
  6490. }
  6491. /**
  6492. * Send a "Resend: nnn" message to the host to
  6493. * indicate that a command needs to be re-sent.
  6494. */
  6495. void FlushSerialRequestResend() {
  6496. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6497. MYSERIAL.flush();
  6498. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6499. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6500. ok_to_send();
  6501. }
  6502. /**
  6503. * Send an "ok" message to the host, indicating
  6504. * that a command was successfully processed.
  6505. *
  6506. * If ADVANCED_OK is enabled also include:
  6507. * N<int> Line number of the command, if any
  6508. * P<int> Planner space remaining
  6509. * B<int> Block queue space remaining
  6510. */
  6511. void ok_to_send() {
  6512. refresh_cmd_timeout();
  6513. if (!send_ok[cmd_queue_index_r]) return;
  6514. SERIAL_PROTOCOLPGM(MSG_OK);
  6515. #if ENABLED(ADVANCED_OK)
  6516. char* p = command_queue[cmd_queue_index_r];
  6517. if (*p == 'N') {
  6518. SERIAL_PROTOCOL(' ');
  6519. SERIAL_ECHO(*p++);
  6520. while (NUMERIC_SIGNED(*p))
  6521. SERIAL_ECHO(*p++);
  6522. }
  6523. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6524. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6525. #endif
  6526. SERIAL_EOL;
  6527. }
  6528. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6529. /**
  6530. * Constrain the given coordinates to the software endstops.
  6531. */
  6532. void clamp_to_software_endstops(float target[XYZ]) {
  6533. #if ENABLED(min_software_endstops)
  6534. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6535. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6536. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6537. #endif
  6538. #if ENABLED(max_software_endstops)
  6539. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6540. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6541. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6542. #endif
  6543. }
  6544. #endif
  6545. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6546. // Get the Z adjustment for non-linear bed leveling
  6547. float bilinear_z_offset(float cartesian[XYZ]) {
  6548. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6549. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6550. float hx2 = half_x - 0.001, hx1 = -hx2,
  6551. hy2 = half_y - 0.001, hy1 = -hy2,
  6552. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / bilinear_grid_spacing[X_AXIS])),
  6553. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / bilinear_grid_spacing[Y_AXIS]));
  6554. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6555. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6556. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6557. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6558. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6559. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6560. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6561. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6562. /*
  6563. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6564. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6565. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6566. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6567. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6568. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6569. SERIAL_ECHOPAIR(" z1=", z1);
  6570. SERIAL_ECHOPAIR(" z2=", z2);
  6571. SERIAL_ECHOPAIR(" z3=", z3);
  6572. SERIAL_ECHOPAIR(" z4=", z4);
  6573. SERIAL_ECHOPAIR(" left=", left);
  6574. SERIAL_ECHOPAIR(" right=", right);
  6575. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6576. //*/
  6577. return (1 - ratio_x) * left + ratio_x * right;
  6578. }
  6579. #endif // AUTO_BED_LEVELING_BILINEAR
  6580. #if ENABLED(DELTA)
  6581. /**
  6582. * Recalculate factors used for delta kinematics whenever
  6583. * settings have been changed (e.g., by M665).
  6584. */
  6585. void recalc_delta_settings(float radius, float diagonal_rod) {
  6586. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6587. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6588. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6589. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6590. delta_tower3_x = 0.0; // back middle tower
  6591. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6592. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6593. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6594. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6595. }
  6596. #if ENABLED(DELTA_FAST_SQRT)
  6597. /**
  6598. * Fast inverse sqrt from Quake III Arena
  6599. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6600. */
  6601. float Q_rsqrt(float number) {
  6602. long i;
  6603. float x2, y;
  6604. const float threehalfs = 1.5f;
  6605. x2 = number * 0.5f;
  6606. y = number;
  6607. i = * ( long * ) &y; // evil floating point bit level hacking
  6608. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6609. y = * ( float * ) &i;
  6610. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6611. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6612. return y;
  6613. }
  6614. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6615. #else
  6616. #define _SQRT(n) sqrt(n)
  6617. #endif
  6618. /**
  6619. * Delta Inverse Kinematics
  6620. *
  6621. * Calculate the tower positions for a given logical
  6622. * position, storing the result in the delta[] array.
  6623. *
  6624. * This is an expensive calculation, requiring 3 square
  6625. * roots per segmented linear move, and strains the limits
  6626. * of a Mega2560 with a Graphical Display.
  6627. *
  6628. * Suggested optimizations include:
  6629. *
  6630. * - Disable the home_offset (M206) and/or position_shift (G92)
  6631. * features to remove up to 12 float additions.
  6632. *
  6633. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6634. * (see above)
  6635. */
  6636. // Macro to obtain the Z position of an individual tower
  6637. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6638. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6639. delta_tower##T##_x - raw[X_AXIS], \
  6640. delta_tower##T##_y - raw[Y_AXIS] \
  6641. ) \
  6642. )
  6643. #define DELTA_RAW_IK() do { \
  6644. delta[A_AXIS] = DELTA_Z(1); \
  6645. delta[B_AXIS] = DELTA_Z(2); \
  6646. delta[C_AXIS] = DELTA_Z(3); \
  6647. } while(0)
  6648. #define DELTA_LOGICAL_IK() do { \
  6649. const float raw[XYZ] = { \
  6650. RAW_X_POSITION(logical[X_AXIS]), \
  6651. RAW_Y_POSITION(logical[Y_AXIS]), \
  6652. RAW_Z_POSITION(logical[Z_AXIS]) \
  6653. }; \
  6654. DELTA_RAW_IK(); \
  6655. } while(0)
  6656. #define DELTA_DEBUG() do { \
  6657. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6658. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6659. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6660. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6661. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6662. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6663. } while(0)
  6664. void inverse_kinematics(const float logical[XYZ]) {
  6665. DELTA_LOGICAL_IK();
  6666. // DELTA_DEBUG();
  6667. }
  6668. /**
  6669. * Calculate the highest Z position where the
  6670. * effector has the full range of XY motion.
  6671. */
  6672. float delta_safe_distance_from_top() {
  6673. float cartesian[XYZ] = {
  6674. LOGICAL_X_POSITION(0),
  6675. LOGICAL_Y_POSITION(0),
  6676. LOGICAL_Z_POSITION(0)
  6677. };
  6678. inverse_kinematics(cartesian);
  6679. float distance = delta[A_AXIS];
  6680. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6681. inverse_kinematics(cartesian);
  6682. return abs(distance - delta[A_AXIS]);
  6683. }
  6684. /**
  6685. * Delta Forward Kinematics
  6686. *
  6687. * See the Wikipedia article "Trilateration"
  6688. * https://en.wikipedia.org/wiki/Trilateration
  6689. *
  6690. * Establish a new coordinate system in the plane of the
  6691. * three carriage points. This system has its origin at
  6692. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6693. * plane with a Z component of zero.
  6694. * We will define unit vectors in this coordinate system
  6695. * in our original coordinate system. Then when we calculate
  6696. * the Xnew, Ynew and Znew values, we can translate back into
  6697. * the original system by moving along those unit vectors
  6698. * by the corresponding values.
  6699. *
  6700. * Variable names matched to Marlin, c-version, and avoid the
  6701. * use of any vector library.
  6702. *
  6703. * by Andreas Hardtung 2016-06-07
  6704. * based on a Java function from "Delta Robot Kinematics V3"
  6705. * by Steve Graves
  6706. *
  6707. * The result is stored in the cartes[] array.
  6708. */
  6709. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6710. // Create a vector in old coordinates along x axis of new coordinate
  6711. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6712. // Get the Magnitude of vector.
  6713. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6714. // Create unit vector by dividing by magnitude.
  6715. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6716. // Get the vector from the origin of the new system to the third point.
  6717. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6718. // Use the dot product to find the component of this vector on the X axis.
  6719. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6720. // Create a vector along the x axis that represents the x component of p13.
  6721. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6722. // Subtract the X component from the original vector leaving only Y. We use the
  6723. // variable that will be the unit vector after we scale it.
  6724. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6725. // The magnitude of Y component
  6726. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6727. // Convert to a unit vector
  6728. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6729. // The cross product of the unit x and y is the unit z
  6730. // float[] ez = vectorCrossProd(ex, ey);
  6731. float ez[3] = {
  6732. ex[1] * ey[2] - ex[2] * ey[1],
  6733. ex[2] * ey[0] - ex[0] * ey[2],
  6734. ex[0] * ey[1] - ex[1] * ey[0]
  6735. };
  6736. // We now have the d, i and j values defined in Wikipedia.
  6737. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6738. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6739. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6740. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6741. // Start from the origin of the old coordinates and add vectors in the
  6742. // old coords that represent the Xnew, Ynew and Znew to find the point
  6743. // in the old system.
  6744. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6745. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6746. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6747. };
  6748. void forward_kinematics_DELTA(float point[ABC]) {
  6749. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6750. }
  6751. #endif // DELTA
  6752. /**
  6753. * Get the stepper positions in the cartes[] array.
  6754. * Forward kinematics are applied for DELTA and SCARA.
  6755. *
  6756. * The result is in the current coordinate space with
  6757. * leveling applied. The coordinates need to be run through
  6758. * unapply_leveling to obtain the "ideal" coordinates
  6759. * suitable for current_position, etc.
  6760. */
  6761. void get_cartesian_from_steppers() {
  6762. #if ENABLED(DELTA)
  6763. forward_kinematics_DELTA(
  6764. stepper.get_axis_position_mm(A_AXIS),
  6765. stepper.get_axis_position_mm(B_AXIS),
  6766. stepper.get_axis_position_mm(C_AXIS)
  6767. );
  6768. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6769. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6770. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6771. #elif IS_SCARA
  6772. forward_kinematics_SCARA(
  6773. stepper.get_axis_position_degrees(A_AXIS),
  6774. stepper.get_axis_position_degrees(B_AXIS)
  6775. );
  6776. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6777. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6778. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6779. #else
  6780. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6781. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6782. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6783. #endif
  6784. }
  6785. /**
  6786. * Set the current_position for an axis based on
  6787. * the stepper positions, removing any leveling that
  6788. * may have been applied.
  6789. */
  6790. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6791. get_cartesian_from_steppers();
  6792. #if PLANNER_LEVELING
  6793. planner.unapply_leveling(cartes);
  6794. #endif
  6795. if (axis == ALL_AXES)
  6796. memcpy(current_position, cartes, sizeof(cartes));
  6797. else
  6798. current_position[axis] = cartes[axis];
  6799. }
  6800. #if ENABLED(MESH_BED_LEVELING)
  6801. /**
  6802. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6803. * splitting the move where it crosses mesh borders.
  6804. */
  6805. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6806. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6807. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6808. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6809. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6810. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6811. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6812. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6813. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6814. if (cx1 == cx2 && cy1 == cy2) {
  6815. // Start and end on same mesh square
  6816. line_to_destination(fr_mm_s);
  6817. set_current_to_destination();
  6818. return;
  6819. }
  6820. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6821. float normalized_dist, end[NUM_AXIS];
  6822. // Split at the left/front border of the right/top square
  6823. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6824. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6825. memcpy(end, destination, sizeof(end));
  6826. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6827. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6828. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6829. CBI(x_splits, gcx);
  6830. }
  6831. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6832. memcpy(end, destination, sizeof(end));
  6833. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6834. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6835. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6836. CBI(y_splits, gcy);
  6837. }
  6838. else {
  6839. // Already split on a border
  6840. line_to_destination(fr_mm_s);
  6841. set_current_to_destination();
  6842. return;
  6843. }
  6844. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6845. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6846. // Do the split and look for more borders
  6847. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6848. // Restore destination from stack
  6849. memcpy(destination, end, sizeof(end));
  6850. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6851. }
  6852. #endif // MESH_BED_LEVELING
  6853. #if IS_KINEMATIC
  6854. /**
  6855. * Prepare a linear move in a DELTA or SCARA setup.
  6856. *
  6857. * This calls planner.buffer_line several times, adding
  6858. * small incremental moves for DELTA or SCARA.
  6859. */
  6860. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  6861. // Get the top feedrate of the move in the XY plane
  6862. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6863. // If the move is only in Z/E don't split up the move
  6864. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  6865. inverse_kinematics(ltarget);
  6866. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  6867. return true;
  6868. }
  6869. // Get the cartesian distances moved in XYZE
  6870. float difference[NUM_AXIS];
  6871. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  6872. // Get the linear distance in XYZ
  6873. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6874. // If the move is very short, check the E move distance
  6875. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6876. // No E move either? Game over.
  6877. if (UNEAR_ZERO(cartesian_mm)) return false;
  6878. // Minimum number of seconds to move the given distance
  6879. float seconds = cartesian_mm / _feedrate_mm_s;
  6880. // The number of segments-per-second times the duration
  6881. // gives the number of segments
  6882. uint16_t segments = delta_segments_per_second * seconds;
  6883. // For SCARA minimum segment size is 0.5mm
  6884. #if IS_SCARA
  6885. NOMORE(segments, cartesian_mm * 2);
  6886. #endif
  6887. // At least one segment is required
  6888. NOLESS(segments, 1);
  6889. // The approximate length of each segment
  6890. float segment_distance[XYZE] = {
  6891. difference[X_AXIS] / segments,
  6892. difference[Y_AXIS] / segments,
  6893. difference[Z_AXIS] / segments,
  6894. difference[E_AXIS] / segments
  6895. };
  6896. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6897. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6898. // SERIAL_ECHOLNPAIR(" segments=", segments);
  6899. // Drop one segment so the last move is to the exact target.
  6900. // If there's only 1 segment, loops will be skipped entirely.
  6901. --segments;
  6902. // Using "raw" coordinates saves 6 float subtractions
  6903. // per segment, saving valuable CPU cycles
  6904. #if ENABLED(USE_RAW_KINEMATICS)
  6905. // Get the raw current position as starting point
  6906. float raw[XYZE] = {
  6907. RAW_CURRENT_POSITION(X_AXIS),
  6908. RAW_CURRENT_POSITION(Y_AXIS),
  6909. RAW_CURRENT_POSITION(Z_AXIS),
  6910. current_position[E_AXIS]
  6911. };
  6912. #define DELTA_VAR raw
  6913. // Delta can inline its kinematics
  6914. #if ENABLED(DELTA)
  6915. #define DELTA_IK() DELTA_RAW_IK()
  6916. #else
  6917. #define DELTA_IK() inverse_kinematics(raw)
  6918. #endif
  6919. #else
  6920. // Get the logical current position as starting point
  6921. float logical[XYZE];
  6922. memcpy(logical, current_position, sizeof(logical));
  6923. #define DELTA_VAR logical
  6924. // Delta can inline its kinematics
  6925. #if ENABLED(DELTA)
  6926. #define DELTA_IK() DELTA_LOGICAL_IK()
  6927. #else
  6928. #define DELTA_IK() inverse_kinematics(logical)
  6929. #endif
  6930. #endif
  6931. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  6932. // Only interpolate XYZ. Advance E normally.
  6933. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  6934. // Get the starting delta if interpolation is possible
  6935. if (segments >= 2) DELTA_IK();
  6936. // Loop using decrement
  6937. for (uint16_t s = segments + 1; --s;) {
  6938. // Are there at least 2 moves left?
  6939. if (s >= 2) {
  6940. // Save the previous delta for interpolation
  6941. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  6942. // Get the delta 2 segments ahead (rather than the next)
  6943. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  6944. // Advance E normally
  6945. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6946. // Get the exact delta for the move after this
  6947. DELTA_IK();
  6948. // Move to the interpolated delta position first
  6949. planner.buffer_line(
  6950. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  6951. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  6952. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  6953. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  6954. );
  6955. // Advance E once more for the next move
  6956. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6957. // Do an extra decrement of the loop
  6958. --s;
  6959. }
  6960. else {
  6961. // Get the last segment delta. (Used when segments is odd)
  6962. DELTA_NEXT(segment_distance[i]);
  6963. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6964. DELTA_IK();
  6965. }
  6966. // Move to the non-interpolated position
  6967. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  6968. }
  6969. #else
  6970. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  6971. // For non-interpolated delta calculate every segment
  6972. for (uint16_t s = segments + 1; --s;) {
  6973. DELTA_NEXT(segment_distance[i]);
  6974. DELTA_IK();
  6975. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  6976. }
  6977. #endif
  6978. // Since segment_distance is only approximate,
  6979. // the final move must be to the exact destination.
  6980. inverse_kinematics(ltarget);
  6981. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  6982. return true;
  6983. }
  6984. #else
  6985. /**
  6986. * Prepare a linear move in a Cartesian setup.
  6987. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6988. */
  6989. inline bool prepare_move_to_destination_cartesian() {
  6990. // Do not use feedrate_percentage for E or Z only moves
  6991. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6992. line_to_destination();
  6993. }
  6994. else {
  6995. #if ENABLED(MESH_BED_LEVELING)
  6996. if (mbl.active()) {
  6997. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6998. return false;
  6999. }
  7000. else
  7001. #endif
  7002. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7003. }
  7004. return true;
  7005. }
  7006. #endif // !IS_KINEMATIC
  7007. #if ENABLED(DUAL_X_CARRIAGE)
  7008. /**
  7009. * Prepare a linear move in a dual X axis setup
  7010. */
  7011. inline bool prepare_move_to_destination_dualx() {
  7012. if (active_extruder_parked) {
  7013. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7014. // move duplicate extruder into correct duplication position.
  7015. planner.set_position_mm(
  7016. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7017. current_position[Y_AXIS],
  7018. current_position[Z_AXIS],
  7019. current_position[E_AXIS]
  7020. );
  7021. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7022. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7023. SYNC_PLAN_POSITION_KINEMATIC();
  7024. stepper.synchronize();
  7025. extruder_duplication_enabled = true;
  7026. active_extruder_parked = false;
  7027. }
  7028. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7029. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7030. // This is a travel move (with no extrusion)
  7031. // Skip it, but keep track of the current position
  7032. // (so it can be used as the start of the next non-travel move)
  7033. if (delayed_move_time != 0xFFFFFFFFUL) {
  7034. set_current_to_destination();
  7035. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7036. delayed_move_time = millis();
  7037. return false;
  7038. }
  7039. }
  7040. delayed_move_time = 0;
  7041. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7042. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7043. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7044. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7045. active_extruder_parked = false;
  7046. }
  7047. }
  7048. return true;
  7049. }
  7050. #endif // DUAL_X_CARRIAGE
  7051. /**
  7052. * Prepare a single move and get ready for the next one
  7053. *
  7054. * This may result in several calls to planner.buffer_line to
  7055. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7056. */
  7057. void prepare_move_to_destination() {
  7058. clamp_to_software_endstops(destination);
  7059. refresh_cmd_timeout();
  7060. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7061. if (!DEBUGGING(DRYRUN)) {
  7062. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7063. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7064. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7065. SERIAL_ECHO_START;
  7066. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7067. }
  7068. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7069. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7070. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7071. SERIAL_ECHO_START;
  7072. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7073. }
  7074. #endif
  7075. }
  7076. }
  7077. #endif
  7078. #if IS_KINEMATIC
  7079. if (!prepare_kinematic_move_to(destination)) return;
  7080. #else
  7081. #if ENABLED(DUAL_X_CARRIAGE)
  7082. if (!prepare_move_to_destination_dualx()) return;
  7083. #endif
  7084. if (!prepare_move_to_destination_cartesian()) return;
  7085. #endif
  7086. set_current_to_destination();
  7087. }
  7088. #if ENABLED(ARC_SUPPORT)
  7089. /**
  7090. * Plan an arc in 2 dimensions
  7091. *
  7092. * The arc is approximated by generating many small linear segments.
  7093. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7094. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7095. * larger segments will tend to be more efficient. Your slicer should have
  7096. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7097. */
  7098. void plan_arc(
  7099. float logical[NUM_AXIS], // Destination position
  7100. float* offset, // Center of rotation relative to current_position
  7101. uint8_t clockwise // Clockwise?
  7102. ) {
  7103. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7104. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7105. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7106. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7107. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7108. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7109. r_Y = -offset[Y_AXIS],
  7110. rt_X = logical[X_AXIS] - center_X,
  7111. rt_Y = logical[Y_AXIS] - center_Y;
  7112. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7113. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7114. if (angular_travel < 0) angular_travel += RADIANS(360);
  7115. if (clockwise) angular_travel -= RADIANS(360);
  7116. // Make a circle if the angular rotation is 0
  7117. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7118. angular_travel += RADIANS(360);
  7119. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7120. if (mm_of_travel < 0.001) return;
  7121. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7122. if (segments == 0) segments = 1;
  7123. float theta_per_segment = angular_travel / segments;
  7124. float linear_per_segment = linear_travel / segments;
  7125. float extruder_per_segment = extruder_travel / segments;
  7126. /**
  7127. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7128. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7129. * r_T = [cos(phi) -sin(phi);
  7130. * sin(phi) cos(phi] * r ;
  7131. *
  7132. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7133. * defined from the circle center to the initial position. Each line segment is formed by successive
  7134. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7135. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7136. * all double numbers are single precision on the Arduino. (True double precision will not have
  7137. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7138. * tool precision in some cases. Therefore, arc path correction is implemented.
  7139. *
  7140. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7141. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7142. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7143. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7144. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7145. * issue for CNC machines with the single precision Arduino calculations.
  7146. *
  7147. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7148. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7149. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7150. * This is important when there are successive arc motions.
  7151. */
  7152. // Vector rotation matrix values
  7153. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7154. float sin_T = theta_per_segment;
  7155. float arc_target[NUM_AXIS];
  7156. float sin_Ti, cos_Ti, r_new_Y;
  7157. uint16_t i;
  7158. int8_t count = 0;
  7159. // Initialize the linear axis
  7160. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7161. // Initialize the extruder axis
  7162. arc_target[E_AXIS] = current_position[E_AXIS];
  7163. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7164. millis_t next_idle_ms = millis() + 200UL;
  7165. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7166. thermalManager.manage_heater();
  7167. millis_t now = millis();
  7168. if (ELAPSED(now, next_idle_ms)) {
  7169. next_idle_ms = now + 200UL;
  7170. idle();
  7171. }
  7172. if (++count < N_ARC_CORRECTION) {
  7173. // Apply vector rotation matrix to previous r_X / 1
  7174. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7175. r_X = r_X * cos_T - r_Y * sin_T;
  7176. r_Y = r_new_Y;
  7177. }
  7178. else {
  7179. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7180. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7181. // To reduce stuttering, the sin and cos could be computed at different times.
  7182. // For now, compute both at the same time.
  7183. cos_Ti = cos(i * theta_per_segment);
  7184. sin_Ti = sin(i * theta_per_segment);
  7185. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7186. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7187. count = 0;
  7188. }
  7189. // Update arc_target location
  7190. arc_target[X_AXIS] = center_X + r_X;
  7191. arc_target[Y_AXIS] = center_Y + r_Y;
  7192. arc_target[Z_AXIS] += linear_per_segment;
  7193. arc_target[E_AXIS] += extruder_per_segment;
  7194. clamp_to_software_endstops(arc_target);
  7195. #if IS_KINEMATIC
  7196. inverse_kinematics(arc_target);
  7197. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7198. #else
  7199. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7200. #endif
  7201. }
  7202. // Ensure last segment arrives at target location.
  7203. #if IS_KINEMATIC
  7204. inverse_kinematics(logical);
  7205. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7206. #else
  7207. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7208. #endif
  7209. // As far as the parser is concerned, the position is now == target. In reality the
  7210. // motion control system might still be processing the action and the real tool position
  7211. // in any intermediate location.
  7212. set_current_to_destination();
  7213. }
  7214. #endif
  7215. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7216. void plan_cubic_move(const float offset[4]) {
  7217. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7218. // As far as the parser is concerned, the position is now == destination. In reality the
  7219. // motion control system might still be processing the action and the real tool position
  7220. // in any intermediate location.
  7221. set_current_to_destination();
  7222. }
  7223. #endif // BEZIER_CURVE_SUPPORT
  7224. #if HAS_CONTROLLERFAN
  7225. void controllerFan() {
  7226. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7227. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7228. millis_t ms = millis();
  7229. if (ELAPSED(ms, nextMotorCheck)) {
  7230. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7231. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7232. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7233. #if E_STEPPERS > 1
  7234. || E1_ENABLE_READ == E_ENABLE_ON
  7235. #if HAS_X2_ENABLE
  7236. || X2_ENABLE_READ == X_ENABLE_ON
  7237. #endif
  7238. #if E_STEPPERS > 2
  7239. || E2_ENABLE_READ == E_ENABLE_ON
  7240. #if E_STEPPERS > 3
  7241. || E3_ENABLE_READ == E_ENABLE_ON
  7242. #endif
  7243. #endif
  7244. #endif
  7245. ) {
  7246. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7247. }
  7248. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7249. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7250. // allows digital or PWM fan output to be used (see M42 handling)
  7251. digitalWrite(CONTROLLERFAN_PIN, speed);
  7252. analogWrite(CONTROLLERFAN_PIN, speed);
  7253. }
  7254. }
  7255. #endif // HAS_CONTROLLERFAN
  7256. #if ENABLED(MORGAN_SCARA)
  7257. /**
  7258. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7259. * Maths and first version by QHARLEY.
  7260. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7261. */
  7262. void forward_kinematics_SCARA(const float &a, const float &b) {
  7263. float a_sin = sin(RADIANS(a)) * L1,
  7264. a_cos = cos(RADIANS(a)) * L1,
  7265. b_sin = sin(RADIANS(b)) * L2,
  7266. b_cos = cos(RADIANS(b)) * L2;
  7267. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7268. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7269. /*
  7270. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7271. SERIAL_ECHOPAIR(" b=", b);
  7272. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7273. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7274. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7275. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7276. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7277. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7278. //*/
  7279. }
  7280. /**
  7281. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7282. *
  7283. * See http://forums.reprap.org/read.php?185,283327
  7284. *
  7285. * Maths and first version by QHARLEY.
  7286. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7287. */
  7288. void inverse_kinematics(const float logical[XYZ]) {
  7289. static float C2, S2, SK1, SK2, THETA, PSI;
  7290. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7291. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7292. if (L1 == L2)
  7293. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7294. else
  7295. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7296. S2 = sqrt(sq(C2) - 1);
  7297. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7298. SK1 = L1 + L2 * C2;
  7299. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7300. SK2 = L2 * S2;
  7301. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7302. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7303. // Angle of Arm2
  7304. PSI = atan2(S2, C2);
  7305. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7306. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7307. delta[C_AXIS] = logical[Z_AXIS];
  7308. /*
  7309. DEBUG_POS("SCARA IK", logical);
  7310. DEBUG_POS("SCARA IK", delta);
  7311. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7312. SERIAL_ECHOPAIR(",", sy);
  7313. SERIAL_ECHOPAIR(" C2=", C2);
  7314. SERIAL_ECHOPAIR(" S2=", S2);
  7315. SERIAL_ECHOPAIR(" Theta=", THETA);
  7316. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7317. //*/
  7318. }
  7319. #endif // MORGAN_SCARA
  7320. #if ENABLED(TEMP_STAT_LEDS)
  7321. static bool red_led = false;
  7322. static millis_t next_status_led_update_ms = 0;
  7323. void handle_status_leds(void) {
  7324. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7325. next_status_led_update_ms += 500; // Update every 0.5s
  7326. float max_temp = 0.0;
  7327. #if HAS_TEMP_BED
  7328. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7329. #endif
  7330. HOTEND_LOOP() {
  7331. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7332. }
  7333. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7334. if (new_led != red_led) {
  7335. red_led = new_led;
  7336. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7337. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7338. }
  7339. }
  7340. }
  7341. #endif
  7342. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7343. void handle_filament_runout() {
  7344. if (!filament_ran_out) {
  7345. filament_ran_out = true;
  7346. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7347. stepper.synchronize();
  7348. }
  7349. }
  7350. #endif // FILAMENT_RUNOUT_SENSOR
  7351. #if ENABLED(FAST_PWM_FAN)
  7352. void setPwmFrequency(uint8_t pin, int val) {
  7353. val &= 0x07;
  7354. switch (digitalPinToTimer(pin)) {
  7355. #if defined(TCCR0A)
  7356. case TIMER0A:
  7357. case TIMER0B:
  7358. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7359. // TCCR0B |= val;
  7360. break;
  7361. #endif
  7362. #if defined(TCCR1A)
  7363. case TIMER1A:
  7364. case TIMER1B:
  7365. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7366. // TCCR1B |= val;
  7367. break;
  7368. #endif
  7369. #if defined(TCCR2)
  7370. case TIMER2:
  7371. case TIMER2:
  7372. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7373. TCCR2 |= val;
  7374. break;
  7375. #endif
  7376. #if defined(TCCR2A)
  7377. case TIMER2A:
  7378. case TIMER2B:
  7379. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7380. TCCR2B |= val;
  7381. break;
  7382. #endif
  7383. #if defined(TCCR3A)
  7384. case TIMER3A:
  7385. case TIMER3B:
  7386. case TIMER3C:
  7387. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7388. TCCR3B |= val;
  7389. break;
  7390. #endif
  7391. #if defined(TCCR4A)
  7392. case TIMER4A:
  7393. case TIMER4B:
  7394. case TIMER4C:
  7395. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7396. TCCR4B |= val;
  7397. break;
  7398. #endif
  7399. #if defined(TCCR5A)
  7400. case TIMER5A:
  7401. case TIMER5B:
  7402. case TIMER5C:
  7403. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7404. TCCR5B |= val;
  7405. break;
  7406. #endif
  7407. }
  7408. }
  7409. #endif // FAST_PWM_FAN
  7410. float calculate_volumetric_multiplier(float diameter) {
  7411. if (!volumetric_enabled || diameter == 0) return 1.0;
  7412. float d2 = diameter * 0.5;
  7413. return 1.0 / (M_PI * d2 * d2);
  7414. }
  7415. void calculate_volumetric_multipliers() {
  7416. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7417. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7418. }
  7419. void enable_all_steppers() {
  7420. enable_x();
  7421. enable_y();
  7422. enable_z();
  7423. enable_e0();
  7424. enable_e1();
  7425. enable_e2();
  7426. enable_e3();
  7427. }
  7428. void disable_all_steppers() {
  7429. disable_x();
  7430. disable_y();
  7431. disable_z();
  7432. disable_e0();
  7433. disable_e1();
  7434. disable_e2();
  7435. disable_e3();
  7436. }
  7437. /**
  7438. * Manage several activities:
  7439. * - Check for Filament Runout
  7440. * - Keep the command buffer full
  7441. * - Check for maximum inactive time between commands
  7442. * - Check for maximum inactive time between stepper commands
  7443. * - Check if pin CHDK needs to go LOW
  7444. * - Check for KILL button held down
  7445. * - Check for HOME button held down
  7446. * - Check if cooling fan needs to be switched on
  7447. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7448. */
  7449. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7450. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7451. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7452. handle_filament_runout();
  7453. #endif
  7454. if (commands_in_queue < BUFSIZE) get_available_commands();
  7455. millis_t ms = millis();
  7456. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7457. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7458. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7459. #if ENABLED(DISABLE_INACTIVE_X)
  7460. disable_x();
  7461. #endif
  7462. #if ENABLED(DISABLE_INACTIVE_Y)
  7463. disable_y();
  7464. #endif
  7465. #if ENABLED(DISABLE_INACTIVE_Z)
  7466. disable_z();
  7467. #endif
  7468. #if ENABLED(DISABLE_INACTIVE_E)
  7469. disable_e0();
  7470. disable_e1();
  7471. disable_e2();
  7472. disable_e3();
  7473. #endif
  7474. }
  7475. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7476. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7477. chdkActive = false;
  7478. WRITE(CHDK, LOW);
  7479. }
  7480. #endif
  7481. #if HAS_KILL
  7482. // Check if the kill button was pressed and wait just in case it was an accidental
  7483. // key kill key press
  7484. // -------------------------------------------------------------------------------
  7485. static int killCount = 0; // make the inactivity button a bit less responsive
  7486. const int KILL_DELAY = 750;
  7487. if (!READ(KILL_PIN))
  7488. killCount++;
  7489. else if (killCount > 0)
  7490. killCount--;
  7491. // Exceeded threshold and we can confirm that it was not accidental
  7492. // KILL the machine
  7493. // ----------------------------------------------------------------
  7494. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7495. #endif
  7496. #if HAS_HOME
  7497. // Check to see if we have to home, use poor man's debouncer
  7498. // ---------------------------------------------------------
  7499. static int homeDebounceCount = 0; // poor man's debouncing count
  7500. const int HOME_DEBOUNCE_DELAY = 2500;
  7501. if (!READ(HOME_PIN)) {
  7502. if (!homeDebounceCount) {
  7503. enqueue_and_echo_commands_P(PSTR("G28"));
  7504. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7505. }
  7506. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7507. homeDebounceCount++;
  7508. else
  7509. homeDebounceCount = 0;
  7510. }
  7511. #endif
  7512. #if HAS_CONTROLLERFAN
  7513. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7514. #endif
  7515. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7516. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7517. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7518. bool oldstatus;
  7519. #if ENABLED(SWITCHING_EXTRUDER)
  7520. oldstatus = E0_ENABLE_READ;
  7521. enable_e0();
  7522. #else // !SWITCHING_EXTRUDER
  7523. switch (active_extruder) {
  7524. case 0:
  7525. oldstatus = E0_ENABLE_READ;
  7526. enable_e0();
  7527. break;
  7528. #if E_STEPPERS > 1
  7529. case 1:
  7530. oldstatus = E1_ENABLE_READ;
  7531. enable_e1();
  7532. break;
  7533. #if E_STEPPERS > 2
  7534. case 2:
  7535. oldstatus = E2_ENABLE_READ;
  7536. enable_e2();
  7537. break;
  7538. #if E_STEPPERS > 3
  7539. case 3:
  7540. oldstatus = E3_ENABLE_READ;
  7541. enable_e3();
  7542. break;
  7543. #endif
  7544. #endif
  7545. #endif
  7546. }
  7547. #endif // !SWITCHING_EXTRUDER
  7548. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7549. planner.buffer_line(
  7550. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7551. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7552. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7553. );
  7554. stepper.synchronize();
  7555. planner.set_e_position_mm(current_position[E_AXIS]);
  7556. #if ENABLED(SWITCHING_EXTRUDER)
  7557. E0_ENABLE_WRITE(oldstatus);
  7558. #else
  7559. switch (active_extruder) {
  7560. case 0:
  7561. E0_ENABLE_WRITE(oldstatus);
  7562. break;
  7563. #if E_STEPPERS > 1
  7564. case 1:
  7565. E1_ENABLE_WRITE(oldstatus);
  7566. break;
  7567. #if E_STEPPERS > 2
  7568. case 2:
  7569. E2_ENABLE_WRITE(oldstatus);
  7570. break;
  7571. #if E_STEPPERS > 3
  7572. case 3:
  7573. E3_ENABLE_WRITE(oldstatus);
  7574. break;
  7575. #endif
  7576. #endif
  7577. #endif
  7578. }
  7579. #endif // !SWITCHING_EXTRUDER
  7580. }
  7581. #endif // EXTRUDER_RUNOUT_PREVENT
  7582. #if ENABLED(DUAL_X_CARRIAGE)
  7583. // handle delayed move timeout
  7584. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7585. // travel moves have been received so enact them
  7586. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7587. set_destination_to_current();
  7588. prepare_move_to_destination();
  7589. }
  7590. #endif
  7591. #if ENABLED(TEMP_STAT_LEDS)
  7592. handle_status_leds();
  7593. #endif
  7594. planner.check_axes_activity();
  7595. }
  7596. /**
  7597. * Standard idle routine keeps the machine alive
  7598. */
  7599. void idle(
  7600. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7601. bool no_stepper_sleep/*=false*/
  7602. #endif
  7603. ) {
  7604. lcd_update();
  7605. host_keepalive();
  7606. manage_inactivity(
  7607. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7608. no_stepper_sleep
  7609. #endif
  7610. );
  7611. thermalManager.manage_heater();
  7612. #if ENABLED(PRINTCOUNTER)
  7613. print_job_timer.tick();
  7614. #endif
  7615. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7616. buzzer.tick();
  7617. #endif
  7618. }
  7619. /**
  7620. * Kill all activity and lock the machine.
  7621. * After this the machine will need to be reset.
  7622. */
  7623. void kill(const char* lcd_msg) {
  7624. SERIAL_ERROR_START;
  7625. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7626. #if ENABLED(ULTRA_LCD)
  7627. kill_screen(lcd_msg);
  7628. #else
  7629. UNUSED(lcd_msg);
  7630. #endif
  7631. delay(500); // Wait a short time
  7632. cli(); // Stop interrupts
  7633. thermalManager.disable_all_heaters();
  7634. disable_all_steppers();
  7635. #if HAS_POWER_SWITCH
  7636. pinMode(PS_ON_PIN, INPUT);
  7637. #endif
  7638. suicide();
  7639. while (1) {
  7640. #if ENABLED(USE_WATCHDOG)
  7641. watchdog_reset();
  7642. #endif
  7643. } // Wait for reset
  7644. }
  7645. /**
  7646. * Turn off heaters and stop the print in progress
  7647. * After a stop the machine may be resumed with M999
  7648. */
  7649. void stop() {
  7650. thermalManager.disable_all_heaters();
  7651. if (IsRunning()) {
  7652. Running = false;
  7653. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7654. SERIAL_ERROR_START;
  7655. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7656. LCD_MESSAGEPGM(MSG_STOPPED);
  7657. }
  7658. }
  7659. /**
  7660. * Marlin entry-point: Set up before the program loop
  7661. * - Set up the kill pin, filament runout, power hold
  7662. * - Start the serial port
  7663. * - Print startup messages and diagnostics
  7664. * - Get EEPROM or default settings
  7665. * - Initialize managers for:
  7666. * • temperature
  7667. * • planner
  7668. * • watchdog
  7669. * • stepper
  7670. * • photo pin
  7671. * • servos
  7672. * • LCD controller
  7673. * • Digipot I2C
  7674. * • Z probe sled
  7675. * • status LEDs
  7676. */
  7677. void setup() {
  7678. #ifdef DISABLE_JTAG
  7679. // Disable JTAG on AT90USB chips to free up pins for IO
  7680. MCUCR = 0x80;
  7681. MCUCR = 0x80;
  7682. #endif
  7683. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7684. setup_filrunoutpin();
  7685. #endif
  7686. setup_killpin();
  7687. setup_powerhold();
  7688. #if HAS_STEPPER_RESET
  7689. disableStepperDrivers();
  7690. #endif
  7691. MYSERIAL.begin(BAUDRATE);
  7692. SERIAL_PROTOCOLLNPGM("start");
  7693. SERIAL_ECHO_START;
  7694. // Check startup - does nothing if bootloader sets MCUSR to 0
  7695. byte mcu = MCUSR;
  7696. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7697. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7698. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7699. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7700. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7701. MCUSR = 0;
  7702. SERIAL_ECHOPGM(MSG_MARLIN);
  7703. SERIAL_CHAR(' ');
  7704. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7705. SERIAL_EOL;
  7706. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7707. SERIAL_ECHO_START;
  7708. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7709. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7710. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7711. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7712. #endif
  7713. SERIAL_ECHO_START;
  7714. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7715. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7716. // Send "ok" after commands by default
  7717. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7718. // Load data from EEPROM if available (or use defaults)
  7719. // This also updates variables in the planner, elsewhere
  7720. Config_RetrieveSettings();
  7721. // Initialize current position based on home_offset
  7722. memcpy(current_position, home_offset, sizeof(home_offset));
  7723. // Vital to init stepper/planner equivalent for current_position
  7724. SYNC_PLAN_POSITION_KINEMATIC();
  7725. thermalManager.init(); // Initialize temperature loop
  7726. #if ENABLED(USE_WATCHDOG)
  7727. watchdog_init();
  7728. #endif
  7729. stepper.init(); // Initialize stepper, this enables interrupts!
  7730. setup_photpin();
  7731. servo_init();
  7732. #if HAS_BED_PROBE
  7733. endstops.enable_z_probe(false);
  7734. #endif
  7735. #if HAS_CONTROLLERFAN
  7736. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7737. #endif
  7738. #if HAS_STEPPER_RESET
  7739. enableStepperDrivers();
  7740. #endif
  7741. #if ENABLED(DIGIPOT_I2C)
  7742. digipot_i2c_init();
  7743. #endif
  7744. #if ENABLED(DAC_STEPPER_CURRENT)
  7745. dac_init();
  7746. #endif
  7747. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7748. OUT_WRITE(SLED_PIN, LOW); // turn it off
  7749. #endif // Z_PROBE_SLED
  7750. setup_homepin();
  7751. #if PIN_EXISTS(STAT_LED_RED)
  7752. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  7753. #endif
  7754. #if PIN_EXISTS(STAT_LED_BLUE)
  7755. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  7756. #endif
  7757. lcd_init();
  7758. #if ENABLED(SHOW_BOOTSCREEN)
  7759. #if ENABLED(DOGLCD)
  7760. safe_delay(BOOTSCREEN_TIMEOUT);
  7761. #elif ENABLED(ULTRA_LCD)
  7762. bootscreen();
  7763. lcd_init();
  7764. #endif
  7765. #endif
  7766. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7767. // Initialize mixing to 100% color 1
  7768. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7769. mixing_factor[i] = (i == 0) ? 1 : 0;
  7770. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7771. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7772. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7773. #endif
  7774. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7775. i2c.onReceive(i2c_on_receive);
  7776. i2c.onRequest(i2c_on_request);
  7777. #endif
  7778. }
  7779. /**
  7780. * The main Marlin program loop
  7781. *
  7782. * - Save or log commands to SD
  7783. * - Process available commands (if not saving)
  7784. * - Call heater manager
  7785. * - Call inactivity manager
  7786. * - Call endstop manager
  7787. * - Call LCD update
  7788. */
  7789. void loop() {
  7790. if (commands_in_queue < BUFSIZE) get_available_commands();
  7791. #if ENABLED(SDSUPPORT)
  7792. card.checkautostart(false);
  7793. #endif
  7794. if (commands_in_queue) {
  7795. #if ENABLED(SDSUPPORT)
  7796. if (card.saving) {
  7797. char* command = command_queue[cmd_queue_index_r];
  7798. if (strstr_P(command, PSTR("M29"))) {
  7799. // M29 closes the file
  7800. card.closefile();
  7801. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7802. ok_to_send();
  7803. }
  7804. else {
  7805. // Write the string from the read buffer to SD
  7806. card.write_command(command);
  7807. if (card.logging)
  7808. process_next_command(); // The card is saving because it's logging
  7809. else
  7810. ok_to_send();
  7811. }
  7812. }
  7813. else
  7814. process_next_command();
  7815. #else
  7816. process_next_command();
  7817. #endif // SDSUPPORT
  7818. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7819. if (commands_in_queue) {
  7820. --commands_in_queue;
  7821. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7822. }
  7823. }
  7824. endstops.report_state();
  7825. idle();
  7826. }