My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

stepper.cpp 40KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t* current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #if ENABLED(Z_DUAL_ENDSTOPS)
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #if ENABLED(ADVANCE)
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static uint8_t step_loops;
  62. static uint8_t step_loops_nominal;
  63. static unsigned short OCR1A_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  67. #if DISABLED(Z_DUAL_ENDSTOPS)
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  73. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  77. #ifndef PWM_MOTOR_CURRENT
  78. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  79. #endif
  80. const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
  81. #endif
  82. static bool check_endstops = true;
  83. volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
  84. volatile signed char count_direction[NUM_AXIS] = { 1 };
  85. //===========================================================================
  86. //================================ functions ================================
  87. //===========================================================================
  88. #if ENABLED(DUAL_X_CARRIAGE)
  89. #define X_APPLY_DIR(v,ALWAYS) \
  90. if (extruder_duplication_enabled || ALWAYS) { \
  91. X_DIR_WRITE(v); \
  92. X2_DIR_WRITE(v); \
  93. } \
  94. else { \
  95. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  96. }
  97. #define X_APPLY_STEP(v,ALWAYS) \
  98. if (extruder_duplication_enabled || ALWAYS) { \
  99. X_STEP_WRITE(v); \
  100. X2_STEP_WRITE(v); \
  101. } \
  102. else { \
  103. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  104. }
  105. #else
  106. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  107. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  108. #endif
  109. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  110. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  111. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  112. #else
  113. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  114. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  115. #endif
  116. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  117. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  118. #if ENABLED(Z_DUAL_ENDSTOPS)
  119. #define Z_APPLY_STEP(v,Q) \
  120. if (performing_homing) { \
  121. if (Z_HOME_DIR > 0) {\
  122. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } \
  125. else { \
  126. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  127. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  128. } \
  129. } \
  130. else { \
  131. Z_STEP_WRITE(v); \
  132. Z2_STEP_WRITE(v); \
  133. }
  134. #else
  135. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  136. #endif
  137. #else
  138. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  139. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  140. #endif
  141. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  142. // intRes = intIn1 * intIn2 >> 16
  143. // uses:
  144. // r26 to store 0
  145. // r27 to store the byte 1 of the 24 bit result
  146. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  147. asm volatile ( \
  148. "clr r26 \n\t" \
  149. "mul %A1, %B2 \n\t" \
  150. "movw %A0, r0 \n\t" \
  151. "mul %A1, %A2 \n\t" \
  152. "add %A0, r1 \n\t" \
  153. "adc %B0, r26 \n\t" \
  154. "lsr r0 \n\t" \
  155. "adc %A0, r26 \n\t" \
  156. "adc %B0, r26 \n\t" \
  157. "clr r1 \n\t" \
  158. : \
  159. "=&r" (intRes) \
  160. : \
  161. "d" (charIn1), \
  162. "d" (intIn2) \
  163. : \
  164. "r26" \
  165. )
  166. // intRes = longIn1 * longIn2 >> 24
  167. // uses:
  168. // r26 to store 0
  169. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  170. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  171. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  172. // B0 A0 are bits 24-39 and are the returned value
  173. // C1 B1 A1 is longIn1
  174. // D2 C2 B2 A2 is longIn2
  175. //
  176. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  177. asm volatile ( \
  178. "clr r26 \n\t" \
  179. "mul %A1, %B2 \n\t" \
  180. "mov r27, r1 \n\t" \
  181. "mul %B1, %C2 \n\t" \
  182. "movw %A0, r0 \n\t" \
  183. "mul %C1, %C2 \n\t" \
  184. "add %B0, r0 \n\t" \
  185. "mul %C1, %B2 \n\t" \
  186. "add %A0, r0 \n\t" \
  187. "adc %B0, r1 \n\t" \
  188. "mul %A1, %C2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %B1, %B2 \n\t" \
  193. "add r27, r0 \n\t" \
  194. "adc %A0, r1 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "mul %C1, %A2 \n\t" \
  197. "add r27, r0 \n\t" \
  198. "adc %A0, r1 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "mul %B1, %A2 \n\t" \
  201. "add r27, r1 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "lsr r27 \n\t" \
  205. "adc %A0, r26 \n\t" \
  206. "adc %B0, r26 \n\t" \
  207. "mul %D2, %A1 \n\t" \
  208. "add %A0, r0 \n\t" \
  209. "adc %B0, r1 \n\t" \
  210. "mul %D2, %B1 \n\t" \
  211. "add %B0, r0 \n\t" \
  212. "clr r1 \n\t" \
  213. : \
  214. "=&r" (intRes) \
  215. : \
  216. "d" (longIn1), \
  217. "d" (longIn2) \
  218. : \
  219. "r26" , "r27" \
  220. )
  221. // Some useful constants
  222. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  223. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  224. void endstops_hit_on_purpose() {
  225. endstop_hit_bits = 0;
  226. }
  227. void checkHitEndstops() {
  228. if (endstop_hit_bits) {
  229. SERIAL_ECHO_START;
  230. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  231. if (TEST(endstop_hit_bits, X_MIN)) {
  232. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  233. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  234. }
  235. if (TEST(endstop_hit_bits, Y_MIN)) {
  236. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  237. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  238. }
  239. if (TEST(endstop_hit_bits, Z_MIN)) {
  240. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  242. }
  243. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  244. if (TEST(endstop_hit_bits, Z_MIN_PROBE)) {
  245. SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  246. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  247. }
  248. #endif
  249. SERIAL_EOL;
  250. endstops_hit_on_purpose();
  251. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  252. if (abort_on_endstop_hit) {
  253. card.sdprinting = false;
  254. card.closefile();
  255. quickStop();
  256. disable_all_heaters(); // switch off all heaters.
  257. }
  258. #endif
  259. }
  260. }
  261. void enable_endstops(bool check) { check_endstops = check; }
  262. // Check endstops - Called from ISR!
  263. inline void update_endstops() {
  264. #if ENABLED(Z_DUAL_ENDSTOPS)
  265. uint16_t
  266. #else
  267. byte
  268. #endif
  269. current_endstop_bits = 0;
  270. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  271. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  272. #define _AXIS(AXIS) AXIS ##_AXIS
  273. #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
  274. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  275. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  276. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  277. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  278. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  279. // TEST_ENDSTOP: test the old and the current status of an endstop
  280. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  281. #if ENABLED(COREXY) || ENABLED(COREXZ)
  282. #define _SET_TRIGSTEPS(AXIS) do { \
  283. float axis_pos = count_position[_AXIS(AXIS)]; \
  284. if (_AXIS(AXIS) == A_AXIS) \
  285. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
  286. else if (_AXIS(AXIS) == CORE_AXIS_2) \
  287. axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
  288. endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
  289. } while(0)
  290. #else
  291. #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
  292. #endif // COREXY || COREXZ
  293. #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
  294. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  295. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
  296. _SET_TRIGSTEPS(AXIS); \
  297. _ENDSTOP_HIT(AXIS); \
  298. step_events_completed = current_block->step_event_count; \
  299. } \
  300. } while(0)
  301. #if ENABLED(COREXY) || ENABLED(COREXZ)
  302. // Head direction in -X axis for CoreXY and CoreXZ bots.
  303. // If Delta1 == -Delta2, the movement is only in Y or Z axis
  304. if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
  305. if (TEST(out_bits, X_HEAD))
  306. #else
  307. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  308. #endif
  309. { // -direction
  310. #if ENABLED(DUAL_X_CARRIAGE)
  311. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  312. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  313. #endif
  314. {
  315. #if HAS_X_MIN
  316. UPDATE_ENDSTOP(X, MIN);
  317. #endif
  318. }
  319. }
  320. else { // +direction
  321. #if ENABLED(DUAL_X_CARRIAGE)
  322. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  323. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  324. #endif
  325. {
  326. #if HAS_X_MAX
  327. UPDATE_ENDSTOP(X, MAX);
  328. #endif
  329. }
  330. }
  331. #if ENABLED(COREXY) || ENABLED(COREXZ)
  332. }
  333. #endif
  334. #if ENABLED(COREXY)
  335. // Head direction in -Y axis for CoreXY bots.
  336. // If DeltaX == DeltaY, the movement is only in X axis
  337. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  338. if (TEST(out_bits, Y_HEAD))
  339. #else
  340. if (TEST(out_bits, Y_AXIS)) // -direction
  341. #endif
  342. { // -direction
  343. #if HAS_Y_MIN
  344. UPDATE_ENDSTOP(Y, MIN);
  345. #endif
  346. }
  347. else { // +direction
  348. #if HAS_Y_MAX
  349. UPDATE_ENDSTOP(Y, MAX);
  350. #endif
  351. }
  352. #if ENABLED(COREXY)
  353. }
  354. #endif
  355. #if ENABLED(COREXZ)
  356. // Head direction in -Z axis for CoreXZ bots.
  357. // If DeltaX == DeltaZ, the movement is only in X axis
  358. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  359. if (TEST(out_bits, Z_HEAD))
  360. #else
  361. if (TEST(out_bits, Z_AXIS))
  362. #endif
  363. { // z -direction
  364. #if HAS_Z_MIN
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. SET_ENDSTOP_BIT(Z, MIN);
  367. #if HAS_Z2_MIN
  368. SET_ENDSTOP_BIT(Z2, MIN);
  369. #else
  370. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  371. #endif
  372. byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
  373. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  374. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  375. SBI(endstop_hit_bits, Z_MIN);
  376. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  377. step_events_completed = current_block->step_event_count;
  378. }
  379. #else // !Z_DUAL_ENDSTOPS
  380. UPDATE_ENDSTOP(Z, MIN);
  381. #endif // !Z_DUAL_ENDSTOPS
  382. #endif // Z_MIN_PIN
  383. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  384. UPDATE_ENDSTOP(Z, MIN_PROBE);
  385. if (TEST_ENDSTOP(Z_MIN_PROBE)) {
  386. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  387. SBI(endstop_hit_bits, Z_MIN_PROBE);
  388. }
  389. #endif
  390. }
  391. else { // z +direction
  392. #if HAS_Z_MAX
  393. #if ENABLED(Z_DUAL_ENDSTOPS)
  394. SET_ENDSTOP_BIT(Z, MAX);
  395. #if HAS_Z2_MAX
  396. SET_ENDSTOP_BIT(Z2, MAX);
  397. #else
  398. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  399. #endif
  400. byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
  401. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  402. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  403. SBI(endstop_hit_bits, Z_MIN);
  404. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  405. step_events_completed = current_block->step_event_count;
  406. }
  407. #else // !Z_DUAL_ENDSTOPS
  408. UPDATE_ENDSTOP(Z, MAX);
  409. #endif // !Z_DUAL_ENDSTOPS
  410. #endif // Z_MAX_PIN
  411. }
  412. #if ENABLED(COREXZ)
  413. }
  414. #endif
  415. old_endstop_bits = current_endstop_bits;
  416. }
  417. // __________________________
  418. // /| |\ _________________ ^
  419. // / | | \ /| |\ |
  420. // / | | \ / | | \ s
  421. // / | | | | | \ p
  422. // / | | | | | \ e
  423. // +-----+------------------------+---+--+---------------+----+ e
  424. // | BLOCK 1 | BLOCK 2 | d
  425. //
  426. // time ----->
  427. //
  428. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  429. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  430. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  431. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  432. void st_wake_up() {
  433. // TCNT1 = 0;
  434. ENABLE_STEPPER_DRIVER_INTERRUPT();
  435. }
  436. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  437. unsigned short timer;
  438. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  439. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  440. step_rate = (step_rate >> 2) & 0x3fff;
  441. step_loops = 4;
  442. }
  443. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  444. step_rate = (step_rate >> 1) & 0x7fff;
  445. step_loops = 2;
  446. }
  447. else {
  448. step_loops = 1;
  449. }
  450. NOLESS(step_rate, F_CPU / 500000);
  451. step_rate -= F_CPU / 500000; // Correct for minimal speed
  452. if (step_rate >= (8 * 256)) { // higher step rate
  453. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  454. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  455. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  456. MultiU16X8toH16(timer, tmp_step_rate, gain);
  457. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  458. }
  459. else { // lower step rates
  460. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  461. table_address += ((step_rate) >> 1) & 0xfffc;
  462. timer = (unsigned short)pgm_read_word_near(table_address);
  463. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  464. }
  465. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  466. return timer;
  467. }
  468. /**
  469. * Set the stepper direction of each axis
  470. *
  471. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  472. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  473. */
  474. void set_stepper_direction() {
  475. #define SET_STEP_DIR(AXIS) \
  476. if (TEST(out_bits, AXIS ##_AXIS)) { \
  477. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  478. count_direction[AXIS ##_AXIS] = -1; \
  479. } \
  480. else { \
  481. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  482. count_direction[AXIS ##_AXIS] = 1; \
  483. }
  484. SET_STEP_DIR(X); // A
  485. SET_STEP_DIR(Y); // B
  486. SET_STEP_DIR(Z); // C
  487. #if DISABLED(ADVANCE)
  488. if (TEST(out_bits, E_AXIS)) {
  489. REV_E_DIR();
  490. count_direction[E_AXIS] = -1;
  491. }
  492. else {
  493. NORM_E_DIR();
  494. count_direction[E_AXIS] = 1;
  495. }
  496. #endif //!ADVANCE
  497. }
  498. // Initializes the trapezoid generator from the current block. Called whenever a new
  499. // block begins.
  500. FORCE_INLINE void trapezoid_generator_reset() {
  501. static int8_t last_extruder = -1;
  502. if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
  503. out_bits = current_block->direction_bits;
  504. last_extruder = current_block->active_extruder;
  505. set_stepper_direction();
  506. }
  507. #if ENABLED(ADVANCE)
  508. advance = current_block->initial_advance;
  509. final_advance = current_block->final_advance;
  510. // Do E steps + advance steps
  511. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  512. old_advance = advance >>8;
  513. #endif
  514. deceleration_time = 0;
  515. // step_rate to timer interval
  516. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  517. // make a note of the number of step loops required at nominal speed
  518. step_loops_nominal = step_loops;
  519. acc_step_rate = current_block->initial_rate;
  520. acceleration_time = calc_timer(acc_step_rate);
  521. OCR1A = acceleration_time;
  522. // SERIAL_ECHO_START;
  523. // SERIAL_ECHOPGM("advance :");
  524. // SERIAL_ECHO(current_block->advance/256.0);
  525. // SERIAL_ECHOPGM("advance rate :");
  526. // SERIAL_ECHO(current_block->advance_rate/256.0);
  527. // SERIAL_ECHOPGM("initial advance :");
  528. // SERIAL_ECHO(current_block->initial_advance/256.0);
  529. // SERIAL_ECHOPGM("final advance :");
  530. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  531. }
  532. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  533. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  534. ISR(TIMER1_COMPA_vect) {
  535. if (cleaning_buffer_counter) {
  536. current_block = NULL;
  537. plan_discard_current_block();
  538. #ifdef SD_FINISHED_RELEASECOMMAND
  539. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  540. #endif
  541. cleaning_buffer_counter--;
  542. OCR1A = 200;
  543. return;
  544. }
  545. // If there is no current block, attempt to pop one from the buffer
  546. if (!current_block) {
  547. // Anything in the buffer?
  548. current_block = plan_get_current_block();
  549. if (current_block) {
  550. current_block->busy = true;
  551. trapezoid_generator_reset();
  552. counter_x = -(current_block->step_event_count >> 1);
  553. counter_y = counter_z = counter_e = counter_x;
  554. step_events_completed = 0;
  555. #if ENABLED(Z_LATE_ENABLE)
  556. if (current_block->steps[Z_AXIS] > 0) {
  557. enable_z();
  558. OCR1A = 2000; //1ms wait
  559. return;
  560. }
  561. #endif
  562. // #if ENABLED(ADVANCE)
  563. // e_steps[current_block->active_extruder] = 0;
  564. // #endif
  565. }
  566. else {
  567. OCR1A = 2000; // 1kHz.
  568. }
  569. }
  570. if (current_block != NULL) {
  571. // Update endstops state, if enabled
  572. if (check_endstops) update_endstops();
  573. // Take multiple steps per interrupt (For high speed moves)
  574. for (int8_t i = 0; i < step_loops; i++) {
  575. #ifndef USBCON
  576. customizedSerial.checkRx(); // Check for serial chars.
  577. #endif
  578. #if ENABLED(ADVANCE)
  579. counter_e += current_block->steps[E_AXIS];
  580. if (counter_e > 0) {
  581. counter_e -= current_block->step_event_count;
  582. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  583. }
  584. #endif //ADVANCE
  585. #define _COUNTER(axis) counter_## axis
  586. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  587. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  588. #define STEP_ADD(axis, AXIS) \
  589. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  590. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  591. STEP_ADD(x,X);
  592. STEP_ADD(y,Y);
  593. STEP_ADD(z,Z);
  594. #if DISABLED(ADVANCE)
  595. STEP_ADD(e,E);
  596. #endif
  597. #define STEP_IF_COUNTER(axis, AXIS) \
  598. if (_COUNTER(axis) > 0) { \
  599. _COUNTER(axis) -= current_block->step_event_count; \
  600. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  601. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  602. }
  603. STEP_IF_COUNTER(x, X);
  604. STEP_IF_COUNTER(y, Y);
  605. STEP_IF_COUNTER(z, Z);
  606. #if DISABLED(ADVANCE)
  607. STEP_IF_COUNTER(e, E);
  608. #endif
  609. step_events_completed++;
  610. if (step_events_completed >= current_block->step_event_count) break;
  611. }
  612. // Calculate new timer value
  613. unsigned short timer;
  614. unsigned short step_rate;
  615. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  616. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  617. acc_step_rate += current_block->initial_rate;
  618. // upper limit
  619. NOMORE(acc_step_rate, current_block->nominal_rate);
  620. // step_rate to timer interval
  621. timer = calc_timer(acc_step_rate);
  622. OCR1A = timer;
  623. acceleration_time += timer;
  624. #if ENABLED(ADVANCE)
  625. advance += advance_rate * step_loops;
  626. //NOLESS(advance, current_block->advance);
  627. // Do E steps + advance steps
  628. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  629. old_advance = advance >> 8;
  630. #endif //ADVANCE
  631. }
  632. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  633. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  634. if (step_rate <= acc_step_rate) { // Still decelerating?
  635. step_rate = acc_step_rate - step_rate;
  636. NOLESS(step_rate, current_block->final_rate);
  637. }
  638. else
  639. step_rate = current_block->final_rate;
  640. // step_rate to timer interval
  641. timer = calc_timer(step_rate);
  642. OCR1A = timer;
  643. deceleration_time += timer;
  644. #if ENABLED(ADVANCE)
  645. advance -= advance_rate * step_loops;
  646. NOLESS(advance, final_advance);
  647. // Do E steps + advance steps
  648. uint32_t advance_whole = advance >> 8;
  649. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  650. old_advance = advance_whole;
  651. #endif //ADVANCE
  652. }
  653. else {
  654. OCR1A = OCR1A_nominal;
  655. // ensure we're running at the correct step rate, even if we just came off an acceleration
  656. step_loops = step_loops_nominal;
  657. }
  658. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  659. // If current block is finished, reset pointer
  660. if (step_events_completed >= current_block->step_event_count) {
  661. current_block = NULL;
  662. plan_discard_current_block();
  663. }
  664. }
  665. }
  666. #if ENABLED(ADVANCE)
  667. unsigned char old_OCR0A;
  668. // Timer interrupt for E. e_steps is set in the main routine;
  669. // Timer 0 is shared with millies
  670. ISR(TIMER0_COMPA_vect) {
  671. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  672. OCR0A = old_OCR0A;
  673. #define STEP_E_ONCE(INDEX) \
  674. if (e_steps[INDEX] != 0) { \
  675. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  676. if (e_steps[INDEX] < 0) { \
  677. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  678. e_steps[INDEX]++; \
  679. } \
  680. else if (e_steps[INDEX] > 0) { \
  681. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  682. e_steps[INDEX]--; \
  683. } \
  684. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  685. }
  686. // Step all E steppers that have steps, up to 4 steps per interrupt
  687. for (unsigned char i = 0; i < 4; i++) {
  688. STEP_E_ONCE(0);
  689. #if EXTRUDERS > 1
  690. STEP_E_ONCE(1);
  691. #if EXTRUDERS > 2
  692. STEP_E_ONCE(2);
  693. #if EXTRUDERS > 3
  694. STEP_E_ONCE(3);
  695. #endif
  696. #endif
  697. #endif
  698. }
  699. }
  700. #endif // ADVANCE
  701. void st_init() {
  702. digipot_init(); //Initialize Digipot Motor Current
  703. microstep_init(); //Initialize Microstepping Pins
  704. // initialise TMC Steppers
  705. #if ENABLED(HAVE_TMCDRIVER)
  706. tmc_init();
  707. #endif
  708. // initialise L6470 Steppers
  709. #if ENABLED(HAVE_L6470DRIVER)
  710. L6470_init();
  711. #endif
  712. // Initialize Dir Pins
  713. #if HAS_X_DIR
  714. X_DIR_INIT;
  715. #endif
  716. #if HAS_X2_DIR
  717. X2_DIR_INIT;
  718. #endif
  719. #if HAS_Y_DIR
  720. Y_DIR_INIT;
  721. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  722. Y2_DIR_INIT;
  723. #endif
  724. #endif
  725. #if HAS_Z_DIR
  726. Z_DIR_INIT;
  727. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  728. Z2_DIR_INIT;
  729. #endif
  730. #endif
  731. #if HAS_E0_DIR
  732. E0_DIR_INIT;
  733. #endif
  734. #if HAS_E1_DIR
  735. E1_DIR_INIT;
  736. #endif
  737. #if HAS_E2_DIR
  738. E2_DIR_INIT;
  739. #endif
  740. #if HAS_E3_DIR
  741. E3_DIR_INIT;
  742. #endif
  743. //Initialize Enable Pins - steppers default to disabled.
  744. #if HAS_X_ENABLE
  745. X_ENABLE_INIT;
  746. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  747. #endif
  748. #if HAS_X2_ENABLE
  749. X2_ENABLE_INIT;
  750. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  751. #endif
  752. #if HAS_Y_ENABLE
  753. Y_ENABLE_INIT;
  754. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  755. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  756. Y2_ENABLE_INIT;
  757. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  758. #endif
  759. #endif
  760. #if HAS_Z_ENABLE
  761. Z_ENABLE_INIT;
  762. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  763. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  764. Z2_ENABLE_INIT;
  765. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  766. #endif
  767. #endif
  768. #if HAS_E0_ENABLE
  769. E0_ENABLE_INIT;
  770. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  771. #endif
  772. #if HAS_E1_ENABLE
  773. E1_ENABLE_INIT;
  774. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  775. #endif
  776. #if HAS_E2_ENABLE
  777. E2_ENABLE_INIT;
  778. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  779. #endif
  780. #if HAS_E3_ENABLE
  781. E3_ENABLE_INIT;
  782. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  783. #endif
  784. //endstops and pullups
  785. #if HAS_X_MIN
  786. SET_INPUT(X_MIN_PIN);
  787. #if ENABLED(ENDSTOPPULLUP_XMIN)
  788. WRITE(X_MIN_PIN,HIGH);
  789. #endif
  790. #endif
  791. #if HAS_Y_MIN
  792. SET_INPUT(Y_MIN_PIN);
  793. #if ENABLED(ENDSTOPPULLUP_YMIN)
  794. WRITE(Y_MIN_PIN,HIGH);
  795. #endif
  796. #endif
  797. #if HAS_Z_MIN
  798. SET_INPUT(Z_MIN_PIN);
  799. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  800. WRITE(Z_MIN_PIN,HIGH);
  801. #endif
  802. #endif
  803. #if HAS_Z2_MIN
  804. SET_INPUT(Z2_MIN_PIN);
  805. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  806. WRITE(Z2_MIN_PIN,HIGH);
  807. #endif
  808. #endif
  809. #if HAS_X_MAX
  810. SET_INPUT(X_MAX_PIN);
  811. #if ENABLED(ENDSTOPPULLUP_XMAX)
  812. WRITE(X_MAX_PIN,HIGH);
  813. #endif
  814. #endif
  815. #if HAS_Y_MAX
  816. SET_INPUT(Y_MAX_PIN);
  817. #if ENABLED(ENDSTOPPULLUP_YMAX)
  818. WRITE(Y_MAX_PIN,HIGH);
  819. #endif
  820. #endif
  821. #if HAS_Z_MAX
  822. SET_INPUT(Z_MAX_PIN);
  823. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  824. WRITE(Z_MAX_PIN,HIGH);
  825. #endif
  826. #endif
  827. #if HAS_Z2_MAX
  828. SET_INPUT(Z2_MAX_PIN);
  829. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  830. WRITE(Z2_MAX_PIN,HIGH);
  831. #endif
  832. #endif
  833. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  834. SET_INPUT(Z_MIN_PROBE_PIN);
  835. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  836. WRITE(Z_MIN_PROBE_PIN,HIGH);
  837. #endif
  838. #endif
  839. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  840. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  841. #define _DISABLE(axis) disable_## axis()
  842. #define AXIS_INIT(axis, AXIS, PIN) \
  843. _STEP_INIT(AXIS); \
  844. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  845. _DISABLE(axis)
  846. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  847. // Initialize Step Pins
  848. #if HAS_X_STEP
  849. AXIS_INIT(x, X, X);
  850. #endif
  851. #if HAS_X2_STEP
  852. AXIS_INIT(x, X2, X);
  853. #endif
  854. #if HAS_Y_STEP
  855. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  856. Y2_STEP_INIT;
  857. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  858. #endif
  859. AXIS_INIT(y, Y, Y);
  860. #endif
  861. #if HAS_Z_STEP
  862. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  863. Z2_STEP_INIT;
  864. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  865. #endif
  866. AXIS_INIT(z, Z, Z);
  867. #endif
  868. #if HAS_E0_STEP
  869. E_AXIS_INIT(0);
  870. #endif
  871. #if HAS_E1_STEP
  872. E_AXIS_INIT(1);
  873. #endif
  874. #if HAS_E2_STEP
  875. E_AXIS_INIT(2);
  876. #endif
  877. #if HAS_E3_STEP
  878. E_AXIS_INIT(3);
  879. #endif
  880. // waveform generation = 0100 = CTC
  881. CBI(TCCR1B, WGM13);
  882. SBI(TCCR1B, WGM12);
  883. CBI(TCCR1A, WGM11);
  884. CBI(TCCR1A, WGM10);
  885. // output mode = 00 (disconnected)
  886. TCCR1A &= ~(3 << COM1A0);
  887. TCCR1A &= ~(3 << COM1B0);
  888. // Set the timer pre-scaler
  889. // Generally we use a divider of 8, resulting in a 2MHz timer
  890. // frequency on a 16MHz MCU. If you are going to change this, be
  891. // sure to regenerate speed_lookuptable.h with
  892. // create_speed_lookuptable.py
  893. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  894. OCR1A = 0x4000;
  895. TCNT1 = 0;
  896. ENABLE_STEPPER_DRIVER_INTERRUPT();
  897. #if ENABLED(ADVANCE)
  898. #if defined(TCCR0A) && defined(WGM01)
  899. CBI(TCCR0A, WGM01);
  900. CBI(TCCR0A, WGM00);
  901. #endif
  902. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  903. SBI(TIMSK0, OCIE0A);
  904. #endif //ADVANCE
  905. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  906. sei();
  907. set_stepper_direction(); // Init directions to out_bits = 0
  908. }
  909. /**
  910. * Block until all buffered steps are executed
  911. */
  912. void st_synchronize() { while (blocks_queued()) idle(); }
  913. void st_set_position(const long& x, const long& y, const long& z, const long& e) {
  914. CRITICAL_SECTION_START;
  915. count_position[X_AXIS] = x;
  916. count_position[Y_AXIS] = y;
  917. count_position[Z_AXIS] = z;
  918. count_position[E_AXIS] = e;
  919. CRITICAL_SECTION_END;
  920. }
  921. void st_set_e_position(const long& e) {
  922. CRITICAL_SECTION_START;
  923. count_position[E_AXIS] = e;
  924. CRITICAL_SECTION_END;
  925. }
  926. long st_get_position(uint8_t axis) {
  927. CRITICAL_SECTION_START;
  928. long count_pos = count_position[axis];
  929. CRITICAL_SECTION_END;
  930. return count_pos;
  931. }
  932. float st_get_axis_position_mm(AxisEnum axis) {
  933. float axis_pos;
  934. #if ENABLED(COREXY) | ENABLED(COREXZ)
  935. if (axis == X_AXIS || axis == CORE_AXIS_2) {
  936. CRITICAL_SECTION_START;
  937. long pos1 = count_position[A_AXIS],
  938. pos2 = count_position[CORE_AXIS_2];
  939. CRITICAL_SECTION_END;
  940. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  941. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  942. axis_pos = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
  943. }
  944. else
  945. axis_pos = st_get_position(axis);
  946. #else
  947. axis_pos = st_get_position(axis);
  948. #endif
  949. return axis_pos / axis_steps_per_unit[axis];
  950. }
  951. void finishAndDisableSteppers() {
  952. st_synchronize();
  953. disable_all_steppers();
  954. }
  955. void quickStop() {
  956. cleaning_buffer_counter = 5000;
  957. DISABLE_STEPPER_DRIVER_INTERRUPT();
  958. while (blocks_queued()) plan_discard_current_block();
  959. current_block = NULL;
  960. ENABLE_STEPPER_DRIVER_INTERRUPT();
  961. }
  962. #if ENABLED(BABYSTEPPING)
  963. // MUST ONLY BE CALLED BY AN ISR,
  964. // No other ISR should ever interrupt this!
  965. void babystep(const uint8_t axis, const bool direction) {
  966. #define _ENABLE(axis) enable_## axis()
  967. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  968. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  969. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  970. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  971. _ENABLE(axis); \
  972. uint8_t old_pin = _READ_DIR(AXIS); \
  973. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  974. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  975. delayMicroseconds(2); \
  976. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  977. _APPLY_DIR(AXIS, old_pin); \
  978. }
  979. switch (axis) {
  980. case X_AXIS:
  981. BABYSTEP_AXIS(x, X, false);
  982. break;
  983. case Y_AXIS:
  984. BABYSTEP_AXIS(y, Y, false);
  985. break;
  986. case Z_AXIS: {
  987. #if DISABLED(DELTA)
  988. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  989. #else // DELTA
  990. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  991. enable_x();
  992. enable_y();
  993. enable_z();
  994. uint8_t old_x_dir_pin = X_DIR_READ,
  995. old_y_dir_pin = Y_DIR_READ,
  996. old_z_dir_pin = Z_DIR_READ;
  997. //setup new step
  998. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  999. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1000. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1001. //perform step
  1002. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1003. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1004. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1005. delayMicroseconds(2);
  1006. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1007. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1008. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1009. //get old pin state back.
  1010. X_DIR_WRITE(old_x_dir_pin);
  1011. Y_DIR_WRITE(old_y_dir_pin);
  1012. Z_DIR_WRITE(old_z_dir_pin);
  1013. #endif
  1014. } break;
  1015. default: break;
  1016. }
  1017. }
  1018. #endif //BABYSTEPPING
  1019. // From Arduino DigitalPotControl example
  1020. void digitalPotWrite(int address, int value) {
  1021. #if HAS_DIGIPOTSS
  1022. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1023. SPI.transfer(address); // send in the address and value via SPI:
  1024. SPI.transfer(value);
  1025. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1026. //delay(10);
  1027. #else
  1028. UNUSED(address);
  1029. UNUSED(value);
  1030. #endif
  1031. }
  1032. // Initialize Digipot Motor Current
  1033. void digipot_init() {
  1034. #if HAS_DIGIPOTSS
  1035. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1036. SPI.begin();
  1037. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1038. for (int i = 0; i < COUNT(digipot_motor_current); i++) {
  1039. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1040. digipot_current(i, digipot_motor_current[i]);
  1041. }
  1042. #endif
  1043. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1044. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1045. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1046. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1047. digipot_current(0, motor_current_setting[0]);
  1048. digipot_current(1, motor_current_setting[1]);
  1049. digipot_current(2, motor_current_setting[2]);
  1050. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1051. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1052. #endif
  1053. }
  1054. void digipot_current(uint8_t driver, int current) {
  1055. #if HAS_DIGIPOTSS
  1056. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1057. digitalPotWrite(digipot_ch[driver], current);
  1058. #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
  1059. switch (driver) {
  1060. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1061. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1062. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1063. }
  1064. #else
  1065. UNUSED(driver);
  1066. UNUSED(current);
  1067. #endif
  1068. }
  1069. void microstep_init() {
  1070. #if HAS_MICROSTEPS_E1
  1071. pinMode(E1_MS1_PIN, OUTPUT);
  1072. pinMode(E1_MS2_PIN, OUTPUT);
  1073. #endif
  1074. #if HAS_MICROSTEPS
  1075. pinMode(X_MS1_PIN, OUTPUT);
  1076. pinMode(X_MS2_PIN, OUTPUT);
  1077. pinMode(Y_MS1_PIN, OUTPUT);
  1078. pinMode(Y_MS2_PIN, OUTPUT);
  1079. pinMode(Z_MS1_PIN, OUTPUT);
  1080. pinMode(Z_MS2_PIN, OUTPUT);
  1081. pinMode(E0_MS1_PIN, OUTPUT);
  1082. pinMode(E0_MS2_PIN, OUTPUT);
  1083. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1084. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1085. microstep_mode(i, microstep_modes[i]);
  1086. #endif
  1087. }
  1088. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1089. if (ms1 >= 0) switch (driver) {
  1090. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1091. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1092. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1093. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1094. #if HAS_MICROSTEPS_E1
  1095. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1096. #endif
  1097. }
  1098. if (ms2 >= 0) switch (driver) {
  1099. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1100. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1101. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1102. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1103. #if PIN_EXISTS(E1_MS2)
  1104. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1105. #endif
  1106. }
  1107. }
  1108. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1109. switch (stepping_mode) {
  1110. case 1: microstep_ms(driver, MICROSTEP1); break;
  1111. case 2: microstep_ms(driver, MICROSTEP2); break;
  1112. case 4: microstep_ms(driver, MICROSTEP4); break;
  1113. case 8: microstep_ms(driver, MICROSTEP8); break;
  1114. case 16: microstep_ms(driver, MICROSTEP16); break;
  1115. }
  1116. }
  1117. void microstep_readings() {
  1118. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1119. SERIAL_PROTOCOLPGM("X: ");
  1120. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1121. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1122. SERIAL_PROTOCOLPGM("Y: ");
  1123. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1124. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1125. SERIAL_PROTOCOLPGM("Z: ");
  1126. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1127. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1128. SERIAL_PROTOCOLPGM("E0: ");
  1129. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1130. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1131. #if HAS_MICROSTEPS_E1
  1132. SERIAL_PROTOCOLPGM("E1: ");
  1133. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1134. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1135. #endif
  1136. }
  1137. #if ENABLED(Z_DUAL_ENDSTOPS)
  1138. void In_Homing_Process(bool state) { performing_homing = state; }
  1139. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1140. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1141. #endif