My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 43KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "planner.h"
  47. #include "temperature.h"
  48. #include "ultralcd.h"
  49. #include "language.h"
  50. #include "cardreader.h"
  51. #include "speed_lookuptable.h"
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. //===========================================================================
  56. //============================= public variables ============================
  57. //===========================================================================
  58. block_t* current_block; // A pointer to the block currently being traced
  59. #if ENABLED(HAS_Z_MIN_PROBE)
  60. volatile bool z_probe_is_active = false;
  61. #endif
  62. //===========================================================================
  63. //============================= private variables ===========================
  64. //===========================================================================
  65. //static makes it impossible to be called from outside of this file by extern.!
  66. // Variables used by The Stepper Driver Interrupt
  67. static unsigned char out_bits = 0; // The next stepping-bits to be output
  68. static unsigned int cleaning_buffer_counter;
  69. #if ENABLED(Z_DUAL_ENDSTOPS)
  70. static bool performing_homing = false,
  71. locked_z_motor = false,
  72. locked_z2_motor = false;
  73. #endif
  74. // Counter variables for the Bresenham line tracer
  75. static long counter_x, counter_y, counter_z, counter_e;
  76. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE)
  78. static long advance_rate, advance, final_advance = 0;
  79. static long old_advance = 0;
  80. static long e_steps[4];
  81. #endif
  82. static long acceleration_time, deceleration_time;
  83. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  84. static unsigned short acc_step_rate; // needed for deceleration start point
  85. static uint8_t step_loops;
  86. static uint8_t step_loops_nominal;
  87. static unsigned short OCR1A_nominal;
  88. volatile long endstops_trigsteps[3] = { 0 };
  89. volatile long endstops_stepsTotal, endstops_stepsDone;
  90. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  91. #if DISABLED(Z_DUAL_ENDSTOPS)
  92. static byte
  93. #else
  94. static uint16_t
  95. #endif
  96. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  97. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  98. bool abort_on_endstop_hit = false;
  99. #endif
  100. #if HAS_MOTOR_CURRENT_PWM
  101. #ifndef PWM_MOTOR_CURRENT
  102. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  103. #endif
  104. const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
  105. #endif
  106. static bool check_endstops = true;
  107. static bool check_endstops_global =
  108. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  109. false
  110. #else
  111. true
  112. #endif
  113. ;
  114. volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
  115. volatile signed char count_direction[NUM_AXIS] = { 1 };
  116. //===========================================================================
  117. //================================ functions ================================
  118. //===========================================================================
  119. #if ENABLED(DUAL_X_CARRIAGE)
  120. #define X_APPLY_DIR(v,ALWAYS) \
  121. if (extruder_duplication_enabled || ALWAYS) { \
  122. X_DIR_WRITE(v); \
  123. X2_DIR_WRITE(v); \
  124. } \
  125. else { \
  126. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  127. }
  128. #define X_APPLY_STEP(v,ALWAYS) \
  129. if (extruder_duplication_enabled || ALWAYS) { \
  130. X_STEP_WRITE(v); \
  131. X2_STEP_WRITE(v); \
  132. } \
  133. else { \
  134. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  135. }
  136. #else
  137. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  138. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  139. #endif
  140. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  141. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  142. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  143. #else
  144. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  145. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  146. #endif
  147. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  148. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  149. #if ENABLED(Z_DUAL_ENDSTOPS)
  150. #define Z_APPLY_STEP(v,Q) \
  151. if (performing_homing) { \
  152. if (Z_HOME_DIR > 0) {\
  153. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  154. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  155. } \
  156. else { \
  157. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  158. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  159. } \
  160. } \
  161. else { \
  162. Z_STEP_WRITE(v); \
  163. Z2_STEP_WRITE(v); \
  164. }
  165. #else
  166. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  167. #endif
  168. #else
  169. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  170. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  171. #endif
  172. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  173. // intRes = intIn1 * intIn2 >> 16
  174. // uses:
  175. // r26 to store 0
  176. // r27 to store the byte 1 of the 24 bit result
  177. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  178. asm volatile ( \
  179. "clr r26 \n\t" \
  180. "mul %A1, %B2 \n\t" \
  181. "movw %A0, r0 \n\t" \
  182. "mul %A1, %A2 \n\t" \
  183. "add %A0, r1 \n\t" \
  184. "adc %B0, r26 \n\t" \
  185. "lsr r0 \n\t" \
  186. "adc %A0, r26 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "clr r1 \n\t" \
  189. : \
  190. "=&r" (intRes) \
  191. : \
  192. "d" (charIn1), \
  193. "d" (intIn2) \
  194. : \
  195. "r26" \
  196. )
  197. // intRes = longIn1 * longIn2 >> 24
  198. // uses:
  199. // r26 to store 0
  200. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  201. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  202. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  203. // B0 A0 are bits 24-39 and are the returned value
  204. // C1 B1 A1 is longIn1
  205. // D2 C2 B2 A2 is longIn2
  206. //
  207. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  208. asm volatile ( \
  209. "clr r26 \n\t" \
  210. "mul %A1, %B2 \n\t" \
  211. "mov r27, r1 \n\t" \
  212. "mul %B1, %C2 \n\t" \
  213. "movw %A0, r0 \n\t" \
  214. "mul %C1, %C2 \n\t" \
  215. "add %B0, r0 \n\t" \
  216. "mul %C1, %B2 \n\t" \
  217. "add %A0, r0 \n\t" \
  218. "adc %B0, r1 \n\t" \
  219. "mul %A1, %C2 \n\t" \
  220. "add r27, r0 \n\t" \
  221. "adc %A0, r1 \n\t" \
  222. "adc %B0, r26 \n\t" \
  223. "mul %B1, %B2 \n\t" \
  224. "add r27, r0 \n\t" \
  225. "adc %A0, r1 \n\t" \
  226. "adc %B0, r26 \n\t" \
  227. "mul %C1, %A2 \n\t" \
  228. "add r27, r0 \n\t" \
  229. "adc %A0, r1 \n\t" \
  230. "adc %B0, r26 \n\t" \
  231. "mul %B1, %A2 \n\t" \
  232. "add r27, r1 \n\t" \
  233. "adc %A0, r26 \n\t" \
  234. "adc %B0, r26 \n\t" \
  235. "lsr r27 \n\t" \
  236. "adc %A0, r26 \n\t" \
  237. "adc %B0, r26 \n\t" \
  238. "mul %D2, %A1 \n\t" \
  239. "add %A0, r0 \n\t" \
  240. "adc %B0, r1 \n\t" \
  241. "mul %D2, %B1 \n\t" \
  242. "add %B0, r0 \n\t" \
  243. "clr r1 \n\t" \
  244. : \
  245. "=&r" (intRes) \
  246. : \
  247. "d" (longIn1), \
  248. "d" (longIn2) \
  249. : \
  250. "r26" , "r27" \
  251. )
  252. // Some useful constants
  253. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  254. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  255. void enable_endstops(bool check) { check_endstops = check; }
  256. void enable_endstops_globally(bool check) { check_endstops_global = check_endstops = check; }
  257. void endstops_not_homing() { check_endstops = check_endstops_global; }
  258. void endstops_hit_on_purpose() { endstop_hit_bits = 0; }
  259. void checkHitEndstops() {
  260. if (endstop_hit_bits) {
  261. #if ENABLED(ULTRA_LCD)
  262. char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
  263. #define _SET_STOP_CHAR(A,C) (chr## A = C)
  264. #else
  265. #define _SET_STOP_CHAR(A,C) ;
  266. #endif
  267. #define _ENDSTOP_HIT_ECHO(A,C) do{ \
  268. SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", endstops_trigsteps[A ##_AXIS] / axis_steps_per_unit[A ##_AXIS]); \
  269. _SET_STOP_CHAR(A,C); }while(0)
  270. #define _ENDSTOP_HIT_TEST(A,C) \
  271. if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
  272. _ENDSTOP_HIT_ECHO(A,C)
  273. SERIAL_ECHO_START;
  274. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  275. _ENDSTOP_HIT_TEST(X, 'X');
  276. _ENDSTOP_HIT_TEST(Y, 'Y');
  277. _ENDSTOP_HIT_TEST(Z, 'Z');
  278. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  279. #define P_AXIS Z_AXIS
  280. if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
  281. #endif
  282. SERIAL_EOL;
  283. #if ENABLED(ULTRA_LCD)
  284. char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
  285. sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
  286. lcd_setstatus(msg);
  287. #endif
  288. endstops_hit_on_purpose();
  289. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  290. if (abort_on_endstop_hit) {
  291. card.sdprinting = false;
  292. card.closefile();
  293. quickStop();
  294. disable_all_heaters(); // switch off all heaters.
  295. }
  296. #endif
  297. }
  298. }
  299. // Check endstops - Called from ISR!
  300. inline void update_endstops() {
  301. #if ENABLED(Z_DUAL_ENDSTOPS)
  302. uint16_t
  303. #else
  304. byte
  305. #endif
  306. current_endstop_bits = 0;
  307. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  308. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  309. #define _AXIS(AXIS) AXIS ##_AXIS
  310. #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
  311. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  312. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  313. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  314. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  315. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  316. // TEST_ENDSTOP: test the old and the current status of an endstop
  317. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  318. #if ENABLED(COREXY) || ENABLED(COREXZ)
  319. #define _SET_TRIGSTEPS(AXIS) do { \
  320. float axis_pos = count_position[_AXIS(AXIS)]; \
  321. if (_AXIS(AXIS) == A_AXIS) \
  322. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
  323. else if (_AXIS(AXIS) == CORE_AXIS_2) \
  324. axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
  325. endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
  326. } while(0)
  327. #else
  328. #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
  329. #endif // COREXY || COREXZ
  330. #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
  331. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  332. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
  333. _SET_TRIGSTEPS(AXIS); \
  334. _ENDSTOP_HIT(AXIS); \
  335. step_events_completed = current_block->step_event_count; \
  336. } \
  337. } while(0)
  338. #if ENABLED(COREXY) || ENABLED(COREXZ)
  339. // Head direction in -X axis for CoreXY and CoreXZ bots.
  340. // If Delta1 == -Delta2, the movement is only in Y or Z axis
  341. if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
  342. if (TEST(out_bits, X_HEAD))
  343. #else
  344. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  345. #endif
  346. { // -direction
  347. #if ENABLED(DUAL_X_CARRIAGE)
  348. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  349. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  350. #endif
  351. {
  352. #if HAS_X_MIN
  353. UPDATE_ENDSTOP(X, MIN);
  354. #endif
  355. }
  356. }
  357. else { // +direction
  358. #if ENABLED(DUAL_X_CARRIAGE)
  359. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  360. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  361. #endif
  362. {
  363. #if HAS_X_MAX
  364. UPDATE_ENDSTOP(X, MAX);
  365. #endif
  366. }
  367. }
  368. #if ENABLED(COREXY) || ENABLED(COREXZ)
  369. }
  370. #endif
  371. #if ENABLED(COREXY)
  372. // Head direction in -Y axis for CoreXY bots.
  373. // If DeltaX == DeltaY, the movement is only in X axis
  374. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  375. if (TEST(out_bits, Y_HEAD))
  376. #else
  377. if (TEST(out_bits, Y_AXIS)) // -direction
  378. #endif
  379. { // -direction
  380. #if HAS_Y_MIN
  381. UPDATE_ENDSTOP(Y, MIN);
  382. #endif
  383. }
  384. else { // +direction
  385. #if HAS_Y_MAX
  386. UPDATE_ENDSTOP(Y, MAX);
  387. #endif
  388. }
  389. #if ENABLED(COREXY)
  390. }
  391. #endif
  392. #if ENABLED(COREXZ)
  393. // Head direction in -Z axis for CoreXZ bots.
  394. // If DeltaX == DeltaZ, the movement is only in X axis
  395. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  396. if (TEST(out_bits, Z_HEAD))
  397. #else
  398. if (TEST(out_bits, Z_AXIS))
  399. #endif
  400. { // z -direction
  401. #if HAS_Z_MIN
  402. #if ENABLED(Z_DUAL_ENDSTOPS)
  403. SET_ENDSTOP_BIT(Z, MIN);
  404. #if HAS_Z2_MIN
  405. SET_ENDSTOP_BIT(Z2, MIN);
  406. #else
  407. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  408. #endif
  409. byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
  410. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  411. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  412. SBI(endstop_hit_bits, Z_MIN);
  413. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  414. step_events_completed = current_block->step_event_count;
  415. }
  416. #else // !Z_DUAL_ENDSTOPS
  417. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
  418. if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN);
  419. #else
  420. UPDATE_ENDSTOP(Z, MIN);
  421. #endif
  422. #endif // !Z_DUAL_ENDSTOPS
  423. #endif
  424. #if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
  425. if (z_probe_is_active) {
  426. UPDATE_ENDSTOP(Z, MIN_PROBE);
  427. if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
  428. }
  429. #endif
  430. }
  431. else { // z +direction
  432. #if HAS_Z_MAX
  433. #if ENABLED(Z_DUAL_ENDSTOPS)
  434. SET_ENDSTOP_BIT(Z, MAX);
  435. #if HAS_Z2_MAX
  436. SET_ENDSTOP_BIT(Z2, MAX);
  437. #else
  438. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  439. #endif
  440. byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
  441. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  442. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  443. SBI(endstop_hit_bits, Z_MIN);
  444. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  445. step_events_completed = current_block->step_event_count;
  446. }
  447. #else // !Z_DUAL_ENDSTOPS
  448. UPDATE_ENDSTOP(Z, MAX);
  449. #endif // !Z_DUAL_ENDSTOPS
  450. #endif // Z_MAX_PIN
  451. }
  452. #if ENABLED(COREXZ)
  453. }
  454. #endif
  455. old_endstop_bits = current_endstop_bits;
  456. }
  457. // __________________________
  458. // /| |\ _________________ ^
  459. // / | | \ /| |\ |
  460. // / | | \ / | | \ s
  461. // / | | | | | \ p
  462. // / | | | | | \ e
  463. // +-----+------------------------+---+--+---------------+----+ e
  464. // | BLOCK 1 | BLOCK 2 | d
  465. //
  466. // time ----->
  467. //
  468. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  469. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  470. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  471. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  472. void st_wake_up() {
  473. // TCNT1 = 0;
  474. ENABLE_STEPPER_DRIVER_INTERRUPT();
  475. }
  476. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  477. unsigned short timer;
  478. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  479. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  480. step_rate = (step_rate >> 2) & 0x3fff;
  481. step_loops = 4;
  482. }
  483. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  484. step_rate = (step_rate >> 1) & 0x7fff;
  485. step_loops = 2;
  486. }
  487. else {
  488. step_loops = 1;
  489. }
  490. NOLESS(step_rate, F_CPU / 500000);
  491. step_rate -= F_CPU / 500000; // Correct for minimal speed
  492. if (step_rate >= (8 * 256)) { // higher step rate
  493. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  494. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  495. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  496. MultiU16X8toH16(timer, tmp_step_rate, gain);
  497. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  498. }
  499. else { // lower step rates
  500. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  501. table_address += ((step_rate) >> 1) & 0xfffc;
  502. timer = (unsigned short)pgm_read_word_near(table_address);
  503. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  504. }
  505. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  506. return timer;
  507. }
  508. /**
  509. * Set the stepper direction of each axis
  510. *
  511. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  512. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  513. */
  514. void set_stepper_direction() {
  515. #define SET_STEP_DIR(AXIS) \
  516. if (TEST(out_bits, AXIS ##_AXIS)) { \
  517. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  518. count_direction[AXIS ##_AXIS] = -1; \
  519. } \
  520. else { \
  521. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  522. count_direction[AXIS ##_AXIS] = 1; \
  523. }
  524. SET_STEP_DIR(X); // A
  525. SET_STEP_DIR(Y); // B
  526. SET_STEP_DIR(Z); // C
  527. #if DISABLED(ADVANCE)
  528. if (TEST(out_bits, E_AXIS)) {
  529. REV_E_DIR();
  530. count_direction[E_AXIS] = -1;
  531. }
  532. else {
  533. NORM_E_DIR();
  534. count_direction[E_AXIS] = 1;
  535. }
  536. #endif //!ADVANCE
  537. }
  538. // Initializes the trapezoid generator from the current block. Called whenever a new
  539. // block begins.
  540. FORCE_INLINE void trapezoid_generator_reset() {
  541. static int8_t last_extruder = -1;
  542. if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
  543. out_bits = current_block->direction_bits;
  544. last_extruder = current_block->active_extruder;
  545. set_stepper_direction();
  546. }
  547. #if ENABLED(ADVANCE)
  548. advance = current_block->initial_advance;
  549. final_advance = current_block->final_advance;
  550. // Do E steps + advance steps
  551. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  552. old_advance = advance >>8;
  553. #endif
  554. deceleration_time = 0;
  555. // step_rate to timer interval
  556. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  557. // make a note of the number of step loops required at nominal speed
  558. step_loops_nominal = step_loops;
  559. acc_step_rate = current_block->initial_rate;
  560. acceleration_time = calc_timer(acc_step_rate);
  561. OCR1A = acceleration_time;
  562. // SERIAL_ECHO_START;
  563. // SERIAL_ECHOPGM("advance :");
  564. // SERIAL_ECHO(current_block->advance/256.0);
  565. // SERIAL_ECHOPGM("advance rate :");
  566. // SERIAL_ECHO(current_block->advance_rate/256.0);
  567. // SERIAL_ECHOPGM("initial advance :");
  568. // SERIAL_ECHO(current_block->initial_advance/256.0);
  569. // SERIAL_ECHOPGM("final advance :");
  570. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  571. }
  572. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  573. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  574. ISR(TIMER1_COMPA_vect) {
  575. if (cleaning_buffer_counter) {
  576. current_block = NULL;
  577. plan_discard_current_block();
  578. #ifdef SD_FINISHED_RELEASECOMMAND
  579. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  580. #endif
  581. cleaning_buffer_counter--;
  582. OCR1A = 200;
  583. return;
  584. }
  585. // If there is no current block, attempt to pop one from the buffer
  586. if (!current_block) {
  587. // Anything in the buffer?
  588. current_block = plan_get_current_block();
  589. if (current_block) {
  590. current_block->busy = true;
  591. trapezoid_generator_reset();
  592. counter_x = -(current_block->step_event_count >> 1);
  593. counter_y = counter_z = counter_e = counter_x;
  594. step_events_completed = 0;
  595. #if ENABLED(Z_LATE_ENABLE)
  596. if (current_block->steps[Z_AXIS] > 0) {
  597. enable_z();
  598. OCR1A = 2000; //1ms wait
  599. return;
  600. }
  601. #endif
  602. // #if ENABLED(ADVANCE)
  603. // e_steps[current_block->active_extruder] = 0;
  604. // #endif
  605. }
  606. else {
  607. OCR1A = 2000; // 1kHz.
  608. }
  609. }
  610. if (current_block != NULL) {
  611. // Update endstops state, if enabled
  612. #if ENABLED(HAS_Z_MIN_PROBE)
  613. if (check_endstops || z_probe_is_active) update_endstops();
  614. #else
  615. if (check_endstops) update_endstops();
  616. #endif
  617. // Take multiple steps per interrupt (For high speed moves)
  618. for (int8_t i = 0; i < step_loops; i++) {
  619. #ifndef USBCON
  620. customizedSerial.checkRx(); // Check for serial chars.
  621. #endif
  622. #if ENABLED(ADVANCE)
  623. counter_e += current_block->steps[E_AXIS];
  624. if (counter_e > 0) {
  625. counter_e -= current_block->step_event_count;
  626. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  627. }
  628. #endif //ADVANCE
  629. #define _COUNTER(axis) counter_## axis
  630. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  631. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  632. #define STEP_ADD(axis, AXIS) \
  633. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  634. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  635. STEP_ADD(x,X);
  636. STEP_ADD(y,Y);
  637. STEP_ADD(z,Z);
  638. #if DISABLED(ADVANCE)
  639. STEP_ADD(e,E);
  640. #endif
  641. #define STEP_IF_COUNTER(axis, AXIS) \
  642. if (_COUNTER(axis) > 0) { \
  643. _COUNTER(axis) -= current_block->step_event_count; \
  644. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  645. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  646. }
  647. STEP_IF_COUNTER(x, X);
  648. STEP_IF_COUNTER(y, Y);
  649. STEP_IF_COUNTER(z, Z);
  650. #if DISABLED(ADVANCE)
  651. STEP_IF_COUNTER(e, E);
  652. #endif
  653. step_events_completed++;
  654. if (step_events_completed >= current_block->step_event_count) break;
  655. }
  656. // Calculate new timer value
  657. unsigned short timer;
  658. unsigned short step_rate;
  659. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  660. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  661. acc_step_rate += current_block->initial_rate;
  662. // upper limit
  663. NOMORE(acc_step_rate, current_block->nominal_rate);
  664. // step_rate to timer interval
  665. timer = calc_timer(acc_step_rate);
  666. OCR1A = timer;
  667. acceleration_time += timer;
  668. #if ENABLED(ADVANCE)
  669. advance += advance_rate * step_loops;
  670. //NOLESS(advance, current_block->advance);
  671. // Do E steps + advance steps
  672. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  673. old_advance = advance >> 8;
  674. #endif //ADVANCE
  675. }
  676. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  677. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  678. if (step_rate <= acc_step_rate) { // Still decelerating?
  679. step_rate = acc_step_rate - step_rate;
  680. NOLESS(step_rate, current_block->final_rate);
  681. }
  682. else
  683. step_rate = current_block->final_rate;
  684. // step_rate to timer interval
  685. timer = calc_timer(step_rate);
  686. OCR1A = timer;
  687. deceleration_time += timer;
  688. #if ENABLED(ADVANCE)
  689. advance -= advance_rate * step_loops;
  690. NOLESS(advance, final_advance);
  691. // Do E steps + advance steps
  692. uint32_t advance_whole = advance >> 8;
  693. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  694. old_advance = advance_whole;
  695. #endif //ADVANCE
  696. }
  697. else {
  698. OCR1A = OCR1A_nominal;
  699. // ensure we're running at the correct step rate, even if we just came off an acceleration
  700. step_loops = step_loops_nominal;
  701. }
  702. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  703. // If current block is finished, reset pointer
  704. if (step_events_completed >= current_block->step_event_count) {
  705. current_block = NULL;
  706. plan_discard_current_block();
  707. }
  708. }
  709. }
  710. #if ENABLED(ADVANCE)
  711. unsigned char old_OCR0A;
  712. // Timer interrupt for E. e_steps is set in the main routine;
  713. // Timer 0 is shared with millies
  714. ISR(TIMER0_COMPA_vect) {
  715. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  716. OCR0A = old_OCR0A;
  717. #define STEP_E_ONCE(INDEX) \
  718. if (e_steps[INDEX] != 0) { \
  719. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  720. if (e_steps[INDEX] < 0) { \
  721. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  722. e_steps[INDEX]++; \
  723. } \
  724. else if (e_steps[INDEX] > 0) { \
  725. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  726. e_steps[INDEX]--; \
  727. } \
  728. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  729. }
  730. // Step all E steppers that have steps, up to 4 steps per interrupt
  731. for (unsigned char i = 0; i < 4; i++) {
  732. STEP_E_ONCE(0);
  733. #if EXTRUDERS > 1
  734. STEP_E_ONCE(1);
  735. #if EXTRUDERS > 2
  736. STEP_E_ONCE(2);
  737. #if EXTRUDERS > 3
  738. STEP_E_ONCE(3);
  739. #endif
  740. #endif
  741. #endif
  742. }
  743. }
  744. #endif // ADVANCE
  745. void st_init() {
  746. digipot_init(); //Initialize Digipot Motor Current
  747. microstep_init(); //Initialize Microstepping Pins
  748. // initialise TMC Steppers
  749. #if ENABLED(HAVE_TMCDRIVER)
  750. tmc_init();
  751. #endif
  752. // initialise L6470 Steppers
  753. #if ENABLED(HAVE_L6470DRIVER)
  754. L6470_init();
  755. #endif
  756. // Initialize Dir Pins
  757. #if HAS_X_DIR
  758. X_DIR_INIT;
  759. #endif
  760. #if HAS_X2_DIR
  761. X2_DIR_INIT;
  762. #endif
  763. #if HAS_Y_DIR
  764. Y_DIR_INIT;
  765. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  766. Y2_DIR_INIT;
  767. #endif
  768. #endif
  769. #if HAS_Z_DIR
  770. Z_DIR_INIT;
  771. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  772. Z2_DIR_INIT;
  773. #endif
  774. #endif
  775. #if HAS_E0_DIR
  776. E0_DIR_INIT;
  777. #endif
  778. #if HAS_E1_DIR
  779. E1_DIR_INIT;
  780. #endif
  781. #if HAS_E2_DIR
  782. E2_DIR_INIT;
  783. #endif
  784. #if HAS_E3_DIR
  785. E3_DIR_INIT;
  786. #endif
  787. //Initialize Enable Pins - steppers default to disabled.
  788. #if HAS_X_ENABLE
  789. X_ENABLE_INIT;
  790. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  791. #endif
  792. #if HAS_X2_ENABLE
  793. X2_ENABLE_INIT;
  794. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  795. #endif
  796. #if HAS_Y_ENABLE
  797. Y_ENABLE_INIT;
  798. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  799. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  800. Y2_ENABLE_INIT;
  801. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  802. #endif
  803. #endif
  804. #if HAS_Z_ENABLE
  805. Z_ENABLE_INIT;
  806. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  807. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  808. Z2_ENABLE_INIT;
  809. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  810. #endif
  811. #endif
  812. #if HAS_E0_ENABLE
  813. E0_ENABLE_INIT;
  814. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  815. #endif
  816. #if HAS_E1_ENABLE
  817. E1_ENABLE_INIT;
  818. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  819. #endif
  820. #if HAS_E2_ENABLE
  821. E2_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  823. #endif
  824. #if HAS_E3_ENABLE
  825. E3_ENABLE_INIT;
  826. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  827. #endif
  828. //endstops and pullups
  829. #if HAS_X_MIN
  830. SET_INPUT(X_MIN_PIN);
  831. #if ENABLED(ENDSTOPPULLUP_XMIN)
  832. WRITE(X_MIN_PIN,HIGH);
  833. #endif
  834. #endif
  835. #if HAS_Y_MIN
  836. SET_INPUT(Y_MIN_PIN);
  837. #if ENABLED(ENDSTOPPULLUP_YMIN)
  838. WRITE(Y_MIN_PIN,HIGH);
  839. #endif
  840. #endif
  841. #if HAS_Z_MIN
  842. SET_INPUT(Z_MIN_PIN);
  843. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  844. WRITE(Z_MIN_PIN,HIGH);
  845. #endif
  846. #endif
  847. #if HAS_Z2_MIN
  848. SET_INPUT(Z2_MIN_PIN);
  849. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  850. WRITE(Z2_MIN_PIN,HIGH);
  851. #endif
  852. #endif
  853. #if HAS_X_MAX
  854. SET_INPUT(X_MAX_PIN);
  855. #if ENABLED(ENDSTOPPULLUP_XMAX)
  856. WRITE(X_MAX_PIN,HIGH);
  857. #endif
  858. #endif
  859. #if HAS_Y_MAX
  860. SET_INPUT(Y_MAX_PIN);
  861. #if ENABLED(ENDSTOPPULLUP_YMAX)
  862. WRITE(Y_MAX_PIN,HIGH);
  863. #endif
  864. #endif
  865. #if HAS_Z_MAX
  866. SET_INPUT(Z_MAX_PIN);
  867. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  868. WRITE(Z_MAX_PIN,HIGH);
  869. #endif
  870. #endif
  871. #if HAS_Z2_MAX
  872. SET_INPUT(Z2_MAX_PIN);
  873. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  874. WRITE(Z2_MAX_PIN,HIGH);
  875. #endif
  876. #endif
  877. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  878. SET_INPUT(Z_MIN_PROBE_PIN);
  879. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  880. WRITE(Z_MIN_PROBE_PIN,HIGH);
  881. #endif
  882. #endif
  883. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  884. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  885. #define _DISABLE(axis) disable_## axis()
  886. #define AXIS_INIT(axis, AXIS, PIN) \
  887. _STEP_INIT(AXIS); \
  888. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  889. _DISABLE(axis)
  890. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  891. // Initialize Step Pins
  892. #if HAS_X_STEP
  893. AXIS_INIT(x, X, X);
  894. #endif
  895. #if HAS_X2_STEP
  896. AXIS_INIT(x, X2, X);
  897. #endif
  898. #if HAS_Y_STEP
  899. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  900. Y2_STEP_INIT;
  901. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  902. #endif
  903. AXIS_INIT(y, Y, Y);
  904. #endif
  905. #if HAS_Z_STEP
  906. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  907. Z2_STEP_INIT;
  908. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  909. #endif
  910. AXIS_INIT(z, Z, Z);
  911. #endif
  912. #if HAS_E0_STEP
  913. E_AXIS_INIT(0);
  914. #endif
  915. #if HAS_E1_STEP
  916. E_AXIS_INIT(1);
  917. #endif
  918. #if HAS_E2_STEP
  919. E_AXIS_INIT(2);
  920. #endif
  921. #if HAS_E3_STEP
  922. E_AXIS_INIT(3);
  923. #endif
  924. // waveform generation = 0100 = CTC
  925. CBI(TCCR1B, WGM13);
  926. SBI(TCCR1B, WGM12);
  927. CBI(TCCR1A, WGM11);
  928. CBI(TCCR1A, WGM10);
  929. // output mode = 00 (disconnected)
  930. TCCR1A &= ~(3 << COM1A0);
  931. TCCR1A &= ~(3 << COM1B0);
  932. // Set the timer pre-scaler
  933. // Generally we use a divider of 8, resulting in a 2MHz timer
  934. // frequency on a 16MHz MCU. If you are going to change this, be
  935. // sure to regenerate speed_lookuptable.h with
  936. // create_speed_lookuptable.py
  937. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  938. OCR1A = 0x4000;
  939. TCNT1 = 0;
  940. ENABLE_STEPPER_DRIVER_INTERRUPT();
  941. #if ENABLED(ADVANCE)
  942. #if defined(TCCR0A) && defined(WGM01)
  943. CBI(TCCR0A, WGM01);
  944. CBI(TCCR0A, WGM00);
  945. #endif
  946. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  947. SBI(TIMSK0, OCIE0A);
  948. #endif //ADVANCE
  949. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  950. sei();
  951. set_stepper_direction(); // Init directions to out_bits = 0
  952. }
  953. /**
  954. * Block until all buffered steps are executed
  955. */
  956. void st_synchronize() { while (blocks_queued()) idle(); }
  957. /**
  958. * Set the stepper positions directly in steps
  959. *
  960. * The input is based on the typical per-axis XYZ steps.
  961. * For CORE machines XYZ needs to be translated to ABC.
  962. *
  963. * This allows st_get_axis_position_mm to correctly
  964. * derive the current XYZ position later on.
  965. */
  966. void st_set_position(const long& x, const long& y, const long& z, const long& e) {
  967. CRITICAL_SECTION_START;
  968. #if ENABLED(COREXY)
  969. // corexy positioning
  970. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  971. count_position[A_AXIS] = x + y;
  972. count_position[B_AXIS] = x - y;
  973. count_position[Z_AXIS] = z;
  974. #elif ENABLED(COREXZ)
  975. // corexz planning
  976. count_position[A_AXIS] = x + z;
  977. count_position[Y_AXIS] = y;
  978. count_position[C_AXIS] = x - z;
  979. #else
  980. // default non-h-bot planning
  981. count_position[X_AXIS] = x;
  982. count_position[Y_AXIS] = y;
  983. count_position[Z_AXIS] = z;
  984. #endif
  985. count_position[E_AXIS] = e;
  986. CRITICAL_SECTION_END;
  987. }
  988. void st_set_e_position(const long& e) {
  989. CRITICAL_SECTION_START;
  990. count_position[E_AXIS] = e;
  991. CRITICAL_SECTION_END;
  992. }
  993. /**
  994. * Get a stepper's position in steps.
  995. */
  996. long st_get_position(AxisEnum axis) {
  997. CRITICAL_SECTION_START;
  998. long count_pos = count_position[axis];
  999. CRITICAL_SECTION_END;
  1000. return count_pos;
  1001. }
  1002. /**
  1003. * Get an axis position according to stepper position(s)
  1004. * For CORE machines apply translation from ABC to XYZ.
  1005. */
  1006. float st_get_axis_position_mm(AxisEnum axis) {
  1007. float axis_steps;
  1008. #if ENABLED(COREXY) | ENABLED(COREXZ)
  1009. if (axis == X_AXIS || axis == CORE_AXIS_2) {
  1010. CRITICAL_SECTION_START;
  1011. long pos1 = count_position[A_AXIS],
  1012. pos2 = count_position[CORE_AXIS_2];
  1013. CRITICAL_SECTION_END;
  1014. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1015. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1016. axis_steps = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
  1017. }
  1018. else
  1019. axis_steps = st_get_position(axis);
  1020. #else
  1021. axis_steps = st_get_position(axis);
  1022. #endif
  1023. return axis_steps / axis_steps_per_unit[axis];
  1024. }
  1025. void finishAndDisableSteppers() {
  1026. st_synchronize();
  1027. disable_all_steppers();
  1028. }
  1029. void quickStop() {
  1030. cleaning_buffer_counter = 5000;
  1031. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1032. while (blocks_queued()) plan_discard_current_block();
  1033. current_block = NULL;
  1034. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1035. }
  1036. #if ENABLED(BABYSTEPPING)
  1037. // MUST ONLY BE CALLED BY AN ISR,
  1038. // No other ISR should ever interrupt this!
  1039. void babystep(const uint8_t axis, const bool direction) {
  1040. #define _ENABLE(axis) enable_## axis()
  1041. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1042. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1043. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1044. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1045. _ENABLE(axis); \
  1046. uint8_t old_pin = _READ_DIR(AXIS); \
  1047. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1048. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1049. delayMicroseconds(2); \
  1050. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1051. _APPLY_DIR(AXIS, old_pin); \
  1052. }
  1053. switch (axis) {
  1054. case X_AXIS:
  1055. BABYSTEP_AXIS(x, X, false);
  1056. break;
  1057. case Y_AXIS:
  1058. BABYSTEP_AXIS(y, Y, false);
  1059. break;
  1060. case Z_AXIS: {
  1061. #if DISABLED(DELTA)
  1062. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1063. #else // DELTA
  1064. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1065. enable_x();
  1066. enable_y();
  1067. enable_z();
  1068. uint8_t old_x_dir_pin = X_DIR_READ,
  1069. old_y_dir_pin = Y_DIR_READ,
  1070. old_z_dir_pin = Z_DIR_READ;
  1071. //setup new step
  1072. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1073. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1074. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1075. //perform step
  1076. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1077. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1078. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1079. delayMicroseconds(2);
  1080. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1081. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1082. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1083. //get old pin state back.
  1084. X_DIR_WRITE(old_x_dir_pin);
  1085. Y_DIR_WRITE(old_y_dir_pin);
  1086. Z_DIR_WRITE(old_z_dir_pin);
  1087. #endif
  1088. } break;
  1089. default: break;
  1090. }
  1091. }
  1092. #endif //BABYSTEPPING
  1093. #if HAS_DIGIPOTSS
  1094. // From Arduino DigitalPotControl example
  1095. void digitalPotWrite(int address, int value) {
  1096. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1097. SPI.transfer(address); // send in the address and value via SPI:
  1098. SPI.transfer(value);
  1099. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1100. //delay(10);
  1101. }
  1102. #endif //HAS_DIGIPOTSS
  1103. // Initialize Digipot Motor Current
  1104. void digipot_init() {
  1105. #if HAS_DIGIPOTSS
  1106. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1107. SPI.begin();
  1108. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1109. for (int i = 0; i < COUNT(digipot_motor_current); i++) {
  1110. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1111. digipot_current(i, digipot_motor_current[i]);
  1112. }
  1113. #endif
  1114. #if HAS_MOTOR_CURRENT_PWM
  1115. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1116. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1117. digipot_current(0, motor_current_setting[0]);
  1118. #endif
  1119. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1120. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1121. digipot_current(1, motor_current_setting[1]);
  1122. #endif
  1123. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1124. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1125. digipot_current(2, motor_current_setting[2]);
  1126. #endif
  1127. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1128. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1129. #endif
  1130. }
  1131. void digipot_current(uint8_t driver, int current) {
  1132. #if HAS_DIGIPOTSS
  1133. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1134. digitalPotWrite(digipot_ch[driver], current);
  1135. #elif HAS_MOTOR_CURRENT_PWM
  1136. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1137. switch (driver) {
  1138. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1139. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1140. #endif
  1141. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1142. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1143. #endif
  1144. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1145. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1146. #endif
  1147. }
  1148. #else
  1149. UNUSED(driver);
  1150. UNUSED(current);
  1151. #endif
  1152. }
  1153. void microstep_init() {
  1154. #if HAS_MICROSTEPS_E1
  1155. pinMode(E1_MS1_PIN, OUTPUT);
  1156. pinMode(E1_MS2_PIN, OUTPUT);
  1157. #endif
  1158. #if HAS_MICROSTEPS
  1159. pinMode(X_MS1_PIN, OUTPUT);
  1160. pinMode(X_MS2_PIN, OUTPUT);
  1161. pinMode(Y_MS1_PIN, OUTPUT);
  1162. pinMode(Y_MS2_PIN, OUTPUT);
  1163. pinMode(Z_MS1_PIN, OUTPUT);
  1164. pinMode(Z_MS2_PIN, OUTPUT);
  1165. pinMode(E0_MS1_PIN, OUTPUT);
  1166. pinMode(E0_MS2_PIN, OUTPUT);
  1167. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1168. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1169. microstep_mode(i, microstep_modes[i]);
  1170. #endif
  1171. }
  1172. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1173. if (ms1 >= 0) switch (driver) {
  1174. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1175. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1176. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1177. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1178. #if HAS_MICROSTEPS_E1
  1179. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1180. #endif
  1181. }
  1182. if (ms2 >= 0) switch (driver) {
  1183. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1184. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1185. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1186. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1187. #if PIN_EXISTS(E1_MS2)
  1188. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1189. #endif
  1190. }
  1191. }
  1192. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1193. switch (stepping_mode) {
  1194. case 1: microstep_ms(driver, MICROSTEP1); break;
  1195. case 2: microstep_ms(driver, MICROSTEP2); break;
  1196. case 4: microstep_ms(driver, MICROSTEP4); break;
  1197. case 8: microstep_ms(driver, MICROSTEP8); break;
  1198. case 16: microstep_ms(driver, MICROSTEP16); break;
  1199. }
  1200. }
  1201. void microstep_readings() {
  1202. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1203. SERIAL_PROTOCOLPGM("X: ");
  1204. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1205. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1206. SERIAL_PROTOCOLPGM("Y: ");
  1207. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1208. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1209. SERIAL_PROTOCOLPGM("Z: ");
  1210. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1211. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1212. SERIAL_PROTOCOLPGM("E0: ");
  1213. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1214. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1215. #if HAS_MICROSTEPS_E1
  1216. SERIAL_PROTOCOLPGM("E1: ");
  1217. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1218. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1219. #endif
  1220. }
  1221. #if ENABLED(Z_DUAL_ENDSTOPS)
  1222. void In_Homing_Process(bool state) { performing_homing = state; }
  1223. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1224. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1225. #endif