My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

stepper.h 5.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. /*
  2. stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef stepper_h
  17. #define stepper_h
  18. #include "planner.h"
  19. #if EXTRUDERS > 3
  20. #define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { WRITE(E3_STEP_PIN, v); } else { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}}
  21. #define NORM_E_DIR() { if(current_block->active_extruder == 3) { WRITE(E3_DIR_PIN, !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}}
  22. #define REV_E_DIR() { if(current_block->active_extruder == 3) { WRITE(E3_DIR_PIN, INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}}
  23. #elif EXTRUDERS > 2
  24. #define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}
  25. #define NORM_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}
  26. #define REV_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}
  27. #elif EXTRUDERS > 1
  28. #ifndef DUAL_X_CARRIAGE
  29. #define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
  30. #define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
  31. #define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
  32. #else
  33. extern bool extruder_duplication_enabled;
  34. #define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { WRITE(E0_STEP_PIN, v); WRITE(E1_STEP_PIN, v); } else if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
  35. #define NORM_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
  36. #define REV_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, INVERT_E0_DIR); WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
  37. #endif
  38. #else
  39. #define WRITE_E_STEP(v) WRITE(E0_STEP_PIN, v)
  40. #define NORM_E_DIR() WRITE(E0_DIR_PIN, !INVERT_E0_DIR)
  41. #define REV_E_DIR() WRITE(E0_DIR_PIN, INVERT_E0_DIR)
  42. #endif
  43. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  44. extern bool abort_on_endstop_hit;
  45. #endif
  46. // Initialize and start the stepper motor subsystem
  47. void st_init();
  48. // Block until all buffered steps are executed
  49. void st_synchronize();
  50. // Set current position in steps
  51. void st_set_position(const long &x, const long &y, const long &z, const long &e);
  52. void st_set_e_position(const long &e);
  53. // Get current position in steps
  54. long st_get_position(uint8_t axis);
  55. #ifdef ENABLE_AUTO_BED_LEVELING
  56. // Get current position in mm
  57. float st_get_position_mm(uint8_t axis);
  58. #endif //ENABLE_AUTO_BED_LEVELING
  59. // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
  60. // to notify the subsystem that it is time to go to work.
  61. void st_wake_up();
  62. void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
  63. void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
  64. void enable_endstops(bool check); // Enable/disable endstop checking
  65. void checkStepperErrors(); //Print errors detected by the stepper
  66. void finishAndDisableSteppers();
  67. extern block_t *current_block; // A pointer to the block currently being traced
  68. void quickStop();
  69. void digitalPotWrite(int address, int value);
  70. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
  71. void microstep_mode(uint8_t driver, uint8_t stepping);
  72. void digipot_init();
  73. void digipot_current(uint8_t driver, int current);
  74. void microstep_init();
  75. void microstep_readings();
  76. #ifdef BABYSTEPPING
  77. void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention
  78. #endif
  79. #endif