My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 155KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  52. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  53. //Implemented Codes
  54. //-------------------
  55. // G0 -> G1
  56. // G1 - Coordinated Movement X Y Z E
  57. // G2 - CW ARC
  58. // G3 - CCW ARC
  59. // G4 - Dwell S<seconds> or P<milliseconds>
  60. // G10 - retract filament according to settings of M207
  61. // G11 - retract recover filament according to settings of M208
  62. // G28 - Home all Axis
  63. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. // G30 - Single Z Probe, probes bed at current XY location.
  65. // G31 - Dock sled (Z_PROBE_SLED only)
  66. // G32 - Undock sled (Z_PROBE_SLED only)
  67. // G90 - Use Absolute Coordinates
  68. // G91 - Use Relative Coordinates
  69. // G92 - Set current position to coordinates given
  70. // M Codes
  71. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  72. // M1 - Same as M0
  73. // M17 - Enable/Power all stepper motors
  74. // M18 - Disable all stepper motors; same as M84
  75. // M20 - List SD card
  76. // M21 - Init SD card
  77. // M22 - Release SD card
  78. // M23 - Select SD file (M23 filename.g)
  79. // M24 - Start/resume SD print
  80. // M25 - Pause SD print
  81. // M26 - Set SD position in bytes (M26 S12345)
  82. // M27 - Report SD print status
  83. // M28 - Start SD write (M28 filename.g)
  84. // M29 - Stop SD write
  85. // M30 - Delete file from SD (M30 filename.g)
  86. // M31 - Output time since last M109 or SD card start to serial
  87. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  88. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  89. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  90. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  92. // M80 - Turn on Power Supply
  93. // M81 - Turn off Power Supply
  94. // M82 - Set E codes absolute (default)
  95. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  96. // M84 - Disable steppers until next move,
  97. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  98. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  99. // M92 - Set axis_steps_per_unit - same syntax as G92
  100. // M104 - Set extruder target temp
  101. // M105 - Read current temp
  102. // M106 - Fan on
  103. // M107 - Fan off
  104. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  105. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  106. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  107. // M112 - Emergency stop
  108. // M114 - Output current position to serial port
  109. // M115 - Capabilities string
  110. // M117 - display message
  111. // M119 - Output Endstop status to serial port
  112. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  113. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  114. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M140 - Set bed target temp
  117. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  118. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  119. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  120. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  121. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  122. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  123. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  124. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  125. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  126. // M206 - Set additional homing offset
  127. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  128. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  129. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  130. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  131. // M220 S<factor in percent>- set speed factor override percentage
  132. // M221 S<factor in percent>- set extrude factor override percentage
  133. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  134. // M240 - Trigger a camera to take a photograph
  135. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  136. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  137. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  138. // M301 - Set PID parameters P I and D
  139. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  140. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  141. // M304 - Set bed PID parameters P I and D
  142. // M400 - Finish all moves
  143. // M401 - Lower z-probe if present
  144. // M402 - Raise z-probe if present
  145. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  146. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  147. // M406 - Turn off Filament Sensor extrusion control
  148. // M407 - Displays measured filament diameter
  149. // M500 - Store parameters in EEPROM
  150. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  151. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  152. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  153. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  154. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  155. // M665 - Set delta configurations
  156. // M666 - Set delta endstop adjustment
  157. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  158. // M907 - Set digital trimpot motor current using axis codes.
  159. // M908 - Control digital trimpot directly.
  160. // M350 - Set microstepping mode.
  161. // M351 - Toggle MS1 MS2 pins directly.
  162. // ************ SCARA Specific - This can change to suit future G-code regulations
  163. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  164. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  165. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  166. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  167. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  168. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  169. //************* SCARA End ***************
  170. // M928 - Start SD logging (M928 filename.g) - ended by M29
  171. // M999 - Restart after being stopped by error
  172. #ifdef SDSUPPORT
  173. CardReader card;
  174. #endif
  175. float homing_feedrate[] = HOMING_FEEDRATE;
  176. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  177. int feedmultiply = 100; //100->1 200->2
  178. int saved_feedmultiply;
  179. int extrudemultiply = 100; //100->1 200->2
  180. int extruder_multiply[EXTRUDERS] = { 100
  181. #if EXTRUDERS > 1
  182. , 100
  183. #if EXTRUDERS > 2
  184. , 100
  185. #if EXTRUDERS > 3
  186. , 100
  187. #endif
  188. #endif
  189. #endif
  190. };
  191. bool volumetric_enabled = false;
  192. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  193. #if EXTRUDERS > 1
  194. , DEFAULT_NOMINAL_FILAMENT_DIA
  195. #if EXTRUDERS > 2
  196. , DEFAULT_NOMINAL_FILAMENT_DIA
  197. #if EXTRUDERS > 3
  198. , DEFAULT_NOMINAL_FILAMENT_DIA
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. float volumetric_multiplier[EXTRUDERS] = {1.0
  204. #if EXTRUDERS > 1
  205. , 1.0
  206. #if EXTRUDERS > 2
  207. , 1.0
  208. #if EXTRUDERS > 3
  209. , 1.0
  210. #endif
  211. #endif
  212. #endif
  213. };
  214. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  215. float add_homing[3] = { 0, 0, 0 };
  216. #ifdef DELTA
  217. float endstop_adj[3] = { 0, 0, 0 };
  218. #endif
  219. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  220. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  221. bool axis_known_position[3] = { false, false, false };
  222. float zprobe_zoffset;
  223. // Extruder offset
  224. #if EXTRUDERS > 1
  225. #ifndef DUAL_X_CARRIAGE
  226. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  227. #else
  228. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  229. #endif
  230. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  231. #if defined(EXTRUDER_OFFSET_X)
  232. EXTRUDER_OFFSET_X
  233. #else
  234. 0
  235. #endif
  236. ,
  237. #if defined(EXTRUDER_OFFSET_Y)
  238. EXTRUDER_OFFSET_Y
  239. #else
  240. 0
  241. #endif
  242. };
  243. #endif
  244. uint8_t active_extruder = 0;
  245. int fanSpeed = 0;
  246. #ifdef SERVO_ENDSTOPS
  247. int servo_endstops[] = SERVO_ENDSTOPS;
  248. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  249. #endif
  250. #ifdef BARICUDA
  251. int ValvePressure = 0;
  252. int EtoPPressure = 0;
  253. #endif
  254. #ifdef FWRETRACT
  255. bool autoretract_enabled = false;
  256. bool retracted[EXTRUDERS] = { false
  257. #if EXTRUDERS > 1
  258. , false
  259. #if EXTRUDERS > 2
  260. , false
  261. #if EXTRUDERS > 3
  262. , false
  263. #endif
  264. #endif
  265. #endif
  266. };
  267. bool retracted_swap[EXTRUDERS] = { false
  268. #if EXTRUDERS > 1
  269. , false
  270. #if EXTRUDERS > 2
  271. , false
  272. #if EXTRUDERS > 3
  273. , false
  274. #endif
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif // FWRETRACT
  286. #ifdef ULTIPANEL
  287. bool powersupply =
  288. #ifdef PS_DEFAULT_OFF
  289. false
  290. #else
  291. true
  292. #endif
  293. ;
  294. #endif
  295. #ifdef DELTA
  296. float delta[3] = { 0, 0, 0 };
  297. #define SIN_60 0.8660254037844386
  298. #define COS_60 0.5
  299. // these are the default values, can be overriden with M665
  300. float delta_radius = DELTA_RADIUS;
  301. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  302. float delta_tower1_y = -COS_60 * delta_radius;
  303. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  304. float delta_tower2_y = -COS_60 * delta_radius;
  305. float delta_tower3_x = 0; // back middle tower
  306. float delta_tower3_y = delta_radius;
  307. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  308. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  309. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  310. #endif
  311. #ifdef SCARA
  312. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  313. #endif
  314. bool cancel_heatup = false;
  315. #ifdef FILAMENT_SENSOR
  316. //Variables for Filament Sensor input
  317. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  318. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  319. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  320. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  321. int delay_index1=0; //index into ring buffer
  322. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  323. float delay_dist=0; //delay distance counter
  324. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  325. #endif
  326. const char errormagic[] PROGMEM = "Error:";
  327. const char echomagic[] PROGMEM = "echo:";
  328. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  329. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  330. #ifndef DELTA
  331. static float delta[3] = { 0, 0, 0 };
  332. #endif
  333. static float offset[3] = { 0, 0, 0 };
  334. static bool home_all_axis = true;
  335. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  336. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  337. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  338. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  339. static bool fromsd[BUFSIZE];
  340. static int bufindr = 0;
  341. static int bufindw = 0;
  342. static int buflen = 0;
  343. static char serial_char;
  344. static int serial_count = 0;
  345. static boolean comment_mode = false;
  346. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  347. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  348. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  349. // Inactivity shutdown
  350. static unsigned long previous_millis_cmd = 0;
  351. static unsigned long max_inactive_time = 0;
  352. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  353. unsigned long starttime = 0; ///< Print job start time
  354. unsigned long stoptime = 0; ///< Print job stop time
  355. static uint8_t tmp_extruder;
  356. bool Stopped = false;
  357. #if NUM_SERVOS > 0
  358. Servo servos[NUM_SERVOS];
  359. #endif
  360. bool CooldownNoWait = true;
  361. bool target_direction;
  362. #ifdef CHDK
  363. unsigned long chdkHigh = 0;
  364. boolean chdkActive = false;
  365. #endif
  366. //===========================================================================
  367. //=============================Routines======================================
  368. //===========================================================================
  369. void get_arc_coordinates();
  370. bool setTargetedHotend(int code);
  371. void serial_echopair_P(const char *s_P, float v)
  372. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, double v)
  374. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, unsigned long v)
  376. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef SDSUPPORT
  378. #include "SdFatUtil.h"
  379. int freeMemory() { return SdFatUtil::FreeRam(); }
  380. #else
  381. extern "C" {
  382. extern unsigned int __bss_end;
  383. extern unsigned int __heap_start;
  384. extern void *__brkval;
  385. int freeMemory() {
  386. int free_memory;
  387. if ((int)__brkval == 0)
  388. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  389. else
  390. free_memory = ((int)&free_memory) - ((int)__brkval);
  391. return free_memory;
  392. }
  393. }
  394. #endif //!SDSUPPORT
  395. //Injects the next command from the pending sequence of commands, when possible
  396. //Return false if and only if no command was pending
  397. static bool drain_queued_commands_P()
  398. {
  399. char cmd[30];
  400. if(!queued_commands_P)
  401. return false;
  402. // Get the next 30 chars from the sequence of gcodes to run
  403. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  404. cmd[sizeof(cmd)-1]= 0;
  405. // Look for the end of line, or the end of sequence
  406. size_t i= 0;
  407. char c;
  408. while( (c= cmd[i]) && c!='\n' )
  409. ++i; // look for the end of this gcode command
  410. cmd[i]= 0;
  411. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  412. {
  413. if(c)
  414. queued_commands_P+= i+1; // move to next command
  415. else
  416. queued_commands_P= NULL; // will have no more commands in the sequence
  417. }
  418. return true;
  419. }
  420. //Record one or many commands to run from program memory.
  421. //Aborts the current queue, if any.
  422. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  423. void enquecommands_P(const char* pgcode)
  424. {
  425. queued_commands_P= pgcode;
  426. drain_queued_commands_P(); // first command exectuted asap (when possible)
  427. }
  428. //adds a single command to the main command buffer, from RAM
  429. //that is really done in a non-safe way.
  430. //needs overworking someday
  431. //Returns false if it failed to do so
  432. bool enquecommand(const char *cmd)
  433. {
  434. if(*cmd==';')
  435. return false;
  436. if(buflen >= BUFSIZE)
  437. return false;
  438. //this is dangerous if a mixing of serial and this happens
  439. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  440. SERIAL_ECHO_START;
  441. SERIAL_ECHOPGM(MSG_Enqueing);
  442. SERIAL_ECHO(cmdbuffer[bufindw]);
  443. SERIAL_ECHOLNPGM("\"");
  444. bufindw= (bufindw + 1)%BUFSIZE;
  445. buflen += 1;
  446. return true;
  447. }
  448. void setup_killpin()
  449. {
  450. #if defined(KILL_PIN) && KILL_PIN > -1
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN,HIGH);
  453. #endif
  454. }
  455. // Set home pin
  456. void setup_homepin(void)
  457. {
  458. #if defined(HOME_PIN) && HOME_PIN > -1
  459. SET_INPUT(HOME_PIN);
  460. WRITE(HOME_PIN,HIGH);
  461. #endif
  462. }
  463. void setup_photpin()
  464. {
  465. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  466. SET_OUTPUT(PHOTOGRAPH_PIN);
  467. WRITE(PHOTOGRAPH_PIN, LOW);
  468. #endif
  469. }
  470. void setup_powerhold()
  471. {
  472. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  473. SET_OUTPUT(SUICIDE_PIN);
  474. WRITE(SUICIDE_PIN, HIGH);
  475. #endif
  476. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  477. SET_OUTPUT(PS_ON_PIN);
  478. #if defined(PS_DEFAULT_OFF)
  479. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  480. #else
  481. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  482. #endif
  483. #endif
  484. }
  485. void suicide()
  486. {
  487. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  488. SET_OUTPUT(SUICIDE_PIN);
  489. WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init()
  493. {
  494. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  495. servos[0].attach(SERVO0_PIN);
  496. #endif
  497. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  498. servos[1].attach(SERVO1_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  501. servos[2].attach(SERVO2_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  504. servos[3].attach(SERVO3_PIN);
  505. #endif
  506. #if (NUM_SERVOS >= 5)
  507. #error "TODO: enter initalisation code for more servos"
  508. #endif
  509. // Set position of Servo Endstops that are defined
  510. #ifdef SERVO_ENDSTOPS
  511. for(int8_t i = 0; i < 3; i++)
  512. {
  513. if(servo_endstops[i] > -1) {
  514. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  515. }
  516. }
  517. #endif
  518. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  519. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  520. servos[servo_endstops[Z_AXIS]].detach();
  521. #endif
  522. }
  523. void setup()
  524. {
  525. setup_killpin();
  526. setup_powerhold();
  527. MYSERIAL.begin(BAUDRATE);
  528. SERIAL_PROTOCOLLNPGM("start");
  529. SERIAL_ECHO_START;
  530. // Check startup - does nothing if bootloader sets MCUSR to 0
  531. byte mcu = MCUSR;
  532. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  533. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  534. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  535. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  536. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  537. MCUSR=0;
  538. SERIAL_ECHOPGM(MSG_MARLIN);
  539. SERIAL_ECHOLNPGM(STRING_VERSION);
  540. #ifdef STRING_VERSION_CONFIG_H
  541. #ifdef STRING_CONFIG_H_AUTHOR
  542. SERIAL_ECHO_START;
  543. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  544. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  545. SERIAL_ECHOPGM(MSG_AUTHOR);
  546. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  547. SERIAL_ECHOPGM("Compiled: ");
  548. SERIAL_ECHOLNPGM(__DATE__);
  549. #endif // STRING_CONFIG_H_AUTHOR
  550. #endif // STRING_VERSION_CONFIG_H
  551. SERIAL_ECHO_START;
  552. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  553. SERIAL_ECHO(freeMemory());
  554. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  555. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  556. for(int8_t i = 0; i < BUFSIZE; i++)
  557. {
  558. fromsd[i] = false;
  559. }
  560. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  561. Config_RetrieveSettings();
  562. tp_init(); // Initialize temperature loop
  563. plan_init(); // Initialize planner;
  564. watchdog_init();
  565. st_init(); // Initialize stepper, this enables interrupts!
  566. setup_photpin();
  567. servo_init();
  568. lcd_init();
  569. _delay_ms(1000); // wait 1sec to display the splash screen
  570. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  571. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  572. #endif
  573. #ifdef DIGIPOT_I2C
  574. digipot_i2c_init();
  575. #endif
  576. #ifdef Z_PROBE_SLED
  577. pinMode(SERVO0_PIN, OUTPUT);
  578. digitalWrite(SERVO0_PIN, LOW); // turn it off
  579. #endif // Z_PROBE_SLED
  580. setup_homepin();
  581. #ifdef STAT_LED_RED
  582. pinMode(STAT_LED_RED, OUTPUT);
  583. digitalWrite(STAT_LED_RED, LOW); // turn it off
  584. #endif
  585. #ifdef STAT_LED_BLUE
  586. pinMode(STAT_LED_BLUE, OUTPUT);
  587. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  588. #endif
  589. }
  590. void loop()
  591. {
  592. if(buflen < (BUFSIZE-1))
  593. get_command();
  594. #ifdef SDSUPPORT
  595. card.checkautostart(false);
  596. #endif
  597. if(buflen)
  598. {
  599. #ifdef SDSUPPORT
  600. if(card.saving)
  601. {
  602. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  603. {
  604. card.write_command(cmdbuffer[bufindr]);
  605. if(card.logging)
  606. {
  607. process_commands();
  608. }
  609. else
  610. {
  611. SERIAL_PROTOCOLLNPGM(MSG_OK);
  612. }
  613. }
  614. else
  615. {
  616. card.closefile();
  617. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  618. }
  619. }
  620. else
  621. {
  622. process_commands();
  623. }
  624. #else
  625. process_commands();
  626. #endif //SDSUPPORT
  627. buflen = (buflen-1);
  628. bufindr = (bufindr + 1)%BUFSIZE;
  629. }
  630. //check heater every n milliseconds
  631. manage_heater();
  632. manage_inactivity();
  633. checkHitEndstops();
  634. lcd_update();
  635. }
  636. void get_command()
  637. {
  638. if(drain_queued_commands_P()) // priority is given to non-serial commands
  639. return;
  640. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  641. serial_char = MYSERIAL.read();
  642. if(serial_char == '\n' ||
  643. serial_char == '\r' ||
  644. (serial_char == ':' && comment_mode == false) ||
  645. serial_count >= (MAX_CMD_SIZE - 1) )
  646. {
  647. if(!serial_count) { //if empty line
  648. comment_mode = false; //for new command
  649. return;
  650. }
  651. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  652. if(!comment_mode){
  653. comment_mode = false; //for new command
  654. fromsd[bufindw] = false;
  655. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  656. {
  657. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  658. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  659. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  660. SERIAL_ERROR_START;
  661. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  662. SERIAL_ERRORLN(gcode_LastN);
  663. //Serial.println(gcode_N);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  669. {
  670. byte checksum = 0;
  671. byte count = 0;
  672. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  673. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  674. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. //if no errors, continue parsing
  683. }
  684. else
  685. {
  686. SERIAL_ERROR_START;
  687. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  688. SERIAL_ERRORLN(gcode_LastN);
  689. FlushSerialRequestResend();
  690. serial_count = 0;
  691. return;
  692. }
  693. gcode_LastN = gcode_N;
  694. //if no errors, continue parsing
  695. }
  696. else // if we don't receive 'N' but still see '*'
  697. {
  698. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  699. {
  700. SERIAL_ERROR_START;
  701. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  702. SERIAL_ERRORLN(gcode_LastN);
  703. serial_count = 0;
  704. return;
  705. }
  706. }
  707. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  708. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  709. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  710. case 0:
  711. case 1:
  712. case 2:
  713. case 3:
  714. if (Stopped == true) {
  715. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  716. LCD_MESSAGEPGM(MSG_STOPPED);
  717. }
  718. break;
  719. default:
  720. break;
  721. }
  722. }
  723. //If command was e-stop process now
  724. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  725. kill();
  726. bufindw = (bufindw + 1)%BUFSIZE;
  727. buflen += 1;
  728. }
  729. serial_count = 0; //clear buffer
  730. }
  731. else
  732. {
  733. if(serial_char == ';') comment_mode = true;
  734. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  735. }
  736. }
  737. #ifdef SDSUPPORT
  738. if(!card.sdprinting || serial_count!=0){
  739. return;
  740. }
  741. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  742. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  743. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  744. static bool stop_buffering=false;
  745. if(buflen==0) stop_buffering=false;
  746. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  747. int16_t n=card.get();
  748. serial_char = (char)n;
  749. if(serial_char == '\n' ||
  750. serial_char == '\r' ||
  751. (serial_char == '#' && comment_mode == false) ||
  752. (serial_char == ':' && comment_mode == false) ||
  753. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  754. {
  755. if(card.eof()){
  756. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  757. stoptime=millis();
  758. char time[30];
  759. unsigned long t=(stoptime-starttime)/1000;
  760. int hours, minutes;
  761. minutes=(t/60)%60;
  762. hours=t/60/60;
  763. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  764. SERIAL_ECHO_START;
  765. SERIAL_ECHOLN(time);
  766. lcd_setstatus(time);
  767. card.printingHasFinished();
  768. card.checkautostart(true);
  769. }
  770. if(serial_char=='#')
  771. stop_buffering=true;
  772. if(!serial_count)
  773. {
  774. comment_mode = false; //for new command
  775. return; //if empty line
  776. }
  777. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  778. // if(!comment_mode){
  779. fromsd[bufindw] = true;
  780. buflen += 1;
  781. bufindw = (bufindw + 1)%BUFSIZE;
  782. // }
  783. comment_mode = false; //for new command
  784. serial_count = 0; //clear buffer
  785. }
  786. else
  787. {
  788. if(serial_char == ';') comment_mode = true;
  789. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  790. }
  791. }
  792. #endif //SDSUPPORT
  793. }
  794. float code_value()
  795. {
  796. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  797. }
  798. long code_value_long()
  799. {
  800. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  801. }
  802. bool code_seen(char code)
  803. {
  804. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  805. return (strchr_pointer != NULL); //Return True if a character was found
  806. }
  807. #define DEFINE_PGM_READ_ANY(type, reader) \
  808. static inline type pgm_read_any(const type *p) \
  809. { return pgm_read_##reader##_near(p); }
  810. DEFINE_PGM_READ_ANY(float, float);
  811. DEFINE_PGM_READ_ANY(signed char, byte);
  812. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  813. static const PROGMEM type array##_P[3] = \
  814. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  815. static inline type array(int axis) \
  816. { return pgm_read_any(&array##_P[axis]); }
  817. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  818. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  819. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  820. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  821. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  822. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  823. #ifdef DUAL_X_CARRIAGE
  824. #if EXTRUDERS == 1 || defined(COREXY) \
  825. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  826. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  827. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  828. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  829. #endif
  830. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  831. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  832. #endif
  833. #define DXC_FULL_CONTROL_MODE 0
  834. #define DXC_AUTO_PARK_MODE 1
  835. #define DXC_DUPLICATION_MODE 2
  836. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  837. static float x_home_pos(int extruder) {
  838. if (extruder == 0)
  839. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  840. else
  841. // In dual carriage mode the extruder offset provides an override of the
  842. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  843. // This allow soft recalibration of the second extruder offset position without firmware reflash
  844. // (through the M218 command).
  845. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  846. }
  847. static int x_home_dir(int extruder) {
  848. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  849. }
  850. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  851. static bool active_extruder_parked = false; // used in mode 1 & 2
  852. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  853. static unsigned long delayed_move_time = 0; // used in mode 1
  854. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  855. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  856. bool extruder_duplication_enabled = false; // used in mode 2
  857. #endif //DUAL_X_CARRIAGE
  858. static void axis_is_at_home(int axis) {
  859. #ifdef DUAL_X_CARRIAGE
  860. if (axis == X_AXIS) {
  861. if (active_extruder != 0) {
  862. current_position[X_AXIS] = x_home_pos(active_extruder);
  863. min_pos[X_AXIS] = X2_MIN_POS;
  864. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  865. return;
  866. }
  867. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  868. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  869. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  870. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  871. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  872. return;
  873. }
  874. }
  875. #endif
  876. #ifdef SCARA
  877. float homeposition[3];
  878. char i;
  879. if (axis < 2)
  880. {
  881. for (i=0; i<3; i++)
  882. {
  883. homeposition[i] = base_home_pos(i);
  884. }
  885. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  886. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  887. // Works out real Homeposition angles using inverse kinematics,
  888. // and calculates homing offset using forward kinematics
  889. calculate_delta(homeposition);
  890. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  891. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  892. for (i=0; i<2; i++)
  893. {
  894. delta[i] -= add_homing[i];
  895. }
  896. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  897. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. calculate_SCARA_forward_Transform(delta);
  901. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  902. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  903. current_position[axis] = delta[axis];
  904. // SCARA home positions are based on configuration since the actual limits are determined by the
  905. // inverse kinematic transform.
  906. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  907. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. }
  909. else
  910. {
  911. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  912. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  913. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  914. }
  915. #else
  916. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  917. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  918. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  919. #endif
  920. }
  921. #ifdef ENABLE_AUTO_BED_LEVELING
  922. #ifdef AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  924. {
  925. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  926. planeNormal.debug("planeNormal");
  927. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  928. //bedLevel.debug("bedLevel");
  929. //plan_bed_level_matrix.debug("bed level before");
  930. //vector_3 uncorrected_position = plan_get_position_mm();
  931. //uncorrected_position.debug("position before");
  932. vector_3 corrected_position = plan_get_position();
  933. // corrected_position.debug("position after");
  934. current_position[X_AXIS] = corrected_position.x;
  935. current_position[Y_AXIS] = corrected_position.y;
  936. current_position[Z_AXIS] = corrected_position.z;
  937. // put the bed at 0 so we don't go below it.
  938. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. }
  941. #else // not AUTO_BED_LEVELING_GRID
  942. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  943. plan_bed_level_matrix.set_to_identity();
  944. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  945. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  946. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  947. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  948. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  949. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  950. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  951. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  952. vector_3 corrected_position = plan_get_position();
  953. current_position[X_AXIS] = corrected_position.x;
  954. current_position[Y_AXIS] = corrected_position.y;
  955. current_position[Z_AXIS] = corrected_position.z;
  956. // put the bed at 0 so we don't go below it.
  957. current_position[Z_AXIS] = zprobe_zoffset;
  958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  959. }
  960. #endif // AUTO_BED_LEVELING_GRID
  961. static void run_z_probe() {
  962. plan_bed_level_matrix.set_to_identity();
  963. feedrate = homing_feedrate[Z_AXIS];
  964. // move down until you find the bed
  965. float zPosition = -10;
  966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  967. st_synchronize();
  968. // we have to let the planner know where we are right now as it is not where we said to go.
  969. zPosition = st_get_position_mm(Z_AXIS);
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  971. // move up the retract distance
  972. zPosition += home_retract_mm(Z_AXIS);
  973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. // move back down slowly to find bed
  976. feedrate = homing_feedrate[Z_AXIS]/4;
  977. zPosition -= home_retract_mm(Z_AXIS) * 2;
  978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  979. st_synchronize();
  980. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  981. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  983. }
  984. static void do_blocking_move_to(float x, float y, float z) {
  985. float oldFeedRate = feedrate;
  986. feedrate = homing_feedrate[Z_AXIS];
  987. current_position[Z_AXIS] = z;
  988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  989. st_synchronize();
  990. feedrate = XY_TRAVEL_SPEED;
  991. current_position[X_AXIS] = x;
  992. current_position[Y_AXIS] = y;
  993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  994. st_synchronize();
  995. feedrate = oldFeedRate;
  996. }
  997. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  998. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  999. }
  1000. static void setup_for_endstop_move() {
  1001. saved_feedrate = feedrate;
  1002. saved_feedmultiply = feedmultiply;
  1003. feedmultiply = 100;
  1004. previous_millis_cmd = millis();
  1005. enable_endstops(true);
  1006. }
  1007. static void clean_up_after_endstop_move() {
  1008. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1009. enable_endstops(false);
  1010. #endif
  1011. feedrate = saved_feedrate;
  1012. feedmultiply = saved_feedmultiply;
  1013. previous_millis_cmd = millis();
  1014. }
  1015. static void engage_z_probe() {
  1016. // Engage Z Servo endstop if enabled
  1017. #ifdef SERVO_ENDSTOPS
  1018. if (servo_endstops[Z_AXIS] > -1) {
  1019. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1020. servos[servo_endstops[Z_AXIS]].attach(0);
  1021. #endif
  1022. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1023. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1024. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1025. servos[servo_endstops[Z_AXIS]].detach();
  1026. #endif
  1027. }
  1028. #endif
  1029. }
  1030. static void retract_z_probe() {
  1031. // Retract Z Servo endstop if enabled
  1032. #ifdef SERVO_ENDSTOPS
  1033. if (servo_endstops[Z_AXIS] > -1) {
  1034. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1035. servos[servo_endstops[Z_AXIS]].attach(0);
  1036. #endif
  1037. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1038. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1039. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1040. servos[servo_endstops[Z_AXIS]].detach();
  1041. #endif
  1042. }
  1043. #endif
  1044. }
  1045. /// Probe bed height at position (x,y), returns the measured z value
  1046. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1047. // move to right place
  1048. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1049. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1050. #ifndef Z_PROBE_SLED
  1051. if ((retract_action==0) || (retract_action==1))
  1052. engage_z_probe(); // Engage Z Servo endstop if available
  1053. #endif // Z_PROBE_SLED
  1054. run_z_probe();
  1055. float measured_z = current_position[Z_AXIS];
  1056. #ifndef Z_PROBE_SLED
  1057. if ((retract_action==0) || (retract_action==3))
  1058. retract_z_probe();
  1059. #endif // Z_PROBE_SLED
  1060. SERIAL_PROTOCOLPGM(MSG_BED);
  1061. SERIAL_PROTOCOLPGM(" x: ");
  1062. SERIAL_PROTOCOL(x);
  1063. SERIAL_PROTOCOLPGM(" y: ");
  1064. SERIAL_PROTOCOL(y);
  1065. SERIAL_PROTOCOLPGM(" z: ");
  1066. SERIAL_PROTOCOL(measured_z);
  1067. SERIAL_PROTOCOLPGM("\n");
  1068. return measured_z;
  1069. }
  1070. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1071. static void homeaxis(int axis) {
  1072. #define HOMEAXIS_DO(LETTER) \
  1073. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1074. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1075. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1076. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1077. 0) {
  1078. int axis_home_dir = home_dir(axis);
  1079. #ifdef DUAL_X_CARRIAGE
  1080. if (axis == X_AXIS)
  1081. axis_home_dir = x_home_dir(active_extruder);
  1082. #endif
  1083. current_position[axis] = 0;
  1084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1085. #ifndef Z_PROBE_SLED
  1086. // Engage Servo endstop if enabled
  1087. #ifdef SERVO_ENDSTOPS
  1088. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1089. if (axis==Z_AXIS) {
  1090. engage_z_probe();
  1091. }
  1092. else
  1093. #endif
  1094. if (servo_endstops[axis] > -1) {
  1095. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1096. }
  1097. #endif
  1098. #endif // Z_PROBE_SLED
  1099. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1100. feedrate = homing_feedrate[axis];
  1101. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1102. st_synchronize();
  1103. current_position[axis] = 0;
  1104. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1105. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1107. st_synchronize();
  1108. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1109. #ifdef DELTA
  1110. feedrate = homing_feedrate[axis]/10;
  1111. #else
  1112. feedrate = homing_feedrate[axis]/2 ;
  1113. #endif
  1114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1115. st_synchronize();
  1116. #ifdef DELTA
  1117. // retrace by the amount specified in endstop_adj
  1118. if (endstop_adj[axis] * axis_home_dir < 0) {
  1119. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1120. destination[axis] = endstop_adj[axis];
  1121. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1122. st_synchronize();
  1123. }
  1124. #endif
  1125. axis_is_at_home(axis);
  1126. destination[axis] = current_position[axis];
  1127. feedrate = 0.0;
  1128. endstops_hit_on_purpose();
  1129. axis_known_position[axis] = true;
  1130. // Retract Servo endstop if enabled
  1131. #ifdef SERVO_ENDSTOPS
  1132. if (servo_endstops[axis] > -1) {
  1133. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1134. }
  1135. #endif
  1136. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1137. #ifndef Z_PROBE_SLED
  1138. if (axis==Z_AXIS) retract_z_probe();
  1139. #endif
  1140. #endif
  1141. }
  1142. }
  1143. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1144. void refresh_cmd_timeout(void)
  1145. {
  1146. previous_millis_cmd = millis();
  1147. }
  1148. #ifdef FWRETRACT
  1149. void retract(bool retracting, bool swapretract = false) {
  1150. if(retracting && !retracted[active_extruder]) {
  1151. destination[X_AXIS]=current_position[X_AXIS];
  1152. destination[Y_AXIS]=current_position[Y_AXIS];
  1153. destination[Z_AXIS]=current_position[Z_AXIS];
  1154. destination[E_AXIS]=current_position[E_AXIS];
  1155. if (swapretract) {
  1156. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1157. } else {
  1158. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1159. }
  1160. plan_set_e_position(current_position[E_AXIS]);
  1161. float oldFeedrate = feedrate;
  1162. feedrate=retract_feedrate*60;
  1163. retracted[active_extruder]=true;
  1164. prepare_move();
  1165. if(retract_zlift > 0.01) {
  1166. current_position[Z_AXIS]-=retract_zlift;
  1167. #ifdef DELTA
  1168. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1169. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1170. #else
  1171. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1172. #endif
  1173. prepare_move();
  1174. }
  1175. feedrate = oldFeedrate;
  1176. } else if(!retracting && retracted[active_extruder]) {
  1177. destination[X_AXIS]=current_position[X_AXIS];
  1178. destination[Y_AXIS]=current_position[Y_AXIS];
  1179. destination[Z_AXIS]=current_position[Z_AXIS];
  1180. destination[E_AXIS]=current_position[E_AXIS];
  1181. if(retract_zlift > 0.01) {
  1182. current_position[Z_AXIS]+=retract_zlift;
  1183. #ifdef DELTA
  1184. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1185. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1186. #else
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. #endif
  1189. //prepare_move();
  1190. }
  1191. if (swapretract) {
  1192. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1193. } else {
  1194. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1195. }
  1196. plan_set_e_position(current_position[E_AXIS]);
  1197. float oldFeedrate = feedrate;
  1198. feedrate=retract_recover_feedrate*60;
  1199. retracted[active_extruder]=false;
  1200. prepare_move();
  1201. feedrate = oldFeedrate;
  1202. }
  1203. } //retract
  1204. #endif //FWRETRACT
  1205. #ifdef Z_PROBE_SLED
  1206. //
  1207. // Method to dock/undock a sled designed by Charles Bell.
  1208. //
  1209. // dock[in] If true, move to MAX_X and engage the electromagnet
  1210. // offset[in] The additional distance to move to adjust docking location
  1211. //
  1212. static void dock_sled(bool dock, int offset=0) {
  1213. int z_loc;
  1214. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1215. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1216. SERIAL_ECHO_START;
  1217. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1218. return;
  1219. }
  1220. if (dock) {
  1221. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1222. current_position[Y_AXIS],
  1223. current_position[Z_AXIS]);
  1224. // turn off magnet
  1225. digitalWrite(SERVO0_PIN, LOW);
  1226. } else {
  1227. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1228. z_loc = Z_RAISE_BEFORE_PROBING;
  1229. else
  1230. z_loc = current_position[Z_AXIS];
  1231. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1232. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1233. // turn on magnet
  1234. digitalWrite(SERVO0_PIN, HIGH);
  1235. }
  1236. }
  1237. #endif
  1238. void process_commands()
  1239. {
  1240. unsigned long codenum; //throw away variable
  1241. char *starpos = NULL;
  1242. #ifdef ENABLE_AUTO_BED_LEVELING
  1243. float x_tmp, y_tmp, z_tmp, real_z;
  1244. #endif
  1245. if(code_seen('G'))
  1246. {
  1247. switch((int)code_value())
  1248. {
  1249. case 0: // G0 -> G1
  1250. case 1: // G1
  1251. if(Stopped == false) {
  1252. get_coordinates(); // For X Y Z E F
  1253. #ifdef FWRETRACT
  1254. if(autoretract_enabled)
  1255. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1256. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1257. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1258. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1259. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1260. retract(!retracted);
  1261. return;
  1262. }
  1263. }
  1264. #endif //FWRETRACT
  1265. prepare_move();
  1266. //ClearToSend();
  1267. }
  1268. break;
  1269. #ifndef SCARA //disable arc support
  1270. case 2: // G2 - CW ARC
  1271. if(Stopped == false) {
  1272. get_arc_coordinates();
  1273. prepare_arc_move(true);
  1274. }
  1275. break;
  1276. case 3: // G3 - CCW ARC
  1277. if(Stopped == false) {
  1278. get_arc_coordinates();
  1279. prepare_arc_move(false);
  1280. }
  1281. break;
  1282. #endif
  1283. case 4: // G4 dwell
  1284. LCD_MESSAGEPGM(MSG_DWELL);
  1285. codenum = 0;
  1286. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1287. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1288. st_synchronize();
  1289. codenum += millis(); // keep track of when we started waiting
  1290. previous_millis_cmd = millis();
  1291. while(millis() < codenum) {
  1292. manage_heater();
  1293. manage_inactivity();
  1294. lcd_update();
  1295. }
  1296. break;
  1297. #ifdef FWRETRACT
  1298. case 10: // G10 retract
  1299. #if EXTRUDERS > 1
  1300. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1301. retract(true,retracted_swap[active_extruder]);
  1302. #else
  1303. retract(true);
  1304. #endif
  1305. break;
  1306. case 11: // G11 retract_recover
  1307. #if EXTRUDERS > 1
  1308. retract(false,retracted_swap[active_extruder]);
  1309. #else
  1310. retract(false);
  1311. #endif
  1312. break;
  1313. #endif //FWRETRACT
  1314. case 28: //G28 Home all Axis one at a time
  1315. #ifdef ENABLE_AUTO_BED_LEVELING
  1316. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1317. #endif //ENABLE_AUTO_BED_LEVELING
  1318. saved_feedrate = feedrate;
  1319. saved_feedmultiply = feedmultiply;
  1320. feedmultiply = 100;
  1321. previous_millis_cmd = millis();
  1322. enable_endstops(true);
  1323. for(int8_t i=0; i < NUM_AXIS; i++) {
  1324. destination[i] = current_position[i];
  1325. }
  1326. feedrate = 0.0;
  1327. #ifdef DELTA
  1328. // A delta can only safely home all axis at the same time
  1329. // all axis have to home at the same time
  1330. // Move all carriages up together until the first endstop is hit.
  1331. current_position[X_AXIS] = 0;
  1332. current_position[Y_AXIS] = 0;
  1333. current_position[Z_AXIS] = 0;
  1334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1335. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1336. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1337. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1338. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1340. st_synchronize();
  1341. endstops_hit_on_purpose();
  1342. current_position[X_AXIS] = destination[X_AXIS];
  1343. current_position[Y_AXIS] = destination[Y_AXIS];
  1344. current_position[Z_AXIS] = destination[Z_AXIS];
  1345. // take care of back off and rehome now we are all at the top
  1346. HOMEAXIS(X);
  1347. HOMEAXIS(Y);
  1348. HOMEAXIS(Z);
  1349. calculate_delta(current_position);
  1350. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1351. #else // NOT DELTA
  1352. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1353. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1354. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1355. HOMEAXIS(Z);
  1356. }
  1357. #endif
  1358. #ifdef QUICK_HOME
  1359. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1360. {
  1361. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1362. #ifndef DUAL_X_CARRIAGE
  1363. int x_axis_home_dir = home_dir(X_AXIS);
  1364. #else
  1365. int x_axis_home_dir = x_home_dir(active_extruder);
  1366. extruder_duplication_enabled = false;
  1367. #endif
  1368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1369. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1370. feedrate = homing_feedrate[X_AXIS];
  1371. if(homing_feedrate[Y_AXIS]<feedrate)
  1372. feedrate = homing_feedrate[Y_AXIS];
  1373. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1374. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1375. } else {
  1376. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1377. }
  1378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1379. st_synchronize();
  1380. axis_is_at_home(X_AXIS);
  1381. axis_is_at_home(Y_AXIS);
  1382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1383. destination[X_AXIS] = current_position[X_AXIS];
  1384. destination[Y_AXIS] = current_position[Y_AXIS];
  1385. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1386. feedrate = 0.0;
  1387. st_synchronize();
  1388. endstops_hit_on_purpose();
  1389. current_position[X_AXIS] = destination[X_AXIS];
  1390. current_position[Y_AXIS] = destination[Y_AXIS];
  1391. #ifndef SCARA
  1392. current_position[Z_AXIS] = destination[Z_AXIS];
  1393. #endif
  1394. }
  1395. #endif
  1396. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1397. {
  1398. #ifdef DUAL_X_CARRIAGE
  1399. int tmp_extruder = active_extruder;
  1400. extruder_duplication_enabled = false;
  1401. active_extruder = !active_extruder;
  1402. HOMEAXIS(X);
  1403. inactive_extruder_x_pos = current_position[X_AXIS];
  1404. active_extruder = tmp_extruder;
  1405. HOMEAXIS(X);
  1406. // reset state used by the different modes
  1407. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1408. delayed_move_time = 0;
  1409. active_extruder_parked = true;
  1410. #else
  1411. HOMEAXIS(X);
  1412. #endif
  1413. }
  1414. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1415. HOMEAXIS(Y);
  1416. }
  1417. if(code_seen(axis_codes[X_AXIS]))
  1418. {
  1419. if(code_value_long() != 0) {
  1420. #ifdef SCARA
  1421. current_position[X_AXIS]=code_value();
  1422. #else
  1423. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1424. #endif
  1425. }
  1426. }
  1427. if(code_seen(axis_codes[Y_AXIS])) {
  1428. if(code_value_long() != 0) {
  1429. #ifdef SCARA
  1430. current_position[Y_AXIS]=code_value();
  1431. #else
  1432. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1433. #endif
  1434. }
  1435. }
  1436. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1437. #ifndef Z_SAFE_HOMING
  1438. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1439. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1440. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1441. feedrate = max_feedrate[Z_AXIS];
  1442. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1443. st_synchronize();
  1444. #endif
  1445. HOMEAXIS(Z);
  1446. }
  1447. #else // Z Safe mode activated.
  1448. if(home_all_axis) {
  1449. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1450. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1451. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1452. feedrate = XY_TRAVEL_SPEED/60;
  1453. current_position[Z_AXIS] = 0;
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1456. st_synchronize();
  1457. current_position[X_AXIS] = destination[X_AXIS];
  1458. current_position[Y_AXIS] = destination[Y_AXIS];
  1459. HOMEAXIS(Z);
  1460. }
  1461. // Let's see if X and Y are homed and probe is inside bed area.
  1462. if(code_seen(axis_codes[Z_AXIS])) {
  1463. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1464. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1465. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1466. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1467. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1468. current_position[Z_AXIS] = 0;
  1469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1470. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1471. feedrate = max_feedrate[Z_AXIS];
  1472. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1473. st_synchronize();
  1474. HOMEAXIS(Z);
  1475. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1476. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1477. SERIAL_ECHO_START;
  1478. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1479. } else {
  1480. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1481. SERIAL_ECHO_START;
  1482. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1483. }
  1484. }
  1485. #endif
  1486. #endif
  1487. if(code_seen(axis_codes[Z_AXIS])) {
  1488. if(code_value_long() != 0) {
  1489. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1490. }
  1491. }
  1492. #ifdef ENABLE_AUTO_BED_LEVELING
  1493. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1494. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1495. }
  1496. #endif
  1497. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1498. #endif // else DELTA
  1499. #ifdef SCARA
  1500. calculate_delta(current_position);
  1501. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1502. #endif // SCARA
  1503. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1504. enable_endstops(false);
  1505. #endif
  1506. feedrate = saved_feedrate;
  1507. feedmultiply = saved_feedmultiply;
  1508. previous_millis_cmd = millis();
  1509. endstops_hit_on_purpose();
  1510. break;
  1511. #ifdef ENABLE_AUTO_BED_LEVELING
  1512. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1513. {
  1514. #if Z_MIN_PIN == -1
  1515. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1516. #endif
  1517. // Prevent user from running a G29 without first homing in X and Y
  1518. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1519. {
  1520. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1521. SERIAL_ECHO_START;
  1522. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1523. break; // abort G29, since we don't know where we are
  1524. }
  1525. #ifdef Z_PROBE_SLED
  1526. dock_sled(false);
  1527. #endif // Z_PROBE_SLED
  1528. st_synchronize();
  1529. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1530. //vector_3 corrected_position = plan_get_position_mm();
  1531. //corrected_position.debug("position before G29");
  1532. plan_bed_level_matrix.set_to_identity();
  1533. vector_3 uncorrected_position = plan_get_position();
  1534. //uncorrected_position.debug("position durring G29");
  1535. current_position[X_AXIS] = uncorrected_position.x;
  1536. current_position[Y_AXIS] = uncorrected_position.y;
  1537. current_position[Z_AXIS] = uncorrected_position.z;
  1538. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1539. setup_for_endstop_move();
  1540. feedrate = homing_feedrate[Z_AXIS];
  1541. #ifdef AUTO_BED_LEVELING_GRID
  1542. // probe at the points of a lattice grid
  1543. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1544. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1545. // solve the plane equation ax + by + d = z
  1546. // A is the matrix with rows [x y 1] for all the probed points
  1547. // B is the vector of the Z positions
  1548. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1549. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1550. // "A" matrix of the linear system of equations
  1551. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1552. // "B" vector of Z points
  1553. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1554. int probePointCounter = 0;
  1555. bool zig = true;
  1556. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1557. {
  1558. int xProbe, xInc;
  1559. if (zig)
  1560. {
  1561. xProbe = LEFT_PROBE_BED_POSITION;
  1562. //xEnd = RIGHT_PROBE_BED_POSITION;
  1563. xInc = xGridSpacing;
  1564. zig = false;
  1565. } else // zag
  1566. {
  1567. xProbe = RIGHT_PROBE_BED_POSITION;
  1568. //xEnd = LEFT_PROBE_BED_POSITION;
  1569. xInc = -xGridSpacing;
  1570. zig = true;
  1571. }
  1572. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1573. {
  1574. float z_before;
  1575. if (probePointCounter == 0)
  1576. {
  1577. // raise before probing
  1578. z_before = Z_RAISE_BEFORE_PROBING;
  1579. } else
  1580. {
  1581. // raise extruder
  1582. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1583. }
  1584. float measured_z;
  1585. //Enhanced G29 - Do not retract servo between probes
  1586. if (code_seen('E') || code_seen('e') )
  1587. {
  1588. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1589. {
  1590. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1591. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1592. {
  1593. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1594. } else {
  1595. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1596. }
  1597. } else {
  1598. measured_z = probe_pt(xProbe, yProbe, z_before);
  1599. }
  1600. eqnBVector[probePointCounter] = measured_z;
  1601. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1602. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1603. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1604. probePointCounter++;
  1605. xProbe += xInc;
  1606. }
  1607. }
  1608. clean_up_after_endstop_move();
  1609. // solve lsq problem
  1610. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1611. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1612. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1613. SERIAL_PROTOCOLPGM(" b: ");
  1614. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1615. SERIAL_PROTOCOLPGM(" d: ");
  1616. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1617. set_bed_level_equation_lsq(plane_equation_coefficients);
  1618. free(plane_equation_coefficients);
  1619. #else // AUTO_BED_LEVELING_GRID not defined
  1620. // Probe at 3 arbitrary points
  1621. // Enhanced G29
  1622. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1623. if (code_seen('E') || code_seen('e')) {
  1624. // probe 1
  1625. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1626. // probe 2
  1627. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1628. // probe 3
  1629. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1630. }
  1631. else {
  1632. // probe 1
  1633. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1634. // probe 2
  1635. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1636. // probe 3
  1637. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1638. }
  1639. clean_up_after_endstop_move();
  1640. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1641. #endif // AUTO_BED_LEVELING_GRID
  1642. st_synchronize();
  1643. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1644. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1645. // When the bed is uneven, this height must be corrected.
  1646. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1647. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1648. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1649. z_tmp = current_position[Z_AXIS];
  1650. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1651. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1652. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1653. #ifdef Z_PROBE_SLED
  1654. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1655. #endif // Z_PROBE_SLED
  1656. }
  1657. break;
  1658. #ifndef Z_PROBE_SLED
  1659. case 30: // G30 Single Z Probe
  1660. {
  1661. engage_z_probe(); // Engage Z Servo endstop if available
  1662. st_synchronize();
  1663. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1664. setup_for_endstop_move();
  1665. feedrate = homing_feedrate[Z_AXIS];
  1666. run_z_probe();
  1667. SERIAL_PROTOCOLPGM(MSG_BED);
  1668. SERIAL_PROTOCOLPGM(" X: ");
  1669. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1670. SERIAL_PROTOCOLPGM(" Y: ");
  1671. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1672. SERIAL_PROTOCOLPGM(" Z: ");
  1673. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1674. SERIAL_PROTOCOLPGM("\n");
  1675. clean_up_after_endstop_move();
  1676. retract_z_probe(); // Retract Z Servo endstop if available
  1677. }
  1678. break;
  1679. #else
  1680. case 31: // dock the sled
  1681. dock_sled(true);
  1682. break;
  1683. case 32: // undock the sled
  1684. dock_sled(false);
  1685. break;
  1686. #endif // Z_PROBE_SLED
  1687. #endif // ENABLE_AUTO_BED_LEVELING
  1688. case 90: // G90
  1689. relative_mode = false;
  1690. break;
  1691. case 91: // G91
  1692. relative_mode = true;
  1693. break;
  1694. case 92: // G92
  1695. if(!code_seen(axis_codes[E_AXIS]))
  1696. st_synchronize();
  1697. for(int8_t i=0; i < NUM_AXIS; i++) {
  1698. if(code_seen(axis_codes[i])) {
  1699. if(i == E_AXIS) {
  1700. current_position[i] = code_value();
  1701. plan_set_e_position(current_position[E_AXIS]);
  1702. }
  1703. else {
  1704. #ifdef SCARA
  1705. if (i == X_AXIS || i == Y_AXIS) {
  1706. current_position[i] = code_value();
  1707. }
  1708. else {
  1709. current_position[i] = code_value()+add_homing[i];
  1710. }
  1711. #else
  1712. current_position[i] = code_value()+add_homing[i];
  1713. #endif
  1714. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1715. }
  1716. }
  1717. }
  1718. break;
  1719. }
  1720. }
  1721. else if(code_seen('M'))
  1722. {
  1723. switch( (int)code_value() )
  1724. {
  1725. #ifdef ULTIPANEL
  1726. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1727. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1728. {
  1729. char *src = strchr_pointer + 2;
  1730. codenum = 0;
  1731. bool hasP = false, hasS = false;
  1732. if (code_seen('P')) {
  1733. codenum = code_value(); // milliseconds to wait
  1734. hasP = codenum > 0;
  1735. }
  1736. if (code_seen('S')) {
  1737. codenum = code_value() * 1000; // seconds to wait
  1738. hasS = codenum > 0;
  1739. }
  1740. starpos = strchr(src, '*');
  1741. if (starpos != NULL) *(starpos) = '\0';
  1742. while (*src == ' ') ++src;
  1743. if (!hasP && !hasS && *src != '\0') {
  1744. lcd_setstatus(src);
  1745. } else {
  1746. LCD_MESSAGEPGM(MSG_USERWAIT);
  1747. }
  1748. lcd_ignore_click();
  1749. st_synchronize();
  1750. previous_millis_cmd = millis();
  1751. if (codenum > 0){
  1752. codenum += millis(); // keep track of when we started waiting
  1753. while(millis() < codenum && !lcd_clicked()){
  1754. manage_heater();
  1755. manage_inactivity();
  1756. lcd_update();
  1757. }
  1758. lcd_ignore_click(false);
  1759. }else{
  1760. if (!lcd_detected())
  1761. break;
  1762. while(!lcd_clicked()){
  1763. manage_heater();
  1764. manage_inactivity();
  1765. lcd_update();
  1766. }
  1767. }
  1768. if (IS_SD_PRINTING)
  1769. LCD_MESSAGEPGM(MSG_RESUMING);
  1770. else
  1771. LCD_MESSAGEPGM(WELCOME_MSG);
  1772. }
  1773. break;
  1774. #endif
  1775. case 17:
  1776. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1777. enable_x();
  1778. enable_y();
  1779. enable_z();
  1780. enable_e0();
  1781. enable_e1();
  1782. enable_e2();
  1783. break;
  1784. #ifdef SDSUPPORT
  1785. case 20: // M20 - list SD card
  1786. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1787. card.ls();
  1788. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1789. break;
  1790. case 21: // M21 - init SD card
  1791. card.initsd();
  1792. break;
  1793. case 22: //M22 - release SD card
  1794. card.release();
  1795. break;
  1796. case 23: //M23 - Select file
  1797. starpos = (strchr(strchr_pointer + 4,'*'));
  1798. if(starpos!=NULL)
  1799. *(starpos)='\0';
  1800. card.openFile(strchr_pointer + 4,true);
  1801. break;
  1802. case 24: //M24 - Start SD print
  1803. card.startFileprint();
  1804. starttime=millis();
  1805. break;
  1806. case 25: //M25 - Pause SD print
  1807. card.pauseSDPrint();
  1808. break;
  1809. case 26: //M26 - Set SD index
  1810. if(card.cardOK && code_seen('S')) {
  1811. card.setIndex(code_value_long());
  1812. }
  1813. break;
  1814. case 27: //M27 - Get SD status
  1815. card.getStatus();
  1816. break;
  1817. case 28: //M28 - Start SD write
  1818. starpos = (strchr(strchr_pointer + 4,'*'));
  1819. if(starpos != NULL){
  1820. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1821. strchr_pointer = strchr(npos,' ') + 1;
  1822. *(starpos) = '\0';
  1823. }
  1824. card.openFile(strchr_pointer+4,false);
  1825. break;
  1826. case 29: //M29 - Stop SD write
  1827. //processed in write to file routine above
  1828. //card,saving = false;
  1829. break;
  1830. case 30: //M30 <filename> Delete File
  1831. if (card.cardOK){
  1832. card.closefile();
  1833. starpos = (strchr(strchr_pointer + 4,'*'));
  1834. if(starpos != NULL){
  1835. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1836. strchr_pointer = strchr(npos,' ') + 1;
  1837. *(starpos) = '\0';
  1838. }
  1839. card.removeFile(strchr_pointer + 4);
  1840. }
  1841. break;
  1842. case 32: //M32 - Select file and start SD print
  1843. {
  1844. if(card.sdprinting) {
  1845. st_synchronize();
  1846. }
  1847. starpos = (strchr(strchr_pointer + 4,'*'));
  1848. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1849. if(namestartpos==NULL)
  1850. {
  1851. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1852. }
  1853. else
  1854. namestartpos++; //to skip the '!'
  1855. if(starpos!=NULL)
  1856. *(starpos)='\0';
  1857. bool call_procedure=(code_seen('P'));
  1858. if(strchr_pointer>namestartpos)
  1859. call_procedure=false; //false alert, 'P' found within filename
  1860. if( card.cardOK )
  1861. {
  1862. card.openFile(namestartpos,true,!call_procedure);
  1863. if(code_seen('S'))
  1864. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1865. card.setIndex(code_value_long());
  1866. card.startFileprint();
  1867. if(!call_procedure)
  1868. starttime=millis(); //procedure calls count as normal print time.
  1869. }
  1870. } break;
  1871. case 928: //M928 - Start SD write
  1872. starpos = (strchr(strchr_pointer + 5,'*'));
  1873. if(starpos != NULL){
  1874. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1875. strchr_pointer = strchr(npos,' ') + 1;
  1876. *(starpos) = '\0';
  1877. }
  1878. card.openLogFile(strchr_pointer+5);
  1879. break;
  1880. #endif //SDSUPPORT
  1881. case 31: //M31 take time since the start of the SD print or an M109 command
  1882. {
  1883. stoptime=millis();
  1884. char time[30];
  1885. unsigned long t=(stoptime-starttime)/1000;
  1886. int sec,min;
  1887. min=t/60;
  1888. sec=t%60;
  1889. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1890. SERIAL_ECHO_START;
  1891. SERIAL_ECHOLN(time);
  1892. lcd_setstatus(time);
  1893. autotempShutdown();
  1894. }
  1895. break;
  1896. case 42: //M42 -Change pin status via gcode
  1897. if (code_seen('S'))
  1898. {
  1899. int pin_status = code_value();
  1900. int pin_number = LED_PIN;
  1901. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1902. pin_number = code_value();
  1903. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1904. {
  1905. if (sensitive_pins[i] == pin_number)
  1906. {
  1907. pin_number = -1;
  1908. break;
  1909. }
  1910. }
  1911. #if defined(FAN_PIN) && FAN_PIN > -1
  1912. if (pin_number == FAN_PIN)
  1913. fanSpeed = pin_status;
  1914. #endif
  1915. if (pin_number > -1)
  1916. {
  1917. pinMode(pin_number, OUTPUT);
  1918. digitalWrite(pin_number, pin_status);
  1919. analogWrite(pin_number, pin_status);
  1920. }
  1921. }
  1922. break;
  1923. // M48 Z-Probe repeatability measurement function.
  1924. //
  1925. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1926. //
  1927. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1928. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1929. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1930. // regenerated.
  1931. //
  1932. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1933. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1934. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1935. //
  1936. #ifdef ENABLE_AUTO_BED_LEVELING
  1937. #ifdef Z_PROBE_REPEATABILITY_TEST
  1938. case 48: // M48 Z-Probe repeatability
  1939. {
  1940. #if Z_MIN_PIN == -1
  1941. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1942. #endif
  1943. double sum=0.0;
  1944. double mean=0.0;
  1945. double sigma=0.0;
  1946. double sample_set[50];
  1947. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1948. double X_current, Y_current, Z_current;
  1949. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1950. if (code_seen('V') || code_seen('v')) {
  1951. verbose_level = code_value();
  1952. if (verbose_level<0 || verbose_level>4 ) {
  1953. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1954. goto Sigma_Exit;
  1955. }
  1956. }
  1957. if (verbose_level > 0) {
  1958. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1959. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1960. }
  1961. if (code_seen('n')) {
  1962. n_samples = code_value();
  1963. if (n_samples<4 || n_samples>50 ) {
  1964. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1965. goto Sigma_Exit;
  1966. }
  1967. }
  1968. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1969. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1970. Z_current = st_get_position_mm(Z_AXIS);
  1971. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1972. ext_position = st_get_position_mm(E_AXIS);
  1973. if (code_seen('E') || code_seen('e') )
  1974. engage_probe_for_each_reading++;
  1975. if (code_seen('X') || code_seen('x') ) {
  1976. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1977. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1978. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1979. goto Sigma_Exit;
  1980. }
  1981. }
  1982. if (code_seen('Y') || code_seen('y') ) {
  1983. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1984. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1985. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1986. goto Sigma_Exit;
  1987. }
  1988. }
  1989. if (code_seen('L') || code_seen('l') ) {
  1990. n_legs = code_value();
  1991. if ( n_legs==1 )
  1992. n_legs = 2;
  1993. if ( n_legs<0 || n_legs>15 ) {
  1994. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1995. goto Sigma_Exit;
  1996. }
  1997. }
  1998. //
  1999. // Do all the preliminary setup work. First raise the probe.
  2000. //
  2001. st_synchronize();
  2002. plan_bed_level_matrix.set_to_identity();
  2003. plan_buffer_line( X_current, Y_current, Z_start_location,
  2004. ext_position,
  2005. homing_feedrate[Z_AXIS]/60,
  2006. active_extruder);
  2007. st_synchronize();
  2008. //
  2009. // Now get everything to the specified probe point So we can safely do a probe to
  2010. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2011. // use that as a starting point for each probe.
  2012. //
  2013. if (verbose_level > 2)
  2014. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2015. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2016. ext_position,
  2017. homing_feedrate[X_AXIS]/60,
  2018. active_extruder);
  2019. st_synchronize();
  2020. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2021. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2022. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2023. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2024. //
  2025. // OK, do the inital probe to get us close to the bed.
  2026. // Then retrace the right amount and use that in subsequent probes
  2027. //
  2028. engage_z_probe();
  2029. setup_for_endstop_move();
  2030. run_z_probe();
  2031. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2032. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2033. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2034. ext_position,
  2035. homing_feedrate[X_AXIS]/60,
  2036. active_extruder);
  2037. st_synchronize();
  2038. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2039. if (engage_probe_for_each_reading)
  2040. retract_z_probe();
  2041. for( n=0; n<n_samples; n++) {
  2042. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2043. if ( n_legs) {
  2044. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2045. int rotational_direction, l;
  2046. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2047. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2048. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2049. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2050. //SERIAL_ECHOPAIR(" theta: ",theta);
  2051. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2052. //SERIAL_PROTOCOLLNPGM("");
  2053. for( l=0; l<n_legs-1; l++) {
  2054. if (rotational_direction==1)
  2055. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2056. else
  2057. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2058. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2059. if ( radius<0.0 )
  2060. radius = -radius;
  2061. X_current = X_probe_location + cos(theta) * radius;
  2062. Y_current = Y_probe_location + sin(theta) * radius;
  2063. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2064. X_current = X_MIN_POS;
  2065. if ( X_current>X_MAX_POS)
  2066. X_current = X_MAX_POS;
  2067. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2068. Y_current = Y_MIN_POS;
  2069. if ( Y_current>Y_MAX_POS)
  2070. Y_current = Y_MAX_POS;
  2071. if (verbose_level>3 ) {
  2072. SERIAL_ECHOPAIR("x: ", X_current);
  2073. SERIAL_ECHOPAIR("y: ", Y_current);
  2074. SERIAL_PROTOCOLLNPGM("");
  2075. }
  2076. do_blocking_move_to( X_current, Y_current, Z_current );
  2077. }
  2078. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2079. }
  2080. if (engage_probe_for_each_reading) {
  2081. engage_z_probe();
  2082. delay(1000);
  2083. }
  2084. setup_for_endstop_move();
  2085. run_z_probe();
  2086. sample_set[n] = current_position[Z_AXIS];
  2087. //
  2088. // Get the current mean for the data points we have so far
  2089. //
  2090. sum=0.0;
  2091. for( j=0; j<=n; j++) {
  2092. sum = sum + sample_set[j];
  2093. }
  2094. mean = sum / (double (n+1));
  2095. //
  2096. // Now, use that mean to calculate the standard deviation for the
  2097. // data points we have so far
  2098. //
  2099. sum=0.0;
  2100. for( j=0; j<=n; j++) {
  2101. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2102. }
  2103. sigma = sqrt( sum / (double (n+1)) );
  2104. if (verbose_level > 1) {
  2105. SERIAL_PROTOCOL(n+1);
  2106. SERIAL_PROTOCOL(" of ");
  2107. SERIAL_PROTOCOL(n_samples);
  2108. SERIAL_PROTOCOLPGM(" z: ");
  2109. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2110. }
  2111. if (verbose_level > 2) {
  2112. SERIAL_PROTOCOL(" mean: ");
  2113. SERIAL_PROTOCOL_F(mean,6);
  2114. SERIAL_PROTOCOL(" sigma: ");
  2115. SERIAL_PROTOCOL_F(sigma,6);
  2116. }
  2117. if (verbose_level > 0)
  2118. SERIAL_PROTOCOLPGM("\n");
  2119. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2120. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2121. st_synchronize();
  2122. if (engage_probe_for_each_reading) {
  2123. retract_z_probe();
  2124. delay(1000);
  2125. }
  2126. }
  2127. retract_z_probe();
  2128. delay(1000);
  2129. clean_up_after_endstop_move();
  2130. // enable_endstops(true);
  2131. if (verbose_level > 0) {
  2132. SERIAL_PROTOCOLPGM("Mean: ");
  2133. SERIAL_PROTOCOL_F(mean, 6);
  2134. SERIAL_PROTOCOLPGM("\n");
  2135. }
  2136. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2137. SERIAL_PROTOCOL_F(sigma, 6);
  2138. SERIAL_PROTOCOLPGM("\n\n");
  2139. Sigma_Exit:
  2140. break;
  2141. }
  2142. #endif // Z_PROBE_REPEATABILITY_TEST
  2143. #endif // ENABLE_AUTO_BED_LEVELING
  2144. case 104: // M104
  2145. if(setTargetedHotend(104)){
  2146. break;
  2147. }
  2148. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2149. #ifdef DUAL_X_CARRIAGE
  2150. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2151. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2152. #endif
  2153. setWatch();
  2154. break;
  2155. case 112: // M112 -Emergency Stop
  2156. kill();
  2157. break;
  2158. case 140: // M140 set bed temp
  2159. if (code_seen('S')) setTargetBed(code_value());
  2160. break;
  2161. case 105 : // M105
  2162. if(setTargetedHotend(105)){
  2163. break;
  2164. }
  2165. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2166. SERIAL_PROTOCOLPGM("ok T:");
  2167. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2168. SERIAL_PROTOCOLPGM(" /");
  2169. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2170. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2171. SERIAL_PROTOCOLPGM(" B:");
  2172. SERIAL_PROTOCOL_F(degBed(),1);
  2173. SERIAL_PROTOCOLPGM(" /");
  2174. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2175. #endif //TEMP_BED_PIN
  2176. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2177. SERIAL_PROTOCOLPGM(" T");
  2178. SERIAL_PROTOCOL(cur_extruder);
  2179. SERIAL_PROTOCOLPGM(":");
  2180. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2181. SERIAL_PROTOCOLPGM(" /");
  2182. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2183. }
  2184. #else
  2185. SERIAL_ERROR_START;
  2186. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2187. #endif
  2188. SERIAL_PROTOCOLPGM(" @:");
  2189. #ifdef EXTRUDER_WATTS
  2190. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2191. SERIAL_PROTOCOLPGM("W");
  2192. #else
  2193. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2194. #endif
  2195. SERIAL_PROTOCOLPGM(" B@:");
  2196. #ifdef BED_WATTS
  2197. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2198. SERIAL_PROTOCOLPGM("W");
  2199. #else
  2200. SERIAL_PROTOCOL(getHeaterPower(-1));
  2201. #endif
  2202. #ifdef SHOW_TEMP_ADC_VALUES
  2203. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2204. SERIAL_PROTOCOLPGM(" ADC B:");
  2205. SERIAL_PROTOCOL_F(degBed(),1);
  2206. SERIAL_PROTOCOLPGM("C->");
  2207. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2208. #endif
  2209. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2210. SERIAL_PROTOCOLPGM(" T");
  2211. SERIAL_PROTOCOL(cur_extruder);
  2212. SERIAL_PROTOCOLPGM(":");
  2213. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2214. SERIAL_PROTOCOLPGM("C->");
  2215. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2216. }
  2217. #endif
  2218. SERIAL_PROTOCOLLN("");
  2219. return;
  2220. break;
  2221. case 109:
  2222. {// M109 - Wait for extruder heater to reach target.
  2223. if(setTargetedHotend(109)){
  2224. break;
  2225. }
  2226. LCD_MESSAGEPGM(MSG_HEATING);
  2227. #ifdef AUTOTEMP
  2228. autotemp_enabled=false;
  2229. #endif
  2230. if (code_seen('S')) {
  2231. setTargetHotend(code_value(), tmp_extruder);
  2232. #ifdef DUAL_X_CARRIAGE
  2233. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2234. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2235. #endif
  2236. CooldownNoWait = true;
  2237. } else if (code_seen('R')) {
  2238. setTargetHotend(code_value(), tmp_extruder);
  2239. #ifdef DUAL_X_CARRIAGE
  2240. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2241. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2242. #endif
  2243. CooldownNoWait = false;
  2244. }
  2245. #ifdef AUTOTEMP
  2246. if (code_seen('S')) autotemp_min=code_value();
  2247. if (code_seen('B')) autotemp_max=code_value();
  2248. if (code_seen('F'))
  2249. {
  2250. autotemp_factor=code_value();
  2251. autotemp_enabled=true;
  2252. }
  2253. #endif
  2254. setWatch();
  2255. codenum = millis();
  2256. /* See if we are heating up or cooling down */
  2257. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2258. cancel_heatup = false;
  2259. #ifdef TEMP_RESIDENCY_TIME
  2260. long residencyStart;
  2261. residencyStart = -1;
  2262. /* continue to loop until we have reached the target temp
  2263. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2264. while((!cancel_heatup)&&((residencyStart == -1) ||
  2265. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2266. #else
  2267. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2268. #endif //TEMP_RESIDENCY_TIME
  2269. if( (millis() - codenum) > 1000UL )
  2270. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2271. SERIAL_PROTOCOLPGM("T:");
  2272. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2273. SERIAL_PROTOCOLPGM(" E:");
  2274. SERIAL_PROTOCOL((int)tmp_extruder);
  2275. #ifdef TEMP_RESIDENCY_TIME
  2276. SERIAL_PROTOCOLPGM(" W:");
  2277. if(residencyStart > -1)
  2278. {
  2279. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2280. SERIAL_PROTOCOLLN( codenum );
  2281. }
  2282. else
  2283. {
  2284. SERIAL_PROTOCOLLN( "?" );
  2285. }
  2286. #else
  2287. SERIAL_PROTOCOLLN("");
  2288. #endif
  2289. codenum = millis();
  2290. }
  2291. manage_heater();
  2292. manage_inactivity();
  2293. lcd_update();
  2294. #ifdef TEMP_RESIDENCY_TIME
  2295. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2296. or when current temp falls outside the hysteresis after target temp was reached */
  2297. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2298. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2299. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2300. {
  2301. residencyStart = millis();
  2302. }
  2303. #endif //TEMP_RESIDENCY_TIME
  2304. }
  2305. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2306. starttime=millis();
  2307. previous_millis_cmd = millis();
  2308. }
  2309. break;
  2310. case 190: // M190 - Wait for bed heater to reach target.
  2311. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2312. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2313. if (code_seen('S')) {
  2314. setTargetBed(code_value());
  2315. CooldownNoWait = true;
  2316. } else if (code_seen('R')) {
  2317. setTargetBed(code_value());
  2318. CooldownNoWait = false;
  2319. }
  2320. codenum = millis();
  2321. cancel_heatup = false;
  2322. target_direction = isHeatingBed(); // true if heating, false if cooling
  2323. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2324. {
  2325. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2326. {
  2327. float tt=degHotend(active_extruder);
  2328. SERIAL_PROTOCOLPGM("T:");
  2329. SERIAL_PROTOCOL(tt);
  2330. SERIAL_PROTOCOLPGM(" E:");
  2331. SERIAL_PROTOCOL((int)active_extruder);
  2332. SERIAL_PROTOCOLPGM(" B:");
  2333. SERIAL_PROTOCOL_F(degBed(),1);
  2334. SERIAL_PROTOCOLLN("");
  2335. codenum = millis();
  2336. }
  2337. manage_heater();
  2338. manage_inactivity();
  2339. lcd_update();
  2340. }
  2341. LCD_MESSAGEPGM(MSG_BED_DONE);
  2342. previous_millis_cmd = millis();
  2343. #endif
  2344. break;
  2345. #if defined(FAN_PIN) && FAN_PIN > -1
  2346. case 106: //M106 Fan On
  2347. if (code_seen('S')){
  2348. fanSpeed=constrain(code_value(),0,255);
  2349. }
  2350. else {
  2351. fanSpeed=255;
  2352. }
  2353. break;
  2354. case 107: //M107 Fan Off
  2355. fanSpeed = 0;
  2356. break;
  2357. #endif //FAN_PIN
  2358. #ifdef BARICUDA
  2359. // PWM for HEATER_1_PIN
  2360. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2361. case 126: //M126 valve open
  2362. if (code_seen('S')){
  2363. ValvePressure=constrain(code_value(),0,255);
  2364. }
  2365. else {
  2366. ValvePressure=255;
  2367. }
  2368. break;
  2369. case 127: //M127 valve closed
  2370. ValvePressure = 0;
  2371. break;
  2372. #endif //HEATER_1_PIN
  2373. // PWM for HEATER_2_PIN
  2374. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2375. case 128: //M128 valve open
  2376. if (code_seen('S')){
  2377. EtoPPressure=constrain(code_value(),0,255);
  2378. }
  2379. else {
  2380. EtoPPressure=255;
  2381. }
  2382. break;
  2383. case 129: //M129 valve closed
  2384. EtoPPressure = 0;
  2385. break;
  2386. #endif //HEATER_2_PIN
  2387. #endif
  2388. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2389. case 80: // M80 - Turn on Power Supply
  2390. SET_OUTPUT(PS_ON_PIN); //GND
  2391. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2392. // If you have a switch on suicide pin, this is useful
  2393. // if you want to start another print with suicide feature after
  2394. // a print without suicide...
  2395. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2396. SET_OUTPUT(SUICIDE_PIN);
  2397. WRITE(SUICIDE_PIN, HIGH);
  2398. #endif
  2399. #ifdef ULTIPANEL
  2400. powersupply = true;
  2401. LCD_MESSAGEPGM(WELCOME_MSG);
  2402. lcd_update();
  2403. #endif
  2404. break;
  2405. #endif
  2406. case 81: // M81 - Turn off Power Supply
  2407. disable_heater();
  2408. st_synchronize();
  2409. disable_e0();
  2410. disable_e1();
  2411. disable_e2();
  2412. finishAndDisableSteppers();
  2413. fanSpeed = 0;
  2414. delay(1000); // Wait a little before to switch off
  2415. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2416. st_synchronize();
  2417. suicide();
  2418. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2419. SET_OUTPUT(PS_ON_PIN);
  2420. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2421. #endif
  2422. #ifdef ULTIPANEL
  2423. powersupply = false;
  2424. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2425. lcd_update();
  2426. #endif
  2427. break;
  2428. case 82:
  2429. axis_relative_modes[3] = false;
  2430. break;
  2431. case 83:
  2432. axis_relative_modes[3] = true;
  2433. break;
  2434. case 18: //compatibility
  2435. case 84: // M84
  2436. if(code_seen('S')){
  2437. stepper_inactive_time = code_value() * 1000;
  2438. }
  2439. else
  2440. {
  2441. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2442. if(all_axis)
  2443. {
  2444. st_synchronize();
  2445. disable_e0();
  2446. disable_e1();
  2447. disable_e2();
  2448. finishAndDisableSteppers();
  2449. }
  2450. else
  2451. {
  2452. st_synchronize();
  2453. if(code_seen('X')) disable_x();
  2454. if(code_seen('Y')) disable_y();
  2455. if(code_seen('Z')) disable_z();
  2456. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2457. if(code_seen('E')) {
  2458. disable_e0();
  2459. disable_e1();
  2460. disable_e2();
  2461. }
  2462. #endif
  2463. }
  2464. }
  2465. break;
  2466. case 85: // M85
  2467. if(code_seen('S')) {
  2468. max_inactive_time = code_value() * 1000;
  2469. }
  2470. break;
  2471. case 92: // M92
  2472. for(int8_t i=0; i < NUM_AXIS; i++)
  2473. {
  2474. if(code_seen(axis_codes[i]))
  2475. {
  2476. if(i == 3) { // E
  2477. float value = code_value();
  2478. if(value < 20.0) {
  2479. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2480. max_e_jerk *= factor;
  2481. max_feedrate[i] *= factor;
  2482. axis_steps_per_sqr_second[i] *= factor;
  2483. }
  2484. axis_steps_per_unit[i] = value;
  2485. }
  2486. else {
  2487. axis_steps_per_unit[i] = code_value();
  2488. }
  2489. }
  2490. }
  2491. break;
  2492. case 115: // M115
  2493. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2494. break;
  2495. case 117: // M117 display message
  2496. starpos = (strchr(strchr_pointer + 5,'*'));
  2497. if(starpos!=NULL)
  2498. *(starpos)='\0';
  2499. lcd_setstatus(strchr_pointer + 5);
  2500. break;
  2501. case 114: // M114
  2502. SERIAL_PROTOCOLPGM("X:");
  2503. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2504. SERIAL_PROTOCOLPGM(" Y:");
  2505. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2506. SERIAL_PROTOCOLPGM(" Z:");
  2507. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2508. SERIAL_PROTOCOLPGM(" E:");
  2509. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2510. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2511. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2512. SERIAL_PROTOCOLPGM(" Y:");
  2513. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2514. SERIAL_PROTOCOLPGM(" Z:");
  2515. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2516. SERIAL_PROTOCOLLN("");
  2517. #ifdef SCARA
  2518. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2519. SERIAL_PROTOCOL(delta[X_AXIS]);
  2520. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2521. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2522. SERIAL_PROTOCOLLN("");
  2523. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2524. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2525. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2526. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2527. SERIAL_PROTOCOLLN("");
  2528. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2529. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2530. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2531. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2532. SERIAL_PROTOCOLLN("");
  2533. SERIAL_PROTOCOLLN("");
  2534. #endif
  2535. break;
  2536. case 120: // M120
  2537. enable_endstops(false) ;
  2538. break;
  2539. case 121: // M121
  2540. enable_endstops(true) ;
  2541. break;
  2542. case 119: // M119
  2543. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2544. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2545. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2546. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2547. #endif
  2548. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2549. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2550. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2551. #endif
  2552. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2553. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2554. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2555. #endif
  2556. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2557. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2558. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2559. #endif
  2560. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2561. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2562. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2563. #endif
  2564. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2565. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2566. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2567. #endif
  2568. break;
  2569. //TODO: update for all axis, use for loop
  2570. #ifdef BLINKM
  2571. case 150: // M150
  2572. {
  2573. byte red;
  2574. byte grn;
  2575. byte blu;
  2576. if(code_seen('R')) red = code_value();
  2577. if(code_seen('U')) grn = code_value();
  2578. if(code_seen('B')) blu = code_value();
  2579. SendColors(red,grn,blu);
  2580. }
  2581. break;
  2582. #endif //BLINKM
  2583. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2584. {
  2585. tmp_extruder = active_extruder;
  2586. if(code_seen('T')) {
  2587. tmp_extruder = code_value();
  2588. if(tmp_extruder >= EXTRUDERS) {
  2589. SERIAL_ECHO_START;
  2590. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2591. break;
  2592. }
  2593. }
  2594. float area = .0;
  2595. if(code_seen('D')) {
  2596. float diameter = code_value();
  2597. // setting any extruder filament size disables volumetric on the assumption that
  2598. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2599. // for all extruders
  2600. volumetric_enabled = (diameter != 0.0);
  2601. if (volumetric_enabled) {
  2602. filament_size[tmp_extruder] = diameter;
  2603. // make sure all extruders have some sane value for the filament size
  2604. for (int i=0; i<EXTRUDERS; i++)
  2605. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2606. }
  2607. } else {
  2608. //reserved for setting filament diameter via UFID or filament measuring device
  2609. break;
  2610. }
  2611. calculate_volumetric_multipliers();
  2612. }
  2613. break;
  2614. case 201: // M201
  2615. for(int8_t i=0; i < NUM_AXIS; i++)
  2616. {
  2617. if(code_seen(axis_codes[i]))
  2618. {
  2619. max_acceleration_units_per_sq_second[i] = code_value();
  2620. }
  2621. }
  2622. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2623. reset_acceleration_rates();
  2624. break;
  2625. #if 0 // Not used for Sprinter/grbl gen6
  2626. case 202: // M202
  2627. for(int8_t i=0; i < NUM_AXIS; i++) {
  2628. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2629. }
  2630. break;
  2631. #endif
  2632. case 203: // M203 max feedrate mm/sec
  2633. for(int8_t i=0; i < NUM_AXIS; i++) {
  2634. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2635. }
  2636. break;
  2637. case 204: // M204 acclereration S normal moves T filmanent only moves
  2638. {
  2639. if(code_seen('S')) acceleration = code_value() ;
  2640. if(code_seen('T')) retract_acceleration = code_value() ;
  2641. }
  2642. break;
  2643. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2644. {
  2645. if(code_seen('S')) minimumfeedrate = code_value();
  2646. if(code_seen('T')) mintravelfeedrate = code_value();
  2647. if(code_seen('B')) minsegmenttime = code_value() ;
  2648. if(code_seen('X')) max_xy_jerk = code_value() ;
  2649. if(code_seen('Z')) max_z_jerk = code_value() ;
  2650. if(code_seen('E')) max_e_jerk = code_value() ;
  2651. }
  2652. break;
  2653. case 206: // M206 additional homing offset
  2654. for(int8_t i=0; i < 3; i++)
  2655. {
  2656. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2657. }
  2658. #ifdef SCARA
  2659. if(code_seen('T')) // Theta
  2660. {
  2661. add_homing[X_AXIS] = code_value() ;
  2662. }
  2663. if(code_seen('P')) // Psi
  2664. {
  2665. add_homing[Y_AXIS] = code_value() ;
  2666. }
  2667. #endif
  2668. break;
  2669. #ifdef DELTA
  2670. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2671. if(code_seen('L')) {
  2672. delta_diagonal_rod= code_value();
  2673. }
  2674. if(code_seen('R')) {
  2675. delta_radius= code_value();
  2676. }
  2677. if(code_seen('S')) {
  2678. delta_segments_per_second= code_value();
  2679. }
  2680. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2681. break;
  2682. case 666: // M666 set delta endstop adjustemnt
  2683. for(int8_t i=0; i < 3; i++)
  2684. {
  2685. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2686. }
  2687. break;
  2688. #endif
  2689. #ifdef FWRETRACT
  2690. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2691. {
  2692. if(code_seen('S'))
  2693. {
  2694. retract_length = code_value() ;
  2695. }
  2696. if(code_seen('F'))
  2697. {
  2698. retract_feedrate = code_value()/60 ;
  2699. }
  2700. if(code_seen('Z'))
  2701. {
  2702. retract_zlift = code_value() ;
  2703. }
  2704. }break;
  2705. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2706. {
  2707. if(code_seen('S'))
  2708. {
  2709. retract_recover_length = code_value() ;
  2710. }
  2711. if(code_seen('F'))
  2712. {
  2713. retract_recover_feedrate = code_value()/60 ;
  2714. }
  2715. }break;
  2716. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2717. {
  2718. if(code_seen('S'))
  2719. {
  2720. int t= code_value() ;
  2721. switch(t)
  2722. {
  2723. case 0:
  2724. case 1:
  2725. {
  2726. autoretract_enabled = (t == 1);
  2727. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2728. }break;
  2729. default:
  2730. SERIAL_ECHO_START;
  2731. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2732. SERIAL_ECHO(cmdbuffer[bufindr]);
  2733. SERIAL_ECHOLNPGM("\"");
  2734. }
  2735. }
  2736. }break;
  2737. #endif // FWRETRACT
  2738. #if EXTRUDERS > 1
  2739. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2740. {
  2741. if(setTargetedHotend(218)){
  2742. break;
  2743. }
  2744. if(code_seen('X'))
  2745. {
  2746. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2747. }
  2748. if(code_seen('Y'))
  2749. {
  2750. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2751. }
  2752. #ifdef DUAL_X_CARRIAGE
  2753. if(code_seen('Z'))
  2754. {
  2755. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2756. }
  2757. #endif
  2758. SERIAL_ECHO_START;
  2759. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2760. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2761. {
  2762. SERIAL_ECHO(" ");
  2763. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2764. SERIAL_ECHO(",");
  2765. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2766. #ifdef DUAL_X_CARRIAGE
  2767. SERIAL_ECHO(",");
  2768. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2769. #endif
  2770. }
  2771. SERIAL_ECHOLN("");
  2772. }break;
  2773. #endif
  2774. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2775. {
  2776. if(code_seen('S'))
  2777. {
  2778. feedmultiply = code_value() ;
  2779. }
  2780. }
  2781. break;
  2782. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2783. {
  2784. if(code_seen('S'))
  2785. {
  2786. int tmp_code = code_value();
  2787. if (code_seen('T'))
  2788. {
  2789. if(setTargetedHotend(221)){
  2790. break;
  2791. }
  2792. extruder_multiply[tmp_extruder] = tmp_code;
  2793. }
  2794. else
  2795. {
  2796. extrudemultiply = tmp_code ;
  2797. }
  2798. }
  2799. }
  2800. break;
  2801. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2802. {
  2803. if(code_seen('P')){
  2804. int pin_number = code_value(); // pin number
  2805. int pin_state = -1; // required pin state - default is inverted
  2806. if(code_seen('S')) pin_state = code_value(); // required pin state
  2807. if(pin_state >= -1 && pin_state <= 1){
  2808. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2809. {
  2810. if (sensitive_pins[i] == pin_number)
  2811. {
  2812. pin_number = -1;
  2813. break;
  2814. }
  2815. }
  2816. if (pin_number > -1)
  2817. {
  2818. int target = LOW;
  2819. st_synchronize();
  2820. pinMode(pin_number, INPUT);
  2821. switch(pin_state){
  2822. case 1:
  2823. target = HIGH;
  2824. break;
  2825. case 0:
  2826. target = LOW;
  2827. break;
  2828. case -1:
  2829. target = !digitalRead(pin_number);
  2830. break;
  2831. }
  2832. while(digitalRead(pin_number) != target){
  2833. manage_heater();
  2834. manage_inactivity();
  2835. lcd_update();
  2836. }
  2837. }
  2838. }
  2839. }
  2840. }
  2841. break;
  2842. #if NUM_SERVOS > 0
  2843. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2844. {
  2845. int servo_index = -1;
  2846. int servo_position = 0;
  2847. if (code_seen('P'))
  2848. servo_index = code_value();
  2849. if (code_seen('S')) {
  2850. servo_position = code_value();
  2851. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2852. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2853. servos[servo_index].attach(0);
  2854. #endif
  2855. servos[servo_index].write(servo_position);
  2856. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2857. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2858. servos[servo_index].detach();
  2859. #endif
  2860. }
  2861. else {
  2862. SERIAL_ECHO_START;
  2863. SERIAL_ECHO("Servo ");
  2864. SERIAL_ECHO(servo_index);
  2865. SERIAL_ECHOLN(" out of range");
  2866. }
  2867. }
  2868. else if (servo_index >= 0) {
  2869. SERIAL_PROTOCOL(MSG_OK);
  2870. SERIAL_PROTOCOL(" Servo ");
  2871. SERIAL_PROTOCOL(servo_index);
  2872. SERIAL_PROTOCOL(": ");
  2873. SERIAL_PROTOCOL(servos[servo_index].read());
  2874. SERIAL_PROTOCOLLN("");
  2875. }
  2876. }
  2877. break;
  2878. #endif // NUM_SERVOS > 0
  2879. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2880. case 300: // M300
  2881. {
  2882. int beepS = code_seen('S') ? code_value() : 110;
  2883. int beepP = code_seen('P') ? code_value() : 1000;
  2884. if (beepS > 0)
  2885. {
  2886. #if BEEPER > 0
  2887. tone(BEEPER, beepS);
  2888. delay(beepP);
  2889. noTone(BEEPER);
  2890. #elif defined(ULTRALCD)
  2891. lcd_buzz(beepS, beepP);
  2892. #elif defined(LCD_USE_I2C_BUZZER)
  2893. lcd_buzz(beepP, beepS);
  2894. #endif
  2895. }
  2896. else
  2897. {
  2898. delay(beepP);
  2899. }
  2900. }
  2901. break;
  2902. #endif // M300
  2903. #ifdef PIDTEMP
  2904. case 301: // M301
  2905. {
  2906. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2907. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2908. int e = 0; // extruder being updated
  2909. if (code_seen('E'))
  2910. {
  2911. e = (int)code_value();
  2912. }
  2913. if (e < EXTRUDERS) // catch bad input value
  2914. {
  2915. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2916. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2917. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2918. #ifdef PID_ADD_EXTRUSION_RATE
  2919. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2920. #endif
  2921. updatePID();
  2922. SERIAL_PROTOCOL(MSG_OK);
  2923. #ifdef PID_PARAMS_PER_EXTRUDER
  2924. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2925. SERIAL_PROTOCOL(e);
  2926. #endif // PID_PARAMS_PER_EXTRUDER
  2927. SERIAL_PROTOCOL(" p:");
  2928. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2929. SERIAL_PROTOCOL(" i:");
  2930. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2931. SERIAL_PROTOCOL(" d:");
  2932. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2933. #ifdef PID_ADD_EXTRUSION_RATE
  2934. SERIAL_PROTOCOL(" c:");
  2935. //Kc does not have scaling applied above, or in resetting defaults
  2936. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2937. #endif
  2938. SERIAL_PROTOCOLLN("");
  2939. }
  2940. else
  2941. {
  2942. SERIAL_ECHO_START;
  2943. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2944. }
  2945. }
  2946. break;
  2947. #endif //PIDTEMP
  2948. #ifdef PIDTEMPBED
  2949. case 304: // M304
  2950. {
  2951. if(code_seen('P')) bedKp = code_value();
  2952. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2953. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2954. updatePID();
  2955. SERIAL_PROTOCOL(MSG_OK);
  2956. SERIAL_PROTOCOL(" p:");
  2957. SERIAL_PROTOCOL(bedKp);
  2958. SERIAL_PROTOCOL(" i:");
  2959. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2960. SERIAL_PROTOCOL(" d:");
  2961. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2962. SERIAL_PROTOCOLLN("");
  2963. }
  2964. break;
  2965. #endif //PIDTEMP
  2966. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2967. {
  2968. #ifdef CHDK
  2969. SET_OUTPUT(CHDK);
  2970. WRITE(CHDK, HIGH);
  2971. chdkHigh = millis();
  2972. chdkActive = true;
  2973. #else
  2974. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2975. const uint8_t NUM_PULSES=16;
  2976. const float PULSE_LENGTH=0.01524;
  2977. for(int i=0; i < NUM_PULSES; i++) {
  2978. WRITE(PHOTOGRAPH_PIN, HIGH);
  2979. _delay_ms(PULSE_LENGTH);
  2980. WRITE(PHOTOGRAPH_PIN, LOW);
  2981. _delay_ms(PULSE_LENGTH);
  2982. }
  2983. delay(7.33);
  2984. for(int i=0; i < NUM_PULSES; i++) {
  2985. WRITE(PHOTOGRAPH_PIN, HIGH);
  2986. _delay_ms(PULSE_LENGTH);
  2987. WRITE(PHOTOGRAPH_PIN, LOW);
  2988. _delay_ms(PULSE_LENGTH);
  2989. }
  2990. #endif
  2991. #endif //chdk end if
  2992. }
  2993. break;
  2994. #ifdef DOGLCD
  2995. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2996. {
  2997. if (code_seen('C')) {
  2998. lcd_setcontrast( ((int)code_value())&63 );
  2999. }
  3000. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3001. SERIAL_PROTOCOL(lcd_contrast);
  3002. SERIAL_PROTOCOLLN("");
  3003. }
  3004. break;
  3005. #endif
  3006. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3007. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3008. {
  3009. float temp = .0;
  3010. if (code_seen('S')) temp=code_value();
  3011. set_extrude_min_temp(temp);
  3012. }
  3013. break;
  3014. #endif
  3015. case 303: // M303 PID autotune
  3016. {
  3017. float temp = 150.0;
  3018. int e=0;
  3019. int c=5;
  3020. if (code_seen('E')) e=code_value();
  3021. if (e<0)
  3022. temp=70;
  3023. if (code_seen('S')) temp=code_value();
  3024. if (code_seen('C')) c=code_value();
  3025. PID_autotune(temp, e, c);
  3026. }
  3027. break;
  3028. #ifdef SCARA
  3029. case 360: // M360 SCARA Theta pos1
  3030. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3031. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3032. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3033. if(Stopped == false) {
  3034. //get_coordinates(); // For X Y Z E F
  3035. delta[X_AXIS] = 0;
  3036. delta[Y_AXIS] = 120;
  3037. calculate_SCARA_forward_Transform(delta);
  3038. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3039. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3040. prepare_move();
  3041. //ClearToSend();
  3042. return;
  3043. }
  3044. break;
  3045. case 361: // SCARA Theta pos2
  3046. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3047. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3048. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3049. if(Stopped == false) {
  3050. //get_coordinates(); // For X Y Z E F
  3051. delta[X_AXIS] = 90;
  3052. delta[Y_AXIS] = 130;
  3053. calculate_SCARA_forward_Transform(delta);
  3054. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3055. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3056. prepare_move();
  3057. //ClearToSend();
  3058. return;
  3059. }
  3060. break;
  3061. case 362: // SCARA Psi pos1
  3062. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3063. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3064. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3065. if(Stopped == false) {
  3066. //get_coordinates(); // For X Y Z E F
  3067. delta[X_AXIS] = 60;
  3068. delta[Y_AXIS] = 180;
  3069. calculate_SCARA_forward_Transform(delta);
  3070. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3071. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3072. prepare_move();
  3073. //ClearToSend();
  3074. return;
  3075. }
  3076. break;
  3077. case 363: // SCARA Psi pos2
  3078. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3079. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3080. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3081. if(Stopped == false) {
  3082. //get_coordinates(); // For X Y Z E F
  3083. delta[X_AXIS] = 50;
  3084. delta[Y_AXIS] = 90;
  3085. calculate_SCARA_forward_Transform(delta);
  3086. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3087. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3088. prepare_move();
  3089. //ClearToSend();
  3090. return;
  3091. }
  3092. break;
  3093. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3094. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3095. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3096. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3097. if(Stopped == false) {
  3098. //get_coordinates(); // For X Y Z E F
  3099. delta[X_AXIS] = 45;
  3100. delta[Y_AXIS] = 135;
  3101. calculate_SCARA_forward_Transform(delta);
  3102. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3103. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3104. prepare_move();
  3105. //ClearToSend();
  3106. return;
  3107. }
  3108. break;
  3109. case 365: // M364 Set SCARA scaling for X Y Z
  3110. for(int8_t i=0; i < 3; i++)
  3111. {
  3112. if(code_seen(axis_codes[i]))
  3113. {
  3114. axis_scaling[i] = code_value();
  3115. }
  3116. }
  3117. break;
  3118. #endif
  3119. case 400: // M400 finish all moves
  3120. {
  3121. st_synchronize();
  3122. }
  3123. break;
  3124. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3125. case 401:
  3126. {
  3127. engage_z_probe(); // Engage Z Servo endstop if available
  3128. }
  3129. break;
  3130. case 402:
  3131. {
  3132. retract_z_probe(); // Retract Z Servo endstop if enabled
  3133. }
  3134. break;
  3135. #endif
  3136. #ifdef FILAMENT_SENSOR
  3137. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3138. {
  3139. #if (FILWIDTH_PIN > -1)
  3140. if(code_seen('N')) filament_width_nominal=code_value();
  3141. else{
  3142. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3143. SERIAL_PROTOCOLLN(filament_width_nominal);
  3144. }
  3145. #endif
  3146. }
  3147. break;
  3148. case 405: //M405 Turn on filament sensor for control
  3149. {
  3150. if(code_seen('D')) meas_delay_cm=code_value();
  3151. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3152. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3153. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3154. {
  3155. int temp_ratio = widthFil_to_size_ratio();
  3156. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3157. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3158. }
  3159. delay_index1=0;
  3160. delay_index2=0;
  3161. }
  3162. filament_sensor = true ;
  3163. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3164. //SERIAL_PROTOCOL(filament_width_meas);
  3165. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3166. //SERIAL_PROTOCOL(extrudemultiply);
  3167. }
  3168. break;
  3169. case 406: //M406 Turn off filament sensor for control
  3170. {
  3171. filament_sensor = false ;
  3172. }
  3173. break;
  3174. case 407: //M407 Display measured filament diameter
  3175. {
  3176. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3177. SERIAL_PROTOCOLLN(filament_width_meas);
  3178. }
  3179. break;
  3180. #endif
  3181. case 500: // M500 Store settings in EEPROM
  3182. {
  3183. Config_StoreSettings();
  3184. }
  3185. break;
  3186. case 501: // M501 Read settings from EEPROM
  3187. {
  3188. Config_RetrieveSettings();
  3189. }
  3190. break;
  3191. case 502: // M502 Revert to default settings
  3192. {
  3193. Config_ResetDefault();
  3194. }
  3195. break;
  3196. case 503: // M503 print settings currently in memory
  3197. {
  3198. Config_PrintSettings(code_seen('S') && code_value == 0);
  3199. }
  3200. break;
  3201. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3202. case 540:
  3203. {
  3204. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3205. }
  3206. break;
  3207. #endif
  3208. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3209. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3210. {
  3211. float value;
  3212. if (code_seen('Z'))
  3213. {
  3214. value = code_value();
  3215. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3216. {
  3217. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3218. SERIAL_ECHO_START;
  3219. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3220. SERIAL_PROTOCOLLN("");
  3221. }
  3222. else
  3223. {
  3224. SERIAL_ECHO_START;
  3225. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3226. SERIAL_ECHOPGM(MSG_Z_MIN);
  3227. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3228. SERIAL_ECHOPGM(MSG_Z_MAX);
  3229. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3230. SERIAL_PROTOCOLLN("");
  3231. }
  3232. }
  3233. else
  3234. {
  3235. SERIAL_ECHO_START;
  3236. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3237. SERIAL_ECHO(-zprobe_zoffset);
  3238. SERIAL_PROTOCOLLN("");
  3239. }
  3240. break;
  3241. }
  3242. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3243. #ifdef FILAMENTCHANGEENABLE
  3244. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3245. {
  3246. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
  3247. for (int i=0; i<NUM_AXIS; i++)
  3248. target[i] = lastpos[i] = current_position[i];
  3249. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3250. #ifdef DELTA
  3251. #define RUNPLAN calculate_delta(target); BASICPLAN
  3252. #else
  3253. #define RUNPLAN BASICPLAN
  3254. #endif
  3255. //retract by E
  3256. if(code_seen('E'))
  3257. {
  3258. target[E_AXIS]+= code_value();
  3259. }
  3260. else
  3261. {
  3262. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3263. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3264. #endif
  3265. }
  3266. RUNPLAN;
  3267. //lift Z
  3268. if(code_seen('Z'))
  3269. {
  3270. target[Z_AXIS]+= code_value();
  3271. }
  3272. else
  3273. {
  3274. #ifdef FILAMENTCHANGE_ZADD
  3275. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3276. #endif
  3277. }
  3278. RUNPLAN;
  3279. //move xy
  3280. if(code_seen('X'))
  3281. {
  3282. target[X_AXIS]= code_value();
  3283. }
  3284. else
  3285. {
  3286. #ifdef FILAMENTCHANGE_XPOS
  3287. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3288. #endif
  3289. }
  3290. if(code_seen('Y'))
  3291. {
  3292. target[Y_AXIS]= code_value();
  3293. }
  3294. else
  3295. {
  3296. #ifdef FILAMENTCHANGE_YPOS
  3297. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3298. #endif
  3299. }
  3300. RUNPLAN;
  3301. if(code_seen('L'))
  3302. {
  3303. target[E_AXIS]+= code_value();
  3304. }
  3305. else
  3306. {
  3307. #ifdef FILAMENTCHANGE_FINALRETRACT
  3308. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3309. #endif
  3310. }
  3311. RUNPLAN;
  3312. //finish moves
  3313. st_synchronize();
  3314. //disable extruder steppers so filament can be removed
  3315. disable_e0();
  3316. disable_e1();
  3317. disable_e2();
  3318. delay(100);
  3319. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3320. uint8_t cnt=0;
  3321. while(!lcd_clicked()){
  3322. cnt++;
  3323. manage_heater();
  3324. manage_inactivity(true);
  3325. lcd_update();
  3326. if(cnt==0)
  3327. {
  3328. #if BEEPER > 0
  3329. SET_OUTPUT(BEEPER);
  3330. WRITE(BEEPER,HIGH);
  3331. delay(3);
  3332. WRITE(BEEPER,LOW);
  3333. delay(3);
  3334. #else
  3335. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3336. lcd_buzz(1000/6,100);
  3337. #else
  3338. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3339. #endif
  3340. #endif
  3341. }
  3342. }
  3343. //return to normal
  3344. if(code_seen('L'))
  3345. {
  3346. target[E_AXIS]+= -code_value();
  3347. }
  3348. else
  3349. {
  3350. #ifdef FILAMENTCHANGE_FINALRETRACT
  3351. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3352. #endif
  3353. }
  3354. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3355. plan_set_e_position(current_position[E_AXIS]);
  3356. RUNPLAN; //should do nothing
  3357. #ifdef DELTA
  3358. calculate_delta(lastpos);
  3359. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3360. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3361. #else
  3362. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3363. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3364. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3365. #endif
  3366. }
  3367. break;
  3368. #endif //FILAMENTCHANGEENABLE
  3369. #ifdef DUAL_X_CARRIAGE
  3370. case 605: // Set dual x-carriage movement mode:
  3371. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3372. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3373. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3374. // millimeters x-offset and an optional differential hotend temperature of
  3375. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3376. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3377. //
  3378. // Note: the X axis should be homed after changing dual x-carriage mode.
  3379. {
  3380. st_synchronize();
  3381. if (code_seen('S'))
  3382. dual_x_carriage_mode = code_value();
  3383. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3384. {
  3385. if (code_seen('X'))
  3386. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3387. if (code_seen('R'))
  3388. duplicate_extruder_temp_offset = code_value();
  3389. SERIAL_ECHO_START;
  3390. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3391. SERIAL_ECHO(" ");
  3392. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3393. SERIAL_ECHO(",");
  3394. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3395. SERIAL_ECHO(" ");
  3396. SERIAL_ECHO(duplicate_extruder_x_offset);
  3397. SERIAL_ECHO(",");
  3398. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3399. }
  3400. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3401. {
  3402. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3403. }
  3404. active_extruder_parked = false;
  3405. extruder_duplication_enabled = false;
  3406. delayed_move_time = 0;
  3407. }
  3408. break;
  3409. #endif //DUAL_X_CARRIAGE
  3410. case 907: // M907 Set digital trimpot motor current using axis codes.
  3411. {
  3412. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3413. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3414. if(code_seen('B')) digipot_current(4,code_value());
  3415. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3416. #endif
  3417. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3418. if(code_seen('X')) digipot_current(0, code_value());
  3419. #endif
  3420. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3421. if(code_seen('Z')) digipot_current(1, code_value());
  3422. #endif
  3423. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3424. if(code_seen('E')) digipot_current(2, code_value());
  3425. #endif
  3426. #ifdef DIGIPOT_I2C
  3427. // this one uses actual amps in floating point
  3428. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3429. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3430. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3431. #endif
  3432. }
  3433. break;
  3434. case 908: // M908 Control digital trimpot directly.
  3435. {
  3436. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3437. uint8_t channel,current;
  3438. if(code_seen('P')) channel=code_value();
  3439. if(code_seen('S')) current=code_value();
  3440. digitalPotWrite(channel, current);
  3441. #endif
  3442. }
  3443. break;
  3444. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3445. {
  3446. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3447. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3448. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3449. if(code_seen('B')) microstep_mode(4,code_value());
  3450. microstep_readings();
  3451. #endif
  3452. }
  3453. break;
  3454. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3455. {
  3456. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3457. if(code_seen('S')) switch((int)code_value())
  3458. {
  3459. case 1:
  3460. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3461. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3462. break;
  3463. case 2:
  3464. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3465. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3466. break;
  3467. }
  3468. microstep_readings();
  3469. #endif
  3470. }
  3471. break;
  3472. case 999: // M999: Restart after being stopped
  3473. Stopped = false;
  3474. lcd_reset_alert_level();
  3475. gcode_LastN = Stopped_gcode_LastN;
  3476. FlushSerialRequestResend();
  3477. break;
  3478. }
  3479. }
  3480. else if(code_seen('T'))
  3481. {
  3482. tmp_extruder = code_value();
  3483. if(tmp_extruder >= EXTRUDERS) {
  3484. SERIAL_ECHO_START;
  3485. SERIAL_ECHO("T");
  3486. SERIAL_ECHO(tmp_extruder);
  3487. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3488. }
  3489. else {
  3490. boolean make_move = false;
  3491. if(code_seen('F')) {
  3492. make_move = true;
  3493. next_feedrate = code_value();
  3494. if(next_feedrate > 0.0) {
  3495. feedrate = next_feedrate;
  3496. }
  3497. }
  3498. #if EXTRUDERS > 1
  3499. if(tmp_extruder != active_extruder) {
  3500. // Save current position to return to after applying extruder offset
  3501. memcpy(destination, current_position, sizeof(destination));
  3502. #ifdef DUAL_X_CARRIAGE
  3503. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3504. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3505. {
  3506. // Park old head: 1) raise 2) move to park position 3) lower
  3507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3508. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3509. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3510. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3511. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3512. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3513. st_synchronize();
  3514. }
  3515. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3516. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3517. extruder_offset[Y_AXIS][active_extruder] +
  3518. extruder_offset[Y_AXIS][tmp_extruder];
  3519. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3520. extruder_offset[Z_AXIS][active_extruder] +
  3521. extruder_offset[Z_AXIS][tmp_extruder];
  3522. active_extruder = tmp_extruder;
  3523. // This function resets the max/min values - the current position may be overwritten below.
  3524. axis_is_at_home(X_AXIS);
  3525. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3526. {
  3527. current_position[X_AXIS] = inactive_extruder_x_pos;
  3528. inactive_extruder_x_pos = destination[X_AXIS];
  3529. }
  3530. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3531. {
  3532. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3533. if (active_extruder == 0 || active_extruder_parked)
  3534. current_position[X_AXIS] = inactive_extruder_x_pos;
  3535. else
  3536. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3537. inactive_extruder_x_pos = destination[X_AXIS];
  3538. extruder_duplication_enabled = false;
  3539. }
  3540. else
  3541. {
  3542. // record raised toolhead position for use by unpark
  3543. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3544. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3545. active_extruder_parked = true;
  3546. delayed_move_time = 0;
  3547. }
  3548. #else
  3549. // Offset extruder (only by XY)
  3550. int i;
  3551. for(i = 0; i < 2; i++) {
  3552. current_position[i] = current_position[i] -
  3553. extruder_offset[i][active_extruder] +
  3554. extruder_offset[i][tmp_extruder];
  3555. }
  3556. // Set the new active extruder and position
  3557. active_extruder = tmp_extruder;
  3558. #endif //else DUAL_X_CARRIAGE
  3559. #ifdef DELTA
  3560. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3561. //sent position to plan_set_position();
  3562. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3563. #else
  3564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3565. #endif
  3566. // Move to the old position if 'F' was in the parameters
  3567. if(make_move && Stopped == false) {
  3568. prepare_move();
  3569. }
  3570. }
  3571. #endif
  3572. SERIAL_ECHO_START;
  3573. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3574. SERIAL_PROTOCOLLN((int)active_extruder);
  3575. }
  3576. }
  3577. else
  3578. {
  3579. SERIAL_ECHO_START;
  3580. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3581. SERIAL_ECHO(cmdbuffer[bufindr]);
  3582. SERIAL_ECHOLNPGM("\"");
  3583. }
  3584. ClearToSend();
  3585. }
  3586. void FlushSerialRequestResend()
  3587. {
  3588. //char cmdbuffer[bufindr][100]="Resend:";
  3589. MYSERIAL.flush();
  3590. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3591. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3592. ClearToSend();
  3593. }
  3594. void ClearToSend()
  3595. {
  3596. previous_millis_cmd = millis();
  3597. #ifdef SDSUPPORT
  3598. if(fromsd[bufindr])
  3599. return;
  3600. #endif //SDSUPPORT
  3601. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3602. }
  3603. void get_coordinates()
  3604. {
  3605. bool seen[4]={false,false,false,false};
  3606. for(int8_t i=0; i < NUM_AXIS; i++) {
  3607. if(code_seen(axis_codes[i]))
  3608. {
  3609. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3610. seen[i]=true;
  3611. }
  3612. else destination[i] = current_position[i]; //Are these else lines really needed?
  3613. }
  3614. if(code_seen('F')) {
  3615. next_feedrate = code_value();
  3616. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3617. }
  3618. }
  3619. void get_arc_coordinates()
  3620. {
  3621. #ifdef SF_ARC_FIX
  3622. bool relative_mode_backup = relative_mode;
  3623. relative_mode = true;
  3624. #endif
  3625. get_coordinates();
  3626. #ifdef SF_ARC_FIX
  3627. relative_mode=relative_mode_backup;
  3628. #endif
  3629. if(code_seen('I')) {
  3630. offset[0] = code_value();
  3631. }
  3632. else {
  3633. offset[0] = 0.0;
  3634. }
  3635. if(code_seen('J')) {
  3636. offset[1] = code_value();
  3637. }
  3638. else {
  3639. offset[1] = 0.0;
  3640. }
  3641. }
  3642. void clamp_to_software_endstops(float target[3])
  3643. {
  3644. if (min_software_endstops) {
  3645. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3646. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3647. float negative_z_offset = 0;
  3648. #ifdef ENABLE_AUTO_BED_LEVELING
  3649. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3650. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3651. #endif
  3652. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3653. }
  3654. if (max_software_endstops) {
  3655. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3656. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3657. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3658. }
  3659. }
  3660. #ifdef DELTA
  3661. void recalc_delta_settings(float radius, float diagonal_rod)
  3662. {
  3663. delta_tower1_x= -SIN_60*radius; // front left tower
  3664. delta_tower1_y= -COS_60*radius;
  3665. delta_tower2_x= SIN_60*radius; // front right tower
  3666. delta_tower2_y= -COS_60*radius;
  3667. delta_tower3_x= 0.0; // back middle tower
  3668. delta_tower3_y= radius;
  3669. delta_diagonal_rod_2= sq(diagonal_rod);
  3670. }
  3671. void calculate_delta(float cartesian[3])
  3672. {
  3673. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3674. - sq(delta_tower1_x-cartesian[X_AXIS])
  3675. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3676. ) + cartesian[Z_AXIS];
  3677. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3678. - sq(delta_tower2_x-cartesian[X_AXIS])
  3679. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3680. ) + cartesian[Z_AXIS];
  3681. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3682. - sq(delta_tower3_x-cartesian[X_AXIS])
  3683. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3684. ) + cartesian[Z_AXIS];
  3685. /*
  3686. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3687. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3688. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3689. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3690. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3691. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3692. */
  3693. }
  3694. #endif
  3695. void prepare_move()
  3696. {
  3697. clamp_to_software_endstops(destination);
  3698. previous_millis_cmd = millis();
  3699. #ifdef SCARA //for now same as delta-code
  3700. float difference[NUM_AXIS];
  3701. for (int8_t i=0; i < NUM_AXIS; i++) {
  3702. difference[i] = destination[i] - current_position[i];
  3703. }
  3704. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3705. sq(difference[Y_AXIS]) +
  3706. sq(difference[Z_AXIS]));
  3707. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3708. if (cartesian_mm < 0.000001) { return; }
  3709. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3710. int steps = max(1, int(scara_segments_per_second * seconds));
  3711. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3712. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3713. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3714. for (int s = 1; s <= steps; s++) {
  3715. float fraction = float(s) / float(steps);
  3716. for(int8_t i=0; i < NUM_AXIS; i++) {
  3717. destination[i] = current_position[i] + difference[i] * fraction;
  3718. }
  3719. calculate_delta(destination);
  3720. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3721. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3722. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3723. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3724. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3725. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3726. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3727. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3728. active_extruder);
  3729. }
  3730. #endif // SCARA
  3731. #ifdef DELTA
  3732. float difference[NUM_AXIS];
  3733. for (int8_t i=0; i < NUM_AXIS; i++) {
  3734. difference[i] = destination[i] - current_position[i];
  3735. }
  3736. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3737. sq(difference[Y_AXIS]) +
  3738. sq(difference[Z_AXIS]));
  3739. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3740. if (cartesian_mm < 0.000001) { return; }
  3741. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3742. int steps = max(1, int(delta_segments_per_second * seconds));
  3743. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3744. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3745. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3746. for (int s = 1; s <= steps; s++) {
  3747. float fraction = float(s) / float(steps);
  3748. for(int8_t i=0; i < NUM_AXIS; i++) {
  3749. destination[i] = current_position[i] + difference[i] * fraction;
  3750. }
  3751. calculate_delta(destination);
  3752. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3753. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3754. active_extruder);
  3755. }
  3756. #endif // DELTA
  3757. #ifdef DUAL_X_CARRIAGE
  3758. if (active_extruder_parked)
  3759. {
  3760. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3761. {
  3762. // move duplicate extruder into correct duplication position.
  3763. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3764. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3765. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3767. st_synchronize();
  3768. extruder_duplication_enabled = true;
  3769. active_extruder_parked = false;
  3770. }
  3771. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3772. {
  3773. if (current_position[E_AXIS] == destination[E_AXIS])
  3774. {
  3775. // this is a travel move - skit it but keep track of current position (so that it can later
  3776. // be used as start of first non-travel move)
  3777. if (delayed_move_time != 0xFFFFFFFFUL)
  3778. {
  3779. memcpy(current_position, destination, sizeof(current_position));
  3780. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3781. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3782. delayed_move_time = millis();
  3783. return;
  3784. }
  3785. }
  3786. delayed_move_time = 0;
  3787. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3788. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3790. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3792. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3793. active_extruder_parked = false;
  3794. }
  3795. }
  3796. #endif //DUAL_X_CARRIAGE
  3797. #if ! (defined DELTA || defined SCARA)
  3798. // Do not use feedmultiply for E or Z only moves
  3799. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3800. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3801. }
  3802. else {
  3803. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3804. }
  3805. #endif // !(DELTA || SCARA)
  3806. for(int8_t i=0; i < NUM_AXIS; i++) {
  3807. current_position[i] = destination[i];
  3808. }
  3809. }
  3810. void prepare_arc_move(char isclockwise) {
  3811. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3812. // Trace the arc
  3813. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3814. // As far as the parser is concerned, the position is now == target. In reality the
  3815. // motion control system might still be processing the action and the real tool position
  3816. // in any intermediate location.
  3817. for(int8_t i=0; i < NUM_AXIS; i++) {
  3818. current_position[i] = destination[i];
  3819. }
  3820. previous_millis_cmd = millis();
  3821. }
  3822. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3823. #if defined(FAN_PIN)
  3824. #if CONTROLLERFAN_PIN == FAN_PIN
  3825. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3826. #endif
  3827. #endif
  3828. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3829. unsigned long lastMotorCheck = 0;
  3830. void controllerFan()
  3831. {
  3832. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3833. {
  3834. lastMotorCheck = millis();
  3835. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3836. #if EXTRUDERS > 2
  3837. || !READ(E2_ENABLE_PIN)
  3838. #endif
  3839. #if EXTRUDER > 1
  3840. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3841. || !READ(X2_ENABLE_PIN)
  3842. #endif
  3843. || !READ(E1_ENABLE_PIN)
  3844. #endif
  3845. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3846. {
  3847. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3848. }
  3849. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3850. {
  3851. digitalWrite(CONTROLLERFAN_PIN, 0);
  3852. analogWrite(CONTROLLERFAN_PIN, 0);
  3853. }
  3854. else
  3855. {
  3856. // allows digital or PWM fan output to be used (see M42 handling)
  3857. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3858. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3859. }
  3860. }
  3861. }
  3862. #endif
  3863. #ifdef SCARA
  3864. void calculate_SCARA_forward_Transform(float f_scara[3])
  3865. {
  3866. // Perform forward kinematics, and place results in delta[3]
  3867. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3868. float x_sin, x_cos, y_sin, y_cos;
  3869. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3870. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3871. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3872. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3873. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3874. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3875. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3876. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3877. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3878. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3879. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3880. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3881. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3882. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3883. }
  3884. void calculate_delta(float cartesian[3]){
  3885. //reverse kinematics.
  3886. // Perform reversed kinematics, and place results in delta[3]
  3887. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3888. float SCARA_pos[2];
  3889. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3890. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3891. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3892. #if (Linkage_1 == Linkage_2)
  3893. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3894. #else
  3895. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3896. #endif
  3897. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3898. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3899. SCARA_K2 = Linkage_2 * SCARA_S2;
  3900. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3901. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3902. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3903. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3904. delta[Z_AXIS] = cartesian[Z_AXIS];
  3905. /*
  3906. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3907. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3908. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3909. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3910. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3911. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3912. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3913. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3914. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3915. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3916. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3917. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3918. SERIAL_ECHOLN(" ");*/
  3919. }
  3920. #endif
  3921. #ifdef TEMP_STAT_LEDS
  3922. static bool blue_led = false;
  3923. static bool red_led = false;
  3924. static uint32_t stat_update = 0;
  3925. void handle_status_leds(void) {
  3926. float max_temp = 0.0;
  3927. if(millis() > stat_update) {
  3928. stat_update += 500; // Update every 0.5s
  3929. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3930. max_temp = max(max_temp, degHotend(cur_extruder));
  3931. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3932. }
  3933. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3934. max_temp = max(max_temp, degTargetBed());
  3935. max_temp = max(max_temp, degBed());
  3936. #endif
  3937. if((max_temp > 55.0) && (red_led == false)) {
  3938. digitalWrite(STAT_LED_RED, 1);
  3939. digitalWrite(STAT_LED_BLUE, 0);
  3940. red_led = true;
  3941. blue_led = false;
  3942. }
  3943. if((max_temp < 54.0) && (blue_led == false)) {
  3944. digitalWrite(STAT_LED_RED, 0);
  3945. digitalWrite(STAT_LED_BLUE, 1);
  3946. red_led = false;
  3947. blue_led = true;
  3948. }
  3949. }
  3950. }
  3951. #endif
  3952. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3953. {
  3954. #if defined(KILL_PIN) && KILL_PIN > -1
  3955. static int killCount = 0; // make the inactivity button a bit less responsive
  3956. const int KILL_DELAY = 10000;
  3957. #endif
  3958. #if defined(HOME_PIN) && HOME_PIN > -1
  3959. static int homeDebounceCount = 0; // poor man's debouncing count
  3960. const int HOME_DEBOUNCE_DELAY = 10000;
  3961. #endif
  3962. if(buflen < (BUFSIZE-1))
  3963. get_command();
  3964. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3965. if(max_inactive_time)
  3966. kill();
  3967. if(stepper_inactive_time) {
  3968. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3969. {
  3970. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3971. disable_x();
  3972. disable_y();
  3973. disable_z();
  3974. disable_e0();
  3975. disable_e1();
  3976. disable_e2();
  3977. }
  3978. }
  3979. }
  3980. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3981. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3982. {
  3983. chdkActive = false;
  3984. WRITE(CHDK, LOW);
  3985. }
  3986. #endif
  3987. #if defined(KILL_PIN) && KILL_PIN > -1
  3988. // Check if the kill button was pressed and wait just in case it was an accidental
  3989. // key kill key press
  3990. // -------------------------------------------------------------------------------
  3991. if( 0 == READ(KILL_PIN) )
  3992. {
  3993. killCount++;
  3994. }
  3995. else if (killCount > 0)
  3996. {
  3997. killCount--;
  3998. }
  3999. // Exceeded threshold and we can confirm that it was not accidental
  4000. // KILL the machine
  4001. // ----------------------------------------------------------------
  4002. if ( killCount >= KILL_DELAY)
  4003. {
  4004. kill();
  4005. }
  4006. #endif
  4007. #if defined(HOME_PIN) && HOME_PIN > -1
  4008. // Check to see if we have to home, use poor man's debouncer
  4009. // ---------------------------------------------------------
  4010. if ( 0 == READ(HOME_PIN) )
  4011. {
  4012. if (homeDebounceCount == 0)
  4013. {
  4014. enquecommands_P((PSTR("G28")));
  4015. homeDebounceCount++;
  4016. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4017. }
  4018. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4019. {
  4020. homeDebounceCount++;
  4021. }
  4022. else
  4023. {
  4024. homeDebounceCount = 0;
  4025. }
  4026. }
  4027. #endif
  4028. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4029. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4030. #endif
  4031. #ifdef EXTRUDER_RUNOUT_PREVENT
  4032. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4033. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4034. {
  4035. bool oldstatus=READ(E0_ENABLE_PIN);
  4036. enable_e0();
  4037. float oldepos=current_position[E_AXIS];
  4038. float oldedes=destination[E_AXIS];
  4039. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4040. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4041. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4042. current_position[E_AXIS]=oldepos;
  4043. destination[E_AXIS]=oldedes;
  4044. plan_set_e_position(oldepos);
  4045. previous_millis_cmd=millis();
  4046. st_synchronize();
  4047. WRITE(E0_ENABLE_PIN,oldstatus);
  4048. }
  4049. #endif
  4050. #if defined(DUAL_X_CARRIAGE)
  4051. // handle delayed move timeout
  4052. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4053. {
  4054. // travel moves have been received so enact them
  4055. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4056. memcpy(destination,current_position,sizeof(destination));
  4057. prepare_move();
  4058. }
  4059. #endif
  4060. #ifdef TEMP_STAT_LEDS
  4061. handle_status_leds();
  4062. #endif
  4063. check_axes_activity();
  4064. }
  4065. void kill()
  4066. {
  4067. cli(); // Stop interrupts
  4068. disable_heater();
  4069. disable_x();
  4070. disable_y();
  4071. disable_z();
  4072. disable_e0();
  4073. disable_e1();
  4074. disable_e2();
  4075. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4076. pinMode(PS_ON_PIN,INPUT);
  4077. #endif
  4078. SERIAL_ERROR_START;
  4079. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4080. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4081. // FMC small patch to update the LCD before ending
  4082. sei(); // enable interrupts
  4083. for ( int i=5; i--; lcd_update())
  4084. {
  4085. delay(200);
  4086. }
  4087. cli(); // disable interrupts
  4088. suicide();
  4089. while(1) { /* Intentionally left empty */ } // Wait for reset
  4090. }
  4091. void Stop()
  4092. {
  4093. disable_heater();
  4094. if(Stopped == false) {
  4095. Stopped = true;
  4096. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4097. SERIAL_ERROR_START;
  4098. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4099. LCD_MESSAGEPGM(MSG_STOPPED);
  4100. }
  4101. }
  4102. bool IsStopped() { return Stopped; };
  4103. #ifdef FAST_PWM_FAN
  4104. void setPwmFrequency(uint8_t pin, int val)
  4105. {
  4106. val &= 0x07;
  4107. switch(digitalPinToTimer(pin))
  4108. {
  4109. #if defined(TCCR0A)
  4110. case TIMER0A:
  4111. case TIMER0B:
  4112. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4113. // TCCR0B |= val;
  4114. break;
  4115. #endif
  4116. #if defined(TCCR1A)
  4117. case TIMER1A:
  4118. case TIMER1B:
  4119. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4120. // TCCR1B |= val;
  4121. break;
  4122. #endif
  4123. #if defined(TCCR2)
  4124. case TIMER2:
  4125. case TIMER2:
  4126. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4127. TCCR2 |= val;
  4128. break;
  4129. #endif
  4130. #if defined(TCCR2A)
  4131. case TIMER2A:
  4132. case TIMER2B:
  4133. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4134. TCCR2B |= val;
  4135. break;
  4136. #endif
  4137. #if defined(TCCR3A)
  4138. case TIMER3A:
  4139. case TIMER3B:
  4140. case TIMER3C:
  4141. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4142. TCCR3B |= val;
  4143. break;
  4144. #endif
  4145. #if defined(TCCR4A)
  4146. case TIMER4A:
  4147. case TIMER4B:
  4148. case TIMER4C:
  4149. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4150. TCCR4B |= val;
  4151. break;
  4152. #endif
  4153. #if defined(TCCR5A)
  4154. case TIMER5A:
  4155. case TIMER5B:
  4156. case TIMER5C:
  4157. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4158. TCCR5B |= val;
  4159. break;
  4160. #endif
  4161. }
  4162. }
  4163. #endif //FAST_PWM_FAN
  4164. bool setTargetedHotend(int code){
  4165. tmp_extruder = active_extruder;
  4166. if(code_seen('T')) {
  4167. tmp_extruder = code_value();
  4168. if(tmp_extruder >= EXTRUDERS) {
  4169. SERIAL_ECHO_START;
  4170. switch(code){
  4171. case 104:
  4172. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4173. break;
  4174. case 105:
  4175. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4176. break;
  4177. case 109:
  4178. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4179. break;
  4180. case 218:
  4181. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4182. break;
  4183. case 221:
  4184. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4185. break;
  4186. }
  4187. SERIAL_ECHOLN(tmp_extruder);
  4188. return true;
  4189. }
  4190. }
  4191. return false;
  4192. }
  4193. float calculate_volumetric_multiplier(float diameter) {
  4194. float area = .0;
  4195. float radius = .0;
  4196. radius = diameter * .5;
  4197. if (! volumetric_enabled || radius == 0) {
  4198. area = 1;
  4199. }
  4200. else {
  4201. area = M_PI * pow(radius, 2);
  4202. }
  4203. return 1.0 / area;
  4204. }
  4205. void calculate_volumetric_multipliers() {
  4206. for (int i=0; i<EXTRUDERS; i++)
  4207. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4208. }