12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * planner.cpp
- *
- * Buffer movement commands and manage the acceleration profile plan
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
- *
- *
- * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
- *
- * s == speed, a == acceleration, t == time, d == distance
- *
- * Basic definitions:
- * Speed[s_, a_, t_] := s + (a*t)
- * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
- *
- * Distance to reach a specific speed with a constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
- *
- * Speed after a given distance of travel with constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- * m -> Sqrt[2 a d + s^2]
- *
- * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
- *
- * When to start braking (di) to reach a specified destination speed (s2) after accelerating
- * from initial speed s1 without ever stopping at a plateau:
- * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
- *
- * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- *
- */
-
- #include "Marlin.h"
- #include "planner.h"
- #include "stepper.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
-
- #if ENABLED(MESH_BED_LEVELING)
- #include "mesh_bed_leveling.h"
- #endif
-
- Planner planner;
-
- // public:
-
- /**
- * A ring buffer of moves described in steps
- */
- block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
- volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
- volatile uint8_t Planner::block_buffer_tail = 0;
-
- float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
- float Planner::axis_steps_per_mm[NUM_AXIS];
- unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
- unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
-
- millis_t Planner::min_segment_time;
- float Planner::min_feedrate_mm_s;
- float Planner::acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
- float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
- float Planner::travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
- float Planner::max_xy_jerk; // The largest speed change requiring no acceleration
- float Planner::max_z_jerk;
- float Planner::max_e_jerk;
- float Planner::min_travel_feedrate_mm_s;
-
- #if ENABLED(AUTO_BED_LEVELING_FEATURE)
- matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
- #endif
-
- #if ENABLED(AUTOTEMP)
- float Planner::autotemp_max = 250;
- float Planner::autotemp_min = 210;
- float Planner::autotemp_factor = 0.1;
- bool Planner::autotemp_enabled = false;
- #endif
-
- // private:
-
- long Planner::position[NUM_AXIS] = { 0 };
-
- float Planner::previous_speed[NUM_AXIS];
-
- float Planner::previous_nominal_speed;
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
- uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
- #endif // DISABLE_INACTIVE_EXTRUDER
-
- #ifdef XY_FREQUENCY_LIMIT
- // Old direction bits. Used for speed calculations
- unsigned char Planner::old_direction_bits = 0;
- // Segment times (in µs). Used for speed calculations
- long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
- #endif
-
- /**
- * Class and Instance Methods
- */
-
- Planner::Planner() { init(); }
-
- void Planner::init() {
- block_buffer_head = block_buffer_tail = 0;
- memset(position, 0, sizeof(position)); // clear position
- for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
- previous_nominal_speed = 0.0;
- #if ENABLED(AUTO_BED_LEVELING_FEATURE)
- bed_level_matrix.set_to_identity();
- #endif
- }
-
- /**
- * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
- * by the provided factors.
- */
- void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
- unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
- final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
-
- // Limit minimal step rate (Otherwise the timer will overflow.)
- NOLESS(initial_rate, 120);
- NOLESS(final_rate, 120);
-
- long accel = block->acceleration_steps_per_s2;
- int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
- int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
-
- // Calculate the size of Plateau of Nominal Rate.
- int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
-
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort accel and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
- accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
- accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
- plateau_steps = 0;
- }
-
- #if ENABLED(ADVANCE)
- volatile long initial_advance = block->advance * sq(entry_factor);
- volatile long final_advance = block->advance * sq(exit_factor);
- #endif // ADVANCE
-
- // block->accelerate_until = accelerate_steps;
- // block->decelerate_after = accelerate_steps+plateau_steps;
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- if (!block->busy) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps + plateau_steps;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- #if ENABLED(ADVANCE)
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
- #endif
- }
- CRITICAL_SECTION_END;
- }
-
- // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
- // This method will calculate the junction jerk as the euclidean distance between the nominal
- // velocities of the respective blocks.
- //inline float junction_jerk(block_t *before, block_t *after) {
- // return sqrt(
- // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
- //}
-
-
- // The kernel called by recalculate() when scanning the plan from last to first entry.
- void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
- if (!current) return;
- UNUSED(previous);
-
- if (next) {
- // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
- // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
- // check for maximum allowable speed reductions to ensure maximum possible planned speed.
- float max_entry_speed = current->max_entry_speed;
- if (current->entry_speed != max_entry_speed) {
-
- // If nominal length true, max junction speed is guaranteed to be reached. Only compute
- // for max allowable speed if block is decelerating and nominal length is false.
- if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
- current->entry_speed = min(max_entry_speed,
- max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
- }
- else {
- current->entry_speed = max_entry_speed;
- }
- current->recalculate_flag = true;
-
- }
- } // Skip last block. Already initialized and set for recalculation.
- }
-
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the reverse pass.
- */
- void Planner::reverse_pass() {
-
- if (movesplanned() > 3) {
-
- block_t* block[3] = { NULL, NULL, NULL };
-
- // Make a local copy of block_buffer_tail, because the interrupt can alter it
- CRITICAL_SECTION_START;
- uint8_t tail = block_buffer_tail;
- CRITICAL_SECTION_END
-
- uint8_t b = BLOCK_MOD(block_buffer_head - 3);
- while (b != tail) {
- b = prev_block_index(b);
- block[2] = block[1];
- block[1] = block[0];
- block[0] = &block_buffer[b];
- reverse_pass_kernel(block[0], block[1], block[2]);
- }
- }
- }
-
- // The kernel called by recalculate() when scanning the plan from first to last entry.
- void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
- if (!previous) return;
- UNUSED(next);
-
- // If the previous block is an acceleration block, but it is not long enough to complete the
- // full speed change within the block, we need to adjust the entry speed accordingly. Entry
- // speeds have already been reset, maximized, and reverse planned by reverse planner.
- // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
- if (!previous->nominal_length_flag) {
- if (previous->entry_speed < current->entry_speed) {
- double entry_speed = min(current->entry_speed,
- max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
- // Check for junction speed change
- if (current->entry_speed != entry_speed) {
- current->entry_speed = entry_speed;
- current->recalculate_flag = true;
- }
- }
- }
- }
-
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the forward pass.
- */
- void Planner::forward_pass() {
- block_t* block[3] = { NULL, NULL, NULL };
-
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[b];
- forward_pass_kernel(block[0], block[1], block[2]);
- }
- forward_pass_kernel(block[1], block[2], NULL);
- }
-
- /**
- * Recalculate the trapezoid speed profiles for all blocks in the plan
- * according to the entry_factor for each junction. Must be called by
- * recalculate() after updating the blocks.
- */
- void Planner::recalculate_trapezoids() {
- int8_t block_index = block_buffer_tail;
- block_t* current;
- block_t* next = NULL;
-
- while (block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
- // Recalculate if current block entry or exit junction speed has changed.
- if (current->recalculate_flag || next->recalculate_flag) {
- // NOTE: Entry and exit factors always > 0 by all previous logic operations.
- float nom = current->nominal_speed;
- calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
- current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
- }
- }
- block_index = next_block_index(block_index);
- }
- // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
- if (next) {
- float nom = next->nominal_speed;
- calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
- next->recalculate_flag = false;
- }
- }
-
- /*
- * Recalculate the motion plan according to the following algorithm:
- *
- * 1. Go over every block in reverse order...
- *
- * Calculate a junction speed reduction (block_t.entry_factor) so:
- *
- * a. The junction jerk is within the set limit, and
- *
- * b. No speed reduction within one block requires faster
- * deceleration than the one, true constant acceleration.
- *
- * 2. Go over every block in chronological order...
- *
- * Dial down junction speed reduction values if:
- * a. The speed increase within one block would require faster
- * acceleration than the one, true constant acceleration.
- *
- * After that, all blocks will have an entry_factor allowing all speed changes to
- * be performed using only the one, true constant acceleration, and where no junction
- * jerk is jerkier than the set limit, Jerky. Finally it will:
- *
- * 3. Recalculate "trapezoids" for all blocks.
- */
- void Planner::recalculate() {
- reverse_pass();
- forward_pass();
- recalculate_trapezoids();
- }
-
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::getHighESpeed() {
- static float oldt = 0;
-
- if (!autotemp_enabled) return;
- if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
-
- float high = 0.0;
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block_t* block = &block_buffer[b];
- if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
- float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
- NOLESS(high, se);
- }
- }
-
- float t = autotemp_min + high * autotemp_factor;
- t = constrain(t, autotemp_min, autotemp_max);
- if (oldt > t) {
- t *= (1 - (AUTOTEMP_OLDWEIGHT));
- t += (AUTOTEMP_OLDWEIGHT) * oldt;
- }
- oldt = t;
- thermalManager.setTargetHotend(t, 0);
- }
-
- #endif //AUTOTEMP
-
- /**
- * Maintain fans, paste extruder pressure,
- */
- void Planner::check_axes_activity() {
- unsigned char axis_active[NUM_AXIS] = { 0 },
- tail_fan_speed[FAN_COUNT];
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- unsigned char tail_valve_pressure = baricuda_valve_pressure;
- #endif
- #if HAS_HEATER_2
- unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
- #endif
-
- if (blocks_queued()) {
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
- #endif
-
- block_t* block;
-
- #if ENABLED(BARICUDA)
- block = &block_buffer[block_buffer_tail];
- #if HAS_HEATER_1
- tail_valve_pressure = block->valve_pressure;
- #endif
- #if HAS_HEATER_2
- tail_e_to_p_pressure = block->e_to_p_pressure;
- #endif
- #endif
-
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block = &block_buffer[b];
- for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
- }
- }
- #if ENABLED(DISABLE_X)
- if (!axis_active[X_AXIS]) disable_x();
- #endif
- #if ENABLED(DISABLE_Y)
- if (!axis_active[Y_AXIS]) disable_y();
- #endif
- #if ENABLED(DISABLE_Z)
- if (!axis_active[Z_AXIS]) disable_z();
- #endif
- #if ENABLED(DISABLE_E)
- if (!axis_active[E_AXIS]) {
- disable_e0();
- disable_e1();
- disable_e2();
- disable_e3();
- }
- #endif
-
- #if FAN_COUNT > 0
-
- #if defined(FAN_MIN_PWM)
- #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
- #else
- #define CALC_FAN_SPEED(f) tail_fan_speed[f]
- #endif
-
- #ifdef FAN_KICKSTART_TIME
-
- static millis_t fan_kick_end[FAN_COUNT] = { 0 };
-
- #define KICKSTART_FAN(f) \
- if (tail_fan_speed[f]) { \
- millis_t ms = millis(); \
- if (fan_kick_end[f] == 0) { \
- fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
- tail_fan_speed[f] = 255; \
- } else { \
- if (PENDING(ms, fan_kick_end[f])) { \
- tail_fan_speed[f] = 255; \
- } \
- } \
- } else { \
- fan_kick_end[f] = 0; \
- }
-
- #if HAS_FAN0
- KICKSTART_FAN(0);
- #endif
- #if HAS_FAN1
- KICKSTART_FAN(1);
- #endif
- #if HAS_FAN2
- KICKSTART_FAN(2);
- #endif
-
- #endif //FAN_KICKSTART_TIME
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
- #endif
- #if HAS_FAN1
- thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
- #endif
- #if HAS_FAN2
- thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
- #endif
- #else
- #if HAS_FAN0
- analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
- #endif
- #if HAS_FAN1
- analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
- #endif
- #if HAS_FAN2
- analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
- #endif
- #endif
-
- #endif // FAN_COUNT > 0
-
- #if ENABLED(AUTOTEMP)
- getHighESpeed();
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- analogWrite(HEATER_1_PIN, tail_valve_pressure);
- #endif
- #if HAS_HEATER_2
- analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
- #endif
- #endif
- }
-
- /**
- * Planner::buffer_line
- *
- * Add a new linear movement to the buffer.
- *
- * x,y,z,e - target position in mm
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- */
-
- #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
- void Planner::buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder)
- #else
- void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder)
- #endif // AUTO_BED_LEVELING_FEATURE
- {
- // Calculate the buffer head after we push this byte
- int next_buffer_head = next_block_index(block_buffer_head);
-
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- while (block_buffer_tail == next_buffer_head) idle();
-
- #if ENABLED(MESH_BED_LEVELING)
- if (mbl.active())
- z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
- #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
- apply_rotation_xyz(bed_level_matrix, x, y, z);
- #endif
-
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
- long target[NUM_AXIS] = {
- lround(x * axis_steps_per_mm[X_AXIS]),
- lround(y * axis_steps_per_mm[Y_AXIS]),
- lround(z * axis_steps_per_mm[Z_AXIS]),
- lround(e * axis_steps_per_mm[E_AXIS])
- };
-
- long dx = target[X_AXIS] - position[X_AXIS],
- dy = target[Y_AXIS] - position[Y_AXIS],
- dz = target[Z_AXIS] - position[Z_AXIS];
-
- // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
- if (DEBUGGING(DRYRUN))
- position[E_AXIS] = target[E_AXIS];
-
- long de = target[E_AXIS] - position[E_AXIS];
-
- #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
- if (de) {
- if (thermalManager.tooColdToExtrude(extruder)) {
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- de = 0; // no difference
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
- }
- #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
- if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- de = 0; // no difference
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
- }
- #endif
- }
- #endif
-
- // Prepare to set up new block
- block_t* block = &block_buffer[block_buffer_head];
-
- // Mark block as not busy (Not executed by the stepper interrupt)
- block->busy = false;
-
- // Number of steps for each axis
- #if ENABLED(COREXY)
- // corexy planning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- block->steps[A_AXIS] = labs(dx + dy);
- block->steps[B_AXIS] = labs(dx - dy);
- block->steps[Z_AXIS] = labs(dz);
- #elif ENABLED(COREXZ)
- // corexz planning
- block->steps[A_AXIS] = labs(dx + dz);
- block->steps[Y_AXIS] = labs(dy);
- block->steps[C_AXIS] = labs(dx - dz);
- #elif ENABLED(COREYZ)
- // coreyz planning
- block->steps[X_AXIS] = labs(dx);
- block->steps[B_AXIS] = labs(dy + dz);
- block->steps[C_AXIS] = labs(dy - dz);
- #else
- // default non-h-bot planning
- block->steps[X_AXIS] = labs(dx);
- block->steps[Y_AXIS] = labs(dy);
- block->steps[Z_AXIS] = labs(dz);
- #endif
-
- block->steps[E_AXIS] = labs(de);
- block->steps[E_AXIS] *= volumetric_multiplier[extruder];
- block->steps[E_AXIS] *= extruder_multiplier[extruder];
- block->steps[E_AXIS] /= 100;
- block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
-
- // Bail if this is a zero-length block
- if (block->step_event_count <= dropsegments) return;
-
- // For a mixing extruder, get a magnified step_event_count for each
- #if ENABLED(MIXING_EXTRUDER)
- for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
- block->mix_event_count[i] = (mixing_factor[i] < 0.0001) ? 0 : block->step_event_count / mixing_factor[i];
- #endif
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
- #endif
-
- #if ENABLED(BARICUDA)
- block->valve_pressure = baricuda_valve_pressure;
- block->e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
-
- // Compute direction bits for this block
- uint8_t db = 0;
- #if ENABLED(COREXY)
- if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (dy < 0) SBI(db, Y_HEAD); // ...and Y
- if (dz < 0) SBI(db, Z_AXIS);
- if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
- if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
- #elif ENABLED(COREXZ)
- if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (dy < 0) SBI(db, Y_AXIS);
- if (dz < 0) SBI(db, Z_HEAD); // ...and Z
- if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
- if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction
- #elif ENABLED(COREYZ)
- if (dx < 0) SBI(db, X_AXIS);
- if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
- if (dz < 0) SBI(db, Z_HEAD); // ...and Z
- if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction
- if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction
- #else
- if (dx < 0) SBI(db, X_AXIS);
- if (dy < 0) SBI(db, Y_AXIS);
- if (dz < 0) SBI(db, Z_AXIS);
- #endif
- if (de < 0) SBI(db, E_AXIS);
- block->direction_bits = db;
-
- block->active_extruder = extruder;
-
- //enable active axes
- #if ENABLED(COREXY)
- if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
- enable_x();
- enable_y();
- }
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #elif ENABLED(COREXZ)
- if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
- enable_x();
- enable_z();
- }
- if (block->steps[Y_AXIS]) enable_y();
- #else
- if (block->steps[X_AXIS]) enable_x();
- if (block->steps[Y_AXIS]) enable_y();
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #endif
-
- // Enable extruder(s)
- if (block->steps[E_AXIS]) {
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
-
- for (int i = 0; i < EXTRUDERS; i++)
- if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
-
- switch(extruder) {
- case 0:
- enable_e0();
- #if ENABLED(DUAL_X_CARRIAGE)
- if (extruder_duplication_enabled) {
- enable_e1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- }
- #endif
- g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
- #if EXTRUDERS > 1
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- #endif
- break;
- #if EXTRUDERS > 1
- case 1:
- enable_e1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- break;
- #if EXTRUDERS > 2
- case 2:
- enable_e2();
- g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- break;
- #if EXTRUDERS > 3
- case 3:
- enable_e3();
- g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- break;
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- }
- #else
- enable_e0();
- enable_e1();
- enable_e2();
- enable_e3();
- #endif
- }
-
- if (block->steps[E_AXIS])
- NOLESS(fr_mm_s, min_feedrate_mm_s);
- else
- NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
-
- /**
- * This part of the code calculates the total length of the movement.
- * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
- * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
- * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
- * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
- * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
- */
- #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
- float delta_mm[6];
- #if ENABLED(COREXY)
- delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
- delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
- delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
- delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
- delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
- #elif ENABLED(COREXZ)
- delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
- delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
- delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
- delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
- delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
- #elif ENABLED(COREYZ)
- delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
- delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
- delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
- delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
- delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
- #endif
- #else
- float delta_mm[4];
- delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
- delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
- delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
- #endif
- delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
-
- if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
- block->millimeters = fabs(delta_mm[E_AXIS]);
- }
- else {
- block->millimeters = sqrt(
- #if ENABLED(COREXY)
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
- #elif ENABLED(COREXZ)
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
- #elif ENABLED(COREYZ)
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
- #else
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
- #endif
- );
- }
- float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
-
- // Calculate moves/second for this move. No divide by zero due to previous checks.
- float inverse_second = fr_mm_s * inverse_millimeters;
-
- int moves_queued = movesplanned();
-
- // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
- #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
- bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
- #if ENABLED(OLD_SLOWDOWN)
- if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
- #endif
- #if ENABLED(SLOWDOWN)
- // segment time im micro seconds
- unsigned long segment_time = lround(1000000.0/inverse_second);
- if (mq) {
- if (segment_time < min_segment_time) {
- // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
- #ifdef XY_FREQUENCY_LIMIT
- segment_time = lround(1000000.0 / inverse_second);
- #endif
- }
- }
- #endif
- #endif
-
- block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
- block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static float filwidth_e_count = 0, filwidth_delay_dist = 0;
-
- //FMM update ring buffer used for delay with filament measurements
- if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index2 >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
-
- const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
-
- // increment counters with next move in e axis
- filwidth_e_count += delta_mm[E_AXIS];
- filwidth_delay_dist += delta_mm[E_AXIS];
-
- // Only get new measurements on forward E movement
- if (filwidth_e_count > 0.0001) {
-
- // Loop the delay distance counter (modulus by the mm length)
- while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
-
- // Convert into an index into the measurement array
- filwidth_delay_index1 = (int)(filwidth_delay_dist / 10.0 + 0.0001);
-
- // If the index has changed (must have gone forward)...
- if (filwidth_delay_index1 != filwidth_delay_index2) {
- filwidth_e_count = 0; // Reset the E movement counter
- int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
- do {
- filwidth_delay_index2 = (filwidth_delay_index2 + 1) % MMD_CM; // The next unused slot
- measurement_delay[filwidth_delay_index2] = meas_sample; // Store the measurement
- } while (filwidth_delay_index1 != filwidth_delay_index2); // More slots to fill?
- }
- }
- }
- #endif
-
- // Calculate and limit speed in mm/sec for each axis
- float current_speed[NUM_AXIS];
- float speed_factor = 1.0; //factor <=1 do decrease speed
- for (int i = 0; i < NUM_AXIS; i++) {
- current_speed[i] = delta_mm[i] * inverse_second;
- float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
- if (cs > mf) speed_factor = min(speed_factor, mf / cs);
- }
-
- // Max segement time in us.
- #ifdef XY_FREQUENCY_LIMIT
-
- // Check and limit the xy direction change frequency
- unsigned char direction_change = block->direction_bits ^ old_direction_bits;
- old_direction_bits = block->direction_bits;
- segment_time = lround((float)segment_time / speed_factor);
-
- long xs0 = axis_segment_time[X_AXIS][0],
- xs1 = axis_segment_time[X_AXIS][1],
- xs2 = axis_segment_time[X_AXIS][2],
- ys0 = axis_segment_time[Y_AXIS][0],
- ys1 = axis_segment_time[Y_AXIS][1],
- ys2 = axis_segment_time[Y_AXIS][2];
-
- if (TEST(direction_change, X_AXIS)) {
- xs2 = axis_segment_time[X_AXIS][2] = xs1;
- xs1 = axis_segment_time[X_AXIS][1] = xs0;
- xs0 = 0;
- }
- xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
-
- if (TEST(direction_change, Y_AXIS)) {
- ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
- ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
- ys0 = 0;
- }
- ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
-
- long max_x_segment_time = max(xs0, max(xs1, xs2)),
- max_y_segment_time = max(ys0, max(ys1, ys2)),
- min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
- if (min_xy_segment_time < MAX_FREQ_TIME) {
- float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
- speed_factor = min(speed_factor, low_sf);
- }
- #endif // XY_FREQUENCY_LIMIT
-
- // Correct the speed
- if (speed_factor < 1.0) {
- for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
- block->nominal_speed *= speed_factor;
- block->nominal_rate *= speed_factor;
- }
-
- // Compute and limit the acceleration rate for the trapezoid generator.
- float steps_per_mm = block->step_event_count / block->millimeters;
- if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
- block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- }
- else {
- // Limit acceleration per axis
- block->acceleration_steps_per_s2 = ceil((block->steps[E_AXIS] ? acceleration : travel_acceleration) * steps_per_mm);
- if (max_acceleration_steps_per_s2[X_AXIS] < (block->acceleration_steps_per_s2 * block->steps[X_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[X_AXIS] * block->step_event_count) / block->steps[X_AXIS];
- if (max_acceleration_steps_per_s2[Y_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Y_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Y_AXIS] * block->step_event_count) / block->steps[Y_AXIS];
- if (max_acceleration_steps_per_s2[Z_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Z_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Z_AXIS] * block->step_event_count) / block->steps[Z_AXIS];
- if (max_acceleration_steps_per_s2[E_AXIS] < (block->acceleration_steps_per_s2 * block->steps[E_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[E_AXIS] * block->step_event_count) / block->steps[E_AXIS];
- }
- block->acceleration = block->acceleration_steps_per_s2 / steps_per_mm;
- block->acceleration_rate = (long)(block->acceleration_steps_per_s2 * 16777216.0 / ((F_CPU) / 8.0));
-
- #if 0 // Use old jerk for now
-
- float junction_deviation = 0.1;
-
- // Compute path unit vector
- double unit_vec[3];
-
- unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
- unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
- unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
-
- // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
- // Let a circle be tangent to both previous and current path line segments, where the junction
- // deviation is defined as the distance from the junction to the closest edge of the circle,
- // collinear with the circle center. The circular segment joining the two paths represents the
- // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
- // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
- // path width or max_jerk in the previous grbl version. This approach does not actually deviate
- // from path, but used as a robust way to compute cornering speeds, as it takes into account the
- // nonlinearities of both the junction angle and junction velocity.
- double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
-
- // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
- if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
- // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
- // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
- double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
- // Skip and use default max junction speed for 0 degree acute junction.
- if (cos_theta < 0.95) {
- vmax_junction = min(previous_nominal_speed, block->nominal_speed);
- // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
- if (cos_theta > -0.95) {
- // Compute maximum junction velocity based on maximum acceleration and junction deviation
- double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
- vmax_junction = min(vmax_junction,
- sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
- }
- }
- }
- #endif
-
- // Start with a safe speed
- float vmax_junction = max_xy_jerk / 2;
- float vmax_junction_factor = 1.0;
- float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
- float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
- if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
- if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
- vmax_junction = min(vmax_junction, block->nominal_speed);
- float safe_speed = vmax_junction;
-
- if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
- float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
- dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
- dsz = fabs(csz - previous_speed[Z_AXIS]),
- dse = fabs(cse - previous_speed[E_AXIS]),
- jerk = HYPOT(dsx, dsy);
-
- // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
- vmax_junction = block->nominal_speed;
- // }
- if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
- if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
- if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
-
- vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
- }
- block->max_entry_speed = vmax_junction;
-
- // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
- double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
- block->entry_speed = min(vmax_junction, v_allowable);
-
- // Initialize planner efficiency flags
- // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- block->nominal_length_flag = (block->nominal_speed <= v_allowable);
- block->recalculate_flag = true; // Always calculate trapezoid for new block
-
- // Update previous path unit_vector and nominal speed
- for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
- previous_nominal_speed = block->nominal_speed;
-
- #if ENABLED(LIN_ADVANCE)
-
- // block->steps[E_AXIS] == block->step_event_count: A problem occurs when there's a very tiny move before a retract.
- // In this case, the retract and the move will be executed together.
- // This leads to an enormous number of advance steps due to a huge e_acceleration.
- // The math is correct, but you don't want a retract move done with advance!
- // So this situation is filtered out here.
- if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) {
- block->use_advance_lead = false;
- }
- else {
- block->use_advance_lead = true;
- block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
- }
-
- #elif ENABLED(ADVANCE)
-
- // Calculate advance rate
- if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
- float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
- block->advance = advance;
- block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
- }
- /**
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("advance :");
- SERIAL_ECHO(block->advance/256.0);
- SERIAL_ECHOPGM("advance rate :");
- SERIAL_ECHOLN(block->advance_rate/256.0);
- */
-
- #endif // ADVANCE or LIN_ADVANCE
-
- calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Update position
- for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
-
- recalculate();
-
- stepper.wake_up();
-
- } // buffer_line()
-
- #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
-
- /**
- * Get the XYZ position of the steppers as a vector_3.
- *
- * On CORE machines XYZ is derived from ABC.
- */
- vector_3 Planner::adjusted_position() {
- vector_3 pos = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
-
- //pos.debug("in Planner::adjusted_position");
- //bed_level_matrix.debug("in Planner::adjusted_position");
-
- matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
- //inverse.debug("in Planner::inverse");
-
- pos.apply_rotation(inverse);
- //pos.debug("after rotation");
-
- return pos;
- }
-
- #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
-
- /**
- * Directly set the planner XYZ position (hence the stepper positions).
- *
- * On CORE machines stepper ABC will be translated from the given XYZ.
- */
- #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
- void Planner::set_position_mm(float x, float y, float z, const float& e)
- #else
- void Planner::set_position_mm(const float& x, const float& y, const float& z, const float& e)
- #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
- {
- #if ENABLED(MESH_BED_LEVELING)
- if (mbl.active())
- z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
- #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
- apply_rotation_xyz(bed_level_matrix, x, y, z);
- #endif
-
- long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
- ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
- nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
- ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
- stepper.set_position(nx, ny, nz, ne);
- previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
-
- for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
- }
-
- /**
- * Directly set the planner E position (hence the stepper E position).
- */
- void Planner::set_e_position_mm(const float& e) {
- position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
- stepper.set_e_position(position[E_AXIS]);
- }
-
- // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
- void Planner::reset_acceleration_rates() {
- for (int i = 0; i < NUM_AXIS; i++)
- max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
- }
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::autotemp_M109() {
- autotemp_enabled = code_seen('F');
- if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
- if (code_seen('S')) autotemp_min = code_value_temp_abs();
- if (code_seen('B')) autotemp_max = code_value_temp_abs();
- }
-
- #endif
|