My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

planner.h 22KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "types.h"
  33. #include "enum.h"
  34. #include "Marlin.h"
  35. #if HAS_ABL
  36. #include "vector_3.h"
  37. #endif
  38. enum BlockFlagBit {
  39. // Recalculate trapezoids on entry junction. For optimization.
  40. BLOCK_BIT_RECALCULATE,
  41. // Nominal speed always reached.
  42. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  43. // from a safe speed (in consideration of jerking from zero speed).
  44. BLOCK_BIT_NOMINAL_LENGTH,
  45. // Start from a halt at the start of this block, respecting the maximum allowed jerk.
  46. BLOCK_BIT_START_FROM_FULL_HALT,
  47. // The block is busy
  48. BLOCK_BIT_BUSY,
  49. // The block is segment 2+ of a longer move
  50. BLOCK_BIT_CONTINUED
  51. };
  52. enum BlockFlag {
  53. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  54. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  55. BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
  56. BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY),
  57. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED)
  58. };
  59. /**
  60. * struct block_t
  61. *
  62. * A single entry in the planner buffer.
  63. * Tracks linear movement over multiple axes.
  64. *
  65. * The "nominal" values are as-specified by gcode, and
  66. * may never actually be reached due to acceleration limits.
  67. */
  68. typedef struct {
  69. uint8_t flag; // Block flags (See BlockFlag enum above)
  70. unsigned char active_extruder; // The extruder to move (if E move)
  71. // Fields used by the Bresenham algorithm for tracing the line
  72. int32_t steps[NUM_AXIS]; // Step count along each axis
  73. uint32_t step_event_count; // The number of step events required to complete this block
  74. #if ENABLED(MIXING_EXTRUDER)
  75. uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  76. #endif
  77. int32_t accelerate_until, // The index of the step event on which to stop acceleration
  78. decelerate_after, // The index of the step event on which to start decelerating
  79. acceleration_rate; // The acceleration rate used for acceleration calculation
  80. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  81. // Advance extrusion
  82. #if ENABLED(LIN_ADVANCE)
  83. bool use_advance_lead;
  84. uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
  85. #endif
  86. // Fields used by the motion planner to manage acceleration
  87. float nominal_speed, // The nominal speed for this block in mm/sec
  88. entry_speed, // Entry speed at previous-current junction in mm/sec
  89. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  90. millimeters, // The total travel of this block in mm
  91. acceleration; // acceleration mm/sec^2
  92. // Settings for the trapezoid generator
  93. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  94. initial_rate, // The jerk-adjusted step rate at start of block
  95. final_rate, // The minimal rate at exit
  96. acceleration_steps_per_s2; // acceleration steps/sec^2
  97. #if FAN_COUNT > 0
  98. uint16_t fan_speed[FAN_COUNT];
  99. #endif
  100. #if ENABLED(BARICUDA)
  101. uint8_t valve_pressure, e_to_p_pressure;
  102. #endif
  103. uint32_t segment_time_us;
  104. } block_t;
  105. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  106. class Planner {
  107. public:
  108. /**
  109. * The move buffer, calculated in stepper steps
  110. *
  111. * block_buffer is a ring buffer...
  112. *
  113. * head,tail : indexes for write,read
  114. * head==tail : the buffer is empty
  115. * head!=tail : blocks are in the buffer
  116. * head==(tail-1)%size : the buffer is full
  117. *
  118. * Writer of head is Planner::buffer_segment().
  119. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  120. */
  121. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  122. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  123. block_buffer_tail; // Index of the busy block, if any
  124. #if ENABLED(DISTINCT_E_FACTORS)
  125. static uint8_t last_extruder; // Respond to extruder change
  126. #endif
  127. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  128. static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
  129. filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  130. volumetric_area_nominal, // Nominal cross-sectional area
  131. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  132. // May be auto-adjusted by a filament width sensor
  133. static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  134. axis_steps_per_mm[XYZE_N],
  135. steps_to_mm[XYZE_N];
  136. static uint32_t max_acceleration_steps_per_s2[XYZE_N],
  137. max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override
  138. static uint32_t min_segment_time_us; // Use 'M205 B<µs>' to override
  139. static float min_feedrate_mm_s,
  140. acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  141. retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  142. travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  143. max_jerk[XYZE], // The largest speed change requiring no acceleration
  144. min_travel_feedrate_mm_s;
  145. #if HAS_LEVELING
  146. static bool leveling_active; // Flag that bed leveling is enabled
  147. #if ABL_PLANAR
  148. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  149. #endif
  150. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  151. static float z_fade_height, inverse_z_fade_height;
  152. #endif
  153. #else
  154. static constexpr bool leveling_active = false;
  155. #endif
  156. #if ENABLED(LIN_ADVANCE)
  157. static float extruder_advance_k, advance_ed_ratio;
  158. #endif
  159. #if ENABLED(SKEW_CORRECTION)
  160. #if ENABLED(SKEW_CORRECTION_GCODE)
  161. static float xy_skew_factor;
  162. #else
  163. static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
  164. #endif
  165. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  166. #if ENABLED(SKEW_CORRECTION_GCODE)
  167. static float xz_skew_factor, yz_skew_factor;
  168. #else
  169. static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
  170. #endif
  171. #else
  172. static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
  173. #endif
  174. #endif
  175. private:
  176. /**
  177. * The current position of the tool in absolute steps
  178. * Recalculated if any axis_steps_per_mm are changed by gcode
  179. */
  180. static int32_t position[NUM_AXIS];
  181. /**
  182. * Speed of previous path line segment
  183. */
  184. static float previous_speed[NUM_AXIS];
  185. /**
  186. * Nominal speed of previous path line segment
  187. */
  188. static float previous_nominal_speed;
  189. /**
  190. * Limit where 64bit math is necessary for acceleration calculation
  191. */
  192. static uint32_t cutoff_long;
  193. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  194. static float last_fade_z;
  195. #endif
  196. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  197. /**
  198. * Counters to manage disabling inactive extruders
  199. */
  200. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  201. #endif // DISABLE_INACTIVE_EXTRUDER
  202. #ifdef XY_FREQUENCY_LIMIT
  203. // Used for the frequency limit
  204. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  205. // Old direction bits. Used for speed calculations
  206. static unsigned char old_direction_bits;
  207. // Segment times (in µs). Used for speed calculations
  208. static uint32_t axis_segment_time_us[2][3];
  209. #endif
  210. #if ENABLED(ULTRA_LCD)
  211. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  212. #endif
  213. public:
  214. /**
  215. * Instance Methods
  216. */
  217. Planner();
  218. void init();
  219. /**
  220. * Static (class) Methods
  221. */
  222. static void reset_acceleration_rates();
  223. static void refresh_positioning();
  224. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  225. e_factor[e] = volumetric_multiplier[e] * flow_percentage[e] * 0.01;
  226. }
  227. // Manage fans, paste pressure, etc.
  228. static void check_axes_activity();
  229. /**
  230. * Number of moves currently in the planner
  231. */
  232. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  233. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  234. // Update multipliers based on new diameter measurements
  235. static void calculate_volumetric_multipliers();
  236. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  237. void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
  238. #endif
  239. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  240. filament_size[e] = v;
  241. // make sure all extruders have some sane value for the filament size
  242. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  243. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  244. }
  245. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  246. /**
  247. * Get the Z leveling fade factor based on the given Z height,
  248. * re-calculating only when needed.
  249. *
  250. * Returns 1.0 if planner.z_fade_height is 0.0.
  251. * Returns 0.0 if Z is past the specified 'Fade Height'.
  252. */
  253. inline static float fade_scaling_factor_for_z(const float &rz) {
  254. static float z_fade_factor = 1.0;
  255. if (z_fade_height) {
  256. if (rz >= z_fade_height) return 0.0;
  257. if (last_fade_z != rz) {
  258. last_fade_z = rz;
  259. z_fade_factor = 1.0 - rz * inverse_z_fade_height;
  260. }
  261. return z_fade_factor;
  262. }
  263. return 1.0;
  264. }
  265. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }
  266. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  267. z_fade_height = zfh > 0 ? zfh : 0;
  268. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  269. force_fade_recalc();
  270. }
  271. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  272. return !z_fade_height || rz < z_fade_height;
  273. }
  274. #else
  275. FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
  276. UNUSED(rz);
  277. return 1.0;
  278. }
  279. FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
  280. #endif
  281. #if ENABLED(SKEW_CORRECTION)
  282. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  283. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  284. const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
  285. sy = cy - cz * yz_skew_factor;
  286. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  287. cx = sx; cy = sy;
  288. }
  289. }
  290. }
  291. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  292. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  293. const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
  294. sy = cy + cz * yz_skew_factor;
  295. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  296. cx = sx; cy = sy;
  297. }
  298. }
  299. }
  300. #endif // SKEW_CORRECTION
  301. #if PLANNER_LEVELING
  302. #define ARG_X float rx
  303. #define ARG_Y float ry
  304. #define ARG_Z float rz
  305. /**
  306. * Apply leveling to transform a cartesian position
  307. * as it will be given to the planner and steppers.
  308. */
  309. static void apply_leveling(float &rx, float &ry, float &rz);
  310. static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  311. static void unapply_leveling(float raw[XYZ]);
  312. #else
  313. #define ARG_X const float &rx
  314. #define ARG_Y const float &ry
  315. #define ARG_Z const float &rz
  316. #endif
  317. /**
  318. * Planner::_buffer_steps
  319. *
  320. * Add a new linear movement to the buffer (in terms of steps).
  321. *
  322. * target - target position in steps units
  323. * fr_mm_s - (target) speed of the move
  324. * extruder - target extruder
  325. */
  326. static void _buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder);
  327. /**
  328. * Planner::buffer_segment
  329. *
  330. * Add a new linear movement to the buffer in axis units.
  331. *
  332. * Leveling and kinematics should be applied ahead of calling this.
  333. *
  334. * a,b,c,e - target positions in mm and/or degrees
  335. * fr_mm_s - (target) speed of the move
  336. * extruder - target extruder
  337. */
  338. static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder);
  339. static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
  340. /**
  341. * Add a new linear movement to the buffer.
  342. * The target is NOT translated to delta/scara
  343. *
  344. * Leveling will be applied to input on cartesians.
  345. * Kinematic machines should call buffer_line_kinematic (for leveled moves).
  346. * (Cartesians may also call buffer_line_kinematic.)
  347. *
  348. * rx,ry,rz,e - target position in mm or degrees
  349. * fr_mm_s - (target) speed of the move (mm/s)
  350. * extruder - target extruder
  351. */
  352. FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
  353. #if PLANNER_LEVELING && IS_CARTESIAN
  354. apply_leveling(rx, ry, rz);
  355. #endif
  356. buffer_segment(rx, ry, rz, e, fr_mm_s, extruder);
  357. }
  358. /**
  359. * Add a new linear movement to the buffer.
  360. * The target is cartesian, it's translated to delta/scara if
  361. * needed.
  362. *
  363. * cart - x,y,z,e CARTESIAN target in mm
  364. * fr_mm_s - (target) speed of the move (mm/s)
  365. * extruder - target extruder
  366. */
  367. FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder) {
  368. #if PLANNER_LEVELING
  369. float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
  370. apply_leveling(raw);
  371. #else
  372. const float (&raw)[XYZE] = cart;
  373. #endif
  374. #if IS_KINEMATIC
  375. inverse_kinematics(raw);
  376. buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder);
  377. #else
  378. buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder);
  379. #endif
  380. }
  381. /**
  382. * Set the planner.position and individual stepper positions.
  383. * Used by G92, G28, G29, and other procedures.
  384. *
  385. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  386. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  387. *
  388. * Clears previous speed values.
  389. */
  390. FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  391. #if PLANNER_LEVELING && IS_CARTESIAN
  392. apply_leveling(rx, ry, rz);
  393. #endif
  394. _set_position_mm(rx, ry, rz, e);
  395. }
  396. static void set_position_mm_kinematic(const float (&cart)[XYZE]);
  397. static void set_position_mm(const AxisEnum axis, const float &v);
  398. FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
  399. FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
  400. /**
  401. * Sync from the stepper positions. (e.g., after an interrupted move)
  402. */
  403. static void sync_from_steppers();
  404. /**
  405. * Does the buffer have any blocks queued?
  406. */
  407. static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  408. /**
  409. * "Discard" the block and "release" the memory.
  410. * Called when the current block is no longer needed.
  411. */
  412. FORCE_INLINE static void discard_current_block() {
  413. if (blocks_queued())
  414. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  415. }
  416. /**
  417. * "Discard" the next block if it's continued.
  418. * Called after an interrupted move to throw away the rest of the move.
  419. */
  420. FORCE_INLINE static bool discard_continued_block() {
  421. const bool discard = blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED);
  422. if (discard) discard_current_block();
  423. return discard;
  424. }
  425. /**
  426. * The current block. NULL if the buffer is empty.
  427. * This also marks the block as busy.
  428. * WARNING: Called from Stepper ISR context!
  429. */
  430. static block_t* get_current_block() {
  431. if (blocks_queued()) {
  432. block_t * const block = &block_buffer[block_buffer_tail];
  433. #if ENABLED(ULTRA_LCD)
  434. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
  435. #endif
  436. SBI(block->flag, BLOCK_BIT_BUSY);
  437. return block;
  438. }
  439. else {
  440. #if ENABLED(ULTRA_LCD)
  441. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  442. #endif
  443. return NULL;
  444. }
  445. }
  446. #if ENABLED(ULTRA_LCD)
  447. static uint16_t block_buffer_runtime() {
  448. CRITICAL_SECTION_START
  449. millis_t bbru = block_buffer_runtime_us;
  450. CRITICAL_SECTION_END
  451. // To translate µs to ms a division by 1000 would be required.
  452. // We introduce 2.4% error here by dividing by 1024.
  453. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  454. bbru >>= 10;
  455. // limit to about a minute.
  456. NOMORE(bbru, 0xFFFFul);
  457. return bbru;
  458. }
  459. static void clear_block_buffer_runtime(){
  460. CRITICAL_SECTION_START
  461. block_buffer_runtime_us = 0;
  462. CRITICAL_SECTION_END
  463. }
  464. #endif
  465. #if ENABLED(AUTOTEMP)
  466. static float autotemp_min, autotemp_max, autotemp_factor;
  467. static bool autotemp_enabled;
  468. static void getHighESpeed();
  469. static void autotemp_M104_M109();
  470. #endif
  471. private:
  472. /**
  473. * Get the index of the next / previous block in the ring buffer
  474. */
  475. static constexpr int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  476. static constexpr int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  477. /**
  478. * Calculate the distance (not time) it takes to accelerate
  479. * from initial_rate to target_rate using the given acceleration:
  480. */
  481. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  482. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  483. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  484. }
  485. /**
  486. * Return the point at which you must start braking (at the rate of -'accel') if
  487. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  488. * 'final_rate' after traveling 'distance'.
  489. *
  490. * This is used to compute the intersection point between acceleration and deceleration
  491. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  492. */
  493. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  494. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  495. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  496. }
  497. /**
  498. * Calculate the maximum allowable speed at this point, in order
  499. * to reach 'target_velocity' using 'acceleration' within a given
  500. * 'distance'.
  501. */
  502. static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
  503. return SQRT(sq(target_velocity) - 2 * accel * distance);
  504. }
  505. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  506. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  507. static void forward_pass_kernel(const block_t * const previous, block_t* const current);
  508. static void reverse_pass();
  509. static void forward_pass();
  510. static void recalculate_trapezoids();
  511. static void recalculate();
  512. };
  513. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  514. extern Planner planner;
  515. #endif // PLANNER_H