My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

ubl_motion.cpp 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include <avr/io.h>
  28. #include <math.h>
  29. extern float destination[XYZE];
  30. extern void set_current_to_destination();
  31. static void debug_echo_axis(const AxisEnum axis) {
  32. if (current_position[axis] == destination[axis])
  33. SERIAL_ECHOPGM("-------------");
  34. else
  35. SERIAL_ECHO_F(destination[X_AXIS], 6);
  36. }
  37. void debug_current_and_destination(const char *title) {
  38. // if the title message starts with a '!' it is so important, we are going to
  39. // ignore the status of the g26_debug_flag
  40. if (*title != '!' && !ubl.g26_debug_flag) return;
  41. const float de = destination[E_AXIS] - current_position[E_AXIS];
  42. if (de == 0.0) return;
  43. const float dx = current_position[X_AXIS] - destination[X_AXIS],
  44. dy = current_position[Y_AXIS] - destination[Y_AXIS],
  45. xy_dist = HYPOT(dx, dy);
  46. if (xy_dist == 0.0) {
  47. return;
  48. //SERIAL_ECHOPGM(" FPMM=");
  49. //const float fpmm = de / xy_dist;
  50. //SERIAL_PROTOCOL_F(fpmm, 6);
  51. }
  52. else {
  53. SERIAL_ECHOPGM(" fpmm=");
  54. const float fpmm = de / xy_dist;
  55. SERIAL_ECHO_F(fpmm, 6);
  56. }
  57. SERIAL_ECHOPGM(" current=( ");
  58. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  59. SERIAL_ECHOPGM(", ");
  60. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  61. SERIAL_ECHOPGM(", ");
  62. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  63. SERIAL_ECHOPGM(", ");
  64. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  65. SERIAL_ECHOPGM(" ) destination=( ");
  66. debug_echo_axis(X_AXIS);
  67. SERIAL_ECHOPGM(", ");
  68. debug_echo_axis(Y_AXIS);
  69. SERIAL_ECHOPGM(", ");
  70. debug_echo_axis(Z_AXIS);
  71. SERIAL_ECHOPGM(", ");
  72. debug_echo_axis(E_AXIS);
  73. SERIAL_ECHOPGM(" ) ");
  74. SERIAL_ECHO(title);
  75. SERIAL_EOL;
  76. }
  77. void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) {
  78. /**
  79. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  80. * as possible to determine if this is the case. If this move is within the same cell, we will
  81. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  82. */
  83. const float start[XYZE] = {
  84. current_position[X_AXIS],
  85. current_position[Y_AXIS],
  86. current_position[Z_AXIS],
  87. current_position[E_AXIS]
  88. },
  89. end[XYZE] = {
  90. destination[X_AXIS],
  91. destination[Y_AXIS],
  92. destination[Z_AXIS],
  93. destination[E_AXIS]
  94. };
  95. const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
  96. cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
  97. cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
  98. cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
  99. if (ubl.g26_debug_flag) {
  100. SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
  101. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  102. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  103. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  104. SERIAL_CHAR(')');
  105. SERIAL_EOL;
  106. debug_current_and_destination(PSTR("Start of ubl_line_to_destination()"));
  107. }
  108. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  109. /**
  110. * we don't need to break up the move
  111. *
  112. * If we are moving off the print bed, we are going to allow the move at this level.
  113. * But we detect it and isolate it. For now, we just pass along the request.
  114. */
  115. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  116. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  117. // a reasonable correction would be.
  118. planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
  119. set_current_to_destination();
  120. if (ubl.g26_debug_flag)
  121. debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()"));
  122. return;
  123. }
  124. FINAL_MOVE:
  125. /**
  126. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  127. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  128. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  129. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  130. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  131. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  132. */
  133. const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_xpos[cell_dest_xi]))) * (1.0 / (MESH_X_DIST)),
  134. z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  135. (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
  136. z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  137. (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
  138. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  139. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  140. const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_ypos[cell_dest_yi]))) * (1.0 / (MESH_Y_DIST));
  141. float z0 = z1 + (z2 - z1) * yratio;
  142. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  143. /**
  144. * If part of the Mesh is undefined, it will show up as NAN
  145. * in z_values[][] and propagate through the
  146. * calculations. If our correction is NAN, we throw it out
  147. * because part of the Mesh is undefined and we don't have the
  148. * information we need to complete the height correction.
  149. */
  150. if (isnan(z0)) z0 = 0.0;
  151. planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
  152. if (ubl.g26_debug_flag)
  153. debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()"));
  154. set_current_to_destination();
  155. return;
  156. }
  157. /**
  158. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  159. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  160. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  161. * computation and in fact most lines are of this nature. We will check for that in the following
  162. * blocks of code:
  163. */
  164. const float dx = end[X_AXIS] - start[X_AXIS],
  165. dy = end[Y_AXIS] - start[Y_AXIS];
  166. const int left_flag = dx < 0.0 ? 1.0 : 0.0,
  167. down_flag = dy < 0.0 ? 1.0 : 0.0;
  168. const float adx = left_flag ? -dx : dx,
  169. ady = down_flag ? -dy : dy;
  170. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  171. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  172. /**
  173. * Compute the scaling factor for the extruder for each partial move.
  174. * We need to watch out for zero length moves because it will cause us to
  175. * have an infinate scaling factor. We are stuck doing a floating point
  176. * divide to get our scaling factor, but after that, we just multiply by this
  177. * number. We also pick our scaling factor based on whether the X or Y
  178. * component is larger. We use the biggest of the two to preserve precision.
  179. */
  180. const bool use_x_dist = adx > ady;
  181. float on_axis_distance = use_x_dist ? dx : dy,
  182. e_position = end[E_AXIS] - start[E_AXIS],
  183. z_position = end[Z_AXIS] - start[Z_AXIS];
  184. const float e_normalized_dist = e_position / on_axis_distance,
  185. z_normalized_dist = z_position / on_axis_distance;
  186. int current_xi = cell_start_xi, current_yi = cell_start_yi;
  187. const float m = dy / dx,
  188. c = start[Y_AXIS] - m * start[X_AXIS];
  189. const bool inf_normalized_flag=isinf(e_normalized_dist),
  190. inf_m_flag=isinf(m);
  191. /**
  192. * This block handles vertical lines. These are lines that stay within the same
  193. * X Cell column. They do not need to be perfectly vertical. They just can
  194. * not cross into another X Cell column.
  195. */
  196. if (dxi == 0) { // Check for a vertical line
  197. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  198. while (current_yi != cell_dest_yi + down_flag) {
  199. current_yi += dyi;
  200. const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
  201. /**
  202. * if the slope of the line is infinite, we won't do the calculations
  203. * else, we know the next X is the same so we can recover and continue!
  204. * Calculate X at the next Y mesh line
  205. */
  206. const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  207. float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
  208. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  209. /**
  210. * If part of the Mesh is undefined, it will show up as NAN
  211. * in z_values[][] and propagate through the
  212. * calculations. If our correction is NAN, we throw it out
  213. * because part of the Mesh is undefined and we don't have the
  214. * information we need to complete the height correction.
  215. */
  216. if (isnan(z0)) z0 = 0.0;
  217. const float y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
  218. /**
  219. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  220. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  221. * happens, it might be best to remove the check and always 'schedule' the move because
  222. * the planner.buffer_line() routine will filter it if that happens.
  223. */
  224. if (y != start[Y_AXIS]) {
  225. if (!inf_normalized_flag) {
  226. //on_axis_distance = y - start[Y_AXIS];
  227. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  228. //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  229. //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  230. //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  231. //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  232. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  233. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  234. }
  235. else {
  236. e_position = end[E_AXIS];
  237. z_position = end[Z_AXIS];
  238. }
  239. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  240. } //else printf("FIRST MOVE PRUNED ");
  241. }
  242. if (ubl.g26_debug_flag)
  243. debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()"));
  244. //
  245. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  246. //
  247. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  248. goto FINAL_MOVE;
  249. set_current_to_destination();
  250. return;
  251. }
  252. /**
  253. *
  254. * This block handles horizontal lines. These are lines that stay within the same
  255. * Y Cell row. They do not need to be perfectly horizontal. They just can
  256. * not cross into another Y Cell row.
  257. *
  258. */
  259. if (dyi == 0) { // Check for a horizontal line
  260. current_xi += left_flag; // Line is heading left, we just want to go to the left
  261. // edge of this cell for the first move.
  262. while (current_xi != cell_dest_xi + left_flag) {
  263. current_xi += dxi;
  264. const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi]))),
  265. y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  266. float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
  267. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  268. /**
  269. * If part of the Mesh is undefined, it will show up as NAN
  270. * in z_values[][] and propagate through the
  271. * calculations. If our correction is NAN, we throw it out
  272. * because part of the Mesh is undefined and we don't have the
  273. * information we need to complete the height correction.
  274. */
  275. if (isnan(z0)) z0 = 0.0;
  276. const float x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi])));
  277. /**
  278. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  279. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  280. * that happens, it might be best to remove the check and always 'schedule' the move because
  281. * the planner.buffer_line() routine will filter it if that happens.
  282. */
  283. if (x != start[X_AXIS]) {
  284. if (!inf_normalized_flag) {
  285. //on_axis_distance = x - start[X_AXIS];
  286. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  287. //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  288. //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  289. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  290. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  291. }
  292. else {
  293. e_position = end[E_AXIS];
  294. z_position = end[Z_AXIS];
  295. }
  296. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  297. } //else printf("FIRST MOVE PRUNED ");
  298. }
  299. if (ubl.g26_debug_flag)
  300. debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()"));
  301. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  302. goto FINAL_MOVE;
  303. set_current_to_destination();
  304. return;
  305. }
  306. /**
  307. *
  308. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  309. *
  310. */
  311. int xi_cnt = cell_start_xi - cell_dest_xi,
  312. yi_cnt = cell_start_yi - cell_dest_yi;
  313. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  314. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  315. current_xi += left_flag;
  316. current_yi += down_flag;
  317. while (xi_cnt > 0 || yi_cnt > 0) {
  318. const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi + dxi]))),
  319. next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi + dyi]))),
  320. y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  321. x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  322. // (No need to worry about m being zero.
  323. // If that was the case, it was already detected
  324. // as a vertical line move above.)
  325. if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
  326. //
  327. // Yes! Crossing a Y Mesh Line next
  328. //
  329. float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
  330. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  331. /**
  332. * If part of the Mesh is undefined, it will show up as NAN
  333. * in z_values[][] and propagate through the
  334. * calculations. If our correction is NAN, we throw it out
  335. * because part of the Mesh is undefined and we don't have the
  336. * information we need to complete the height correction.
  337. */
  338. if (isnan(z0)) z0 = 0.0;
  339. if (!inf_normalized_flag) {
  340. on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  341. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  342. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  343. }
  344. else {
  345. e_position = end[E_AXIS];
  346. z_position = end[Z_AXIS];
  347. }
  348. planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  349. current_yi += dyi;
  350. yi_cnt--;
  351. }
  352. else {
  353. //
  354. // Yes! Crossing a X Mesh Line next
  355. //
  356. float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
  357. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  358. /**
  359. * If part of the Mesh is undefined, it will show up as NAN
  360. * in z_values[][] and propagate through the
  361. * calculations. If our correction is NAN, we throw it out
  362. * because part of the Mesh is undefined and we don't have the
  363. * information we need to complete the height correction.
  364. */
  365. if (isnan(z0)) z0 = 0.0;
  366. if (!inf_normalized_flag) {
  367. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  368. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  369. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  370. }
  371. else {
  372. e_position = end[E_AXIS];
  373. z_position = end[Z_AXIS];
  374. }
  375. planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  376. current_xi += dxi;
  377. xi_cnt--;
  378. }
  379. }
  380. if (ubl.g26_debug_flag)
  381. debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()"));
  382. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  383. goto FINAL_MOVE;
  384. set_current_to_destination();
  385. }
  386. #endif