My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

configuration_store.cpp 57KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V39"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V39 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S from mbl.status (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 6 bytes
  87. * 324 G29 A ubl.state.active (bool)
  88. * 325 G29 Z ubl.state.z_offset (float)
  89. * 329 G29 S ubl.state.storage_slot (int8_t)
  90. *
  91. * DELTA: 48 bytes
  92. * 348 M666 XYZ endstop_adj (float x3)
  93. * 360 M665 R delta_radius (float)
  94. * 364 M665 L delta_diagonal_rod (float)
  95. * 368 M665 S delta_segments_per_second (float)
  96. * 372 M665 B delta_calibration_radius (float)
  97. * 376 M665 X delta_tower_angle_trim[A] (float)
  98. * 380 M665 Y delta_tower_angle_trim[B] (float)
  99. * --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0
  100. *
  101. * Z_DUAL_ENDSTOPS: 48 bytes
  102. * 348 M666 Z z_endstop_adj (float)
  103. * --- dummy data (float x11)
  104. *
  105. * ULTIPANEL: 6 bytes
  106. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  107. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  108. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  109. *
  110. * PIDTEMP: 66 bytes
  111. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  112. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  113. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  114. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  115. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 488 M301 L lpq_len (int)
  117. *
  118. * PIDTEMPBED: 12 bytes
  119. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  120. *
  121. * DOGLCD: 2 bytes
  122. * 502 M250 C lcd_contrast (uint16_t)
  123. *
  124. * FWRETRACT: 29 bytes
  125. * 504 M209 S autoretract_enabled (bool)
  126. * 505 M207 S retract_length (float)
  127. * 509 M207 W retract_length_swap (float)
  128. * 513 M207 F retract_feedrate_mm_s (float)
  129. * 517 M207 Z retract_zlift (float)
  130. * 521 M208 S retract_recover_length (float)
  131. * 525 M208 W retract_recover_length_swap (float)
  132. * 529 M208 F retract_recover_feedrate_mm_s (float)
  133. *
  134. * Volumetric Extrusion: 21 bytes
  135. * 533 M200 D volumetric_enabled (bool)
  136. * 534 M200 T D filament_size (float x5) (T0..3)
  137. *
  138. * HAVE_TMC2130: 20 bytes
  139. * 554 M906 X Stepper X current (uint16_t)
  140. * 556 M906 Y Stepper Y current (uint16_t)
  141. * 558 M906 Z Stepper Z current (uint16_t)
  142. * 560 M906 X2 Stepper X2 current (uint16_t)
  143. * 562 M906 Y2 Stepper Y2 current (uint16_t)
  144. * 564 M906 Z2 Stepper Z2 current (uint16_t)
  145. * 566 M906 E0 Stepper E0 current (uint16_t)
  146. * 568 M906 E1 Stepper E1 current (uint16_t)
  147. * 570 M906 E2 Stepper E2 current (uint16_t)
  148. * 572 M906 E3 Stepper E3 current (uint16_t)
  149. * 576 M906 E4 Stepper E4 current (uint16_t)
  150. *
  151. * LIN_ADVANCE: 8 bytes
  152. * 580 M900 K extruder_advance_k (float)
  153. * 584 M900 WHD advance_ed_ratio (float)
  154. *
  155. * HAS_MOTOR_CURRENT_PWM:
  156. * 588 M907 X Stepper XY current (uint32_t)
  157. * 592 M907 Z Stepper Z current (uint32_t)
  158. * 596 M907 E Stepper E current (uint32_t)
  159. *
  160. * 600 Minimum end-point
  161. * 1921 (600 + 36 + 9 + 288 + 988) Maximum end-point
  162. *
  163. * ========================================================================
  164. * meshes_begin (between max and min end-point, directly above)
  165. * -- MESHES --
  166. * meshes_end
  167. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  168. * mat_end = E2END (0xFFF)
  169. *
  170. */
  171. #include "configuration_store.h"
  172. MarlinSettings settings;
  173. #include "Marlin.h"
  174. #include "language.h"
  175. #include "endstops.h"
  176. #include "planner.h"
  177. #include "temperature.h"
  178. #include "ultralcd.h"
  179. #include "stepper.h"
  180. #if ENABLED(INCH_MODE_SUPPORT) || (ENABLED(ULTIPANEL) && ENABLED(TEMPERATURE_UNITS_SUPPORT))
  181. #include "gcode.h"
  182. #endif
  183. #if ENABLED(MESH_BED_LEVELING)
  184. #include "mesh_bed_leveling.h"
  185. #endif
  186. #if ENABLED(HAVE_TMC2130)
  187. #include "stepper_indirection.h"
  188. #endif
  189. #if ENABLED(AUTO_BED_LEVELING_UBL)
  190. #include "ubl.h"
  191. #endif
  192. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  193. extern void refresh_bed_level();
  194. #endif
  195. /**
  196. * Post-process after Retrieve or Reset
  197. */
  198. void MarlinSettings::postprocess() {
  199. // steps per s2 needs to be updated to agree with units per s2
  200. planner.reset_acceleration_rates();
  201. // Make sure delta kinematics are updated before refreshing the
  202. // planner position so the stepper counts will be set correctly.
  203. #if ENABLED(DELTA)
  204. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  205. #endif
  206. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  207. // and init stepper.count[], planner.position[] with current_position
  208. planner.refresh_positioning();
  209. #if ENABLED(PIDTEMP)
  210. thermalManager.updatePID();
  211. #endif
  212. calculate_volumetric_multipliers();
  213. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  214. // Software endstops depend on home_offset
  215. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  216. #endif
  217. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  218. set_z_fade_height(planner.z_fade_height);
  219. #endif
  220. #if HAS_BED_PROBE
  221. refresh_zprobe_zoffset();
  222. #endif
  223. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  224. refresh_bed_level();
  225. //set_bed_leveling_enabled(leveling_is_on);
  226. #endif
  227. #if HAS_MOTOR_CURRENT_PWM
  228. stepper.refresh_motor_power();
  229. #endif
  230. }
  231. #if ENABLED(EEPROM_SETTINGS)
  232. #define DUMMY_PID_VALUE 3000.0f
  233. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  234. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  235. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  236. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  237. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  238. const char version[4] = EEPROM_VERSION;
  239. bool MarlinSettings::eeprom_error;
  240. #if ENABLED(AUTO_BED_LEVELING_UBL)
  241. int MarlinSettings::meshes_begin;
  242. #endif
  243. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  244. if (eeprom_error) return;
  245. while (size--) {
  246. uint8_t * const p = (uint8_t * const)pos;
  247. uint8_t v = *value;
  248. // EEPROM has only ~100,000 write cycles,
  249. // so only write bytes that have changed!
  250. if (v != eeprom_read_byte(p)) {
  251. eeprom_write_byte(p, v);
  252. if (eeprom_read_byte(p) != v) {
  253. SERIAL_ECHO_START();
  254. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  255. eeprom_error = true;
  256. return;
  257. }
  258. }
  259. crc16(crc, &v, 1);
  260. pos++;
  261. value++;
  262. };
  263. }
  264. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  265. if (eeprom_error) return;
  266. do {
  267. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  268. *value = c;
  269. crc16(crc, &c, 1);
  270. pos++;
  271. value++;
  272. } while (--size);
  273. }
  274. /**
  275. * M500 - Store Configuration
  276. */
  277. bool MarlinSettings::save() {
  278. float dummy = 0.0f;
  279. char ver[4] = "000";
  280. uint16_t working_crc = 0;
  281. EEPROM_START();
  282. eeprom_error = false;
  283. EEPROM_WRITE(ver); // invalidate data first
  284. EEPROM_SKIP(working_crc); // Skip the checksum slot
  285. working_crc = 0; // clear before first "real data"
  286. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  287. EEPROM_WRITE(esteppers);
  288. EEPROM_WRITE(planner.axis_steps_per_mm);
  289. EEPROM_WRITE(planner.max_feedrate_mm_s);
  290. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  291. EEPROM_WRITE(planner.acceleration);
  292. EEPROM_WRITE(planner.retract_acceleration);
  293. EEPROM_WRITE(planner.travel_acceleration);
  294. EEPROM_WRITE(planner.min_feedrate_mm_s);
  295. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  296. EEPROM_WRITE(planner.min_segment_time);
  297. EEPROM_WRITE(planner.max_jerk);
  298. #if !HAS_HOME_OFFSET
  299. const float home_offset[XYZ] = { 0 };
  300. #endif
  301. #if ENABLED(DELTA)
  302. dummy = 0.0;
  303. EEPROM_WRITE(dummy);
  304. EEPROM_WRITE(dummy);
  305. dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
  306. EEPROM_WRITE(dummy);
  307. #else
  308. EEPROM_WRITE(home_offset);
  309. #endif
  310. #if HOTENDS > 1
  311. // Skip hotend 0 which must be 0
  312. for (uint8_t e = 1; e < HOTENDS; e++)
  313. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  314. #endif
  315. //
  316. // Global Leveling
  317. //
  318. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  319. const float zfh = planner.z_fade_height;
  320. #else
  321. const float zfh = 10.0;
  322. #endif
  323. EEPROM_WRITE(zfh);
  324. //
  325. // Mesh Bed Leveling
  326. //
  327. #if ENABLED(MESH_BED_LEVELING)
  328. // Compile time test that sizeof(mbl.z_values) is as expected
  329. static_assert(
  330. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  331. "MBL Z array is the wrong size."
  332. );
  333. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  334. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  335. EEPROM_WRITE(leveling_is_on);
  336. EEPROM_WRITE(mbl.z_offset);
  337. EEPROM_WRITE(mesh_num_x);
  338. EEPROM_WRITE(mesh_num_y);
  339. EEPROM_WRITE(mbl.z_values);
  340. #else // For disabled MBL write a default mesh
  341. const bool leveling_is_on = false;
  342. dummy = 0.0f;
  343. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  344. EEPROM_WRITE(leveling_is_on);
  345. EEPROM_WRITE(dummy); // z_offset
  346. EEPROM_WRITE(mesh_num_x);
  347. EEPROM_WRITE(mesh_num_y);
  348. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  349. #endif // MESH_BED_LEVELING
  350. #if !HAS_BED_PROBE
  351. const float zprobe_zoffset = 0;
  352. #endif
  353. EEPROM_WRITE(zprobe_zoffset);
  354. //
  355. // Planar Bed Leveling matrix
  356. //
  357. #if ABL_PLANAR
  358. EEPROM_WRITE(planner.bed_level_matrix);
  359. #else
  360. dummy = 0.0;
  361. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  362. #endif
  363. //
  364. // Bilinear Auto Bed Leveling
  365. //
  366. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  367. // Compile time test that sizeof(z_values) is as expected
  368. static_assert(
  369. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  370. "Bilinear Z array is the wrong size."
  371. );
  372. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  373. EEPROM_WRITE(grid_max_x); // 1 byte
  374. EEPROM_WRITE(grid_max_y); // 1 byte
  375. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  376. EEPROM_WRITE(bilinear_start); // 2 ints
  377. EEPROM_WRITE(z_values); // 9-256 floats
  378. #else
  379. // For disabled Bilinear Grid write an empty 3x3 grid
  380. const uint8_t grid_max_x = 3, grid_max_y = 3;
  381. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  382. dummy = 0.0f;
  383. EEPROM_WRITE(grid_max_x);
  384. EEPROM_WRITE(grid_max_y);
  385. EEPROM_WRITE(bilinear_grid_spacing);
  386. EEPROM_WRITE(bilinear_start);
  387. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  388. #endif // AUTO_BED_LEVELING_BILINEAR
  389. #if ENABLED(AUTO_BED_LEVELING_UBL)
  390. EEPROM_WRITE(ubl.state.active);
  391. EEPROM_WRITE(ubl.state.z_offset);
  392. EEPROM_WRITE(ubl.state.storage_slot);
  393. #else
  394. const bool ubl_active = false;
  395. dummy = 0.0f;
  396. const int8_t storage_slot = -1;
  397. EEPROM_WRITE(ubl_active);
  398. EEPROM_WRITE(dummy);
  399. EEPROM_WRITE(storage_slot);
  400. #endif // AUTO_BED_LEVELING_UBL
  401. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  402. #if ENABLED(DELTA)
  403. EEPROM_WRITE(endstop_adj); // 3 floats
  404. EEPROM_WRITE(delta_radius); // 1 float
  405. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  406. EEPROM_WRITE(delta_segments_per_second); // 1 float
  407. EEPROM_WRITE(delta_calibration_radius); // 1 float
  408. EEPROM_WRITE(delta_tower_angle_trim); // 2 floats
  409. dummy = 0.0f;
  410. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  411. #elif ENABLED(Z_DUAL_ENDSTOPS)
  412. EEPROM_WRITE(z_endstop_adj); // 1 float
  413. dummy = 0.0f;
  414. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  415. #else
  416. dummy = 0.0f;
  417. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  418. #endif
  419. #if DISABLED(ULTIPANEL)
  420. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  421. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  422. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  423. #endif
  424. EEPROM_WRITE(lcd_preheat_hotend_temp);
  425. EEPROM_WRITE(lcd_preheat_bed_temp);
  426. EEPROM_WRITE(lcd_preheat_fan_speed);
  427. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  428. #if ENABLED(PIDTEMP)
  429. if (e < HOTENDS) {
  430. EEPROM_WRITE(PID_PARAM(Kp, e));
  431. EEPROM_WRITE(PID_PARAM(Ki, e));
  432. EEPROM_WRITE(PID_PARAM(Kd, e));
  433. #if ENABLED(PID_EXTRUSION_SCALING)
  434. EEPROM_WRITE(PID_PARAM(Kc, e));
  435. #else
  436. dummy = 1.0f; // 1.0 = default kc
  437. EEPROM_WRITE(dummy);
  438. #endif
  439. }
  440. else
  441. #endif // !PIDTEMP
  442. {
  443. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  444. EEPROM_WRITE(dummy); // Kp
  445. dummy = 0.0f;
  446. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  447. }
  448. } // Hotends Loop
  449. #if DISABLED(PID_EXTRUSION_SCALING)
  450. int lpq_len = 20;
  451. #endif
  452. EEPROM_WRITE(lpq_len);
  453. #if DISABLED(PIDTEMPBED)
  454. dummy = DUMMY_PID_VALUE;
  455. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  456. #else
  457. EEPROM_WRITE(thermalManager.bedKp);
  458. EEPROM_WRITE(thermalManager.bedKi);
  459. EEPROM_WRITE(thermalManager.bedKd);
  460. #endif
  461. #if !HAS_LCD_CONTRAST
  462. const uint16_t lcd_contrast = 32;
  463. #endif
  464. EEPROM_WRITE(lcd_contrast);
  465. #if ENABLED(FWRETRACT)
  466. EEPROM_WRITE(autoretract_enabled);
  467. EEPROM_WRITE(retract_length);
  468. #if EXTRUDERS > 1
  469. EEPROM_WRITE(retract_length_swap);
  470. #else
  471. dummy = 0.0f;
  472. EEPROM_WRITE(dummy);
  473. #endif
  474. EEPROM_WRITE(retract_feedrate_mm_s);
  475. EEPROM_WRITE(retract_zlift);
  476. EEPROM_WRITE(retract_recover_length);
  477. #if EXTRUDERS > 1
  478. EEPROM_WRITE(retract_recover_length_swap);
  479. #else
  480. dummy = 0.0f;
  481. EEPROM_WRITE(dummy);
  482. #endif
  483. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  484. #endif // FWRETRACT
  485. EEPROM_WRITE(volumetric_enabled);
  486. // Save filament sizes
  487. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  488. if (q < COUNT(filament_size)) dummy = filament_size[q];
  489. EEPROM_WRITE(dummy);
  490. }
  491. // Save TMC2130 Configuration, and placeholder values
  492. uint16_t val;
  493. #if ENABLED(HAVE_TMC2130)
  494. #if ENABLED(X_IS_TMC2130)
  495. val = stepperX.getCurrent();
  496. #else
  497. val = 0;
  498. #endif
  499. EEPROM_WRITE(val);
  500. #if ENABLED(Y_IS_TMC2130)
  501. val = stepperY.getCurrent();
  502. #else
  503. val = 0;
  504. #endif
  505. EEPROM_WRITE(val);
  506. #if ENABLED(Z_IS_TMC2130)
  507. val = stepperZ.getCurrent();
  508. #else
  509. val = 0;
  510. #endif
  511. EEPROM_WRITE(val);
  512. #if ENABLED(X2_IS_TMC2130)
  513. val = stepperX2.getCurrent();
  514. #else
  515. val = 0;
  516. #endif
  517. EEPROM_WRITE(val);
  518. #if ENABLED(Y2_IS_TMC2130)
  519. val = stepperY2.getCurrent();
  520. #else
  521. val = 0;
  522. #endif
  523. EEPROM_WRITE(val);
  524. #if ENABLED(Z2_IS_TMC2130)
  525. val = stepperZ2.getCurrent();
  526. #else
  527. val = 0;
  528. #endif
  529. EEPROM_WRITE(val);
  530. #if ENABLED(E0_IS_TMC2130)
  531. val = stepperE0.getCurrent();
  532. #else
  533. val = 0;
  534. #endif
  535. EEPROM_WRITE(val);
  536. #if ENABLED(E1_IS_TMC2130)
  537. val = stepperE1.getCurrent();
  538. #else
  539. val = 0;
  540. #endif
  541. EEPROM_WRITE(val);
  542. #if ENABLED(E2_IS_TMC2130)
  543. val = stepperE2.getCurrent();
  544. #else
  545. val = 0;
  546. #endif
  547. EEPROM_WRITE(val);
  548. #if ENABLED(E3_IS_TMC2130)
  549. val = stepperE3.getCurrent();
  550. #else
  551. val = 0;
  552. #endif
  553. EEPROM_WRITE(val);
  554. #if ENABLED(E4_IS_TMC2130)
  555. val = stepperE4.getCurrent();
  556. #else
  557. val = 0;
  558. #endif
  559. EEPROM_WRITE(val);
  560. #else
  561. val = 0;
  562. for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
  563. #endif
  564. //
  565. // Linear Advance
  566. //
  567. #if ENABLED(LIN_ADVANCE)
  568. EEPROM_WRITE(planner.extruder_advance_k);
  569. EEPROM_WRITE(planner.advance_ed_ratio);
  570. #else
  571. dummy = 0.0f;
  572. EEPROM_WRITE(dummy);
  573. EEPROM_WRITE(dummy);
  574. #endif
  575. #if HAS_MOTOR_CURRENT_PWM
  576. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  577. #else
  578. const uint32_t dummyui32 = 0;
  579. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  580. #endif
  581. if (!eeprom_error) {
  582. const int eeprom_size = eeprom_index;
  583. const uint16_t final_crc = working_crc;
  584. // Write the EEPROM header
  585. eeprom_index = EEPROM_OFFSET;
  586. EEPROM_WRITE(version);
  587. EEPROM_WRITE(final_crc);
  588. // Report storage size
  589. SERIAL_ECHO_START();
  590. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  591. SERIAL_ECHOPAIR(" bytes; crc ", final_crc);
  592. SERIAL_ECHOLNPGM(")");
  593. }
  594. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  595. if (ubl.state.storage_slot >= 0)
  596. store_mesh(ubl.state.storage_slot);
  597. #endif
  598. return !eeprom_error;
  599. }
  600. /**
  601. * M501 - Retrieve Configuration
  602. */
  603. bool MarlinSettings::load() {
  604. uint16_t working_crc = 0;
  605. EEPROM_START();
  606. char stored_ver[4];
  607. EEPROM_READ(stored_ver);
  608. uint16_t stored_crc;
  609. EEPROM_READ(stored_crc);
  610. // Version has to match or defaults are used
  611. if (strncmp(version, stored_ver, 3) != 0) {
  612. if (stored_ver[0] != 'V') {
  613. stored_ver[0] = '?';
  614. stored_ver[1] = '\0';
  615. }
  616. SERIAL_ECHO_START();
  617. SERIAL_ECHOPGM("EEPROM version mismatch ");
  618. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  619. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  620. reset();
  621. }
  622. else {
  623. float dummy = 0;
  624. working_crc = 0; //clear before reading first "real data"
  625. // Number of esteppers may change
  626. uint8_t esteppers;
  627. EEPROM_READ(esteppers);
  628. // Get only the number of E stepper parameters previously stored
  629. // Any steppers added later are set to their defaults
  630. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  631. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  632. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  633. uint32_t tmp3[XYZ + esteppers];
  634. EEPROM_READ(tmp1);
  635. EEPROM_READ(tmp2);
  636. EEPROM_READ(tmp3);
  637. LOOP_XYZE_N(i) {
  638. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  639. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  640. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  641. }
  642. EEPROM_READ(planner.acceleration);
  643. EEPROM_READ(planner.retract_acceleration);
  644. EEPROM_READ(planner.travel_acceleration);
  645. EEPROM_READ(planner.min_feedrate_mm_s);
  646. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  647. EEPROM_READ(planner.min_segment_time);
  648. EEPROM_READ(planner.max_jerk);
  649. #if !HAS_HOME_OFFSET
  650. float home_offset[XYZ];
  651. #endif
  652. EEPROM_READ(home_offset);
  653. #if ENABLED(DELTA)
  654. home_offset[X_AXIS] = 0.0;
  655. home_offset[Y_AXIS] = 0.0;
  656. home_offset[Z_AXIS] -= DELTA_HEIGHT;
  657. #endif
  658. #if HOTENDS > 1
  659. // Skip hotend 0 which must be 0
  660. for (uint8_t e = 1; e < HOTENDS; e++)
  661. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  662. #endif
  663. //
  664. // Global Leveling
  665. //
  666. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  667. EEPROM_READ(planner.z_fade_height);
  668. #else
  669. EEPROM_READ(dummy);
  670. #endif
  671. //
  672. // Mesh (Manual) Bed Leveling
  673. //
  674. bool leveling_is_on;
  675. uint8_t mesh_num_x, mesh_num_y;
  676. EEPROM_READ(leveling_is_on);
  677. EEPROM_READ(dummy);
  678. EEPROM_READ(mesh_num_x);
  679. EEPROM_READ(mesh_num_y);
  680. #if ENABLED(MESH_BED_LEVELING)
  681. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  682. mbl.z_offset = dummy;
  683. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  684. // EEPROM data fits the current mesh
  685. EEPROM_READ(mbl.z_values);
  686. }
  687. else {
  688. // EEPROM data is stale
  689. mbl.reset();
  690. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  691. }
  692. #else
  693. // MBL is disabled - skip the stored data
  694. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  695. #endif // MESH_BED_LEVELING
  696. #if !HAS_BED_PROBE
  697. float zprobe_zoffset;
  698. #endif
  699. EEPROM_READ(zprobe_zoffset);
  700. //
  701. // Planar Bed Leveling matrix
  702. //
  703. #if ABL_PLANAR
  704. EEPROM_READ(planner.bed_level_matrix);
  705. #else
  706. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  707. #endif
  708. //
  709. // Bilinear Auto Bed Leveling
  710. //
  711. uint8_t grid_max_x, grid_max_y;
  712. EEPROM_READ(grid_max_x); // 1 byte
  713. EEPROM_READ(grid_max_y); // 1 byte
  714. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  715. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  716. set_bed_leveling_enabled(false);
  717. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  718. EEPROM_READ(bilinear_start); // 2 ints
  719. EEPROM_READ(z_values); // 9 to 256 floats
  720. }
  721. else // EEPROM data is stale
  722. #endif // AUTO_BED_LEVELING_BILINEAR
  723. {
  724. // Skip past disabled (or stale) Bilinear Grid data
  725. int bgs[2], bs[2];
  726. EEPROM_READ(bgs);
  727. EEPROM_READ(bs);
  728. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  729. }
  730. #if ENABLED(AUTO_BED_LEVELING_UBL)
  731. EEPROM_READ(ubl.state.active);
  732. EEPROM_READ(ubl.state.z_offset);
  733. EEPROM_READ(ubl.state.storage_slot);
  734. #else
  735. bool dummyb;
  736. uint8_t dummyui8;
  737. EEPROM_READ(dummyb);
  738. EEPROM_READ(dummy);
  739. EEPROM_READ(dummyui8);
  740. #endif // AUTO_BED_LEVELING_UBL
  741. #if ENABLED(DELTA)
  742. EEPROM_READ(endstop_adj); // 3 floats
  743. EEPROM_READ(delta_radius); // 1 float
  744. EEPROM_READ(delta_diagonal_rod); // 1 float
  745. EEPROM_READ(delta_segments_per_second); // 1 float
  746. EEPROM_READ(delta_calibration_radius); // 1 float
  747. EEPROM_READ(delta_tower_angle_trim); // 2 floats
  748. dummy = 0.0f;
  749. for (uint8_t q=3; q--;) EEPROM_READ(dummy);
  750. #elif ENABLED(Z_DUAL_ENDSTOPS)
  751. EEPROM_READ(z_endstop_adj);
  752. dummy = 0.0f;
  753. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  754. #else
  755. dummy = 0.0f;
  756. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  757. #endif
  758. #if DISABLED(ULTIPANEL)
  759. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  760. #endif
  761. EEPROM_READ(lcd_preheat_hotend_temp);
  762. EEPROM_READ(lcd_preheat_bed_temp);
  763. EEPROM_READ(lcd_preheat_fan_speed);
  764. //EEPROM_ASSERT(
  765. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  766. // "lcd_preheat_fan_speed out of range"
  767. //);
  768. #if ENABLED(PIDTEMP)
  769. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  770. EEPROM_READ(dummy); // Kp
  771. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  772. // do not need to scale PID values as the values in EEPROM are already scaled
  773. PID_PARAM(Kp, e) = dummy;
  774. EEPROM_READ(PID_PARAM(Ki, e));
  775. EEPROM_READ(PID_PARAM(Kd, e));
  776. #if ENABLED(PID_EXTRUSION_SCALING)
  777. EEPROM_READ(PID_PARAM(Kc, e));
  778. #else
  779. EEPROM_READ(dummy);
  780. #endif
  781. }
  782. else {
  783. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  784. }
  785. }
  786. #else // !PIDTEMP
  787. // 4 x 4 = 16 slots for PID parameters
  788. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  789. #endif // !PIDTEMP
  790. #if DISABLED(PID_EXTRUSION_SCALING)
  791. int lpq_len;
  792. #endif
  793. EEPROM_READ(lpq_len);
  794. #if ENABLED(PIDTEMPBED)
  795. EEPROM_READ(dummy); // bedKp
  796. if (dummy != DUMMY_PID_VALUE) {
  797. thermalManager.bedKp = dummy;
  798. EEPROM_READ(thermalManager.bedKi);
  799. EEPROM_READ(thermalManager.bedKd);
  800. }
  801. #else
  802. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  803. #endif
  804. #if !HAS_LCD_CONTRAST
  805. uint16_t lcd_contrast;
  806. #endif
  807. EEPROM_READ(lcd_contrast);
  808. #if ENABLED(FWRETRACT)
  809. EEPROM_READ(autoretract_enabled);
  810. EEPROM_READ(retract_length);
  811. #if EXTRUDERS > 1
  812. EEPROM_READ(retract_length_swap);
  813. #else
  814. EEPROM_READ(dummy);
  815. #endif
  816. EEPROM_READ(retract_feedrate_mm_s);
  817. EEPROM_READ(retract_zlift);
  818. EEPROM_READ(retract_recover_length);
  819. #if EXTRUDERS > 1
  820. EEPROM_READ(retract_recover_length_swap);
  821. #else
  822. EEPROM_READ(dummy);
  823. #endif
  824. EEPROM_READ(retract_recover_feedrate_mm_s);
  825. #endif // FWRETRACT
  826. EEPROM_READ(volumetric_enabled);
  827. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  828. EEPROM_READ(dummy);
  829. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  830. }
  831. uint16_t val;
  832. #if ENABLED(HAVE_TMC2130)
  833. EEPROM_READ(val);
  834. #if ENABLED(X_IS_TMC2130)
  835. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  836. #endif
  837. EEPROM_READ(val);
  838. #if ENABLED(Y_IS_TMC2130)
  839. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  840. #endif
  841. EEPROM_READ(val);
  842. #if ENABLED(Z_IS_TMC2130)
  843. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  844. #endif
  845. EEPROM_READ(val);
  846. #if ENABLED(X2_IS_TMC2130)
  847. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  848. #endif
  849. EEPROM_READ(val);
  850. #if ENABLED(Y2_IS_TMC2130)
  851. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  852. #endif
  853. EEPROM_READ(val);
  854. #if ENABLED(Z2_IS_TMC2130)
  855. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  856. #endif
  857. EEPROM_READ(val);
  858. #if ENABLED(E0_IS_TMC2130)
  859. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  860. #endif
  861. EEPROM_READ(val);
  862. #if ENABLED(E1_IS_TMC2130)
  863. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  864. #endif
  865. EEPROM_READ(val);
  866. #if ENABLED(E2_IS_TMC2130)
  867. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  868. #endif
  869. EEPROM_READ(val);
  870. #if ENABLED(E3_IS_TMC2130)
  871. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  872. #endif
  873. EEPROM_READ(val);
  874. #if ENABLED(E4_IS_TMC2130)
  875. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  876. #endif
  877. #else
  878. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  879. #endif
  880. //
  881. // Linear Advance
  882. //
  883. #if ENABLED(LIN_ADVANCE)
  884. EEPROM_READ(planner.extruder_advance_k);
  885. EEPROM_READ(planner.advance_ed_ratio);
  886. #else
  887. EEPROM_READ(dummy);
  888. EEPROM_READ(dummy);
  889. #endif
  890. #if HAS_MOTOR_CURRENT_PWM
  891. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  892. #else
  893. uint32_t dummyui32;
  894. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  895. #endif
  896. if (working_crc == stored_crc) {
  897. postprocess();
  898. SERIAL_ECHO_START();
  899. SERIAL_ECHO(version);
  900. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  901. SERIAL_ECHOPAIR(" bytes; crc ", working_crc);
  902. SERIAL_ECHOLNPGM(")");
  903. }
  904. else {
  905. SERIAL_ERROR_START();
  906. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  907. SERIAL_ERROR(stored_crc);
  908. SERIAL_ERRORPGM(" != ");
  909. SERIAL_ERROR(working_crc);
  910. SERIAL_ERRORLNPGM(" (calculated)!");
  911. reset();
  912. }
  913. #if ENABLED(AUTO_BED_LEVELING_UBL)
  914. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  915. // can float up or down a little bit without
  916. // disrupting the mesh data
  917. ubl.report_state();
  918. if (!ubl.sanity_check()) {
  919. SERIAL_EOL();
  920. ubl.echo_name();
  921. SERIAL_ECHOLNPGM(" initialized.\n");
  922. }
  923. else {
  924. SERIAL_PROTOCOLPGM("?Can't enable ");
  925. ubl.echo_name();
  926. SERIAL_PROTOCOLLNPGM(".");
  927. ubl.reset();
  928. }
  929. if (ubl.state.storage_slot >= 0) {
  930. load_mesh(ubl.state.storage_slot);
  931. SERIAL_ECHOPAIR("Mesh ", ubl.state.storage_slot);
  932. SERIAL_ECHOLNPGM(" loaded from storage.");
  933. }
  934. else {
  935. ubl.reset();
  936. SERIAL_ECHOLNPGM("UBL System reset()");
  937. }
  938. #endif
  939. }
  940. #if ENABLED(EEPROM_CHITCHAT)
  941. report();
  942. #endif
  943. return !eeprom_error;
  944. }
  945. #if ENABLED(AUTO_BED_LEVELING_UBL)
  946. void ubl_invalid_slot(const int s) {
  947. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  948. SERIAL_PROTOCOL(s);
  949. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  950. }
  951. int MarlinSettings::calc_num_meshes() {
  952. //obviously this will get more sophisticated once we've added an actual MAT
  953. if (meshes_begin <= 0) return 0;
  954. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  955. }
  956. void MarlinSettings::store_mesh(int8_t slot) {
  957. #if ENABLED(AUTO_BED_LEVELING_UBL)
  958. const int a = calc_num_meshes();
  959. if (!WITHIN(slot, 0, a - 1)) {
  960. ubl_invalid_slot(a);
  961. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  962. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  963. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  964. SERIAL_EOL();
  965. return;
  966. }
  967. uint16_t crc = 0;
  968. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  969. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  970. // Write crc to MAT along with other data, or just tack on to the beginning or end
  971. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  972. #else
  973. // Other mesh types
  974. #endif
  975. }
  976. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  977. #if ENABLED(AUTO_BED_LEVELING_UBL)
  978. const int16_t a = settings.calc_num_meshes();
  979. if (!WITHIN(slot, 0, a - 1)) {
  980. ubl_invalid_slot(a);
  981. return;
  982. }
  983. uint16_t crc = 0;
  984. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  985. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  986. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  987. // Compare crc with crc from MAT, or read from end
  988. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  989. #else
  990. // Other mesh types
  991. #endif
  992. }
  993. //void MarlinSettings::delete_mesh() { return; }
  994. //void MarlinSettings::defrag_meshes() { return; }
  995. #endif // AUTO_BED_LEVELING_UBL
  996. #else // !EEPROM_SETTINGS
  997. bool MarlinSettings::save() {
  998. SERIAL_ERROR_START();
  999. SERIAL_ERRORLNPGM("EEPROM disabled");
  1000. return false;
  1001. }
  1002. #endif // !EEPROM_SETTINGS
  1003. /**
  1004. * M502 - Reset Configuration
  1005. */
  1006. void MarlinSettings::reset() {
  1007. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1008. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1009. LOOP_XYZE_N(i) {
  1010. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1011. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1012. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1013. }
  1014. planner.acceleration = DEFAULT_ACCELERATION;
  1015. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1016. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1017. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1018. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  1019. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1020. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1021. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1022. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1023. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1024. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1025. planner.z_fade_height = 0.0;
  1026. #endif
  1027. #if HAS_HOME_OFFSET
  1028. ZERO(home_offset);
  1029. #endif
  1030. #if HOTENDS > 1
  1031. constexpr float tmp4[XYZ][HOTENDS] = {
  1032. HOTEND_OFFSET_X,
  1033. HOTEND_OFFSET_Y
  1034. #ifdef HOTEND_OFFSET_Z
  1035. , HOTEND_OFFSET_Z
  1036. #else
  1037. , { 0 }
  1038. #endif
  1039. };
  1040. static_assert(
  1041. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1042. "Offsets for the first hotend must be 0.0."
  1043. );
  1044. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1045. #endif
  1046. // Applies to all MBL and ABL
  1047. #if HAS_LEVELING
  1048. reset_bed_level();
  1049. #endif
  1050. #if HAS_BED_PROBE
  1051. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1052. #endif
  1053. #if ENABLED(DELTA)
  1054. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1055. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1056. COPY(endstop_adj, adj);
  1057. delta_radius = DELTA_RADIUS;
  1058. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1059. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1060. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1061. delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
  1062. delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
  1063. home_offset[Z_AXIS] = 0;
  1064. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1065. z_endstop_adj =
  1066. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1067. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1068. #else
  1069. 0
  1070. #endif
  1071. ;
  1072. #endif
  1073. #if ENABLED(ULTIPANEL)
  1074. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1075. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1076. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1077. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1078. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1079. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1080. #endif
  1081. #if HAS_LCD_CONTRAST
  1082. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1083. #endif
  1084. #if ENABLED(PIDTEMP)
  1085. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1086. HOTEND_LOOP()
  1087. #endif
  1088. {
  1089. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1090. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1091. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1092. #if ENABLED(PID_EXTRUSION_SCALING)
  1093. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1094. #endif
  1095. }
  1096. #if ENABLED(PID_EXTRUSION_SCALING)
  1097. lpq_len = 20; // default last-position-queue size
  1098. #endif
  1099. #endif // PIDTEMP
  1100. #if ENABLED(PIDTEMPBED)
  1101. thermalManager.bedKp = DEFAULT_bedKp;
  1102. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1103. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1104. #endif
  1105. #if ENABLED(FWRETRACT)
  1106. autoretract_enabled = false;
  1107. retract_length = RETRACT_LENGTH;
  1108. #if EXTRUDERS > 1
  1109. retract_length_swap = RETRACT_LENGTH_SWAP;
  1110. #endif
  1111. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1112. retract_zlift = RETRACT_ZLIFT;
  1113. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1114. #if EXTRUDERS > 1
  1115. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  1116. #endif
  1117. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1118. #endif
  1119. volumetric_enabled =
  1120. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1121. true
  1122. #else
  1123. false
  1124. #endif
  1125. ;
  1126. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  1127. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1128. endstops.enable_globally(
  1129. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1130. true
  1131. #else
  1132. false
  1133. #endif
  1134. );
  1135. #if ENABLED(HAVE_TMC2130)
  1136. #if ENABLED(X_IS_TMC2130)
  1137. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1138. #endif
  1139. #if ENABLED(Y_IS_TMC2130)
  1140. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1141. #endif
  1142. #if ENABLED(Z_IS_TMC2130)
  1143. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1144. #endif
  1145. #if ENABLED(X2_IS_TMC2130)
  1146. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1147. #endif
  1148. #if ENABLED(Y2_IS_TMC2130)
  1149. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1150. #endif
  1151. #if ENABLED(Z2_IS_TMC2130)
  1152. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1153. #endif
  1154. #if ENABLED(E0_IS_TMC2130)
  1155. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1156. #endif
  1157. #if ENABLED(E1_IS_TMC2130)
  1158. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1159. #endif
  1160. #if ENABLED(E2_IS_TMC2130)
  1161. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1162. #endif
  1163. #if ENABLED(E3_IS_TMC2130)
  1164. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1165. #endif
  1166. #endif
  1167. #if ENABLED(LIN_ADVANCE)
  1168. planner.extruder_advance_k = LIN_ADVANCE_K;
  1169. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1170. #endif
  1171. #if HAS_MOTOR_CURRENT_PWM
  1172. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1173. for (uint8_t q = 3; q--;)
  1174. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1175. #endif
  1176. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1177. ubl.reset();
  1178. #endif
  1179. postprocess();
  1180. SERIAL_ECHO_START();
  1181. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1182. }
  1183. #if DISABLED(DISABLE_M503)
  1184. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1185. /**
  1186. * M503 - Report current settings in RAM
  1187. *
  1188. * Unless specifically disabled, M503 is available even without EEPROM
  1189. */
  1190. void MarlinSettings::report(bool forReplay) {
  1191. /**
  1192. * Announce current units, in case inches are being displayed
  1193. */
  1194. CONFIG_ECHO_START;
  1195. #if ENABLED(INCH_MODE_SUPPORT)
  1196. #define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
  1197. #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1198. SERIAL_ECHOPGM(" G2");
  1199. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1200. SERIAL_ECHOPGM(" ; Units in ");
  1201. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1202. #else
  1203. #define LINEAR_UNIT(N) N
  1204. #define VOLUMETRIC_UNIT(N) N
  1205. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1206. #endif
  1207. #if ENABLED(ULTIPANEL)
  1208. // Temperature units - for Ultipanel temperature options
  1209. CONFIG_ECHO_START;
  1210. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1211. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1212. SERIAL_ECHOPGM(" M149 ");
  1213. SERIAL_CHAR(parser.temp_units_code());
  1214. SERIAL_ECHOPGM(" ; Units in ");
  1215. serialprintPGM(parser.temp_units_name());
  1216. #else
  1217. #define TEMP_UNIT(N) N
  1218. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1219. #endif
  1220. #endif
  1221. SERIAL_EOL();
  1222. /**
  1223. * Volumetric extrusion M200
  1224. */
  1225. if (!forReplay) {
  1226. CONFIG_ECHO_START;
  1227. SERIAL_ECHOPGM("Filament settings:");
  1228. if (volumetric_enabled)
  1229. SERIAL_EOL();
  1230. else
  1231. SERIAL_ECHOLNPGM(" Disabled");
  1232. }
  1233. CONFIG_ECHO_START;
  1234. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1235. SERIAL_EOL();
  1236. #if EXTRUDERS > 1
  1237. CONFIG_ECHO_START;
  1238. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1239. SERIAL_EOL();
  1240. #if EXTRUDERS > 2
  1241. CONFIG_ECHO_START;
  1242. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1243. SERIAL_EOL();
  1244. #if EXTRUDERS > 3
  1245. CONFIG_ECHO_START;
  1246. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1247. SERIAL_EOL();
  1248. #if EXTRUDERS > 4
  1249. CONFIG_ECHO_START;
  1250. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1251. SERIAL_EOL();
  1252. #endif // EXTRUDERS > 4
  1253. #endif // EXTRUDERS > 3
  1254. #endif // EXTRUDERS > 2
  1255. #endif // EXTRUDERS > 1
  1256. if (!volumetric_enabled) {
  1257. CONFIG_ECHO_START;
  1258. SERIAL_ECHOLNPGM(" M200 D0");
  1259. }
  1260. if (!forReplay) {
  1261. CONFIG_ECHO_START;
  1262. SERIAL_ECHOLNPGM("Steps per unit:");
  1263. }
  1264. CONFIG_ECHO_START;
  1265. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1266. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1267. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1268. #if DISABLED(DISTINCT_E_FACTORS)
  1269. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1270. #endif
  1271. SERIAL_EOL();
  1272. #if ENABLED(DISTINCT_E_FACTORS)
  1273. CONFIG_ECHO_START;
  1274. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1275. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1276. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1277. }
  1278. #endif
  1279. if (!forReplay) {
  1280. CONFIG_ECHO_START;
  1281. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1282. }
  1283. CONFIG_ECHO_START;
  1284. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1285. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1286. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1287. #if DISABLED(DISTINCT_E_FACTORS)
  1288. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1289. #endif
  1290. SERIAL_EOL();
  1291. #if ENABLED(DISTINCT_E_FACTORS)
  1292. CONFIG_ECHO_START;
  1293. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1294. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1295. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1296. }
  1297. #endif
  1298. if (!forReplay) {
  1299. CONFIG_ECHO_START;
  1300. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1301. }
  1302. CONFIG_ECHO_START;
  1303. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1304. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1305. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1306. #if DISABLED(DISTINCT_E_FACTORS)
  1307. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1308. #endif
  1309. SERIAL_EOL();
  1310. #if ENABLED(DISTINCT_E_FACTORS)
  1311. CONFIG_ECHO_START;
  1312. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1313. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1314. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1315. }
  1316. #endif
  1317. if (!forReplay) {
  1318. CONFIG_ECHO_START;
  1319. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1320. }
  1321. CONFIG_ECHO_START;
  1322. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1323. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1324. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1325. if (!forReplay) {
  1326. CONFIG_ECHO_START;
  1327. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_ms> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1328. }
  1329. CONFIG_ECHO_START;
  1330. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1331. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1332. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1333. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1334. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1335. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1336. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1337. #if HAS_M206_COMMAND
  1338. if (!forReplay) {
  1339. CONFIG_ECHO_START;
  1340. SERIAL_ECHOLNPGM("Home offset:");
  1341. }
  1342. CONFIG_ECHO_START;
  1343. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1344. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1345. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1346. #endif
  1347. #if HOTENDS > 1
  1348. if (!forReplay) {
  1349. CONFIG_ECHO_START;
  1350. SERIAL_ECHOLNPGM("Hotend offsets:");
  1351. }
  1352. CONFIG_ECHO_START;
  1353. for (uint8_t e = 1; e < HOTENDS; e++) {
  1354. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1355. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1356. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1357. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  1358. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1359. #endif
  1360. SERIAL_EOL();
  1361. }
  1362. #endif
  1363. #if ENABLED(MESH_BED_LEVELING)
  1364. if (!forReplay) {
  1365. CONFIG_ECHO_START;
  1366. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1367. }
  1368. CONFIG_ECHO_START;
  1369. SERIAL_ECHOPAIR(" M420 S", leveling_is_valid() ? 1 : 0);
  1370. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1371. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1372. #endif
  1373. SERIAL_EOL();
  1374. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1375. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1376. CONFIG_ECHO_START;
  1377. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1378. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1379. SERIAL_ECHOPGM(" Z");
  1380. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1381. SERIAL_EOL();
  1382. }
  1383. }
  1384. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1385. if (!forReplay) {
  1386. CONFIG_ECHO_START;
  1387. ubl.echo_name();
  1388. SERIAL_ECHOLNPGM(":");
  1389. }
  1390. CONFIG_ECHO_START;
  1391. SERIAL_ECHOPAIR(" M420 S", leveling_is_active() ? 1 : 0);
  1392. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1393. SERIAL_ECHOPAIR(" Z", planner.z_fade_height);
  1394. #endif
  1395. SERIAL_EOL();
  1396. if (!forReplay) {
  1397. SERIAL_EOL();
  1398. ubl.report_state();
  1399. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.state.storage_slot);
  1400. SERIAL_ECHOPGM("z_offset: ");
  1401. SERIAL_ECHO_F(ubl.state.z_offset, 6);
  1402. SERIAL_EOL();
  1403. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1404. SERIAL_ECHOLNPGM(" meshes.\n");
  1405. }
  1406. #elif HAS_ABL
  1407. if (!forReplay) {
  1408. CONFIG_ECHO_START;
  1409. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1410. }
  1411. CONFIG_ECHO_START;
  1412. SERIAL_ECHOPAIR(" M420 S", leveling_is_active() ? 1 : 0);
  1413. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1414. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1415. #endif
  1416. SERIAL_EOL();
  1417. #endif
  1418. #if ENABLED(DELTA)
  1419. if (!forReplay) {
  1420. CONFIG_ECHO_START;
  1421. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1422. }
  1423. CONFIG_ECHO_START;
  1424. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
  1425. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
  1426. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
  1427. if (!forReplay) {
  1428. CONFIG_ECHO_START;
  1429. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1430. }
  1431. CONFIG_ECHO_START;
  1432. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1433. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1434. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
  1435. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1436. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1437. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1438. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1439. SERIAL_ECHOPAIR(" Z", 0.00);
  1440. SERIAL_EOL();
  1441. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1442. if (!forReplay) {
  1443. CONFIG_ECHO_START;
  1444. SERIAL_ECHOLNPGM("Z2 Endstop adjustment:");
  1445. }
  1446. CONFIG_ECHO_START;
  1447. SERIAL_ECHOLNPAIR(" M666 Z", LINEAR_UNIT(z_endstop_adj));
  1448. #endif // DELTA
  1449. #if ENABLED(ULTIPANEL)
  1450. if (!forReplay) {
  1451. CONFIG_ECHO_START;
  1452. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1453. }
  1454. CONFIG_ECHO_START;
  1455. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1456. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1457. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1458. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1459. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1460. }
  1461. #endif // ULTIPANEL
  1462. #if HAS_PID_HEATING
  1463. if (!forReplay) {
  1464. CONFIG_ECHO_START;
  1465. SERIAL_ECHOLNPGM("PID settings:");
  1466. }
  1467. #if ENABLED(PIDTEMP)
  1468. #if HOTENDS > 1
  1469. if (forReplay) {
  1470. HOTEND_LOOP() {
  1471. CONFIG_ECHO_START;
  1472. SERIAL_ECHOPAIR(" M301 E", e);
  1473. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1474. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1475. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1476. #if ENABLED(PID_EXTRUSION_SCALING)
  1477. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1478. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1479. #endif
  1480. SERIAL_EOL();
  1481. }
  1482. }
  1483. else
  1484. #endif // HOTENDS > 1
  1485. // !forReplay || HOTENDS == 1
  1486. {
  1487. CONFIG_ECHO_START;
  1488. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1489. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1490. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1491. #if ENABLED(PID_EXTRUSION_SCALING)
  1492. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1493. SERIAL_ECHOPAIR(" L", lpq_len);
  1494. #endif
  1495. SERIAL_EOL();
  1496. }
  1497. #endif // PIDTEMP
  1498. #if ENABLED(PIDTEMPBED)
  1499. CONFIG_ECHO_START;
  1500. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1501. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1502. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1503. SERIAL_EOL();
  1504. #endif
  1505. #endif // PIDTEMP || PIDTEMPBED
  1506. #if HAS_LCD_CONTRAST
  1507. if (!forReplay) {
  1508. CONFIG_ECHO_START;
  1509. SERIAL_ECHOLNPGM("LCD Contrast:");
  1510. }
  1511. CONFIG_ECHO_START;
  1512. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1513. #endif
  1514. #if ENABLED(FWRETRACT)
  1515. if (!forReplay) {
  1516. CONFIG_ECHO_START;
  1517. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1518. }
  1519. CONFIG_ECHO_START;
  1520. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1521. #if EXTRUDERS > 1
  1522. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_length_swap));
  1523. #endif
  1524. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1525. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1526. if (!forReplay) {
  1527. CONFIG_ECHO_START;
  1528. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1529. }
  1530. CONFIG_ECHO_START;
  1531. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1532. #if EXTRUDERS > 1
  1533. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_recover_length_swap));
  1534. #endif
  1535. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1536. if (!forReplay) {
  1537. CONFIG_ECHO_START;
  1538. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1539. }
  1540. CONFIG_ECHO_START;
  1541. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1542. #endif // FWRETRACT
  1543. /**
  1544. * Auto Bed Leveling
  1545. */
  1546. #if HAS_BED_PROBE
  1547. if (!forReplay) {
  1548. CONFIG_ECHO_START;
  1549. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1550. }
  1551. CONFIG_ECHO_START;
  1552. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1553. #endif
  1554. /**
  1555. * TMC2130 stepper driver current
  1556. */
  1557. #if ENABLED(HAVE_TMC2130)
  1558. if (!forReplay) {
  1559. CONFIG_ECHO_START;
  1560. SERIAL_ECHOLNPGM("Stepper driver current:");
  1561. }
  1562. CONFIG_ECHO_START;
  1563. SERIAL_ECHO(" M906");
  1564. #if ENABLED(X_IS_TMC2130)
  1565. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1566. #endif
  1567. #if ENABLED(Y_IS_TMC2130)
  1568. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1569. #endif
  1570. #if ENABLED(Z_IS_TMC2130)
  1571. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1572. #endif
  1573. #if ENABLED(X2_IS_TMC2130)
  1574. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1575. #endif
  1576. #if ENABLED(Y2_IS_TMC2130)
  1577. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1578. #endif
  1579. #if ENABLED(Z2_IS_TMC2130)
  1580. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1581. #endif
  1582. #if ENABLED(E0_IS_TMC2130)
  1583. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1584. #endif
  1585. #if ENABLED(E1_IS_TMC2130)
  1586. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1587. #endif
  1588. #if ENABLED(E2_IS_TMC2130)
  1589. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1590. #endif
  1591. #if ENABLED(E3_IS_TMC2130)
  1592. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1593. #endif
  1594. SERIAL_EOL();
  1595. #endif
  1596. /**
  1597. * Linear Advance
  1598. */
  1599. #if ENABLED(LIN_ADVANCE)
  1600. if (!forReplay) {
  1601. CONFIG_ECHO_START;
  1602. SERIAL_ECHOLNPGM("Linear Advance:");
  1603. }
  1604. CONFIG_ECHO_START;
  1605. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1606. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1607. #endif
  1608. #if HAS_MOTOR_CURRENT_PWM
  1609. CONFIG_ECHO_START;
  1610. if (!forReplay) {
  1611. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1612. CONFIG_ECHO_START;
  1613. }
  1614. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1615. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1616. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1617. SERIAL_EOL();
  1618. #endif
  1619. }
  1620. #endif // !DISABLE_M503