My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 120KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. * --
  59. *
  60. * The fast inverse function needed for Bézier interpolation for AVR
  61. * was designed, written and tested by Eduardo José Tagle on April/2018
  62. */
  63. #include "planner.h"
  64. #include "stepper.h"
  65. #include "motion.h"
  66. #include "temperature.h"
  67. #include "../lcd/ultralcd.h"
  68. #include "../gcode/parser.h"
  69. #include "../MarlinCore.h"
  70. #if HAS_LEVELING
  71. #include "../feature/bedlevel/bedlevel.h"
  72. #endif
  73. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  74. #include "../feature/filwidth.h"
  75. #endif
  76. #if ENABLED(BARICUDA)
  77. #include "../feature/baricuda.h"
  78. #endif
  79. #if ENABLED(MIXING_EXTRUDER)
  80. #include "../feature/mixing.h"
  81. #endif
  82. #if ENABLED(AUTO_POWER_CONTROL)
  83. #include "../feature/power.h"
  84. #endif
  85. #if ENABLED(BACKLASH_COMPENSATION)
  86. #include "../feature/backlash.h"
  87. #endif
  88. #if ENABLED(CANCEL_OBJECTS)
  89. #include "../feature/cancel_object.h"
  90. #endif
  91. #if ENABLED(POWER_LOSS_RECOVERY)
  92. #include "../feature/powerloss.h"
  93. #endif
  94. #if HAS_CUTTER
  95. #include "../feature/spindle_laser.h"
  96. #endif
  97. // Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
  98. // fewer movements. The delay is measured in milliseconds, and must be less than 250ms
  99. #define BLOCK_DELAY_FOR_1ST_MOVE 100
  100. Planner planner;
  101. // public:
  102. /**
  103. * A ring buffer of moves described in steps
  104. */
  105. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  106. volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
  107. Planner::block_buffer_nonbusy, // Index of the first non-busy block
  108. Planner::block_buffer_planned, // Index of the optimally planned block
  109. Planner::block_buffer_tail; // Index of the busy block, if any
  110. uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
  111. uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
  112. planner_settings_t Planner::settings; // Initialized by settings.load()
  113. #if ENABLED(LASER_POWER_INLINE)
  114. laser_state_t Planner::laser_inline; // Current state for blocks
  115. #endif
  116. uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
  117. float Planner::steps_to_mm[XYZE_N]; // (mm) Millimeters per step
  118. #if HAS_JUNCTION_DEVIATION
  119. float Planner::junction_deviation_mm; // (mm) M205 J
  120. #if HAS_LINEAR_E_JERK
  121. float Planner::max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm
  122. #endif
  123. #endif
  124. #if HAS_CLASSIC_JERK
  125. TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) Planner::max_jerk;
  126. #endif
  127. #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
  128. bool Planner::abort_on_endstop_hit = false;
  129. #endif
  130. #if ENABLED(DISTINCT_E_FACTORS)
  131. uint8_t Planner::last_extruder = 0; // Respond to extruder change
  132. #endif
  133. #if ENABLED(DIRECT_STEPPING)
  134. uint32_t Planner::last_page_step_rate = 0;
  135. xyze_bool_t Planner::last_page_dir{0};
  136. #endif
  137. #if EXTRUDERS
  138. int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
  139. float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
  140. #endif
  141. #if DISABLED(NO_VOLUMETRICS)
  142. float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  143. Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
  144. Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  145. #endif
  146. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  147. float Planner::volumetric_extruder_limit[EXTRUDERS], // max mm^3/sec the extruder is able to handle
  148. Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner
  149. #endif
  150. #if HAS_LEVELING
  151. bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
  152. #if ABL_PLANAR
  153. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  154. #endif
  155. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  156. float Planner::z_fade_height, // Initialized by settings.load()
  157. Planner::inverse_z_fade_height,
  158. Planner::last_fade_z;
  159. #endif
  160. #else
  161. constexpr bool Planner::leveling_active;
  162. #endif
  163. skew_factor_t Planner::skew_factor; // Initialized by settings.load()
  164. #if ENABLED(AUTOTEMP)
  165. float Planner::autotemp_max = 250,
  166. Planner::autotemp_min = 210,
  167. Planner::autotemp_factor = 0.1f;
  168. bool Planner::autotemp_enabled = false;
  169. #endif
  170. // private:
  171. xyze_long_t Planner::position{0};
  172. uint32_t Planner::cutoff_long;
  173. xyze_float_t Planner::previous_speed;
  174. float Planner::previous_nominal_speed_sqr;
  175. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  176. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  177. #endif
  178. #ifdef XY_FREQUENCY_LIMIT
  179. int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT;
  180. float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f;
  181. int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0 / (XY_FREQUENCY_LIMIT));
  182. #endif
  183. #if ENABLED(LIN_ADVANCE)
  184. float Planner::extruder_advance_K[EXTRUDERS]; // Initialized by settings.load()
  185. #endif
  186. #if HAS_POSITION_FLOAT
  187. xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used!
  188. #endif
  189. #if IS_KINEMATIC
  190. xyze_pos_t Planner::position_cart;
  191. #endif
  192. #if HAS_SPI_LCD
  193. volatile uint32_t Planner::block_buffer_runtime_us = 0;
  194. #endif
  195. /**
  196. * Class and Instance Methods
  197. */
  198. Planner::Planner() { init(); }
  199. void Planner::init() {
  200. position.reset();
  201. TERN_(HAS_POSITION_FLOAT, position_float.reset());
  202. TERN_(IS_KINEMATIC, position_cart.reset());
  203. previous_speed.reset();
  204. previous_nominal_speed_sqr = 0;
  205. TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity());
  206. clear_block_buffer();
  207. delay_before_delivering = 0;
  208. #if ENABLED(DIRECT_STEPPING)
  209. last_page_step_rate = 0;
  210. last_page_dir.reset();
  211. #endif
  212. }
  213. #if ENABLED(S_CURVE_ACCELERATION)
  214. #ifdef __AVR__
  215. /**
  216. * This routine returns 0x1000000 / d, getting the inverse as fast as possible.
  217. * A fast-converging iterative Newton-Raphson method can reach full precision in
  218. * just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
  219. * to 30 cycles for small divisors), instead of the 500 cycles a normal division
  220. * would take.
  221. *
  222. * Inspired by the following page:
  223. * https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
  224. *
  225. * Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
  226. * Then, B must be <= 2^k, otherwise, the quotient is 0.
  227. *
  228. * The Newton - Raphson iteration for x = B / 2 ^ k yields:
  229. * q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
  230. *
  231. * This can be rearranged to:
  232. * q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
  233. *
  234. * Each iteration requires only integer multiplications and bit shifts.
  235. * It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
  236. * it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
  237. * So it checks for this case and extracts floor(2 ^ k / B).
  238. *
  239. * A simple but important optimization for this approach is to truncate
  240. * multiplications (i.e., calculate only the higher bits of the product) in the
  241. * early iterations of the Newton - Raphson method. This is done so the results
  242. * of the early iterations are far from the quotient. Then it doesn't matter if
  243. * they are done inaccurately.
  244. * It's important to pick a good starting value for x. Knowing how many
  245. * digits the divisor has, it can be estimated:
  246. *
  247. * 2^k / x = 2 ^ log2(2^k / x)
  248. * 2^k / x = 2 ^(log2(2^k)-log2(x))
  249. * 2^k / x = 2 ^(k*log2(2)-log2(x))
  250. * 2^k / x = 2 ^ (k-log2(x))
  251. * 2^k / x >= 2 ^ (k-floor(log2(x)))
  252. * floor(log2(x)) is simply the index of the most significant bit set.
  253. *
  254. * If this estimation can be improved even further the number of iterations can be
  255. * reduced a lot, saving valuable execution time.
  256. * The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
  257. * Research, Silicon Valley,August 26, 2008, available at
  258. * https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
  259. * suggests, for its integer division algorithm, using a table to supply the first
  260. * 8 bits of precision, then, due to the quadratic convergence nature of the
  261. * Newton-Raphon iteration, just 2 iterations should be enough to get maximum
  262. * precision of the division.
  263. * By precomputing values of inverses for small denominator values, just one
  264. * Newton-Raphson iteration is enough to reach full precision.
  265. * This code uses the top 9 bits of the denominator as index.
  266. *
  267. * The AVR assembly function implements this C code using the data below:
  268. *
  269. * // For small divisors, it is best to directly retrieve the results
  270. * if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
  271. *
  272. * // Compute initial estimation of 0x1000000/x -
  273. * // Get most significant bit set on divider
  274. * uint8_t idx = 0;
  275. * uint32_t nr = d;
  276. * if (!(nr & 0xFF0000)) {
  277. * nr <<= 8; idx += 8;
  278. * if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
  279. * }
  280. * if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
  281. * if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
  282. * if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
  283. *
  284. * // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
  285. * uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
  286. * ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
  287. * x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
  288. *
  289. * x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
  290. * const uint32_t r = _BV(24) - x * d; // Estimate remainder
  291. * if (r >= d) x++; // Check whether to adjust result
  292. * return uint32_t(x); // x holds the proper estimation
  293. *
  294. */
  295. static uint32_t get_period_inverse(uint32_t d) {
  296. static const uint8_t inv_tab[256] PROGMEM = {
  297. 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
  298. 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
  299. 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
  300. 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
  301. 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
  302. 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
  303. 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
  304. 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
  305. 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
  306. 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
  307. 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
  308. 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
  309. 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
  310. 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
  311. 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
  312. 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
  313. };
  314. // For small denominators, it is cheaper to directly store the result.
  315. // For bigger ones, just ONE Newton-Raphson iteration is enough to get
  316. // maximum precision we need
  317. static const uint32_t small_inv_tab[111] PROGMEM = {
  318. 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
  319. 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
  320. 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
  321. 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
  322. 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
  323. 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
  324. 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
  325. };
  326. // For small divisors, it is best to directly retrieve the results
  327. if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
  328. uint8_t r8 = d & 0xFF,
  329. r9 = (d >> 8) & 0xFF,
  330. r10 = (d >> 16) & 0xFF,
  331. r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
  332. const uint8_t* ptab = inv_tab;
  333. __asm__ __volatile__(
  334. // %8:%7:%6 = interval
  335. // r31:r30: MUST be those registers, and they must point to the inv_tab
  336. A("clr %13") // %13 = 0
  337. // Now we must compute
  338. // result = 0xFFFFFF / d
  339. // %8:%7:%6 = interval
  340. // %16:%15:%14 = nr
  341. // %13 = 0
  342. // A plain division of 24x24 bits should take 388 cycles to complete. We will
  343. // use Newton-Raphson for the calculation, and will strive to get way less cycles
  344. // for the same result - Using C division, it takes 500cycles to complete .
  345. A("clr %3") // idx = 0
  346. A("mov %14,%6")
  347. A("mov %15,%7")
  348. A("mov %16,%8") // nr = interval
  349. A("tst %16") // nr & 0xFF0000 == 0 ?
  350. A("brne 2f") // No, skip this
  351. A("mov %16,%15")
  352. A("mov %15,%14") // nr <<= 8, %14 not needed
  353. A("subi %3,-8") // idx += 8
  354. A("tst %16") // nr & 0xFF0000 == 0 ?
  355. A("brne 2f") // No, skip this
  356. A("mov %16,%15") // nr <<= 8, %14 not needed
  357. A("clr %15") // We clear %14
  358. A("subi %3,-8") // idx += 8
  359. // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
  360. L("2")
  361. A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
  362. A("brcc 3f") // No, skip this
  363. A("swap %15") // Swap nibbles
  364. A("swap %16") // Swap nibbles. Low nibble is 0
  365. A("mov %14, %15")
  366. A("andi %14,0x0F") // Isolate low nibble
  367. A("andi %15,0xF0") // Keep proper nibble in %15
  368. A("or %16, %14") // %16:%15 <<= 4
  369. A("subi %3,-4") // idx += 4
  370. L("3")
  371. A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
  372. A("brcc 4f") // No, skip this
  373. A("add %15,%15")
  374. A("adc %16,%16")
  375. A("add %15,%15")
  376. A("adc %16,%16") // %16:%15 <<= 2
  377. A("subi %3,-2") // idx += 2
  378. L("4")
  379. A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
  380. A("brcc 5f") // No, skip this
  381. A("add %15,%15")
  382. A("adc %16,%16") // %16:%15 <<= 1
  383. A("inc %3") // idx += 1
  384. // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
  385. // we have at least 9 MSBits available to enter the initial estimation table
  386. L("5")
  387. A("add %15,%15")
  388. A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
  389. A("add r30,%16") // Only use top 8 bits
  390. A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
  391. A("lpm %14, Z") // %14 = inv_tab[tidx]
  392. A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
  393. // We must scale the approximation to the proper place
  394. A("clr %16") // %16 will always be 0 here
  395. A("subi %3,8") // idx == 8 ?
  396. A("breq 6f") // yes, no need to scale
  397. A("brcs 7f") // If C=1, means idx < 8, result was negative!
  398. // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
  399. A("sbrs %3,0") // shift by 1bit position?
  400. A("rjmp 8f") // No
  401. A("add %14,%14")
  402. A("adc %15,%15") // %15:16 <<= 1
  403. L("8")
  404. A("sbrs %3,1") // shift by 2bit position?
  405. A("rjmp 9f") // No
  406. A("add %14,%14")
  407. A("adc %15,%15")
  408. A("add %14,%14")
  409. A("adc %15,%15") // %15:16 <<= 1
  410. L("9")
  411. A("sbrs %3,2") // shift by 4bits position?
  412. A("rjmp 16f") // No
  413. A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
  414. A("swap %14") // Swap nibbles
  415. A("mov %12,%14")
  416. A("andi %12,0x0F") // isolate low nibble
  417. A("andi %14,0xF0") // and clear it
  418. A("or %15,%12") // %15:%16 <<= 4
  419. L("16")
  420. A("sbrs %3,3") // shift by 8bits position?
  421. A("rjmp 6f") // No, we are done
  422. A("mov %16,%15")
  423. A("mov %15,%14")
  424. A("clr %14")
  425. A("jmp 6f")
  426. // idx < 8, now %3 = idx - 8. Get the count of bits
  427. L("7")
  428. A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
  429. A("sbrs %3,0") // shift by 1 bit position ?
  430. A("rjmp 10f") // No, skip it
  431. A("asr %15") // (bit7 is always 0 here)
  432. A("ror %14")
  433. L("10")
  434. A("sbrs %3,1") // shift by 2 bit position ?
  435. A("rjmp 11f") // No, skip it
  436. A("asr %15") // (bit7 is always 0 here)
  437. A("ror %14")
  438. A("asr %15") // (bit7 is always 0 here)
  439. A("ror %14")
  440. L("11")
  441. A("sbrs %3,2") // shift by 4 bit position ?
  442. A("rjmp 12f") // No, skip it
  443. A("swap %15") // Swap nibbles
  444. A("andi %14, 0xF0") // Lose the lowest nibble
  445. A("swap %14") // Swap nibbles. Upper nibble is 0
  446. A("or %14,%15") // Pass nibble from upper byte
  447. A("andi %15, 0x0F") // And get rid of that nibble
  448. L("12")
  449. A("sbrs %3,3") // shift by 8 bit position ?
  450. A("rjmp 6f") // No, skip it
  451. A("mov %14,%15")
  452. A("clr %15")
  453. L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
  454. // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
  455. // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
  456. // to get more than 18bits of precision (the initial table lookup gives 9 bits of
  457. // precision to start from). 18bits of precision is all what is needed here for result
  458. // %8:%7:%6 = d = interval
  459. // %16:%15:%14 = x = initial estimation of 0x1000000 / d
  460. // %13 = 0
  461. // %3:%2:%1:%0 = working accumulator
  462. // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
  463. A("clr %0")
  464. A("clr %1")
  465. A("clr %2")
  466. A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
  467. A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
  468. A("sub %0,r0")
  469. A("sbc %1,r1")
  470. A("sbc %2,%13")
  471. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
  472. A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
  473. A("sub %1,r0")
  474. A("sbc %2,r1" )
  475. A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
  476. A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
  477. A("sub %2,r0")
  478. A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
  479. A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
  480. A("sub %1,r0")
  481. A("sbc %2,r1")
  482. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
  483. A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
  484. A("sub %2,r0")
  485. A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
  486. A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
  487. A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
  488. A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
  489. A("sub %2,r0")
  490. A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
  491. A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
  492. A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
  493. // %3:%2:%1:%0 = (1<<25) - x*d [169]
  494. // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
  495. // %16:%15:%14 = x = initial estimation of 0x1000000 / d
  496. // %3:%2:%1:%0 = (1<<25) - x*d = acc
  497. // %13 = 0
  498. // result = %11:%10:%9:%5:%4
  499. A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
  500. A("mov %4,r1")
  501. A("clr %5")
  502. A("clr %9")
  503. A("clr %10")
  504. A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
  505. A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
  506. A("add %4,r0")
  507. A("adc %5,r1")
  508. A("adc %9,%13")
  509. A("adc %10,%13")
  510. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
  511. A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
  512. A("add %5,r0")
  513. A("adc %9,r1")
  514. A("adc %10,%13")
  515. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
  516. A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
  517. A("add %4,r0")
  518. A("adc %5,r1")
  519. A("adc %9,%13")
  520. A("adc %10,%13")
  521. A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
  522. A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
  523. A("add %5,r0")
  524. A("adc %9,r1")
  525. A("adc %10,%13")
  526. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
  527. A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
  528. A("add %9,r0")
  529. A("adc %10,r1")
  530. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
  531. A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
  532. A("add %5,r0")
  533. A("adc %9,r1")
  534. A("adc %10,%13")
  535. A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
  536. A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
  537. A("add %9,r0")
  538. A("adc %10,r1")
  539. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
  540. A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
  541. A("add %10,r0")
  542. A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
  543. A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
  544. A("add %9,r0")
  545. A("adc %10,r1")
  546. A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
  547. A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
  548. A("add %10,r0")
  549. A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
  550. A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
  551. A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
  552. // At this point, %11:%10:%9 contains the new estimation of x.
  553. // Finally, we must correct the result. Estimate remainder as
  554. // (1<<24) - x*d
  555. // %11:%10:%9 = x
  556. // %8:%7:%6 = d = interval" "\n\t"
  557. A("ldi %3,1")
  558. A("clr %2")
  559. A("clr %1")
  560. A("clr %0") // %3:%2:%1:%0 = 0x1000000
  561. A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
  562. A("sub %0,r0")
  563. A("sbc %1,r1")
  564. A("sbc %2,%13")
  565. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
  566. A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
  567. A("sub %1,r0")
  568. A("sbc %2,r1")
  569. A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
  570. A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
  571. A("sub %2,r0")
  572. A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
  573. A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
  574. A("sub %1,r0")
  575. A("sbc %2,r1")
  576. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
  577. A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
  578. A("sub %2,r0")
  579. A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
  580. A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
  581. A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
  582. A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
  583. A("sub %2,r0")
  584. A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
  585. A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
  586. A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
  587. // %3:%2:%1:%0 = r = (1<<24) - x*d
  588. // %8:%7:%6 = d = interval
  589. // Perform the final correction
  590. A("sub %0,%6")
  591. A("sbc %1,%7")
  592. A("sbc %2,%8") // r -= d
  593. A("brcs 14f") // if ( r >= d)
  594. // %11:%10:%9 = x
  595. A("ldi %3,1")
  596. A("add %9,%3")
  597. A("adc %10,%13")
  598. A("adc %11,%13") // x++
  599. L("14")
  600. // Estimation is done. %11:%10:%9 = x
  601. A("clr __zero_reg__") // Make C runtime happy
  602. // [211 cycles total]
  603. : "=r" (r2),
  604. "=r" (r3),
  605. "=r" (r4),
  606. "=d" (r5),
  607. "=r" (r6),
  608. "=r" (r7),
  609. "+r" (r8),
  610. "+r" (r9),
  611. "+r" (r10),
  612. "=d" (r11),
  613. "=r" (r12),
  614. "=r" (r13),
  615. "=d" (r14),
  616. "=d" (r15),
  617. "=d" (r16),
  618. "=d" (r17),
  619. "=d" (r18),
  620. "+z" (ptab)
  621. :
  622. : "r0", "r1", "cc"
  623. );
  624. // Return the result
  625. return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
  626. }
  627. #else
  628. // All other 32-bit MPUs can easily do inverse using hardware division,
  629. // so we don't need to reduce precision or to use assembly language at all.
  630. // This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
  631. static FORCE_INLINE uint32_t get_period_inverse(const uint32_t d) {
  632. return d ? 0xFFFFFFFF / d : 0xFFFFFFFF;
  633. }
  634. #endif
  635. #endif
  636. #define MINIMAL_STEP_RATE 120
  637. /**
  638. * Get the current block for processing
  639. * and mark the block as busy.
  640. * Return nullptr if the buffer is empty
  641. * or if there is a first-block delay.
  642. *
  643. * WARNING: Called from Stepper ISR context!
  644. */
  645. block_t* Planner::get_current_block() {
  646. // Get the number of moves in the planner queue so far
  647. const uint8_t nr_moves = movesplanned();
  648. // If there are any moves queued ...
  649. if (nr_moves) {
  650. // If there is still delay of delivery of blocks running, decrement it
  651. if (delay_before_delivering) {
  652. --delay_before_delivering;
  653. // If the number of movements queued is less than 3, and there is still time
  654. // to wait, do not deliver anything
  655. if (nr_moves < 3 && delay_before_delivering) return nullptr;
  656. delay_before_delivering = 0;
  657. }
  658. // If we are here, there is no excuse to deliver the block
  659. block_t * const block = &block_buffer[block_buffer_tail];
  660. // No trapezoid calculated? Don't execute yet.
  661. if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return nullptr;
  662. // We can't be sure how long an active block will take, so don't count it.
  663. TERN_(HAS_SPI_LCD, block_buffer_runtime_us -= block->segment_time_us);
  664. // As this block is busy, advance the nonbusy block pointer
  665. block_buffer_nonbusy = next_block_index(block_buffer_tail);
  666. // Push block_buffer_planned pointer, if encountered.
  667. if (block_buffer_tail == block_buffer_planned)
  668. block_buffer_planned = block_buffer_nonbusy;
  669. // Return the block
  670. return block;
  671. }
  672. // The queue became empty
  673. TERN_(HAS_SPI_LCD, clear_block_buffer_runtime()); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  674. return nullptr;
  675. }
  676. /**
  677. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  678. * by the provided factors.
  679. **
  680. * ############ VERY IMPORTANT ############
  681. * NOTE that the PRECONDITION to call this function is that the block is
  682. * NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
  683. * is not and will not use the block while we modify it, so it is safe to
  684. * alter its values.
  685. */
  686. void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
  687. uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
  688. final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
  689. // Limit minimal step rate (Otherwise the timer will overflow.)
  690. NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
  691. NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
  692. #if ENABLED(S_CURVE_ACCELERATION)
  693. uint32_t cruise_rate = initial_rate;
  694. #endif
  695. const int32_t accel = block->acceleration_steps_per_s2;
  696. // Steps required for acceleration, deceleration to/from nominal rate
  697. uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
  698. decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
  699. // Steps between acceleration and deceleration, if any
  700. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  701. // Does accelerate_steps + decelerate_steps exceed step_event_count?
  702. // Then we can't possibly reach the nominal rate, there will be no cruising.
  703. // Use intersection_distance() to calculate accel / braking time in order to
  704. // reach the final_rate exactly at the end of this block.
  705. if (plateau_steps < 0) {
  706. const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  707. accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count);
  708. plateau_steps = 0;
  709. #if ENABLED(S_CURVE_ACCELERATION)
  710. // We won't reach the cruising rate. Let's calculate the speed we will reach
  711. cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
  712. #endif
  713. }
  714. #if ENABLED(S_CURVE_ACCELERATION)
  715. else // We have some plateau time, so the cruise rate will be the nominal rate
  716. cruise_rate = block->nominal_rate;
  717. #endif
  718. #if ENABLED(S_CURVE_ACCELERATION)
  719. // Jerk controlled speed requires to express speed versus time, NOT steps
  720. uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE),
  721. deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE),
  722. // And to offload calculations from the ISR, we also calculate the inverse of those times here
  723. acceleration_time_inverse = get_period_inverse(acceleration_time),
  724. deceleration_time_inverse = get_period_inverse(deceleration_time);
  725. #endif
  726. // Store new block parameters
  727. block->accelerate_until = accelerate_steps;
  728. block->decelerate_after = accelerate_steps + plateau_steps;
  729. block->initial_rate = initial_rate;
  730. #if ENABLED(S_CURVE_ACCELERATION)
  731. block->acceleration_time = acceleration_time;
  732. block->deceleration_time = deceleration_time;
  733. block->acceleration_time_inverse = acceleration_time_inverse;
  734. block->deceleration_time_inverse = deceleration_time_inverse;
  735. block->cruise_rate = cruise_rate;
  736. #endif
  737. block->final_rate = final_rate;
  738. /**
  739. * Laser trapezoid calculations
  740. *
  741. * Approximate the trapezoid with the laser, incrementing the power every `entry_per` while accelerating
  742. * and decrementing it every `exit_power_per` while decelerating, thus ensuring power is related to feedrate.
  743. *
  744. * LASER_POWER_INLINE_TRAPEZOID_CONT doesn't need this as it continuously approximates
  745. *
  746. * Note this may behave unreliably when running with S_CURVE_ACCELERATION
  747. */
  748. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  749. if (block->laser.power > 0) { // No need to care if power == 0
  750. const uint8_t entry_power = block->laser.power * entry_factor; // Power on block entry
  751. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  752. // Speedup power
  753. const uint8_t entry_power_diff = block->laser.power - entry_power;
  754. if (entry_power_diff) {
  755. block->laser.entry_per = accelerate_steps / entry_power_diff;
  756. block->laser.power_entry = entry_power;
  757. }
  758. else {
  759. block->laser.entry_per = 0;
  760. block->laser.power_entry = block->laser.power;
  761. }
  762. // Slowdown power
  763. const uint8_t exit_power = block->laser.power * exit_factor, // Power on block entry
  764. exit_power_diff = block->laser.power - exit_power;
  765. if (exit_power_diff) {
  766. block->laser.exit_per = (block->step_event_count - block->decelerate_after) / exit_power_diff;
  767. block->laser.power_exit = exit_power;
  768. }
  769. else {
  770. block->laser.exit_per = 0;
  771. block->laser.power_exit = block->laser.power;
  772. }
  773. #else
  774. block->laser.power_entry = entry_power;
  775. #endif
  776. }
  777. #endif
  778. }
  779. /* PLANNER SPEED DEFINITION
  780. +--------+ <- current->nominal_speed
  781. / \
  782. current->entry_speed -> + \
  783. | + <- next->entry_speed (aka exit speed)
  784. +-------------+
  785. time -->
  786. Recalculates the motion plan according to the following basic guidelines:
  787. 1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
  788. (i.e. current->entry_speed) such that:
  789. a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
  790. neighboring blocks.
  791. b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
  792. with a maximum allowable deceleration over the block travel distance.
  793. c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
  794. 2. Go over every block in chronological (forward) order and dial down junction speed values if
  795. a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
  796. acceleration over the block travel distance.
  797. When these stages are complete, the planner will have maximized the velocity profiles throughout the all
  798. of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
  799. other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
  800. are possible. If a new block is added to the buffer, the plan is recomputed according to the said
  801. guidelines for a new optimal plan.
  802. To increase computational efficiency of these guidelines, a set of planner block pointers have been
  803. created to indicate stop-compute points for when the planner guidelines cannot logically make any further
  804. changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
  805. planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
  806. bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
  807. added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
  808. them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
  809. point) are all accelerating, they are all optimal and can not be altered by a new block added to the
  810. planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
  811. junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
  812. used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
  813. recomputed as stated in the general guidelines.
  814. Planner buffer index mapping:
  815. - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
  816. - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
  817. the buffer is full or empty. As described for standard ring buffers, this block is always empty.
  818. - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
  819. streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
  820. planner buffer that don't change with the addition of a new block, as describe above. In addition,
  821. this block can never be less than block_buffer_tail and will always be pushed forward and maintain
  822. this requirement when encountered by the Planner::release_current_block() routine during a cycle.
  823. NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short
  824. line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't
  825. enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then
  826. decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and
  827. becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner
  828. will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line
  829. motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use,
  830. the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance
  831. for the planner to compute over. It also increases the number of computations the planner has to perform
  832. to compute an optimal plan, so select carefully.
  833. */
  834. // The kernel called by recalculate() when scanning the plan from last to first entry.
  835. void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
  836. if (current) {
  837. // If entry speed is already at the maximum entry speed, and there was no change of speed
  838. // in the next block, there is no need to recheck. Block is cruising and there is no need to
  839. // compute anything for this block,
  840. // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
  841. const float max_entry_speed_sqr = current->max_entry_speed_sqr;
  842. // Compute maximum entry speed decelerating over the current block from its exit speed.
  843. // If not at the maximum entry speed, or the previous block entry speed changed
  844. if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) {
  845. // If nominal length true, max junction speed is guaranteed to be reached.
  846. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  847. // the current block and next block junction speeds are guaranteed to always be at their maximum
  848. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  849. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  850. // the reverse and forward planners, the corresponding block junction speed will always be at the
  851. // the maximum junction speed and may always be ignored for any speed reduction checks.
  852. const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH)
  853. ? max_entry_speed_sqr
  854. : _MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(float(MINIMUM_PLANNER_SPEED)), current->millimeters));
  855. if (current->entry_speed_sqr != new_entry_speed_sqr) {
  856. // Need to recalculate the block speed - Mark it now, so the stepper
  857. // ISR does not consume the block before being recalculated
  858. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  859. // But there is an inherent race condition here, as the block may have
  860. // become BUSY just before being marked RECALCULATE, so check for that!
  861. if (stepper.is_block_busy(current)) {
  862. // Block became busy. Clear the RECALCULATE flag (no point in
  863. // recalculating BUSY blocks). And don't set its speed, as it can't
  864. // be updated at this time.
  865. CBI(current->flag, BLOCK_BIT_RECALCULATE);
  866. }
  867. else {
  868. // Block is not BUSY so this is ahead of the Stepper ISR:
  869. // Just Set the new entry speed.
  870. current->entry_speed_sqr = new_entry_speed_sqr;
  871. }
  872. }
  873. }
  874. }
  875. }
  876. /**
  877. * recalculate() needs to go over the current plan twice.
  878. * Once in reverse and once forward. This implements the reverse pass.
  879. */
  880. void Planner::reverse_pass() {
  881. // Initialize block index to the last block in the planner buffer.
  882. uint8_t block_index = prev_block_index(block_buffer_head);
  883. // Read the index of the last buffer planned block.
  884. // The ISR may change it so get a stable local copy.
  885. uint8_t planned_block_index = block_buffer_planned;
  886. // If there was a race condition and block_buffer_planned was incremented
  887. // or was pointing at the head (queue empty) break loop now and avoid
  888. // planning already consumed blocks
  889. if (planned_block_index == block_buffer_head) return;
  890. // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last
  891. // block in buffer. Cease planning when the last optimal planned or tail pointer is reached.
  892. // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan.
  893. const block_t *next = nullptr;
  894. while (block_index != planned_block_index) {
  895. // Perform the reverse pass
  896. block_t *current = &block_buffer[block_index];
  897. // Only consider non sync and page blocks
  898. if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(current)) {
  899. reverse_pass_kernel(current, next);
  900. next = current;
  901. }
  902. // Advance to the next
  903. block_index = prev_block_index(block_index);
  904. // The ISR could advance the block_buffer_planned while we were doing the reverse pass.
  905. // We must try to avoid using an already consumed block as the last one - So follow
  906. // changes to the pointer and make sure to limit the loop to the currently busy block
  907. while (planned_block_index != block_buffer_planned) {
  908. // If we reached the busy block or an already processed block, break the loop now
  909. if (block_index == planned_block_index) return;
  910. // Advance the pointer, following the busy block
  911. planned_block_index = next_block_index(planned_block_index);
  912. }
  913. }
  914. }
  915. // The kernel called by recalculate() when scanning the plan from first to last entry.
  916. void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current, const uint8_t block_index) {
  917. if (previous) {
  918. // If the previous block is an acceleration block, too short to complete the full speed
  919. // change, adjust the entry speed accordingly. Entry speeds have already been reset,
  920. // maximized, and reverse-planned. If nominal length is set, max junction speed is
  921. // guaranteed to be reached. No need to recheck.
  922. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) &&
  923. previous->entry_speed_sqr < current->entry_speed_sqr) {
  924. // Compute the maximum allowable speed
  925. const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);
  926. // If true, current block is full-acceleration and we can move the planned pointer forward.
  927. if (new_entry_speed_sqr < current->entry_speed_sqr) {
  928. // Mark we need to recompute the trapezoidal shape, and do it now,
  929. // so the stepper ISR does not consume the block before being recalculated
  930. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  931. // But there is an inherent race condition here, as the block maybe
  932. // became BUSY, just before it was marked as RECALCULATE, so check
  933. // if that is the case!
  934. if (stepper.is_block_busy(current)) {
  935. // Block became busy. Clear the RECALCULATE flag (no point in
  936. // recalculating BUSY blocks and don't set its speed, as it can't
  937. // be updated at this time.
  938. CBI(current->flag, BLOCK_BIT_RECALCULATE);
  939. }
  940. else {
  941. // Block is not BUSY, we won the race against the Stepper ISR:
  942. // Always <= max_entry_speed_sqr. Backward pass sets this.
  943. current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this.
  944. // Set optimal plan pointer.
  945. block_buffer_planned = block_index;
  946. }
  947. }
  948. }
  949. // Any block set at its maximum entry speed also creates an optimal plan up to this
  950. // point in the buffer. When the plan is bracketed by either the beginning of the
  951. // buffer and a maximum entry speed or two maximum entry speeds, every block in between
  952. // cannot logically be further improved. Hence, we don't have to recompute them anymore.
  953. if (current->entry_speed_sqr == current->max_entry_speed_sqr)
  954. block_buffer_planned = block_index;
  955. }
  956. }
  957. /**
  958. * recalculate() needs to go over the current plan twice.
  959. * Once in reverse and once forward. This implements the forward pass.
  960. */
  961. void Planner::forward_pass() {
  962. // Forward Pass: Forward plan the acceleration curve from the planned pointer onward.
  963. // Also scans for optimal plan breakpoints and appropriately updates the planned pointer.
  964. // Begin at buffer planned pointer. Note that block_buffer_planned can be modified
  965. // by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned
  966. // will never lead head, so the loop is safe to execute. Also note that the forward
  967. // pass will never modify the values at the tail.
  968. uint8_t block_index = block_buffer_planned;
  969. block_t *block;
  970. const block_t * previous = nullptr;
  971. while (block_index != block_buffer_head) {
  972. // Perform the forward pass
  973. block = &block_buffer[block_index];
  974. // Skip SYNC and page blocks
  975. if (!TEST(block->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(block)) {
  976. // If there's no previous block or the previous block is not
  977. // BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise,
  978. // the previous block became BUSY, so assume the current block's
  979. // entry speed can't be altered (since that would also require
  980. // updating the exit speed of the previous block).
  981. if (!previous || !stepper.is_block_busy(previous))
  982. forward_pass_kernel(previous, block, block_index);
  983. previous = block;
  984. }
  985. // Advance to the previous
  986. block_index = next_block_index(block_index);
  987. }
  988. }
  989. /**
  990. * Recalculate the trapezoid speed profiles for all blocks in the plan
  991. * according to the entry_factor for each junction. Must be called by
  992. * recalculate() after updating the blocks.
  993. */
  994. void Planner::recalculate_trapezoids() {
  995. // The tail may be changed by the ISR so get a local copy.
  996. uint8_t block_index = block_buffer_tail,
  997. head_block_index = block_buffer_head;
  998. // Since there could be a sync block in the head of the queue, and the
  999. // next loop must not recalculate the head block (as it needs to be
  1000. // specially handled), scan backwards to the first non-SYNC block.
  1001. while (head_block_index != block_index) {
  1002. // Go back (head always point to the first free block)
  1003. const uint8_t prev_index = prev_block_index(head_block_index);
  1004. // Get the pointer to the block
  1005. block_t *prev = &block_buffer[prev_index];
  1006. // If not dealing with a sync block, we are done. The last block is not a SYNC block
  1007. if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break;
  1008. // Examine the previous block. This and all following are SYNC blocks
  1009. head_block_index = prev_index;
  1010. }
  1011. // Go from the tail (currently executed block) to the first block, without including it)
  1012. block_t *block = nullptr, *next = nullptr;
  1013. float current_entry_speed = 0.0, next_entry_speed = 0.0;
  1014. while (block_index != head_block_index) {
  1015. next = &block_buffer[block_index];
  1016. // Skip sync and page blocks
  1017. if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION) && !IS_PAGE(next)) {
  1018. next_entry_speed = SQRT(next->entry_speed_sqr);
  1019. if (block) {
  1020. // Recalculate if current block entry or exit junction speed has changed.
  1021. if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
  1022. // Mark the current block as RECALCULATE, to protect it from the Stepper ISR running it.
  1023. // Note that due to the above condition, there's a chance the current block isn't marked as
  1024. // RECALCULATE yet, but the next one is. That's the reason for the following line.
  1025. SBI(block->flag, BLOCK_BIT_RECALCULATE);
  1026. // But there is an inherent race condition here, as the block maybe
  1027. // became BUSY, just before it was marked as RECALCULATE, so check
  1028. // if that is the case!
  1029. if (!stepper.is_block_busy(block)) {
  1030. // Block is not BUSY, we won the race against the Stepper ISR:
  1031. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  1032. const float current_nominal_speed = SQRT(block->nominal_speed_sqr),
  1033. nomr = 1.0f / current_nominal_speed;
  1034. calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr);
  1035. #if ENABLED(LIN_ADVANCE)
  1036. if (block->use_advance_lead) {
  1037. const float comp = block->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
  1038. block->max_adv_steps = current_nominal_speed * comp;
  1039. block->final_adv_steps = next_entry_speed * comp;
  1040. }
  1041. #endif
  1042. }
  1043. // Reset current only to ensure next trapezoid is computed - The
  1044. // stepper is free to use the block from now on.
  1045. CBI(block->flag, BLOCK_BIT_RECALCULATE);
  1046. }
  1047. }
  1048. block = next;
  1049. current_entry_speed = next_entry_speed;
  1050. }
  1051. block_index = next_block_index(block_index);
  1052. }
  1053. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  1054. if (next) {
  1055. // Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
  1056. // As the last block is always recalculated here, there is a chance the block isn't
  1057. // marked as RECALCULATE yet. That's the reason for the following line.
  1058. SBI(next->flag, BLOCK_BIT_RECALCULATE);
  1059. // But there is an inherent race condition here, as the block maybe
  1060. // became BUSY, just before it was marked as RECALCULATE, so check
  1061. // if that is the case!
  1062. if (!stepper.is_block_busy(block)) {
  1063. // Block is not BUSY, we won the race against the Stepper ISR:
  1064. const float next_nominal_speed = SQRT(next->nominal_speed_sqr),
  1065. nomr = 1.0f / next_nominal_speed;
  1066. calculate_trapezoid_for_block(next, next_entry_speed * nomr, float(MINIMUM_PLANNER_SPEED) * nomr);
  1067. #if ENABLED(LIN_ADVANCE)
  1068. if (next->use_advance_lead) {
  1069. const float comp = next->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
  1070. next->max_adv_steps = next_nominal_speed * comp;
  1071. next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp;
  1072. }
  1073. #endif
  1074. }
  1075. // Reset next only to ensure its trapezoid is computed - The stepper is free to use
  1076. // the block from now on.
  1077. CBI(next->flag, BLOCK_BIT_RECALCULATE);
  1078. }
  1079. }
  1080. void Planner::recalculate() {
  1081. // Initialize block index to the last block in the planner buffer.
  1082. const uint8_t block_index = prev_block_index(block_buffer_head);
  1083. // If there is just one block, no planning can be done. Avoid it!
  1084. if (block_index != block_buffer_planned) {
  1085. reverse_pass();
  1086. forward_pass();
  1087. }
  1088. recalculate_trapezoids();
  1089. }
  1090. #if ENABLED(AUTOTEMP)
  1091. void Planner::getHighESpeed() {
  1092. static float oldt = 0;
  1093. if (!autotemp_enabled) return;
  1094. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  1095. float high = 0.0;
  1096. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  1097. block_t* block = &block_buffer[b];
  1098. if (block->steps.x || block->steps.y || block->steps.z) {
  1099. const float se = (float)block->steps.e / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
  1100. NOLESS(high, se);
  1101. }
  1102. }
  1103. float t = autotemp_min + high * autotemp_factor;
  1104. LIMIT(t, autotemp_min, autotemp_max);
  1105. if (t < oldt) t = t * (1 - float(AUTOTEMP_OLDWEIGHT)) + oldt * float(AUTOTEMP_OLDWEIGHT);
  1106. oldt = t;
  1107. thermalManager.setTargetHotend(t, 0);
  1108. }
  1109. #endif // AUTOTEMP
  1110. /**
  1111. * Maintain fans, paste extruder pressure,
  1112. */
  1113. void Planner::check_axes_activity() {
  1114. #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E)
  1115. xyze_bool_t axis_active = { false };
  1116. #endif
  1117. #if HAS_FAN
  1118. uint8_t tail_fan_speed[FAN_COUNT];
  1119. #endif
  1120. #if ENABLED(BARICUDA)
  1121. #if HAS_HEATER_1
  1122. uint8_t tail_valve_pressure;
  1123. #endif
  1124. #if HAS_HEATER_2
  1125. uint8_t tail_e_to_p_pressure;
  1126. #endif
  1127. #endif
  1128. if (has_blocks_queued()) {
  1129. #if HAS_FAN || ENABLED(BARICUDA)
  1130. block_t *block = &block_buffer[block_buffer_tail];
  1131. #endif
  1132. #if HAS_FAN
  1133. FANS_LOOP(i)
  1134. tail_fan_speed[i] = thermalManager.scaledFanSpeed(i, block->fan_speed[i]);
  1135. #endif
  1136. #if ENABLED(BARICUDA)
  1137. TERN_(HAS_HEATER_1, tail_valve_pressure = block->valve_pressure);
  1138. TERN_(HAS_HEATER_2, tail_e_to_p_pressure = block->e_to_p_pressure);
  1139. #endif
  1140. #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E)
  1141. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  1142. block_t *block = &block_buffer[b];
  1143. LOOP_XYZE(i) if (block->steps[i]) axis_active[i] = true;
  1144. }
  1145. #endif
  1146. }
  1147. else {
  1148. TERN_(HAS_CUTTER, cutter.refresh());
  1149. #if HAS_FAN
  1150. FANS_LOOP(i)
  1151. tail_fan_speed[i] = thermalManager.scaledFanSpeed(i);
  1152. #endif
  1153. #if ENABLED(BARICUDA)
  1154. TERN_(HAS_HEATER_1, tail_valve_pressure = baricuda_valve_pressure);
  1155. TERN_(HAS_HEATER_2, tail_e_to_p_pressure = baricuda_e_to_p_pressure);
  1156. #endif
  1157. }
  1158. //
  1159. // Disable inactive axes
  1160. //
  1161. if (TERN0(DISABLE_X, !axis_active.x)) DISABLE_AXIS_X();
  1162. if (TERN0(DISABLE_Y, !axis_active.y)) DISABLE_AXIS_Y();
  1163. if (TERN0(DISABLE_Z, !axis_active.z)) DISABLE_AXIS_Z();
  1164. if (TERN0(DISABLE_E, !axis_active.e)) disable_e_steppers();
  1165. //
  1166. // Update Fan speeds
  1167. //
  1168. #if HAS_FAN
  1169. #if FAN_KICKSTART_TIME > 0
  1170. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  1171. #define KICKSTART_FAN(f) \
  1172. if (tail_fan_speed[f]) { \
  1173. millis_t ms = millis(); \
  1174. if (fan_kick_end[f] == 0) { \
  1175. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  1176. tail_fan_speed[f] = 255; \
  1177. } else if (PENDING(ms, fan_kick_end[f])) \
  1178. tail_fan_speed[f] = 255; \
  1179. } else fan_kick_end[f] = 0
  1180. #else
  1181. #define KICKSTART_FAN(f) NOOP
  1182. #endif
  1183. #if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255
  1184. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : FAN_OFF_PWM)
  1185. #else
  1186. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ?: FAN_OFF_PWM)
  1187. #endif
  1188. #if ENABLED(FAN_SOFT_PWM)
  1189. #define _FAN_SET(F) thermalManager.soft_pwm_amount_fan[F] = CALC_FAN_SPEED(F);
  1190. #elif ENABLED(FAST_PWM_FAN)
  1191. #define _FAN_SET(F) set_pwm_duty(FAN##F##_PIN, CALC_FAN_SPEED(F));
  1192. #else
  1193. #define _FAN_SET(F) analogWrite(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(F));
  1194. #endif
  1195. #define FAN_SET(F) do{ KICKSTART_FAN(F); _FAN_SET(F); }while(0)
  1196. TERN_(HAS_FAN0, FAN_SET(0));
  1197. TERN_(HAS_FAN1, FAN_SET(1));
  1198. TERN_(HAS_FAN2, FAN_SET(2));
  1199. TERN_(HAS_FAN3, FAN_SET(3));
  1200. TERN_(HAS_FAN4, FAN_SET(4));
  1201. TERN_(HAS_FAN5, FAN_SET(5));
  1202. TERN_(HAS_FAN6, FAN_SET(6));
  1203. TERN_(HAS_FAN7, FAN_SET(7));
  1204. #endif // HAS_FAN
  1205. TERN_(AUTOTEMP, getHighESpeed());
  1206. #if ENABLED(BARICUDA)
  1207. TERN_(HAS_HEATER_1, analogWrite(pin_t(HEATER_1_PIN), tail_valve_pressure));
  1208. TERN_(HAS_HEATER_2, analogWrite(pin_t(HEATER_2_PIN), tail_e_to_p_pressure));
  1209. #endif
  1210. }
  1211. #if DISABLED(NO_VOLUMETRICS)
  1212. /**
  1213. * Get a volumetric multiplier from a filament diameter.
  1214. * This is the reciprocal of the circular cross-section area.
  1215. * Return 1.0 with volumetric off or a diameter of 0.0.
  1216. */
  1217. inline float calculate_volumetric_multiplier(const float &diameter) {
  1218. return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1;
  1219. }
  1220. /**
  1221. * Convert the filament sizes into volumetric multipliers.
  1222. * The multiplier converts a given E value into a length.
  1223. */
  1224. void Planner::calculate_volumetric_multipliers() {
  1225. LOOP_L_N(i, COUNT(filament_size)) {
  1226. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  1227. refresh_e_factor(i);
  1228. }
  1229. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1230. calculate_volumetric_extruder_limits(); // update volumetric_extruder_limits as well.
  1231. #endif
  1232. }
  1233. #endif // !NO_VOLUMETRICS
  1234. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1235. /**
  1236. * Convert volumetric based limits into pre calculated extruder feedrate limits.
  1237. */
  1238. void Planner::calculate_volumetric_extruder_limit(const uint8_t e) {
  1239. const float &lim = volumetric_extruder_limit[e], &siz = filament_size[e];
  1240. volumetric_extruder_feedrate_limit[e] = (lim && siz) ? lim / CIRCLE_AREA(siz * 0.5f) : 0;
  1241. }
  1242. void Planner::calculate_volumetric_extruder_limits() {
  1243. LOOP_L_N(e, EXTRUDERS) calculate_volumetric_extruder_limit(e);
  1244. }
  1245. #endif
  1246. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1247. /**
  1248. * Convert the ratio value given by the filament width sensor
  1249. * into a volumetric multiplier. Conversion differs when using
  1250. * linear extrusion vs volumetric extrusion.
  1251. */
  1252. void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) {
  1253. // Reconstitute the nominal/measured ratio
  1254. const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
  1255. ratio_2 = sq(nom_meas_ratio);
  1256. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
  1257. ? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier
  1258. : ratio_2; // Linear squares the ratio, which scales the volume
  1259. refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
  1260. }
  1261. #endif
  1262. #if HAS_LEVELING
  1263. constexpr xy_pos_t level_fulcrum = {
  1264. TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_X_POINT, X_HOME_POS),
  1265. TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_Y_POINT, Y_HOME_POS)
  1266. };
  1267. /**
  1268. * rx, ry, rz - Cartesian positions in mm
  1269. * Leveled XYZ on completion
  1270. */
  1271. void Planner::apply_leveling(xyz_pos_t &raw) {
  1272. if (!leveling_active) return;
  1273. #if ABL_PLANAR
  1274. xy_pos_t d = raw - level_fulcrum;
  1275. apply_rotation_xyz(bed_level_matrix, d.x, d.y, raw.z);
  1276. raw = d + level_fulcrum;
  1277. #elif HAS_MESH
  1278. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1279. const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
  1280. #elif DISABLED(MESH_BED_LEVELING)
  1281. constexpr float fade_scaling_factor = 1.0;
  1282. #endif
  1283. raw.z += (
  1284. #if ENABLED(MESH_BED_LEVELING)
  1285. mbl.get_z(raw
  1286. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1287. , fade_scaling_factor
  1288. #endif
  1289. )
  1290. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1291. fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0
  1292. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1293. fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
  1294. #endif
  1295. );
  1296. #endif
  1297. }
  1298. void Planner::unapply_leveling(xyz_pos_t &raw) {
  1299. if (leveling_active) {
  1300. #if ABL_PLANAR
  1301. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  1302. xy_pos_t d = raw - level_fulcrum;
  1303. apply_rotation_xyz(inverse, d.x, d.y, raw.z);
  1304. raw = d + level_fulcrum;
  1305. #elif HAS_MESH
  1306. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1307. const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
  1308. #elif DISABLED(MESH_BED_LEVELING)
  1309. constexpr float fade_scaling_factor = 1.0;
  1310. #endif
  1311. raw.z -= (
  1312. #if ENABLED(MESH_BED_LEVELING)
  1313. mbl.get_z(raw
  1314. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1315. , fade_scaling_factor
  1316. #endif
  1317. )
  1318. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1319. fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0
  1320. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1321. fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
  1322. #endif
  1323. );
  1324. #endif
  1325. }
  1326. }
  1327. #endif // HAS_LEVELING
  1328. #if ENABLED(FWRETRACT)
  1329. /**
  1330. * rz, e - Cartesian positions in mm
  1331. */
  1332. void Planner::apply_retract(float &rz, float &e) {
  1333. rz += fwretract.current_hop;
  1334. e -= fwretract.current_retract[active_extruder];
  1335. }
  1336. void Planner::unapply_retract(float &rz, float &e) {
  1337. rz -= fwretract.current_hop;
  1338. e += fwretract.current_retract[active_extruder];
  1339. }
  1340. #endif
  1341. void Planner::quick_stop() {
  1342. // Remove all the queued blocks. Note that this function is NOT
  1343. // called from the Stepper ISR, so we must consider tail as readonly!
  1344. // that is why we set head to tail - But there is a race condition that
  1345. // must be handled: The tail could change between the read and the assignment
  1346. // so this must be enclosed in a critical section
  1347. const bool was_enabled = stepper.suspend();
  1348. // Drop all queue entries
  1349. block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail;
  1350. // Restart the block delay for the first movement - As the queue was
  1351. // forced to empty, there's no risk the ISR will touch this.
  1352. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  1353. #if HAS_SPI_LCD
  1354. // Clear the accumulated runtime
  1355. clear_block_buffer_runtime();
  1356. #endif
  1357. // Make sure to drop any attempt of queuing moves for 1 second
  1358. cleaning_buffer_counter = TEMP_TIMER_FREQUENCY;
  1359. // Reenable Stepper ISR
  1360. if (was_enabled) stepper.wake_up();
  1361. // And stop the stepper ISR
  1362. stepper.quick_stop();
  1363. }
  1364. void Planner::endstop_triggered(const AxisEnum axis) {
  1365. // Record stepper position and discard the current block
  1366. stepper.endstop_triggered(axis);
  1367. }
  1368. float Planner::triggered_position_mm(const AxisEnum axis) {
  1369. return stepper.triggered_position(axis) * steps_to_mm[axis];
  1370. }
  1371. void Planner::finish_and_disable() {
  1372. while (has_blocks_queued() || cleaning_buffer_counter) idle();
  1373. disable_all_steppers();
  1374. }
  1375. /**
  1376. * Get an axis position according to stepper position(s)
  1377. * For CORE machines apply translation from ABC to XYZ.
  1378. */
  1379. float Planner::get_axis_position_mm(const AxisEnum axis) {
  1380. float axis_steps;
  1381. #if IS_CORE
  1382. // Requesting one of the "core" axes?
  1383. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1384. // Protect the access to the position.
  1385. const bool was_enabled = stepper.suspend();
  1386. const int32_t p1 = stepper.position(CORE_AXIS_1),
  1387. p2 = stepper.position(CORE_AXIS_2);
  1388. if (was_enabled) stepper.wake_up();
  1389. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1390. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1391. axis_steps = (axis == CORE_AXIS_2 ? CORESIGN(p1 - p2) : p1 + p2) * 0.5f;
  1392. }
  1393. else
  1394. axis_steps = stepper.position(axis);
  1395. #else
  1396. axis_steps = stepper.position(axis);
  1397. #endif
  1398. return axis_steps * steps_to_mm[axis];
  1399. }
  1400. /**
  1401. * Block until all buffered steps are executed / cleaned
  1402. */
  1403. void Planner::synchronize() {
  1404. while (
  1405. has_blocks_queued() || cleaning_buffer_counter
  1406. #if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER)
  1407. || (READ(CLOSED_LOOP_ENABLE_PIN) && !READ(CLOSED_LOOP_MOVE_COMPLETE_PIN))
  1408. #endif
  1409. ) idle();
  1410. }
  1411. /**
  1412. * Planner::_buffer_steps
  1413. *
  1414. * Add a new linear movement to the planner queue (in terms of steps).
  1415. *
  1416. * target - target position in steps units
  1417. * target_float - target position in direct (mm, degrees) units. optional
  1418. * fr_mm_s - (target) speed of the move
  1419. * extruder - target extruder
  1420. * millimeters - the length of the movement, if known
  1421. *
  1422. * Returns true if movement was properly queued, false otherwise
  1423. */
  1424. bool Planner::_buffer_steps(const xyze_long_t &target
  1425. #if HAS_POSITION_FLOAT
  1426. , const xyze_pos_t &target_float
  1427. #endif
  1428. #if HAS_DIST_MM_ARG
  1429. , const xyze_float_t &cart_dist_mm
  1430. #endif
  1431. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters
  1432. ) {
  1433. // If we are cleaning, do not accept queuing of movements
  1434. if (cleaning_buffer_counter) return false;
  1435. // Wait for the next available block
  1436. uint8_t next_buffer_head;
  1437. block_t * const block = get_next_free_block(next_buffer_head);
  1438. // Fill the block with the specified movement
  1439. if (!_populate_block(block, false, target
  1440. #if HAS_POSITION_FLOAT
  1441. , target_float
  1442. #endif
  1443. #if HAS_DIST_MM_ARG
  1444. , cart_dist_mm
  1445. #endif
  1446. , fr_mm_s, extruder, millimeters
  1447. )) {
  1448. // Movement was not queued, probably because it was too short.
  1449. // Simply accept that as movement queued and done
  1450. return true;
  1451. }
  1452. // If this is the first added movement, reload the delay, otherwise, cancel it.
  1453. if (block_buffer_head == block_buffer_tail) {
  1454. // If it was the first queued block, restart the 1st block delivery delay, to
  1455. // give the planner an opportunity to queue more movements and plan them
  1456. // As there are no queued movements, the Stepper ISR will not touch this
  1457. // variable, so there is no risk setting this here (but it MUST be done
  1458. // before the following line!!)
  1459. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  1460. }
  1461. // Move buffer head
  1462. block_buffer_head = next_buffer_head;
  1463. // Recalculate and optimize trapezoidal speed profiles
  1464. recalculate();
  1465. // Movement successfully queued!
  1466. return true;
  1467. }
  1468. /**
  1469. * Planner::_populate_block
  1470. *
  1471. * Fills a new linear movement in the block (in terms of steps).
  1472. *
  1473. * target - target position in steps units
  1474. * fr_mm_s - (target) speed of the move
  1475. * extruder - target extruder
  1476. *
  1477. * Returns true if movement is acceptable, false otherwise
  1478. */
  1479. bool Planner::_populate_block(block_t * const block, bool split_move,
  1480. const abce_long_t &target
  1481. #if HAS_POSITION_FLOAT
  1482. , const xyze_pos_t &target_float
  1483. #endif
  1484. #if HAS_DIST_MM_ARG
  1485. , const xyze_float_t &cart_dist_mm
  1486. #endif
  1487. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
  1488. ) {
  1489. const int32_t da = target.a - position.a,
  1490. db = target.b - position.b,
  1491. dc = target.c - position.c;
  1492. #if EXTRUDERS
  1493. int32_t de = target.e - position.e;
  1494. #else
  1495. constexpr int32_t de = 0;
  1496. #endif
  1497. /* <-- add a slash to enable
  1498. SERIAL_ECHOLNPAIR(" _populate_block FR:", fr_mm_s,
  1499. " A:", target.a, " (", da, " steps)"
  1500. " B:", target.b, " (", db, " steps)"
  1501. " C:", target.c, " (", dc, " steps)"
  1502. #if EXTRUDERS
  1503. " E:", target.e, " (", de, " steps)"
  1504. #endif
  1505. );
  1506. //*/
  1507. #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
  1508. if (de) {
  1509. #if ENABLED(PREVENT_COLD_EXTRUSION)
  1510. if (thermalManager.tooColdToExtrude(extruder)) {
  1511. position.e = target.e; // Behave as if the move really took place, but ignore E part
  1512. TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
  1513. de = 0; // no difference
  1514. SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
  1515. }
  1516. #endif // PREVENT_COLD_EXTRUSION
  1517. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  1518. const float e_steps = ABS(de * e_factor[extruder]);
  1519. const float max_e_steps = settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH);
  1520. if (e_steps > max_e_steps) {
  1521. #if ENABLED(MIXING_EXTRUDER)
  1522. bool ignore_e = false;
  1523. float collector[MIXING_STEPPERS];
  1524. mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
  1525. MIXER_STEPPER_LOOP(e)
  1526. if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; }
  1527. #else
  1528. constexpr bool ignore_e = true;
  1529. #endif
  1530. if (ignore_e) {
  1531. position.e = target.e; // Behave as if the move really took place, but ignore E part
  1532. TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
  1533. de = 0; // no difference
  1534. SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
  1535. }
  1536. }
  1537. #endif // PREVENT_LENGTHY_EXTRUDE
  1538. }
  1539. #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
  1540. // Compute direction bit-mask for this block
  1541. uint8_t dm = 0;
  1542. #if CORE_IS_XY
  1543. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  1544. if (db < 0) SBI(dm, Y_HEAD); // ...and Y
  1545. if (dc < 0) SBI(dm, Z_AXIS);
  1546. if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
  1547. if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
  1548. #elif CORE_IS_XZ
  1549. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  1550. if (db < 0) SBI(dm, Y_AXIS);
  1551. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  1552. if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
  1553. if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  1554. #elif CORE_IS_YZ
  1555. if (da < 0) SBI(dm, X_AXIS);
  1556. if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  1557. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  1558. if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
  1559. if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  1560. #else
  1561. if (da < 0) SBI(dm, X_AXIS);
  1562. if (db < 0) SBI(dm, Y_AXIS);
  1563. if (dc < 0) SBI(dm, Z_AXIS);
  1564. #endif
  1565. if (de < 0) SBI(dm, E_AXIS);
  1566. #if EXTRUDERS
  1567. const float esteps_float = de * e_factor[extruder];
  1568. const uint32_t esteps = ABS(esteps_float) + 0.5f;
  1569. #else
  1570. constexpr uint32_t esteps = 0;
  1571. #endif
  1572. // Clear all flags, including the "busy" bit
  1573. block->flag = 0x00;
  1574. // Set direction bits
  1575. block->direction_bits = dm;
  1576. // Update block laser power
  1577. #if ENABLED(LASER_POWER_INLINE)
  1578. laser_inline.status.isPlanned = true;
  1579. block->laser.status = laser_inline.status;
  1580. block->laser.power = laser_inline.power;
  1581. #endif
  1582. // Number of steps for each axis
  1583. // See http://www.corexy.com/theory.html
  1584. #if CORE_IS_XY
  1585. block->steps.set(ABS(da + db), ABS(da - db), ABS(dc));
  1586. #elif CORE_IS_XZ
  1587. block->steps.set(ABS(da + dc), ABS(db), ABS(da - dc));
  1588. #elif CORE_IS_YZ
  1589. block->steps.set(ABS(da), ABS(db + dc), ABS(db - dc));
  1590. #elif IS_SCARA
  1591. block->steps.set(ABS(da), ABS(db), ABS(dc));
  1592. #else
  1593. // default non-h-bot planning
  1594. block->steps.set(ABS(da), ABS(db), ABS(dc));
  1595. #endif
  1596. /**
  1597. * This part of the code calculates the total length of the movement.
  1598. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  1599. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  1600. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  1601. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  1602. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  1603. */
  1604. struct DistanceMM : abce_float_t {
  1605. TERN_(IS_CORE, xyz_pos_t head);
  1606. } steps_dist_mm;
  1607. #if IS_CORE
  1608. #if CORE_IS_XY
  1609. steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
  1610. steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
  1611. steps_dist_mm.z = dc * steps_to_mm[Z_AXIS];
  1612. steps_dist_mm.a = (da + db) * steps_to_mm[A_AXIS];
  1613. steps_dist_mm.b = CORESIGN(da - db) * steps_to_mm[B_AXIS];
  1614. #elif CORE_IS_XZ
  1615. steps_dist_mm.head.x = da * steps_to_mm[A_AXIS];
  1616. steps_dist_mm.y = db * steps_to_mm[Y_AXIS];
  1617. steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS];
  1618. steps_dist_mm.a = (da + dc) * steps_to_mm[A_AXIS];
  1619. steps_dist_mm.c = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
  1620. #elif CORE_IS_YZ
  1621. steps_dist_mm.x = da * steps_to_mm[X_AXIS];
  1622. steps_dist_mm.head.y = db * steps_to_mm[B_AXIS];
  1623. steps_dist_mm.head.z = dc * steps_to_mm[C_AXIS];
  1624. steps_dist_mm.b = (db + dc) * steps_to_mm[B_AXIS];
  1625. steps_dist_mm.c = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
  1626. #endif
  1627. #else
  1628. steps_dist_mm.a = da * steps_to_mm[A_AXIS];
  1629. steps_dist_mm.b = db * steps_to_mm[B_AXIS];
  1630. steps_dist_mm.c = dc * steps_to_mm[C_AXIS];
  1631. #endif
  1632. #if EXTRUDERS
  1633. steps_dist_mm.e = esteps_float * steps_to_mm[E_AXIS_N(extruder)];
  1634. #else
  1635. steps_dist_mm.e = 0.0f;
  1636. #endif
  1637. TERN_(LCD_SHOW_E_TOTAL, e_move_accumulator += steps_dist_mm.e);
  1638. if (block->steps.a < MIN_STEPS_PER_SEGMENT && block->steps.b < MIN_STEPS_PER_SEGMENT && block->steps.c < MIN_STEPS_PER_SEGMENT) {
  1639. block->millimeters = (0
  1640. #if EXTRUDERS
  1641. + ABS(steps_dist_mm.e)
  1642. #endif
  1643. );
  1644. }
  1645. else {
  1646. if (millimeters)
  1647. block->millimeters = millimeters;
  1648. else
  1649. block->millimeters = SQRT(
  1650. #if CORE_IS_XY
  1651. sq(steps_dist_mm.head.x) + sq(steps_dist_mm.head.y) + sq(steps_dist_mm.z)
  1652. #elif CORE_IS_XZ
  1653. sq(steps_dist_mm.head.x) + sq(steps_dist_mm.y) + sq(steps_dist_mm.head.z)
  1654. #elif CORE_IS_YZ
  1655. sq(steps_dist_mm.x) + sq(steps_dist_mm.head.y) + sq(steps_dist_mm.head.z)
  1656. #else
  1657. sq(steps_dist_mm.x) + sq(steps_dist_mm.y) + sq(steps_dist_mm.z)
  1658. #endif
  1659. );
  1660. /**
  1661. * At this point at least one of the axes has more steps than
  1662. * MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as
  1663. * zero-length. It's important to not apply corrections
  1664. * to blocks that would get dropped!
  1665. *
  1666. * A correction function is permitted to add steps to an axis, it
  1667. * should *never* remove steps!
  1668. */
  1669. TERN_(BACKLASH_COMPENSATION, backlash.add_correction_steps(da, db, dc, dm, block));
  1670. }
  1671. #if EXTRUDERS
  1672. block->steps.e = esteps;
  1673. #endif
  1674. block->step_event_count = _MAX(block->steps.a, block->steps.b, block->steps.c, esteps);
  1675. // Bail if this is a zero-length block
  1676. if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;
  1677. #if ENABLED(MIXING_EXTRUDER)
  1678. MIXER_POPULATE_BLOCK();
  1679. #endif
  1680. TERN_(HAS_CUTTER, block->cutter_power = cutter.power);
  1681. #if HAS_FAN
  1682. FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
  1683. #endif
  1684. #if ENABLED(BARICUDA)
  1685. block->valve_pressure = baricuda_valve_pressure;
  1686. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  1687. #endif
  1688. #if EXTRUDERS > 1
  1689. block->extruder = extruder;
  1690. #endif
  1691. #if ENABLED(AUTO_POWER_CONTROL)
  1692. if (block->steps.x || block->steps.y || block->steps.z)
  1693. powerManager.power_on();
  1694. #endif
  1695. // Enable active axes
  1696. #if CORE_IS_XY
  1697. if (block->steps.a || block->steps.b) {
  1698. ENABLE_AXIS_X();
  1699. ENABLE_AXIS_Y();
  1700. }
  1701. #if DISABLED(Z_LATE_ENABLE)
  1702. if (block->steps.z) ENABLE_AXIS_Z();
  1703. #endif
  1704. #elif CORE_IS_XZ
  1705. if (block->steps.a || block->steps.c) {
  1706. ENABLE_AXIS_X();
  1707. ENABLE_AXIS_Z();
  1708. }
  1709. if (block->steps.y) ENABLE_AXIS_Y();
  1710. #elif CORE_IS_YZ
  1711. if (block->steps.b || block->steps.c) {
  1712. ENABLE_AXIS_Y();
  1713. ENABLE_AXIS_Z();
  1714. }
  1715. if (block->steps.x) ENABLE_AXIS_X();
  1716. #else
  1717. if (block->steps.x) ENABLE_AXIS_X();
  1718. if (block->steps.y) ENABLE_AXIS_Y();
  1719. #if DISABLED(Z_LATE_ENABLE)
  1720. if (block->steps.z) ENABLE_AXIS_Z();
  1721. #endif
  1722. #endif
  1723. // Enable extruder(s)
  1724. #if EXTRUDERS
  1725. if (esteps) {
  1726. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  1727. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  1728. LOOP_L_N(i, EXTRUDERS)
  1729. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  1730. #if HAS_DUPLICATION_MODE
  1731. if (extruder_duplication_enabled && extruder == 0) {
  1732. ENABLE_AXIS_E1();
  1733. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  1734. }
  1735. #endif
  1736. #define ENABLE_ONE_E(N) do{ \
  1737. if (extruder == N) { \
  1738. ENABLE_AXIS_E##N(); \
  1739. g_uc_extruder_last_move[N] = (BLOCK_BUFFER_SIZE) * 2; \
  1740. } \
  1741. else if (!g_uc_extruder_last_move[N]) \
  1742. DISABLE_AXIS_E##N(); \
  1743. }while(0);
  1744. #else
  1745. #define ENABLE_ONE_E(N) ENABLE_AXIS_E##N();
  1746. #endif
  1747. REPEAT(EXTRUDERS, ENABLE_ONE_E); // (ENABLE_ONE_E must end with semicolon)
  1748. }
  1749. #endif // EXTRUDERS
  1750. if (esteps)
  1751. NOLESS(fr_mm_s, settings.min_feedrate_mm_s);
  1752. else
  1753. NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s);
  1754. const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides
  1755. // Calculate inverse time for this move. No divide by zero due to previous checks.
  1756. // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
  1757. float inverse_secs = fr_mm_s * inverse_millimeters;
  1758. // Get the number of non busy movements in queue (non busy means that they can be altered)
  1759. const uint8_t moves_queued = nonbusy_movesplanned();
  1760. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  1761. #if EITHER(SLOWDOWN, HAS_SPI_LCD) || defined(XY_FREQUENCY_LIMIT)
  1762. // Segment time im micro seconds
  1763. int32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
  1764. #endif
  1765. #if ENABLED(SLOWDOWN)
  1766. #ifndef SLOWDOWN_DIVISOR
  1767. #define SLOWDOWN_DIVISOR 2
  1768. #endif
  1769. if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / (SLOWDOWN_DIVISOR) - 1)) {
  1770. const int32_t time_diff = settings.min_segment_time_us - segment_time_us;
  1771. if (time_diff > 0) {
  1772. // Buffer is draining so add extra time. The amount of time added increases if the buffer is still emptied more.
  1773. const int32_t nst = segment_time_us + LROUND(2 * time_diff / moves_queued);
  1774. inverse_secs = 1000000.0f / nst;
  1775. #if defined(XY_FREQUENCY_LIMIT) || HAS_SPI_LCD
  1776. segment_time_us = nst;
  1777. #endif
  1778. }
  1779. }
  1780. #endif
  1781. #if HAS_SPI_LCD
  1782. // Protect the access to the position.
  1783. const bool was_enabled = stepper.suspend();
  1784. block_buffer_runtime_us += segment_time_us;
  1785. block->segment_time_us = segment_time_us;
  1786. if (was_enabled) stepper.wake_up();
  1787. #endif
  1788. block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0
  1789. block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
  1790. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1791. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor
  1792. filwidth.advance_e(steps_dist_mm.e);
  1793. #endif
  1794. // Calculate and limit speed in mm/sec
  1795. xyze_float_t current_speed;
  1796. float speed_factor = 1.0f; // factor <1 decreases speed
  1797. // Linear axes first with less logic
  1798. LOOP_XYZ(i) {
  1799. current_speed[i] = steps_dist_mm[i] * inverse_secs;
  1800. const feedRate_t cs = ABS(current_speed[i]),
  1801. max_fr = settings.max_feedrate_mm_s[i];
  1802. if (cs > max_fr) NOMORE(speed_factor, max_fr / cs);
  1803. }
  1804. // Limit speed on extruders, if any
  1805. #if EXTRUDERS
  1806. {
  1807. current_speed.e = steps_dist_mm.e * inverse_secs;
  1808. #if HAS_MIXER_SYNC_CHANNEL
  1809. // Move all mixing extruders at the specified rate
  1810. if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL)
  1811. current_speed.e *= MIXING_STEPPERS;
  1812. #endif
  1813. const feedRate_t cs = ABS(current_speed.e),
  1814. max_fr = settings.max_feedrate_mm_s[E_AXIS_N(extruder)]
  1815. * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);
  1816. if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); //respect max feedrate on any movement (doesn't matter if E axes only or not)
  1817. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1818. const feedRate_t max_vfr = volumetric_extruder_feedrate_limit[extruder]
  1819. * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);
  1820. // TODO: Doesn't work properly for joined segments. Set MIN_STEPS_PER_SEGMENT 1 as workaround.
  1821. if (block->steps.a || block->steps.b || block->steps.c) {
  1822. if (max_vfr > 0 && cs > max_vfr) {
  1823. NOMORE(speed_factor, max_vfr / cs); // respect volumetric extruder limit (if any)
  1824. /* <-- add a slash to enable
  1825. SERIAL_ECHOPAIR("volumetric extruder limit enforced: ", (cs * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
  1826. SERIAL_ECHOPAIR(" mm^3/s (", cs);
  1827. SERIAL_ECHOPAIR(" mm/s) limited to ", (max_vfr * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
  1828. SERIAL_ECHOPAIR(" mm^3/s (", max_vfr);
  1829. SERIAL_ECHOLNPGM(" mm/s)");
  1830. //*/
  1831. }
  1832. }
  1833. #endif
  1834. }
  1835. #endif
  1836. #ifdef XY_FREQUENCY_LIMIT
  1837. static uint8_t old_direction_bits; // = 0
  1838. if (xy_freq_limit_hz) {
  1839. // Check and limit the xy direction change frequency
  1840. const uint8_t direction_change = block->direction_bits ^ old_direction_bits;
  1841. old_direction_bits = block->direction_bits;
  1842. segment_time_us = LROUND(float(segment_time_us) / speed_factor);
  1843. static int32_t xs0, xs1, xs2, ys0, ys1, ys2;
  1844. if (segment_time_us > xy_freq_min_interval_us)
  1845. xs2 = xs1 = ys2 = ys1 = xy_freq_min_interval_us;
  1846. else {
  1847. xs2 = xs1; xs1 = xs0;
  1848. ys2 = ys1; ys1 = ys0;
  1849. }
  1850. xs0 = TEST(direction_change, X_AXIS) ? segment_time_us : xy_freq_min_interval_us;
  1851. ys0 = TEST(direction_change, Y_AXIS) ? segment_time_us : xy_freq_min_interval_us;
  1852. if (segment_time_us < xy_freq_min_interval_us) {
  1853. const int32_t least_xy_segment_time = _MIN(_MAX(xs0, xs1, xs2), _MAX(ys0, ys1, ys2));
  1854. if (least_xy_segment_time < xy_freq_min_interval_us) {
  1855. float freq_xy_feedrate = (speed_factor * least_xy_segment_time) / xy_freq_min_interval_us;
  1856. NOLESS(freq_xy_feedrate, xy_freq_min_speed_factor);
  1857. NOMORE(speed_factor, freq_xy_feedrate);
  1858. }
  1859. }
  1860. }
  1861. #endif // XY_FREQUENCY_LIMIT
  1862. // Correct the speed
  1863. if (speed_factor < 1.0f) {
  1864. current_speed *= speed_factor;
  1865. block->nominal_rate *= speed_factor;
  1866. block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor);
  1867. }
  1868. // Compute and limit the acceleration rate for the trapezoid generator.
  1869. const float steps_per_mm = block->step_event_count * inverse_millimeters;
  1870. uint32_t accel;
  1871. if (!block->steps.a && !block->steps.b && !block->steps.c) {
  1872. // convert to: acceleration steps/sec^2
  1873. accel = CEIL(settings.retract_acceleration * steps_per_mm);
  1874. TERN_(LIN_ADVANCE, block->use_advance_lead = false);
  1875. }
  1876. else {
  1877. #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
  1878. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  1879. const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
  1880. if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
  1881. } \
  1882. }while(0)
  1883. #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
  1884. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  1885. const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
  1886. if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
  1887. } \
  1888. }while(0)
  1889. // Start with print or travel acceleration
  1890. accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm);
  1891. #if ENABLED(LIN_ADVANCE)
  1892. #define MAX_E_JERK(N) TERN(HAS_LINEAR_E_JERK, max_e_jerk[E_INDEX_N(N)], max_jerk.e)
  1893. /**
  1894. *
  1895. * Use LIN_ADVANCE for blocks if all these are true:
  1896. *
  1897. * esteps : This is a print move, because we checked for A, B, C steps before.
  1898. *
  1899. * extruder_advance_K[active_extruder] : There is an advance factor set for this extruder.
  1900. *
  1901. * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1902. */
  1903. block->use_advance_lead = esteps
  1904. && extruder_advance_K[active_extruder]
  1905. && de > 0;
  1906. if (block->use_advance_lead) {
  1907. block->e_D_ratio = (target_float.e - position_float.e) /
  1908. #if IS_KINEMATIC
  1909. block->millimeters
  1910. #else
  1911. SQRT(sq(target_float.x - position_float.x)
  1912. + sq(target_float.y - position_float.y)
  1913. + sq(target_float.z - position_float.z))
  1914. #endif
  1915. ;
  1916. // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
  1917. // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  1918. if (block->e_D_ratio > 3.0f)
  1919. block->use_advance_lead = false;
  1920. else {
  1921. const uint32_t max_accel_steps_per_s2 = MAX_E_JERK(extruder) / (extruder_advance_K[active_extruder] * block->e_D_ratio) * steps_per_mm;
  1922. if (TERN0(LA_DEBUG, accel > max_accel_steps_per_s2))
  1923. SERIAL_ECHOLNPGM("Acceleration limited.");
  1924. NOMORE(accel, max_accel_steps_per_s2);
  1925. }
  1926. }
  1927. #endif
  1928. // Limit acceleration per axis
  1929. if (block->step_event_count <= cutoff_long) {
  1930. LIMIT_ACCEL_LONG(A_AXIS, 0);
  1931. LIMIT_ACCEL_LONG(B_AXIS, 0);
  1932. LIMIT_ACCEL_LONG(C_AXIS, 0);
  1933. LIMIT_ACCEL_LONG(E_AXIS, E_INDEX_N(extruder));
  1934. }
  1935. else {
  1936. LIMIT_ACCEL_FLOAT(A_AXIS, 0);
  1937. LIMIT_ACCEL_FLOAT(B_AXIS, 0);
  1938. LIMIT_ACCEL_FLOAT(C_AXIS, 0);
  1939. LIMIT_ACCEL_FLOAT(E_AXIS, E_INDEX_N(extruder));
  1940. }
  1941. }
  1942. block->acceleration_steps_per_s2 = accel;
  1943. block->acceleration = accel / steps_per_mm;
  1944. #if DISABLED(S_CURVE_ACCELERATION)
  1945. block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE)));
  1946. #endif
  1947. #if ENABLED(LIN_ADVANCE)
  1948. if (block->use_advance_lead) {
  1949. block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * settings.axis_steps_per_mm[E_AXIS_N(extruder)]);
  1950. #if ENABLED(LA_DEBUG)
  1951. if (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio)
  1952. SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
  1953. if (block->advance_speed < 200)
  1954. SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
  1955. #endif
  1956. }
  1957. #endif
  1958. float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2
  1959. #if HAS_JUNCTION_DEVIATION
  1960. /**
  1961. * Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  1962. * Let a circle be tangent to both previous and current path line segments, where the junction
  1963. * deviation is defined as the distance from the junction to the closest edge of the circle,
  1964. * colinear with the circle center. The circular segment joining the two paths represents the
  1965. * path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  1966. * radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  1967. * path width or max_jerk in the previous Grbl version. This approach does not actually deviate
  1968. * from path, but used as a robust way to compute cornering speeds, as it takes into account the
  1969. * nonlinearities of both the junction angle and junction velocity.
  1970. *
  1971. * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
  1972. * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
  1973. * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
  1974. * is exactly the same. Instead of motioning all the way to junction point, the machine will
  1975. * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
  1976. * a continuous mode path, but ARM-based microcontrollers most certainly do.
  1977. *
  1978. * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
  1979. * changed dynamically during operation nor can the line move geometry. This must be kept in
  1980. * memory in the event of a feedrate override changing the nominal speeds of blocks, which can
  1981. * change the overall maximum entry speed conditions of all blocks.
  1982. *
  1983. * #######
  1984. * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
  1985. *
  1986. * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
  1987. Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
  1988. on then on anything with less sides than an octagon. With this, and the
  1989. reverse pass actually recalculating things, a corner acceleration value
  1990. of 1000 junction deviation of .05 are pretty reasonable. If the cycles
  1991. can be spared, a better acos could be used. For all I know, it may be
  1992. already calculated in a different place. */
  1993. // Unit vector of previous path line segment
  1994. static xyze_float_t prev_unit_vec;
  1995. xyze_float_t unit_vec =
  1996. #if HAS_DIST_MM_ARG
  1997. cart_dist_mm
  1998. #else
  1999. { steps_dist_mm.x, steps_dist_mm.y, steps_dist_mm.z, steps_dist_mm.e }
  2000. #endif
  2001. ;
  2002. /**
  2003. * On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y].
  2004. * So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters".
  2005. * => normalize the complete junction vector.
  2006. * Elsewise, when needed JD factors in the E component
  2007. */
  2008. if (ENABLED(IS_CORE) || esteps > 0)
  2009. normalize_junction_vector(unit_vec); // Normalize with XYZE components
  2010. else
  2011. unit_vec *= inverse_millimeters; // Use pre-calculated (1 / SQRT(x^2 + y^2 + z^2))
  2012. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  2013. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
  2014. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  2015. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  2016. float junction_cos_theta = (-prev_unit_vec.x * unit_vec.x) + (-prev_unit_vec.y * unit_vec.y)
  2017. + (-prev_unit_vec.z * unit_vec.z) + (-prev_unit_vec.e * unit_vec.e);
  2018. // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
  2019. if (junction_cos_theta > 0.999999f) {
  2020. // For a 0 degree acute junction, just set minimum junction speed.
  2021. vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
  2022. }
  2023. else {
  2024. NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
  2025. // Convert delta vector to unit vector
  2026. xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec;
  2027. normalize_junction_vector(junction_unit_vec);
  2028. const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec),
  2029. sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
  2030. vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2);
  2031. #if ENABLED(JD_HANDLE_SMALL_SEGMENTS)
  2032. // For small moves with >135° junction (octagon) find speed for approximate arc
  2033. if (block->millimeters < 1 && junction_cos_theta < -0.7071067812f) {
  2034. #if ENABLED(JD_USE_MATH_ACOS)
  2035. #error "TODO: Inline maths with the MCU / FPU."
  2036. #elif ENABLED(JD_USE_LOOKUP_TABLE)
  2037. // Fast acos approximation (max. error +-0.01 rads)
  2038. // Based on LUT table and linear interpolation
  2039. /**
  2040. * // Generate the JD Lookup Table
  2041. * constexpr float c = 1.00751495f; // Correction factor to center error around 0
  2042. * for (int i = 0; i < jd_lut_count - 1; ++i) {
  2043. * const float x0 = (sq(i) - 1) / sq(i),
  2044. * y0 = acos(x0) * (i == 0 ? 1 : c),
  2045. * x1 = i < jd_lut_count - 1 ? 0.5 * x0 + 0.5 : 0.999999f,
  2046. * y1 = acos(x1) * (i < jd_lut_count - 1 ? c : 1);
  2047. * jd_lut_k[i] = (y0 - y1) / (x0 - x1);
  2048. * jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1);
  2049. * }
  2050. *
  2051. * // Compute correction factor (Set c to 1.0f first!)
  2052. * float min = INFINITY, max = -min;
  2053. * for (float t = 0; t <= 1; t += 0.0003f) {
  2054. * const float e = acos(t) / approx(t);
  2055. * if (isfinite(e)) {
  2056. * if (e < min) min = e;
  2057. * if (e > max) max = e;
  2058. * }
  2059. * }
  2060. * fprintf(stderr, "%.9gf, ", (min + max) / 2);
  2061. */
  2062. static constexpr int16_t jd_lut_count = 16;
  2063. static constexpr uint16_t jd_lut_tll = _BV(jd_lut_count - 1);
  2064. static constexpr int16_t jd_lut_tll0 = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count + 1
  2065. static constexpr float jd_lut_k[jd_lut_count] PROGMEM = {
  2066. -1.03145837f, -1.30760646f, -1.75205851f, -2.41705704f,
  2067. -3.37769222f, -4.74888992f, -6.69649887f, -9.45661736f,
  2068. -13.3640480f, -18.8928222f, -26.7136841f, -37.7754593f,
  2069. -53.4201813f, -75.5458374f, -106.836761f, -218.532821f };
  2070. static constexpr float jd_lut_b[jd_lut_count] PROGMEM = {
  2071. 1.57079637f, 1.70887053f, 2.04220939f, 2.62408352f,
  2072. 3.52467871f, 4.85302639f, 6.77020454f, 9.50875854f,
  2073. 13.4009285f, 18.9188995f, 26.7321243f, 37.7885055f,
  2074. 53.4293975f, 75.5523529f, 106.841369f, 218.534011f };
  2075. const float neg = junction_cos_theta < 0 ? -1 : 1,
  2076. t = neg * junction_cos_theta;
  2077. const int16_t idx = (t < 0.00000003f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0;
  2078. float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]);
  2079. if (neg > 0) junction_theta = RADIANS(180) - junction_theta; // acos(-t)
  2080. #else
  2081. // Fast acos(-t) approximation (max. error +-0.033rad = 1.89°)
  2082. // Based on MinMax polynomial published by W. Randolph Franklin, see
  2083. // https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html
  2084. // acos( t) = pi / 2 - asin(x)
  2085. // acos(-t) = pi - acos(t) ... pi / 2 + asin(x)
  2086. const float neg = junction_cos_theta < 0 ? -1 : 1,
  2087. t = neg * junction_cos_theta,
  2088. asinx = 0.032843707f
  2089. + t * (-1.451838349f
  2090. + t * ( 29.66153956f
  2091. + t * (-131.1123477f
  2092. + t * ( 262.8130562f
  2093. + t * (-242.7199627f
  2094. + t * ( 84.31466202f ) ))))),
  2095. junction_theta = RADIANS(90) + neg * asinx; // acos(-t)
  2096. // NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0.
  2097. #endif
  2098. const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta;
  2099. NOMORE(vmax_junction_sqr, limit_sqr);
  2100. }
  2101. #endif // JD_HANDLE_SMALL_SEGMENTS
  2102. }
  2103. // Get the lowest speed
  2104. vmax_junction_sqr = _MIN(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr);
  2105. }
  2106. else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
  2107. vmax_junction_sqr = 0;
  2108. prev_unit_vec = unit_vec;
  2109. #endif
  2110. #ifdef USE_CACHED_SQRT
  2111. #define CACHED_SQRT(N, V) \
  2112. static float saved_V, N; \
  2113. if (V != saved_V) { N = SQRT(V); saved_V = V; }
  2114. #else
  2115. #define CACHED_SQRT(N, V) const float N = SQRT(V)
  2116. #endif
  2117. #if HAS_CLASSIC_JERK
  2118. /**
  2119. * Adapted from Průša MKS firmware
  2120. * https://github.com/prusa3d/Prusa-Firmware
  2121. */
  2122. CACHED_SQRT(nominal_speed, block->nominal_speed_sqr);
  2123. // Exit speed limited by a jerk to full halt of a previous last segment
  2124. static float previous_safe_speed;
  2125. // Start with a safe speed (from which the machine may halt to stop immediately).
  2126. float safe_speed = nominal_speed;
  2127. #ifndef TRAVEL_EXTRA_XYJERK
  2128. #define TRAVEL_EXTRA_XYJERK 0
  2129. #endif
  2130. const float extra_xyjerk = (de <= 0) ? TRAVEL_EXTRA_XYJERK : 0;
  2131. uint8_t limited = 0;
  2132. TERN(HAS_LINEAR_E_JERK, LOOP_XYZ, LOOP_XYZE)(i) {
  2133. const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis
  2134. maxj = (max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f)); // mj : The max jerk setting for this axis
  2135. if (jerk > maxj) { // cs > mj : New current speed too fast?
  2136. if (limited) { // limited already?
  2137. const float mjerk = nominal_speed * maxj; // ns*mj
  2138. if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
  2139. }
  2140. else {
  2141. safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs
  2142. ++limited; // Initially limited
  2143. }
  2144. }
  2145. }
  2146. float vmax_junction;
  2147. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
  2148. // Estimate a maximum velocity allowed at a joint of two successive segments.
  2149. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  2150. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  2151. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  2152. float v_factor = 1;
  2153. limited = 0;
  2154. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  2155. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  2156. CACHED_SQRT(previous_nominal_speed, previous_nominal_speed_sqr);
  2157. float smaller_speed_factor = 1.0f;
  2158. if (nominal_speed < previous_nominal_speed) {
  2159. vmax_junction = nominal_speed;
  2160. smaller_speed_factor = vmax_junction / previous_nominal_speed;
  2161. }
  2162. else
  2163. vmax_junction = previous_nominal_speed;
  2164. // Now limit the jerk in all axes.
  2165. TERN(HAS_LINEAR_E_JERK, LOOP_XYZ, LOOP_XYZE)(axis) {
  2166. // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
  2167. float v_exit = previous_speed[axis] * smaller_speed_factor,
  2168. v_entry = current_speed[axis];
  2169. if (limited) {
  2170. v_exit *= v_factor;
  2171. v_entry *= v_factor;
  2172. }
  2173. // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
  2174. const float jerk = (v_exit > v_entry)
  2175. ? // coasting axis reversal
  2176. ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : _MAX(v_exit, -v_entry) )
  2177. : // v_exit <= v_entry coasting axis reversal
  2178. ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : _MAX(-v_exit, v_entry) );
  2179. const float maxj = (max_jerk[axis] + (axis == X_AXIS || axis == Y_AXIS ? extra_xyjerk : 0.0f));
  2180. if (jerk > maxj) {
  2181. v_factor *= maxj / jerk;
  2182. ++limited;
  2183. }
  2184. }
  2185. if (limited) vmax_junction *= v_factor;
  2186. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  2187. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  2188. const float vmax_junction_threshold = vmax_junction * 0.99f;
  2189. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
  2190. vmax_junction = safe_speed;
  2191. }
  2192. else
  2193. vmax_junction = safe_speed;
  2194. previous_safe_speed = safe_speed;
  2195. #if HAS_JUNCTION_DEVIATION
  2196. NOMORE(vmax_junction_sqr, sq(vmax_junction)); // Throttle down to max speed
  2197. #else
  2198. vmax_junction_sqr = sq(vmax_junction); // Go up or down to the new speed
  2199. #endif
  2200. #endif // Classic Jerk Limiting
  2201. // Max entry speed of this block equals the max exit speed of the previous block.
  2202. block->max_entry_speed_sqr = vmax_junction_sqr;
  2203. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  2204. const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters);
  2205. // If we are trying to add a split block, start with the
  2206. // max. allowed speed to avoid an interrupted first move.
  2207. block->entry_speed_sqr = !split_move ? sq(float(MINIMUM_PLANNER_SPEED)) : _MIN(vmax_junction_sqr, v_allowable_sqr);
  2208. // Initialize planner efficiency flags
  2209. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  2210. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  2211. // the current block and next block junction speeds are guaranteed to always be at their maximum
  2212. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  2213. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  2214. // the reverse and forward planners, the corresponding block junction speed will always be at the
  2215. // the maximum junction speed and may always be ignored for any speed reduction checks.
  2216. block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE;
  2217. // Update previous path unit_vector and nominal speed
  2218. previous_speed = current_speed;
  2219. previous_nominal_speed_sqr = block->nominal_speed_sqr;
  2220. position = target; // Update the position
  2221. TERN_(HAS_POSITION_FLOAT, position_float = target_float);
  2222. TERN_(GRADIENT_MIX, mixer.gradient_control(target_float.z));
  2223. TERN_(POWER_LOSS_RECOVERY, block->sdpos = recovery.command_sdpos());
  2224. return true; // Movement was accepted
  2225. } // _populate_block()
  2226. /**
  2227. * Planner::buffer_sync_block
  2228. * Add a block to the buffer that just updates the position
  2229. */
  2230. void Planner::buffer_sync_block() {
  2231. // Wait for the next available block
  2232. uint8_t next_buffer_head;
  2233. block_t * const block = get_next_free_block(next_buffer_head);
  2234. // Clear block
  2235. memset(block, 0, sizeof(block_t));
  2236. block->flag = BLOCK_FLAG_SYNC_POSITION;
  2237. block->position = position;
  2238. // If this is the first added movement, reload the delay, otherwise, cancel it.
  2239. if (block_buffer_head == block_buffer_tail) {
  2240. // If it was the first queued block, restart the 1st block delivery delay, to
  2241. // give the planner an opportunity to queue more movements and plan them
  2242. // As there are no queued movements, the Stepper ISR will not touch this
  2243. // variable, so there is no risk setting this here (but it MUST be done
  2244. // before the following line!!)
  2245. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  2246. }
  2247. block_buffer_head = next_buffer_head;
  2248. stepper.wake_up();
  2249. } // buffer_sync_block()
  2250. /**
  2251. * Planner::buffer_segment
  2252. *
  2253. * Add a new linear movement to the buffer in axis units.
  2254. *
  2255. * Leveling and kinematics should be applied ahead of calling this.
  2256. *
  2257. * a,b,c,e - target positions in mm and/or degrees
  2258. * fr_mm_s - (target) speed of the move
  2259. * extruder - target extruder
  2260. * millimeters - the length of the movement, if known
  2261. */
  2262. bool Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e
  2263. #if HAS_DIST_MM_ARG
  2264. , const xyze_float_t &cart_dist_mm
  2265. #endif
  2266. , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
  2267. ) {
  2268. // If we are cleaning, do not accept queuing of movements
  2269. if (cleaning_buffer_counter) return false;
  2270. // When changing extruders recalculate steps corresponding to the E position
  2271. #if ENABLED(DISTINCT_E_FACTORS)
  2272. if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) {
  2273. position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * steps_to_mm[E_AXIS_N(last_extruder)]);
  2274. last_extruder = extruder;
  2275. }
  2276. #endif
  2277. // The target position of the tool in absolute steps
  2278. // Calculate target position in absolute steps
  2279. const abce_long_t target = {
  2280. int32_t(LROUND(a * settings.axis_steps_per_mm[A_AXIS])),
  2281. int32_t(LROUND(b * settings.axis_steps_per_mm[B_AXIS])),
  2282. int32_t(LROUND(c * settings.axis_steps_per_mm[C_AXIS])),
  2283. int32_t(LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(extruder)]))
  2284. };
  2285. #if HAS_POSITION_FLOAT
  2286. const xyze_pos_t target_float = { a, b, c, e };
  2287. #endif
  2288. // DRYRUN prevents E moves from taking place
  2289. if (DEBUGGING(DRYRUN) || TERN0(CANCEL_OBJECTS, cancelable.skipping)) {
  2290. position.e = target.e;
  2291. TERN_(HAS_POSITION_FLOAT, position_float.e = e);
  2292. }
  2293. /* <-- add a slash to enable
  2294. SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s);
  2295. #if IS_KINEMATIC
  2296. SERIAL_ECHOPAIR(" A:", a);
  2297. SERIAL_ECHOPAIR(" (", position.a);
  2298. SERIAL_ECHOPAIR("->", target.a);
  2299. SERIAL_ECHOPAIR(") B:", b);
  2300. #else
  2301. SERIAL_ECHOPAIR_P(SP_X_LBL, a);
  2302. SERIAL_ECHOPAIR(" (", position.x);
  2303. SERIAL_ECHOPAIR("->", target.x);
  2304. SERIAL_CHAR(')');
  2305. SERIAL_ECHOPAIR_P(SP_Y_LBL, b);
  2306. #endif
  2307. SERIAL_ECHOPAIR(" (", position.y);
  2308. SERIAL_ECHOPAIR("->", target.y);
  2309. #if ENABLED(DELTA)
  2310. SERIAL_ECHOPAIR(") C:", c);
  2311. #else
  2312. SERIAL_CHAR(')');
  2313. SERIAL_ECHOPAIR_P(SP_Z_LBL, c);
  2314. #endif
  2315. SERIAL_ECHOPAIR(" (", position.z);
  2316. SERIAL_ECHOPAIR("->", target.z);
  2317. SERIAL_CHAR(')');
  2318. SERIAL_ECHOPAIR_P(SP_E_LBL, e);
  2319. SERIAL_ECHOPAIR(" (", position.e);
  2320. SERIAL_ECHOPAIR("->", target.e);
  2321. SERIAL_ECHOLNPGM(")");
  2322. //*/
  2323. // Queue the movement
  2324. if (!_buffer_steps(target
  2325. #if HAS_POSITION_FLOAT
  2326. , target_float
  2327. #endif
  2328. #if HAS_DIST_MM_ARG
  2329. , cart_dist_mm
  2330. #endif
  2331. , fr_mm_s, extruder, millimeters)
  2332. ) return false;
  2333. stepper.wake_up();
  2334. return true;
  2335. } // buffer_segment()
  2336. /**
  2337. * Add a new linear movement to the buffer.
  2338. * The target is cartesian. It's translated to
  2339. * delta/scara if needed.
  2340. *
  2341. * rx,ry,rz,e - target position in mm or degrees
  2342. * fr_mm_s - (target) speed of the move (mm/s)
  2343. * extruder - target extruder
  2344. * millimeters - the length of the movement, if known
  2345. * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
  2346. */
  2347. bool Planner::buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters
  2348. #if ENABLED(SCARA_FEEDRATE_SCALING)
  2349. , const float &inv_duration
  2350. #endif
  2351. ) {
  2352. xyze_pos_t machine = { rx, ry, rz, e };
  2353. TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine));
  2354. #if IS_KINEMATIC
  2355. #if HAS_JUNCTION_DEVIATION
  2356. const xyze_pos_t cart_dist_mm = {
  2357. rx - position_cart.x, ry - position_cart.y,
  2358. rz - position_cart.z, e - position_cart.e
  2359. };
  2360. #else
  2361. const xyz_pos_t cart_dist_mm = { rx - position_cart.x, ry - position_cart.y, rz - position_cart.z };
  2362. #endif
  2363. float mm = millimeters;
  2364. if (mm == 0.0)
  2365. mm = (cart_dist_mm.x != 0.0 || cart_dist_mm.y != 0.0) ? cart_dist_mm.magnitude() : ABS(cart_dist_mm.z);
  2366. // Cartesian XYZ to kinematic ABC, stored in global 'delta'
  2367. inverse_kinematics(machine);
  2368. #if ENABLED(SCARA_FEEDRATE_SCALING)
  2369. // For SCARA scale the feed rate from mm/s to degrees/s
  2370. // i.e., Complete the angular vector in the given time.
  2371. const float duration_recip = inv_duration ?: fr_mm_s / mm;
  2372. const xyz_pos_t diff = delta - position_float;
  2373. const feedRate_t feedrate = diff.magnitude() * duration_recip;
  2374. #else
  2375. const feedRate_t feedrate = fr_mm_s;
  2376. #endif
  2377. if (buffer_segment(delta.a, delta.b, delta.c, machine.e
  2378. #if HAS_JUNCTION_DEVIATION
  2379. , cart_dist_mm
  2380. #endif
  2381. , feedrate, extruder, mm
  2382. )) {
  2383. position_cart.set(rx, ry, rz, e);
  2384. return true;
  2385. }
  2386. else
  2387. return false;
  2388. #else
  2389. return buffer_segment(machine, fr_mm_s, extruder, millimeters);
  2390. #endif
  2391. } // buffer_line()
  2392. #if ENABLED(DIRECT_STEPPING)
  2393. void Planner::buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps) {
  2394. if (!last_page_step_rate) {
  2395. kill(GET_TEXT(MSG_BAD_PAGE_SPEED));
  2396. return;
  2397. }
  2398. uint8_t next_buffer_head;
  2399. block_t * const block = get_next_free_block(next_buffer_head);
  2400. block->flag = BLOCK_FLAG_IS_PAGE;
  2401. #if FAN_COUNT > 0
  2402. FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
  2403. #endif
  2404. #if EXTRUDERS > 1
  2405. block->extruder = extruder;
  2406. #endif
  2407. block->page_idx = page_idx;
  2408. block->step_event_count = num_steps;
  2409. block->initial_rate =
  2410. block->final_rate =
  2411. block->nominal_rate = last_page_step_rate; // steps/s
  2412. block->accelerate_until = 0;
  2413. block->decelerate_after = block->step_event_count;
  2414. // Will be set to last direction later if directional format.
  2415. block->direction_bits = 0;
  2416. #define PAGE_UPDATE_DIR(AXIS) \
  2417. if (!last_page_dir[_AXIS(AXIS)]) SBI(block->direction_bits, _AXIS(AXIS));
  2418. if (!DirectStepping::Config::DIRECTIONAL) {
  2419. PAGE_UPDATE_DIR(X);
  2420. PAGE_UPDATE_DIR(Y);
  2421. PAGE_UPDATE_DIR(Z);
  2422. PAGE_UPDATE_DIR(E);
  2423. }
  2424. // If this is the first added movement, reload the delay, otherwise, cancel it.
  2425. if (block_buffer_head == block_buffer_tail) {
  2426. // If it was the first queued block, restart the 1st block delivery delay, to
  2427. // give the planner an opportunity to queue more movements and plan them
  2428. // As there are no queued movements, the Stepper ISR will not touch this
  2429. // variable, so there is no risk setting this here (but it MUST be done
  2430. // before the following line!!)
  2431. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  2432. }
  2433. // Move buffer head
  2434. block_buffer_head = next_buffer_head;
  2435. enable_all_steppers();
  2436. stepper.wake_up();
  2437. }
  2438. #endif // DIRECT_STEPPING
  2439. /**
  2440. * Directly set the planner ABC position (and stepper positions)
  2441. * converting mm (or angles for SCARA) into steps.
  2442. *
  2443. * The provided ABC position is in machine units.
  2444. */
  2445. void Planner::set_machine_position_mm(const float &a, const float &b, const float &c, const float &e) {
  2446. TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);
  2447. TERN_(HAS_POSITION_FLOAT, position_float.set(a, b, c, e));
  2448. position.set(LROUND(a * settings.axis_steps_per_mm[A_AXIS]),
  2449. LROUND(b * settings.axis_steps_per_mm[B_AXIS]),
  2450. LROUND(c * settings.axis_steps_per_mm[C_AXIS]),
  2451. LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)]));
  2452. if (has_blocks_queued()) {
  2453. //previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
  2454. //previous_speed.reset();
  2455. buffer_sync_block();
  2456. }
  2457. else
  2458. stepper.set_position(position);
  2459. }
  2460. void Planner::set_position_mm(const float &rx, const float &ry, const float &rz, const float &e) {
  2461. xyze_pos_t machine = { rx, ry, rz, e };
  2462. #if HAS_POSITION_MODIFIERS
  2463. apply_modifiers(machine, true);
  2464. #endif
  2465. #if IS_KINEMATIC
  2466. position_cart.set(rx, ry, rz, e);
  2467. inverse_kinematics(machine);
  2468. set_machine_position_mm(delta.a, delta.b, delta.c, machine.e);
  2469. #else
  2470. set_machine_position_mm(machine);
  2471. #endif
  2472. }
  2473. /**
  2474. * Setters for planner position (also setting stepper position).
  2475. */
  2476. void Planner::set_e_position_mm(const float &e) {
  2477. const uint8_t axis_index = E_AXIS_N(active_extruder);
  2478. TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);
  2479. const float e_new = e - TERN0(FWRETRACT, fwretract.current_retract[active_extruder]);
  2480. position.e = LROUND(settings.axis_steps_per_mm[axis_index] * e_new);
  2481. TERN_(HAS_POSITION_FLOAT, position_float.e = e_new);
  2482. TERN_(IS_KINEMATIC, position_cart.e = e);
  2483. if (has_blocks_queued())
  2484. buffer_sync_block();
  2485. else
  2486. stepper.set_axis_position(E_AXIS, position.e);
  2487. }
  2488. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  2489. void Planner::reset_acceleration_rates() {
  2490. #if ENABLED(DISTINCT_E_FACTORS)
  2491. #define AXIS_CONDITION (i < E_AXIS || i == E_AXIS_N(active_extruder))
  2492. #else
  2493. #define AXIS_CONDITION true
  2494. #endif
  2495. uint32_t highest_rate = 1;
  2496. LOOP_XYZE_N(i) {
  2497. max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i];
  2498. if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
  2499. }
  2500. cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
  2501. TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk());
  2502. }
  2503. // Recalculate position, steps_to_mm if settings.axis_steps_per_mm changes!
  2504. void Planner::refresh_positioning() {
  2505. LOOP_XYZE_N(i) steps_to_mm[i] = 1.0f / settings.axis_steps_per_mm[i];
  2506. set_position_mm(current_position);
  2507. reset_acceleration_rates();
  2508. }
  2509. inline void limit_and_warn(float &val, const uint8_t axis, PGM_P const setting_name, const xyze_float_t &max_limit) {
  2510. const uint8_t lim_axis = axis > E_AXIS ? E_AXIS : axis;
  2511. const float before = val;
  2512. LIMIT(val, 0.1, max_limit[lim_axis]);
  2513. if (before != val) {
  2514. SERIAL_CHAR(axis_codes[lim_axis]);
  2515. SERIAL_ECHOPGM(" Max ");
  2516. serialprintPGM(setting_name);
  2517. SERIAL_ECHOLNPAIR(" limited to ", val);
  2518. }
  2519. }
  2520. void Planner::set_max_acceleration(const uint8_t axis, float targetValue) {
  2521. #if ENABLED(LIMITED_MAX_ACCEL_EDITING)
  2522. #ifdef MAX_ACCEL_EDIT_VALUES
  2523. constexpr xyze_float_t max_accel_edit = MAX_ACCEL_EDIT_VALUES;
  2524. const xyze_float_t &max_acc_edit_scaled = max_accel_edit;
  2525. #else
  2526. constexpr xyze_float_t max_accel_edit = DEFAULT_MAX_ACCELERATION;
  2527. const xyze_float_t max_acc_edit_scaled = max_accel_edit * 2;
  2528. #endif
  2529. limit_and_warn(targetValue, axis, PSTR("Acceleration"), max_acc_edit_scaled);
  2530. #endif
  2531. settings.max_acceleration_mm_per_s2[axis] = targetValue;
  2532. // Update steps per s2 to agree with the units per s2 (since they are used in the planner)
  2533. reset_acceleration_rates();
  2534. }
  2535. void Planner::set_max_feedrate(const uint8_t axis, float targetValue) {
  2536. #if ENABLED(LIMITED_MAX_FR_EDITING)
  2537. #ifdef MAX_FEEDRATE_EDIT_VALUES
  2538. constexpr xyze_float_t max_fr_edit = MAX_FEEDRATE_EDIT_VALUES;
  2539. const xyze_float_t &max_fr_edit_scaled = max_fr_edit;
  2540. #else
  2541. constexpr xyze_float_t max_fr_edit = DEFAULT_MAX_FEEDRATE;
  2542. const xyze_float_t max_fr_edit_scaled = max_fr_edit * 2;
  2543. #endif
  2544. limit_and_warn(targetValue, axis, PSTR("Feedrate"), max_fr_edit_scaled);
  2545. #endif
  2546. settings.max_feedrate_mm_s[axis] = targetValue;
  2547. }
  2548. void Planner::set_max_jerk(const AxisEnum axis, float targetValue) {
  2549. #if HAS_CLASSIC_JERK
  2550. #if ENABLED(LIMITED_JERK_EDITING)
  2551. constexpr xyze_float_t max_jerk_edit =
  2552. #ifdef MAX_JERK_EDIT_VALUES
  2553. MAX_JERK_EDIT_VALUES
  2554. #else
  2555. { (DEFAULT_XJERK) * 2, (DEFAULT_YJERK) * 2,
  2556. (DEFAULT_ZJERK) * 2, (DEFAULT_EJERK) * 2 }
  2557. #endif
  2558. ;
  2559. limit_and_warn(targetValue, axis, PSTR("Jerk"), max_jerk_edit);
  2560. #endif
  2561. max_jerk[axis] = targetValue;
  2562. #else
  2563. UNUSED(axis); UNUSED(targetValue);
  2564. #endif
  2565. }
  2566. #if HAS_SPI_LCD
  2567. uint16_t Planner::block_buffer_runtime() {
  2568. #ifdef __AVR__
  2569. // Protect the access to the variable. Only required for AVR, as
  2570. // any 32bit CPU offers atomic access to 32bit variables
  2571. const bool was_enabled = stepper.suspend();
  2572. #endif
  2573. uint32_t bbru = block_buffer_runtime_us;
  2574. #ifdef __AVR__
  2575. // Reenable Stepper ISR
  2576. if (was_enabled) stepper.wake_up();
  2577. #endif
  2578. // To translate µs to ms a division by 1000 would be required.
  2579. // We introduce 2.4% error here by dividing by 1024.
  2580. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  2581. bbru >>= 10;
  2582. // limit to about a minute.
  2583. NOMORE(bbru, 0x0000FFFFUL);
  2584. return bbru;
  2585. }
  2586. void Planner::clear_block_buffer_runtime() {
  2587. #ifdef __AVR__
  2588. // Protect the access to the variable. Only required for AVR, as
  2589. // any 32bit CPU offers atomic access to 32bit variables
  2590. const bool was_enabled = stepper.suspend();
  2591. #endif
  2592. block_buffer_runtime_us = 0;
  2593. #ifdef __AVR__
  2594. // Reenable Stepper ISR
  2595. if (was_enabled) stepper.wake_up();
  2596. #endif
  2597. }
  2598. #endif
  2599. #if ENABLED(AUTOTEMP)
  2600. void Planner::autotemp_update() {
  2601. #if ENABLED(AUTOTEMP_PROPORTIONAL)
  2602. const int16_t target = thermalManager.degTargetHotend(active_extruder);
  2603. autotemp_min = target + AUTOTEMP_MIN_P;
  2604. autotemp_max = target + AUTOTEMP_MAX_P;
  2605. #endif
  2606. autotemp_factor = TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0);
  2607. autotemp_enabled = autotemp_factor != 0;
  2608. }
  2609. void Planner::autotemp_M104_M109() {
  2610. #if ENABLED(AUTOTEMP_PROPORTIONAL)
  2611. const int16_t target = thermalManager.degTargetHotend(active_extruder);
  2612. autotemp_min = target + AUTOTEMP_MIN_P;
  2613. autotemp_max = target + AUTOTEMP_MAX_P;
  2614. #endif
  2615. if (parser.seenval('S')) autotemp_min = parser.value_celsius();
  2616. if (parser.seenval('B')) autotemp_max = parser.value_celsius();
  2617. // When AUTOTEMP_PROPORTIONAL is enabled, F0 disables autotemp.
  2618. // Normally, leaving off F also disables autotemp.
  2619. autotemp_factor = parser.seen('F') ? parser.value_float() : TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0);
  2620. autotemp_enabled = autotemp_factor != 0;
  2621. }
  2622. #endif