My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 45KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. */
  59. #include "Marlin.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "ultralcd.h"
  64. #include "language.h"
  65. #if ENABLED(MESH_BED_LEVELING)
  66. #include "mesh_bed_leveling.h"
  67. #endif
  68. Planner planner;
  69. // public:
  70. /**
  71. * A ring buffer of moves described in steps
  72. */
  73. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  74. volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
  75. volatile uint8_t Planner::block_buffer_tail = 0;
  76. float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
  77. float Planner::axis_steps_per_mm[NUM_AXIS];
  78. unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
  79. unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
  80. millis_t Planner::min_segment_time;
  81. float Planner::min_feedrate_mm_s;
  82. float Planner::acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  83. float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  84. float Planner::travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  85. float Planner::max_xy_jerk; // The largest speed change requiring no acceleration
  86. float Planner::max_z_jerk;
  87. float Planner::max_e_jerk;
  88. float Planner::min_travel_feedrate_mm_s;
  89. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  90. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  91. #endif
  92. #if ENABLED(AUTOTEMP)
  93. float Planner::autotemp_max = 250;
  94. float Planner::autotemp_min = 210;
  95. float Planner::autotemp_factor = 0.1;
  96. bool Planner::autotemp_enabled = false;
  97. #endif
  98. // private:
  99. long Planner::position[NUM_AXIS] = { 0 };
  100. float Planner::previous_speed[NUM_AXIS];
  101. float Planner::previous_nominal_speed;
  102. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  103. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  104. #endif // DISABLE_INACTIVE_EXTRUDER
  105. #ifdef XY_FREQUENCY_LIMIT
  106. // Old direction bits. Used for speed calculations
  107. unsigned char Planner::old_direction_bits = 0;
  108. // Segment times (in µs). Used for speed calculations
  109. long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
  110. #endif
  111. /**
  112. * Class and Instance Methods
  113. */
  114. Planner::Planner() { init(); }
  115. void Planner::init() {
  116. block_buffer_head = block_buffer_tail = 0;
  117. memset(position, 0, sizeof(position)); // clear position
  118. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  119. previous_nominal_speed = 0.0;
  120. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  121. bed_level_matrix.set_to_identity();
  122. #endif
  123. }
  124. /**
  125. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  126. * by the provided factors.
  127. */
  128. void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
  129. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
  130. final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
  131. // Limit minimal step rate (Otherwise the timer will overflow.)
  132. NOLESS(initial_rate, 120);
  133. NOLESS(final_rate, 120);
  134. long accel = block->acceleration_steps_per_s2;
  135. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
  136. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
  137. // Calculate the size of Plateau of Nominal Rate.
  138. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  139. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  140. // have to use intersection_distance() to calculate when to abort accel and start braking
  141. // in order to reach the final_rate exactly at the end of this block.
  142. if (plateau_steps < 0) {
  143. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  144. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  145. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  146. plateau_steps = 0;
  147. }
  148. #if ENABLED(ADVANCE)
  149. volatile long initial_advance = block->advance * sq(entry_factor);
  150. volatile long final_advance = block->advance * sq(exit_factor);
  151. #endif // ADVANCE
  152. // block->accelerate_until = accelerate_steps;
  153. // block->decelerate_after = accelerate_steps+plateau_steps;
  154. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  155. if (!block->busy) { // Don't update variables if block is busy.
  156. block->accelerate_until = accelerate_steps;
  157. block->decelerate_after = accelerate_steps + plateau_steps;
  158. block->initial_rate = initial_rate;
  159. block->final_rate = final_rate;
  160. #if ENABLED(ADVANCE)
  161. block->initial_advance = initial_advance;
  162. block->final_advance = final_advance;
  163. #endif
  164. }
  165. CRITICAL_SECTION_END;
  166. }
  167. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  168. // This method will calculate the junction jerk as the euclidean distance between the nominal
  169. // velocities of the respective blocks.
  170. //inline float junction_jerk(block_t *before, block_t *after) {
  171. // return sqrt(
  172. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  173. //}
  174. // The kernel called by recalculate() when scanning the plan from last to first entry.
  175. void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  176. if (!current) return;
  177. UNUSED(previous);
  178. if (next) {
  179. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  180. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  181. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  182. float max_entry_speed = current->max_entry_speed;
  183. if (current->entry_speed != max_entry_speed) {
  184. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  185. // for max allowable speed if block is decelerating and nominal length is false.
  186. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
  187. current->entry_speed = min(max_entry_speed,
  188. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  189. }
  190. else {
  191. current->entry_speed = max_entry_speed;
  192. }
  193. current->recalculate_flag = true;
  194. }
  195. } // Skip last block. Already initialized and set for recalculation.
  196. }
  197. /**
  198. * recalculate() needs to go over the current plan twice.
  199. * Once in reverse and once forward. This implements the reverse pass.
  200. */
  201. void Planner::reverse_pass() {
  202. if (movesplanned() > 3) {
  203. block_t* block[3] = { NULL, NULL, NULL };
  204. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  205. CRITICAL_SECTION_START;
  206. uint8_t tail = block_buffer_tail;
  207. CRITICAL_SECTION_END
  208. uint8_t b = BLOCK_MOD(block_buffer_head - 3);
  209. while (b != tail) {
  210. b = prev_block_index(b);
  211. block[2] = block[1];
  212. block[1] = block[0];
  213. block[0] = &block_buffer[b];
  214. reverse_pass_kernel(block[0], block[1], block[2]);
  215. }
  216. }
  217. }
  218. // The kernel called by recalculate() when scanning the plan from first to last entry.
  219. void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  220. if (!previous) return;
  221. UNUSED(next);
  222. // If the previous block is an acceleration block, but it is not long enough to complete the
  223. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  224. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  225. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  226. if (!previous->nominal_length_flag) {
  227. if (previous->entry_speed < current->entry_speed) {
  228. double entry_speed = min(current->entry_speed,
  229. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  230. // Check for junction speed change
  231. if (current->entry_speed != entry_speed) {
  232. current->entry_speed = entry_speed;
  233. current->recalculate_flag = true;
  234. }
  235. }
  236. }
  237. }
  238. /**
  239. * recalculate() needs to go over the current plan twice.
  240. * Once in reverse and once forward. This implements the forward pass.
  241. */
  242. void Planner::forward_pass() {
  243. block_t* block[3] = { NULL, NULL, NULL };
  244. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  245. block[0] = block[1];
  246. block[1] = block[2];
  247. block[2] = &block_buffer[b];
  248. forward_pass_kernel(block[0], block[1], block[2]);
  249. }
  250. forward_pass_kernel(block[1], block[2], NULL);
  251. }
  252. /**
  253. * Recalculate the trapezoid speed profiles for all blocks in the plan
  254. * according to the entry_factor for each junction. Must be called by
  255. * recalculate() after updating the blocks.
  256. */
  257. void Planner::recalculate_trapezoids() {
  258. int8_t block_index = block_buffer_tail;
  259. block_t* current;
  260. block_t* next = NULL;
  261. while (block_index != block_buffer_head) {
  262. current = next;
  263. next = &block_buffer[block_index];
  264. if (current) {
  265. // Recalculate if current block entry or exit junction speed has changed.
  266. if (current->recalculate_flag || next->recalculate_flag) {
  267. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  268. float nom = current->nominal_speed;
  269. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  270. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  271. }
  272. }
  273. block_index = next_block_index(block_index);
  274. }
  275. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  276. if (next) {
  277. float nom = next->nominal_speed;
  278. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  279. next->recalculate_flag = false;
  280. }
  281. }
  282. /*
  283. * Recalculate the motion plan according to the following algorithm:
  284. *
  285. * 1. Go over every block in reverse order...
  286. *
  287. * Calculate a junction speed reduction (block_t.entry_factor) so:
  288. *
  289. * a. The junction jerk is within the set limit, and
  290. *
  291. * b. No speed reduction within one block requires faster
  292. * deceleration than the one, true constant acceleration.
  293. *
  294. * 2. Go over every block in chronological order...
  295. *
  296. * Dial down junction speed reduction values if:
  297. * a. The speed increase within one block would require faster
  298. * acceleration than the one, true constant acceleration.
  299. *
  300. * After that, all blocks will have an entry_factor allowing all speed changes to
  301. * be performed using only the one, true constant acceleration, and where no junction
  302. * jerk is jerkier than the set limit, Jerky. Finally it will:
  303. *
  304. * 3. Recalculate "trapezoids" for all blocks.
  305. */
  306. void Planner::recalculate() {
  307. reverse_pass();
  308. forward_pass();
  309. recalculate_trapezoids();
  310. }
  311. #if ENABLED(AUTOTEMP)
  312. void Planner::getHighESpeed() {
  313. static float oldt = 0;
  314. if (!autotemp_enabled) return;
  315. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  316. float high = 0.0;
  317. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  318. block_t* block = &block_buffer[b];
  319. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  320. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  321. NOLESS(high, se);
  322. }
  323. }
  324. float t = autotemp_min + high * autotemp_factor;
  325. t = constrain(t, autotemp_min, autotemp_max);
  326. if (oldt > t) {
  327. t *= (1 - (AUTOTEMP_OLDWEIGHT));
  328. t += (AUTOTEMP_OLDWEIGHT) * oldt;
  329. }
  330. oldt = t;
  331. thermalManager.setTargetHotend(t, 0);
  332. }
  333. #endif //AUTOTEMP
  334. /**
  335. * Maintain fans, paste extruder pressure,
  336. */
  337. void Planner::check_axes_activity() {
  338. unsigned char axis_active[NUM_AXIS] = { 0 },
  339. tail_fan_speed[FAN_COUNT];
  340. #if FAN_COUNT > 0
  341. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  342. #endif
  343. #if ENABLED(BARICUDA)
  344. #if HAS_HEATER_1
  345. unsigned char tail_valve_pressure = baricuda_valve_pressure;
  346. #endif
  347. #if HAS_HEATER_2
  348. unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
  349. #endif
  350. #endif
  351. if (blocks_queued()) {
  352. #if FAN_COUNT > 0
  353. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
  354. #endif
  355. block_t* block;
  356. #if ENABLED(BARICUDA)
  357. block = &block_buffer[block_buffer_tail];
  358. #if HAS_HEATER_1
  359. tail_valve_pressure = block->valve_pressure;
  360. #endif
  361. #if HAS_HEATER_2
  362. tail_e_to_p_pressure = block->e_to_p_pressure;
  363. #endif
  364. #endif
  365. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  366. block = &block_buffer[b];
  367. for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  368. }
  369. }
  370. #if ENABLED(DISABLE_X)
  371. if (!axis_active[X_AXIS]) disable_x();
  372. #endif
  373. #if ENABLED(DISABLE_Y)
  374. if (!axis_active[Y_AXIS]) disable_y();
  375. #endif
  376. #if ENABLED(DISABLE_Z)
  377. if (!axis_active[Z_AXIS]) disable_z();
  378. #endif
  379. #if ENABLED(DISABLE_E)
  380. if (!axis_active[E_AXIS]) {
  381. disable_e0();
  382. disable_e1();
  383. disable_e2();
  384. disable_e3();
  385. }
  386. #endif
  387. #if FAN_COUNT > 0
  388. #if defined(FAN_MIN_PWM)
  389. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  390. #else
  391. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  392. #endif
  393. #ifdef FAN_KICKSTART_TIME
  394. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  395. #define KICKSTART_FAN(f) \
  396. if (tail_fan_speed[f]) { \
  397. millis_t ms = millis(); \
  398. if (fan_kick_end[f] == 0) { \
  399. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  400. tail_fan_speed[f] = 255; \
  401. } else { \
  402. if (PENDING(ms, fan_kick_end[f])) { \
  403. tail_fan_speed[f] = 255; \
  404. } \
  405. } \
  406. } else { \
  407. fan_kick_end[f] = 0; \
  408. }
  409. #if HAS_FAN0
  410. KICKSTART_FAN(0);
  411. #endif
  412. #if HAS_FAN1
  413. KICKSTART_FAN(1);
  414. #endif
  415. #if HAS_FAN2
  416. KICKSTART_FAN(2);
  417. #endif
  418. #endif //FAN_KICKSTART_TIME
  419. #if ENABLED(FAN_SOFT_PWM)
  420. #if HAS_FAN0
  421. thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
  422. #endif
  423. #if HAS_FAN1
  424. thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
  425. #endif
  426. #if HAS_FAN2
  427. thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
  428. #endif
  429. #else
  430. #if HAS_FAN0
  431. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  432. #endif
  433. #if HAS_FAN1
  434. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  435. #endif
  436. #if HAS_FAN2
  437. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  438. #endif
  439. #endif
  440. #endif // FAN_COUNT > 0
  441. #if ENABLED(AUTOTEMP)
  442. getHighESpeed();
  443. #endif
  444. #if ENABLED(BARICUDA)
  445. #if HAS_HEATER_1
  446. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  447. #endif
  448. #if HAS_HEATER_2
  449. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  450. #endif
  451. #endif
  452. }
  453. /**
  454. * Planner::buffer_line
  455. *
  456. * Add a new linear movement to the buffer.
  457. *
  458. * x,y,z,e - target position in mm
  459. * fr_mm_s - (target) speed of the move
  460. * extruder - target extruder
  461. */
  462. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  463. void Planner::buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder)
  464. #else
  465. void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder)
  466. #endif // AUTO_BED_LEVELING_FEATURE
  467. {
  468. // Calculate the buffer head after we push this byte
  469. int next_buffer_head = next_block_index(block_buffer_head);
  470. // If the buffer is full: good! That means we are well ahead of the robot.
  471. // Rest here until there is room in the buffer.
  472. while (block_buffer_tail == next_buffer_head) idle();
  473. #if ENABLED(MESH_BED_LEVELING)
  474. if (mbl.active())
  475. z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
  476. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  477. apply_rotation_xyz(bed_level_matrix, x, y, z);
  478. #endif
  479. // The target position of the tool in absolute steps
  480. // Calculate target position in absolute steps
  481. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  482. long target[NUM_AXIS] = {
  483. lround(x * axis_steps_per_mm[X_AXIS]),
  484. lround(y * axis_steps_per_mm[Y_AXIS]),
  485. lround(z * axis_steps_per_mm[Z_AXIS]),
  486. lround(e * axis_steps_per_mm[E_AXIS])
  487. };
  488. long dx = target[X_AXIS] - position[X_AXIS],
  489. dy = target[Y_AXIS] - position[Y_AXIS],
  490. dz = target[Z_AXIS] - position[Z_AXIS];
  491. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  492. if (DEBUGGING(DRYRUN))
  493. position[E_AXIS] = target[E_AXIS];
  494. long de = target[E_AXIS] - position[E_AXIS];
  495. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  496. if (de) {
  497. if (thermalManager.tooColdToExtrude(extruder)) {
  498. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  499. de = 0; // no difference
  500. SERIAL_ECHO_START;
  501. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  502. }
  503. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  504. if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
  505. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  506. de = 0; // no difference
  507. SERIAL_ECHO_START;
  508. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  509. }
  510. #endif
  511. }
  512. #endif
  513. // Prepare to set up new block
  514. block_t* block = &block_buffer[block_buffer_head];
  515. // Mark block as not busy (Not executed by the stepper interrupt)
  516. block->busy = false;
  517. // Number of steps for each axis
  518. #if ENABLED(COREXY)
  519. // corexy planning
  520. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  521. block->steps[A_AXIS] = labs(dx + dy);
  522. block->steps[B_AXIS] = labs(dx - dy);
  523. block->steps[Z_AXIS] = labs(dz);
  524. #elif ENABLED(COREXZ)
  525. // corexz planning
  526. block->steps[A_AXIS] = labs(dx + dz);
  527. block->steps[Y_AXIS] = labs(dy);
  528. block->steps[C_AXIS] = labs(dx - dz);
  529. #elif ENABLED(COREYZ)
  530. // coreyz planning
  531. block->steps[X_AXIS] = labs(dx);
  532. block->steps[B_AXIS] = labs(dy + dz);
  533. block->steps[C_AXIS] = labs(dy - dz);
  534. #else
  535. // default non-h-bot planning
  536. block->steps[X_AXIS] = labs(dx);
  537. block->steps[Y_AXIS] = labs(dy);
  538. block->steps[Z_AXIS] = labs(dz);
  539. #endif
  540. block->steps[E_AXIS] = labs(de);
  541. block->steps[E_AXIS] *= volumetric_multiplier[extruder];
  542. block->steps[E_AXIS] *= extruder_multiplier[extruder];
  543. block->steps[E_AXIS] /= 100;
  544. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  545. // Bail if this is a zero-length block
  546. if (block->step_event_count <= dropsegments) return;
  547. // For a mixing extruder, get a magnified step_event_count for each
  548. #if ENABLED(MIXING_EXTRUDER)
  549. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  550. block->mix_event_count[i] = (mixing_factor[i] < 0.0001) ? 0 : block->step_event_count / mixing_factor[i];
  551. #endif
  552. #if FAN_COUNT > 0
  553. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  554. #endif
  555. #if ENABLED(BARICUDA)
  556. block->valve_pressure = baricuda_valve_pressure;
  557. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  558. #endif
  559. // Compute direction bits for this block
  560. uint8_t db = 0;
  561. #if ENABLED(COREXY)
  562. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  563. if (dy < 0) SBI(db, Y_HEAD); // ...and Y
  564. if (dz < 0) SBI(db, Z_AXIS);
  565. if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
  566. if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
  567. #elif ENABLED(COREXZ)
  568. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  569. if (dy < 0) SBI(db, Y_AXIS);
  570. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  571. if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
  572. if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction
  573. #elif ENABLED(COREYZ)
  574. if (dx < 0) SBI(db, X_AXIS);
  575. if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  576. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  577. if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction
  578. if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction
  579. #else
  580. if (dx < 0) SBI(db, X_AXIS);
  581. if (dy < 0) SBI(db, Y_AXIS);
  582. if (dz < 0) SBI(db, Z_AXIS);
  583. #endif
  584. if (de < 0) SBI(db, E_AXIS);
  585. block->direction_bits = db;
  586. block->active_extruder = extruder;
  587. //enable active axes
  588. #if ENABLED(COREXY)
  589. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  590. enable_x();
  591. enable_y();
  592. }
  593. #if DISABLED(Z_LATE_ENABLE)
  594. if (block->steps[Z_AXIS]) enable_z();
  595. #endif
  596. #elif ENABLED(COREXZ)
  597. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  598. enable_x();
  599. enable_z();
  600. }
  601. if (block->steps[Y_AXIS]) enable_y();
  602. #else
  603. if (block->steps[X_AXIS]) enable_x();
  604. if (block->steps[Y_AXIS]) enable_y();
  605. #if DISABLED(Z_LATE_ENABLE)
  606. if (block->steps[Z_AXIS]) enable_z();
  607. #endif
  608. #endif
  609. // Enable extruder(s)
  610. if (block->steps[E_AXIS]) {
  611. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  612. for (int i = 0; i < EXTRUDERS; i++)
  613. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  614. switch(extruder) {
  615. case 0:
  616. enable_e0();
  617. #if ENABLED(DUAL_X_CARRIAGE)
  618. if (extruder_duplication_enabled) {
  619. enable_e1();
  620. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  621. }
  622. #endif
  623. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  624. #if EXTRUDERS > 1
  625. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  626. #if EXTRUDERS > 2
  627. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  628. #if EXTRUDERS > 3
  629. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  630. #endif
  631. #endif
  632. #endif
  633. break;
  634. #if EXTRUDERS > 1
  635. case 1:
  636. enable_e1();
  637. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  638. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  639. #if EXTRUDERS > 2
  640. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  641. #if EXTRUDERS > 3
  642. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  643. #endif
  644. #endif
  645. break;
  646. #if EXTRUDERS > 2
  647. case 2:
  648. enable_e2();
  649. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  650. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  651. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  652. #if EXTRUDERS > 3
  653. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  654. #endif
  655. break;
  656. #if EXTRUDERS > 3
  657. case 3:
  658. enable_e3();
  659. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  660. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  661. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  662. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  663. break;
  664. #endif // EXTRUDERS > 3
  665. #endif // EXTRUDERS > 2
  666. #endif // EXTRUDERS > 1
  667. }
  668. #else
  669. enable_e0();
  670. enable_e1();
  671. enable_e2();
  672. enable_e3();
  673. #endif
  674. }
  675. if (block->steps[E_AXIS])
  676. NOLESS(fr_mm_s, min_feedrate_mm_s);
  677. else
  678. NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
  679. /**
  680. * This part of the code calculates the total length of the movement.
  681. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  682. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  683. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  684. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  685. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  686. */
  687. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  688. float delta_mm[6];
  689. #if ENABLED(COREXY)
  690. delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
  691. delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
  692. delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
  693. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
  694. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
  695. #elif ENABLED(COREXZ)
  696. delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
  697. delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
  698. delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
  699. delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
  700. delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
  701. #elif ENABLED(COREYZ)
  702. delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
  703. delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
  704. delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
  705. delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
  706. delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
  707. #endif
  708. #else
  709. float delta_mm[4];
  710. delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
  711. delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
  712. delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
  713. #endif
  714. delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
  715. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  716. block->millimeters = fabs(delta_mm[E_AXIS]);
  717. }
  718. else {
  719. block->millimeters = sqrt(
  720. #if ENABLED(COREXY)
  721. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
  722. #elif ENABLED(COREXZ)
  723. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
  724. #elif ENABLED(COREYZ)
  725. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
  726. #else
  727. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
  728. #endif
  729. );
  730. }
  731. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  732. // Calculate moves/second for this move. No divide by zero due to previous checks.
  733. float inverse_second = fr_mm_s * inverse_millimeters;
  734. int moves_queued = movesplanned();
  735. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  736. #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
  737. bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
  738. #if ENABLED(OLD_SLOWDOWN)
  739. if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
  740. #endif
  741. #if ENABLED(SLOWDOWN)
  742. // segment time im micro seconds
  743. unsigned long segment_time = lround(1000000.0/inverse_second);
  744. if (mq) {
  745. if (segment_time < min_segment_time) {
  746. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  747. inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
  748. #ifdef XY_FREQUENCY_LIMIT
  749. segment_time = lround(1000000.0 / inverse_second);
  750. #endif
  751. }
  752. }
  753. #endif
  754. #endif
  755. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  756. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  757. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  758. static float filwidth_e_count = 0, filwidth_delay_dist = 0;
  759. //FMM update ring buffer used for delay with filament measurements
  760. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index2 >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
  761. const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
  762. // increment counters with next move in e axis
  763. filwidth_e_count += delta_mm[E_AXIS];
  764. filwidth_delay_dist += delta_mm[E_AXIS];
  765. // Only get new measurements on forward E movement
  766. if (filwidth_e_count > 0.0001) {
  767. // Loop the delay distance counter (modulus by the mm length)
  768. while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
  769. // Convert into an index into the measurement array
  770. filwidth_delay_index1 = (int)(filwidth_delay_dist / 10.0 + 0.0001);
  771. // If the index has changed (must have gone forward)...
  772. if (filwidth_delay_index1 != filwidth_delay_index2) {
  773. filwidth_e_count = 0; // Reset the E movement counter
  774. int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  775. do {
  776. filwidth_delay_index2 = (filwidth_delay_index2 + 1) % MMD_CM; // The next unused slot
  777. measurement_delay[filwidth_delay_index2] = meas_sample; // Store the measurement
  778. } while (filwidth_delay_index1 != filwidth_delay_index2); // More slots to fill?
  779. }
  780. }
  781. }
  782. #endif
  783. // Calculate and limit speed in mm/sec for each axis
  784. float current_speed[NUM_AXIS];
  785. float speed_factor = 1.0; //factor <=1 do decrease speed
  786. for (int i = 0; i < NUM_AXIS; i++) {
  787. current_speed[i] = delta_mm[i] * inverse_second;
  788. float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
  789. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  790. }
  791. // Max segement time in us.
  792. #ifdef XY_FREQUENCY_LIMIT
  793. // Check and limit the xy direction change frequency
  794. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  795. old_direction_bits = block->direction_bits;
  796. segment_time = lround((float)segment_time / speed_factor);
  797. long xs0 = axis_segment_time[X_AXIS][0],
  798. xs1 = axis_segment_time[X_AXIS][1],
  799. xs2 = axis_segment_time[X_AXIS][2],
  800. ys0 = axis_segment_time[Y_AXIS][0],
  801. ys1 = axis_segment_time[Y_AXIS][1],
  802. ys2 = axis_segment_time[Y_AXIS][2];
  803. if (TEST(direction_change, X_AXIS)) {
  804. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  805. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  806. xs0 = 0;
  807. }
  808. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  809. if (TEST(direction_change, Y_AXIS)) {
  810. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  811. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  812. ys0 = 0;
  813. }
  814. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  815. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  816. max_y_segment_time = max(ys0, max(ys1, ys2)),
  817. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  818. if (min_xy_segment_time < MAX_FREQ_TIME) {
  819. float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
  820. speed_factor = min(speed_factor, low_sf);
  821. }
  822. #endif // XY_FREQUENCY_LIMIT
  823. // Correct the speed
  824. if (speed_factor < 1.0) {
  825. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  826. block->nominal_speed *= speed_factor;
  827. block->nominal_rate *= speed_factor;
  828. }
  829. // Compute and limit the acceleration rate for the trapezoid generator.
  830. float steps_per_mm = block->step_event_count / block->millimeters;
  831. long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  832. if (bsx == 0 && bsy == 0 && bsz == 0) {
  833. block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  834. }
  835. else if (bse == 0) {
  836. block->acceleration_steps_per_s2 = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  837. }
  838. else {
  839. block->acceleration_steps_per_s2 = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  840. }
  841. // Limit acceleration per axis
  842. unsigned long acc_st = block->acceleration_steps_per_s2,
  843. x_acc_st = max_acceleration_steps_per_s2[X_AXIS],
  844. y_acc_st = max_acceleration_steps_per_s2[Y_AXIS],
  845. z_acc_st = max_acceleration_steps_per_s2[Z_AXIS],
  846. e_acc_st = max_acceleration_steps_per_s2[E_AXIS],
  847. allsteps = block->step_event_count;
  848. if (x_acc_st < (acc_st * bsx) / allsteps) acc_st = (x_acc_st * allsteps) / bsx;
  849. if (y_acc_st < (acc_st * bsy) / allsteps) acc_st = (y_acc_st * allsteps) / bsy;
  850. if (z_acc_st < (acc_st * bsz) / allsteps) acc_st = (z_acc_st * allsteps) / bsz;
  851. if (e_acc_st < (acc_st * bse) / allsteps) acc_st = (e_acc_st * allsteps) / bse;
  852. block->acceleration_steps_per_s2 = acc_st;
  853. block->acceleration = acc_st / steps_per_mm;
  854. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  855. #if 0 // Use old jerk for now
  856. float junction_deviation = 0.1;
  857. // Compute path unit vector
  858. double unit_vec[3];
  859. unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
  860. unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
  861. unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
  862. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  863. // Let a circle be tangent to both previous and current path line segments, where the junction
  864. // deviation is defined as the distance from the junction to the closest edge of the circle,
  865. // collinear with the circle center. The circular segment joining the two paths represents the
  866. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  867. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  868. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  869. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  870. // nonlinearities of both the junction angle and junction velocity.
  871. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  872. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  873. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  874. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  875. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  876. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  877. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  878. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  879. // Skip and use default max junction speed for 0 degree acute junction.
  880. if (cos_theta < 0.95) {
  881. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  882. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  883. if (cos_theta > -0.95) {
  884. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  885. double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  886. vmax_junction = min(vmax_junction,
  887. sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  888. }
  889. }
  890. }
  891. #endif
  892. // Start with a safe speed
  893. float vmax_junction = max_xy_jerk / 2;
  894. float vmax_junction_factor = 1.0;
  895. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  896. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  897. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  898. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  899. vmax_junction = min(vmax_junction, block->nominal_speed);
  900. float safe_speed = vmax_junction;
  901. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  902. float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  903. dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  904. dsz = fabs(csz - previous_speed[Z_AXIS]),
  905. dse = fabs(cse - previous_speed[E_AXIS]),
  906. jerk = HYPOT(dsx, dsy);
  907. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  908. vmax_junction = block->nominal_speed;
  909. // }
  910. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  911. if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
  912. if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
  913. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  914. }
  915. block->max_entry_speed = vmax_junction;
  916. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  917. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  918. block->entry_speed = min(vmax_junction, v_allowable);
  919. // Initialize planner efficiency flags
  920. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  921. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  922. // the current block and next block junction speeds are guaranteed to always be at their maximum
  923. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  924. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  925. // the reverse and forward planners, the corresponding block junction speed will always be at the
  926. // the maximum junction speed and may always be ignored for any speed reduction checks.
  927. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  928. block->recalculate_flag = true; // Always calculate trapezoid for new block
  929. // Update previous path unit_vector and nominal speed
  930. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  931. previous_nominal_speed = block->nominal_speed;
  932. #if ENABLED(LIN_ADVANCE)
  933. // bse == allsteps: A problem occurs when there's a very tiny move before a retract.
  934. // In this case, the retract and the move will be executed together.
  935. // This leads to an enormous number of advance steps due to a huge e_acceleration.
  936. // The math is correct, but you don't want a retract move done with advance!
  937. // So this situation is filtered out here.
  938. if (!bse || (!bsx && !bsy && !bsz) || stepper.get_advance_k() == 0 || (uint32_t) bse == allsteps) {
  939. block->use_advance_lead = false;
  940. }
  941. else {
  942. block->use_advance_lead = true;
  943. block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
  944. }
  945. #elif ENABLED(ADVANCE)
  946. // Calculate advance rate
  947. if (!bse || (!bsx && !bsy && !bsz)) {
  948. block->advance_rate = 0;
  949. block->advance = 0;
  950. }
  951. else {
  952. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
  953. float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
  954. block->advance = advance;
  955. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  956. }
  957. /**
  958. SERIAL_ECHO_START;
  959. SERIAL_ECHOPGM("advance :");
  960. SERIAL_ECHO(block->advance/256.0);
  961. SERIAL_ECHOPGM("advance rate :");
  962. SERIAL_ECHOLN(block->advance_rate/256.0);
  963. */
  964. #endif // ADVANCE or LIN_ADVANCE
  965. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  966. // Move buffer head
  967. block_buffer_head = next_buffer_head;
  968. // Update position
  969. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  970. recalculate();
  971. stepper.wake_up();
  972. } // buffer_line()
  973. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
  974. /**
  975. * Get the XYZ position of the steppers as a vector_3.
  976. *
  977. * On CORE machines XYZ is derived from ABC.
  978. */
  979. vector_3 Planner::adjusted_position() {
  980. vector_3 pos = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
  981. //pos.debug("in Planner::adjusted_position");
  982. //bed_level_matrix.debug("in Planner::adjusted_position");
  983. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  984. //inverse.debug("in Planner::inverse");
  985. pos.apply_rotation(inverse);
  986. //pos.debug("after rotation");
  987. return pos;
  988. }
  989. #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
  990. /**
  991. * Directly set the planner XYZ position (hence the stepper positions).
  992. *
  993. * On CORE machines stepper ABC will be translated from the given XYZ.
  994. */
  995. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  996. void Planner::set_position_mm(float x, float y, float z, const float& e)
  997. #else
  998. void Planner::set_position_mm(const float& x, const float& y, const float& z, const float& e)
  999. #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
  1000. {
  1001. #if ENABLED(MESH_BED_LEVELING)
  1002. if (mbl.active())
  1003. z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
  1004. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  1005. apply_rotation_xyz(bed_level_matrix, x, y, z);
  1006. #endif
  1007. long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
  1008. ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
  1009. nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
  1010. ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
  1011. stepper.set_position(nx, ny, nz, ne);
  1012. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1013. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  1014. }
  1015. /**
  1016. * Directly set the planner E position (hence the stepper E position).
  1017. */
  1018. void Planner::set_e_position_mm(const float& e) {
  1019. position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
  1020. stepper.set_e_position(position[E_AXIS]);
  1021. }
  1022. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  1023. void Planner::reset_acceleration_rates() {
  1024. for (int i = 0; i < NUM_AXIS; i++)
  1025. max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
  1026. }
  1027. #if ENABLED(AUTOTEMP)
  1028. void Planner::autotemp_M109() {
  1029. autotemp_enabled = code_seen('F');
  1030. if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
  1031. if (code_seen('S')) autotemp_min = code_value_temp_abs();
  1032. if (code_seen('B')) autotemp_max = code_value_temp_abs();
  1033. }
  1034. #endif