My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 186KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float home_offset[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #elif defined(Z_DUAL_ENDSTOPS)
  231. float z_endstop_adj = 0;
  232. #endif
  233. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  234. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  235. bool axis_known_position[3] = { false, false, false };
  236. float zprobe_zoffset;
  237. // Extruder offset
  238. #if EXTRUDERS > 1
  239. #ifndef DUAL_X_CARRIAGE
  240. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  241. #else
  242. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  243. #endif
  244. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  245. #if defined(EXTRUDER_OFFSET_X)
  246. EXTRUDER_OFFSET_X
  247. #else
  248. 0
  249. #endif
  250. ,
  251. #if defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_Y
  253. #else
  254. 0
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed = 0;
  260. #ifdef SERVO_ENDSTOPS
  261. int servo_endstops[] = SERVO_ENDSTOPS;
  262. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  263. #endif
  264. #ifdef BARICUDA
  265. int ValvePressure = 0;
  266. int EtoPPressure = 0;
  267. #endif
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled = false;
  270. bool retracted[EXTRUDERS] = { false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #if EXTRUDERS > 3
  276. , false
  277. #endif
  278. #endif
  279. #endif
  280. };
  281. bool retracted_swap[EXTRUDERS] = { false
  282. #if EXTRUDERS > 1
  283. , false
  284. #if EXTRUDERS > 2
  285. , false
  286. #if EXTRUDERS > 3
  287. , false
  288. #endif
  289. #endif
  290. #endif
  291. };
  292. float retract_length = RETRACT_LENGTH;
  293. float retract_length_swap = RETRACT_LENGTH_SWAP;
  294. float retract_feedrate = RETRACT_FEEDRATE;
  295. float retract_zlift = RETRACT_ZLIFT;
  296. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  297. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  298. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  299. #endif // FWRETRACT
  300. #ifdef ULTIPANEL
  301. bool powersupply =
  302. #ifdef PS_DEFAULT_OFF
  303. false
  304. #else
  305. true
  306. #endif
  307. ;
  308. #endif
  309. #ifdef DELTA
  310. float delta[3] = { 0, 0, 0 };
  311. #define SIN_60 0.8660254037844386
  312. #define COS_60 0.5
  313. // these are the default values, can be overriden with M665
  314. float delta_radius = DELTA_RADIUS;
  315. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  316. float delta_tower1_y = -COS_60 * delta_radius;
  317. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  318. float delta_tower2_y = -COS_60 * delta_radius;
  319. float delta_tower3_x = 0; // back middle tower
  320. float delta_tower3_y = delta_radius;
  321. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  322. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  323. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  324. #ifdef ENABLE_AUTO_BED_LEVELING
  325. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  326. #endif
  327. #endif
  328. #ifdef SCARA
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. static float delta[3] = { 0, 0, 0 };
  331. #endif
  332. bool cancel_heatup = false;
  333. #ifdef FILAMENT_SENSOR
  334. //Variables for Filament Sensor input
  335. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  336. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  337. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  338. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  339. int delay_index1=0; //index into ring buffer
  340. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  341. float delay_dist=0; //delay distance counter
  342. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  343. #endif
  344. #ifdef FILAMENT_RUNOUT_SENSOR
  345. static bool filrunoutEnqued = false;
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  350. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  351. static float offset[3] = { 0, 0, 0 };
  352. static bool home_all_axis = true;
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  355. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  356. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  357. static bool fromsd[BUFSIZE];
  358. static int bufindr = 0;
  359. static int bufindw = 0;
  360. static int buflen = 0;
  361. static char serial_char;
  362. static int serial_count = 0;
  363. static boolean comment_mode = false;
  364. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  365. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  366. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  367. // Inactivity shutdown
  368. static unsigned long previous_millis_cmd = 0;
  369. static unsigned long max_inactive_time = 0;
  370. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  371. unsigned long starttime = 0; ///< Print job start time
  372. unsigned long stoptime = 0; ///< Print job stop time
  373. static uint8_t tmp_extruder;
  374. bool Stopped = false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. //Injects the next command from the pending sequence of commands, when possible
  414. //Return false if and only if no command was pending
  415. static bool drain_queued_commands_P()
  416. {
  417. char cmd[30];
  418. if(!queued_commands_P)
  419. return false;
  420. // Get the next 30 chars from the sequence of gcodes to run
  421. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  422. cmd[sizeof(cmd)-1]= 0;
  423. // Look for the end of line, or the end of sequence
  424. size_t i= 0;
  425. char c;
  426. while( (c= cmd[i]) && c!='\n' )
  427. ++i; // look for the end of this gcode command
  428. cmd[i]= 0;
  429. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  430. {
  431. if(c)
  432. queued_commands_P+= i+1; // move to next command
  433. else
  434. queued_commands_P= NULL; // will have no more commands in the sequence
  435. }
  436. return true;
  437. }
  438. //Record one or many commands to run from program memory.
  439. //Aborts the current queue, if any.
  440. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  441. void enquecommands_P(const char* pgcode)
  442. {
  443. queued_commands_P= pgcode;
  444. drain_queued_commands_P(); // first command exectuted asap (when possible)
  445. }
  446. //adds a single command to the main command buffer, from RAM
  447. //that is really done in a non-safe way.
  448. //needs overworking someday
  449. //Returns false if it failed to do so
  450. bool enquecommand(const char *cmd)
  451. {
  452. if(*cmd==';')
  453. return false;
  454. if(buflen >= BUFSIZE)
  455. return false;
  456. //this is dangerous if a mixing of serial and this happens
  457. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  458. SERIAL_ECHO_START;
  459. SERIAL_ECHOPGM(MSG_Enqueing);
  460. SERIAL_ECHO(cmdbuffer[bufindw]);
  461. SERIAL_ECHOLNPGM("\"");
  462. bufindw= (bufindw + 1)%BUFSIZE;
  463. buflen += 1;
  464. return true;
  465. }
  466. void setup_killpin()
  467. {
  468. #if defined(KILL_PIN) && KILL_PIN > -1
  469. SET_INPUT(KILL_PIN);
  470. WRITE(KILL_PIN,HIGH);
  471. #endif
  472. }
  473. void setup_filrunoutpin()
  474. {
  475. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  476. pinMode(FILRUNOUT_PIN,INPUT);
  477. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  478. WRITE(FILLRUNOUT_PIN,HIGH);
  479. #endif
  480. #endif
  481. }
  482. // Set home pin
  483. void setup_homepin(void)
  484. {
  485. #if defined(HOME_PIN) && HOME_PIN > -1
  486. SET_INPUT(HOME_PIN);
  487. WRITE(HOME_PIN,HIGH);
  488. #endif
  489. }
  490. void setup_photpin()
  491. {
  492. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  493. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. OUT_WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. #if defined(PS_DEFAULT_OFF)
  503. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. OUT_WRITE(SUICIDE_PIN, LOW);
  513. #endif
  514. }
  515. void servo_init()
  516. {
  517. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  518. servos[0].attach(SERVO0_PIN);
  519. #endif
  520. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  521. servos[1].attach(SERVO1_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  524. servos[2].attach(SERVO2_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  527. servos[3].attach(SERVO3_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 5)
  530. #error "TODO: enter initalisation code for more servos"
  531. #endif
  532. // Set position of Servo Endstops that are defined
  533. #ifdef SERVO_ENDSTOPS
  534. for(int8_t i = 0; i < 3; i++)
  535. {
  536. if(servo_endstops[i] > -1) {
  537. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  538. }
  539. }
  540. #endif
  541. #if SERVO_LEVELING
  542. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  543. servos[servo_endstops[Z_AXIS]].detach();
  544. #endif
  545. }
  546. void setup()
  547. {
  548. setup_killpin();
  549. setup_filrunoutpin();
  550. setup_powerhold();
  551. MYSERIAL.begin(BAUDRATE);
  552. SERIAL_PROTOCOLLNPGM("start");
  553. SERIAL_ECHO_START;
  554. // Check startup - does nothing if bootloader sets MCUSR to 0
  555. byte mcu = MCUSR;
  556. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  557. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  558. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  559. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  560. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  561. MCUSR=0;
  562. SERIAL_ECHOPGM(MSG_MARLIN);
  563. SERIAL_ECHOLNPGM(STRING_VERSION);
  564. #ifdef STRING_VERSION_CONFIG_H
  565. #ifdef STRING_CONFIG_H_AUTHOR
  566. SERIAL_ECHO_START;
  567. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  568. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  569. SERIAL_ECHOPGM(MSG_AUTHOR);
  570. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  571. SERIAL_ECHOPGM("Compiled: ");
  572. SERIAL_ECHOLNPGM(__DATE__);
  573. #endif // STRING_CONFIG_H_AUTHOR
  574. #endif // STRING_VERSION_CONFIG_H
  575. SERIAL_ECHO_START;
  576. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  577. SERIAL_ECHO(freeMemory());
  578. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  579. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  580. for(int8_t i = 0; i < BUFSIZE; i++)
  581. {
  582. fromsd[i] = false;
  583. }
  584. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  585. Config_RetrieveSettings();
  586. tp_init(); // Initialize temperature loop
  587. plan_init(); // Initialize planner;
  588. watchdog_init();
  589. st_init(); // Initialize stepper, this enables interrupts!
  590. setup_photpin();
  591. servo_init();
  592. lcd_init();
  593. _delay_ms(1000); // wait 1sec to display the splash screen
  594. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  595. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  596. #endif
  597. #ifdef DIGIPOT_I2C
  598. digipot_i2c_init();
  599. #endif
  600. #ifdef Z_PROBE_SLED
  601. pinMode(SERVO0_PIN, OUTPUT);
  602. digitalWrite(SERVO0_PIN, LOW); // turn it off
  603. #endif // Z_PROBE_SLED
  604. setup_homepin();
  605. #ifdef STAT_LED_RED
  606. pinMode(STAT_LED_RED, OUTPUT);
  607. digitalWrite(STAT_LED_RED, LOW); // turn it off
  608. #endif
  609. #ifdef STAT_LED_BLUE
  610. pinMode(STAT_LED_BLUE, OUTPUT);
  611. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  612. #endif
  613. }
  614. void loop()
  615. {
  616. if(buflen < (BUFSIZE-1))
  617. get_command();
  618. #ifdef SDSUPPORT
  619. card.checkautostart(false);
  620. #endif
  621. if(buflen)
  622. {
  623. #ifdef SDSUPPORT
  624. if(card.saving)
  625. {
  626. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  627. {
  628. card.write_command(cmdbuffer[bufindr]);
  629. if(card.logging)
  630. {
  631. process_commands();
  632. }
  633. else
  634. {
  635. SERIAL_PROTOCOLLNPGM(MSG_OK);
  636. }
  637. }
  638. else
  639. {
  640. card.closefile();
  641. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  642. }
  643. }
  644. else
  645. {
  646. process_commands();
  647. }
  648. #else
  649. process_commands();
  650. #endif //SDSUPPORT
  651. buflen = (buflen-1);
  652. bufindr = (bufindr + 1)%BUFSIZE;
  653. }
  654. //check heater every n milliseconds
  655. manage_heater();
  656. manage_inactivity();
  657. checkHitEndstops();
  658. lcd_update();
  659. }
  660. void get_command()
  661. {
  662. if(drain_queued_commands_P()) // priority is given to non-serial commands
  663. return;
  664. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  665. serial_char = MYSERIAL.read();
  666. if(serial_char == '\n' ||
  667. serial_char == '\r' ||
  668. serial_count >= (MAX_CMD_SIZE - 1) )
  669. {
  670. // end of line == end of comment
  671. comment_mode = false;
  672. if(!serial_count) {
  673. // short cut for empty lines
  674. return;
  675. }
  676. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  677. fromsd[bufindw] = false;
  678. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  679. {
  680. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  681. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  682. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  683. SERIAL_ERROR_START;
  684. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  685. SERIAL_ERRORLN(gcode_LastN);
  686. //Serial.println(gcode_N);
  687. FlushSerialRequestResend();
  688. serial_count = 0;
  689. return;
  690. }
  691. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  692. {
  693. byte checksum = 0;
  694. byte count = 0;
  695. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  696. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  697. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  698. SERIAL_ERROR_START;
  699. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  700. SERIAL_ERRORLN(gcode_LastN);
  701. FlushSerialRequestResend();
  702. serial_count = 0;
  703. return;
  704. }
  705. //if no errors, continue parsing
  706. }
  707. else
  708. {
  709. SERIAL_ERROR_START;
  710. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  711. SERIAL_ERRORLN(gcode_LastN);
  712. FlushSerialRequestResend();
  713. serial_count = 0;
  714. return;
  715. }
  716. gcode_LastN = gcode_N;
  717. //if no errors, continue parsing
  718. }
  719. else // if we don't receive 'N' but still see '*'
  720. {
  721. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  722. {
  723. SERIAL_ERROR_START;
  724. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  725. SERIAL_ERRORLN(gcode_LastN);
  726. serial_count = 0;
  727. return;
  728. }
  729. }
  730. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  731. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  732. switch(strtol(strchr_pointer + 1, NULL, 10)){
  733. case 0:
  734. case 1:
  735. case 2:
  736. case 3:
  737. if (Stopped == true) {
  738. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  739. LCD_MESSAGEPGM(MSG_STOPPED);
  740. }
  741. break;
  742. default:
  743. break;
  744. }
  745. }
  746. //If command was e-stop process now
  747. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  748. kill();
  749. bufindw = (bufindw + 1)%BUFSIZE;
  750. buflen += 1;
  751. serial_count = 0; //clear buffer
  752. }
  753. else if(serial_char == '\\') { //Handle escapes
  754. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  755. // if we have one more character, copy it over
  756. serial_char = MYSERIAL.read();
  757. cmdbuffer[bufindw][serial_count++] = serial_char;
  758. }
  759. //otherwise do nothing
  760. }
  761. else { // its not a newline, carriage return or escape char
  762. if(serial_char == ';') comment_mode = true;
  763. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  764. }
  765. }
  766. #ifdef SDSUPPORT
  767. if(!card.sdprinting || serial_count!=0){
  768. return;
  769. }
  770. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  771. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  772. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  773. static bool stop_buffering=false;
  774. if(buflen==0) stop_buffering=false;
  775. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  776. int16_t n=card.get();
  777. serial_char = (char)n;
  778. if(serial_char == '\n' ||
  779. serial_char == '\r' ||
  780. (serial_char == '#' && comment_mode == false) ||
  781. (serial_char == ':' && comment_mode == false) ||
  782. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  783. {
  784. if(card.eof()){
  785. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  786. stoptime=millis();
  787. char time[30];
  788. unsigned long t=(stoptime-starttime)/1000;
  789. int hours, minutes;
  790. minutes=(t/60)%60;
  791. hours=t/60/60;
  792. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  793. SERIAL_ECHO_START;
  794. SERIAL_ECHOLN(time);
  795. lcd_setstatus(time);
  796. card.printingHasFinished();
  797. card.checkautostart(true);
  798. }
  799. if(serial_char=='#')
  800. stop_buffering=true;
  801. if(!serial_count)
  802. {
  803. comment_mode = false; //for new command
  804. return; //if empty line
  805. }
  806. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  807. // if(!comment_mode){
  808. fromsd[bufindw] = true;
  809. buflen += 1;
  810. bufindw = (bufindw + 1)%BUFSIZE;
  811. // }
  812. comment_mode = false; //for new command
  813. serial_count = 0; //clear buffer
  814. }
  815. else
  816. {
  817. if(serial_char == ';') comment_mode = true;
  818. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  819. }
  820. }
  821. #endif //SDSUPPORT
  822. }
  823. float code_value()
  824. {
  825. return (strtod(strchr_pointer + 1, NULL));
  826. }
  827. long code_value_long()
  828. {
  829. return (strtol(strchr_pointer + 1, NULL, 10));
  830. }
  831. bool code_seen(char code)
  832. {
  833. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  834. return (strchr_pointer != NULL); //Return True if a character was found
  835. }
  836. #define DEFINE_PGM_READ_ANY(type, reader) \
  837. static inline type pgm_read_any(const type *p) \
  838. { return pgm_read_##reader##_near(p); }
  839. DEFINE_PGM_READ_ANY(float, float);
  840. DEFINE_PGM_READ_ANY(signed char, byte);
  841. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  842. static const PROGMEM type array##_P[3] = \
  843. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  844. static inline type array(int axis) \
  845. { return pgm_read_any(&array##_P[axis]); }
  846. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  847. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  848. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  849. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  850. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  851. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  852. #ifdef DUAL_X_CARRIAGE
  853. #define DXC_FULL_CONTROL_MODE 0
  854. #define DXC_AUTO_PARK_MODE 1
  855. #define DXC_DUPLICATION_MODE 2
  856. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  857. static float x_home_pos(int extruder) {
  858. if (extruder == 0)
  859. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  860. else
  861. // In dual carriage mode the extruder offset provides an override of the
  862. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  863. // This allow soft recalibration of the second extruder offset position without firmware reflash
  864. // (through the M218 command).
  865. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  866. }
  867. static int x_home_dir(int extruder) {
  868. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  869. }
  870. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  871. static bool active_extruder_parked = false; // used in mode 1 & 2
  872. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  873. static unsigned long delayed_move_time = 0; // used in mode 1
  874. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  875. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  876. bool extruder_duplication_enabled = false; // used in mode 2
  877. #endif //DUAL_X_CARRIAGE
  878. static void axis_is_at_home(int axis) {
  879. #ifdef DUAL_X_CARRIAGE
  880. if (axis == X_AXIS) {
  881. if (active_extruder != 0) {
  882. current_position[X_AXIS] = x_home_pos(active_extruder);
  883. min_pos[X_AXIS] = X2_MIN_POS;
  884. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  885. return;
  886. }
  887. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  888. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  889. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  890. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  891. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  892. return;
  893. }
  894. }
  895. #endif
  896. #ifdef SCARA
  897. float homeposition[3];
  898. char i;
  899. if (axis < 2)
  900. {
  901. for (i=0; i<3; i++)
  902. {
  903. homeposition[i] = base_home_pos(i);
  904. }
  905. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  906. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  907. // Works out real Homeposition angles using inverse kinematics,
  908. // and calculates homing offset using forward kinematics
  909. calculate_delta(homeposition);
  910. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  911. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  912. for (i=0; i<2; i++)
  913. {
  914. delta[i] -= home_offset[i];
  915. }
  916. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  917. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  918. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  919. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  920. calculate_SCARA_forward_Transform(delta);
  921. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  922. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  923. current_position[axis] = delta[axis];
  924. // SCARA home positions are based on configuration since the actual limits are determined by the
  925. // inverse kinematic transform.
  926. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  927. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  928. }
  929. else
  930. {
  931. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  932. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  933. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  934. }
  935. #else
  936. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  937. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  938. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  939. #endif
  940. }
  941. #ifdef ENABLE_AUTO_BED_LEVELING
  942. #ifdef AUTO_BED_LEVELING_GRID
  943. #ifndef DELTA
  944. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  945. {
  946. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  947. planeNormal.debug("planeNormal");
  948. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  949. //bedLevel.debug("bedLevel");
  950. //plan_bed_level_matrix.debug("bed level before");
  951. //vector_3 uncorrected_position = plan_get_position_mm();
  952. //uncorrected_position.debug("position before");
  953. vector_3 corrected_position = plan_get_position();
  954. // corrected_position.debug("position after");
  955. current_position[X_AXIS] = corrected_position.x;
  956. current_position[Y_AXIS] = corrected_position.y;
  957. current_position[Z_AXIS] = corrected_position.z;
  958. // put the bed at 0 so we don't go below it.
  959. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  961. }
  962. #endif
  963. #else // not AUTO_BED_LEVELING_GRID
  964. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  965. plan_bed_level_matrix.set_to_identity();
  966. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  967. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  968. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  969. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  970. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  971. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  972. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  973. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  974. vector_3 corrected_position = plan_get_position();
  975. current_position[X_AXIS] = corrected_position.x;
  976. current_position[Y_AXIS] = corrected_position.y;
  977. current_position[Z_AXIS] = corrected_position.z;
  978. // put the bed at 0 so we don't go below it.
  979. current_position[Z_AXIS] = zprobe_zoffset;
  980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  981. }
  982. #endif // AUTO_BED_LEVELING_GRID
  983. static void run_z_probe() {
  984. #ifdef DELTA
  985. float start_z = current_position[Z_AXIS];
  986. long start_steps = st_get_position(Z_AXIS);
  987. // move down slowly until you find the bed
  988. feedrate = homing_feedrate[Z_AXIS] / 4;
  989. destination[Z_AXIS] = -10;
  990. prepare_move_raw();
  991. st_synchronize();
  992. endstops_hit_on_purpose();
  993. // we have to let the planner know where we are right now as it is not where we said to go.
  994. long stop_steps = st_get_position(Z_AXIS);
  995. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  996. current_position[Z_AXIS] = mm;
  997. calculate_delta(current_position);
  998. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  999. #else
  1000. plan_bed_level_matrix.set_to_identity();
  1001. feedrate = homing_feedrate[Z_AXIS];
  1002. // move down until you find the bed
  1003. float zPosition = -10;
  1004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1005. st_synchronize();
  1006. // we have to let the planner know where we are right now as it is not where we said to go.
  1007. zPosition = st_get_position_mm(Z_AXIS);
  1008. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1009. // move up the retract distance
  1010. zPosition += home_retract_mm(Z_AXIS);
  1011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1012. st_synchronize();
  1013. // move back down slowly to find bed
  1014. if (homing_bump_divisor[Z_AXIS] >= 1)
  1015. {
  1016. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1017. }
  1018. else
  1019. {
  1020. feedrate = homing_feedrate[Z_AXIS]/10;
  1021. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1022. }
  1023. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1025. st_synchronize();
  1026. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1027. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1029. #endif
  1030. }
  1031. static void do_blocking_move_to(float x, float y, float z) {
  1032. float oldFeedRate = feedrate;
  1033. #ifdef DELTA
  1034. feedrate = XY_TRAVEL_SPEED;
  1035. destination[X_AXIS] = x;
  1036. destination[Y_AXIS] = y;
  1037. destination[Z_AXIS] = z;
  1038. prepare_move_raw();
  1039. st_synchronize();
  1040. #else
  1041. feedrate = homing_feedrate[Z_AXIS];
  1042. current_position[Z_AXIS] = z;
  1043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1044. st_synchronize();
  1045. feedrate = xy_travel_speed;
  1046. current_position[X_AXIS] = x;
  1047. current_position[Y_AXIS] = y;
  1048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1049. st_synchronize();
  1050. #endif
  1051. feedrate = oldFeedRate;
  1052. }
  1053. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1054. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1055. }
  1056. static void setup_for_endstop_move() {
  1057. saved_feedrate = feedrate;
  1058. saved_feedmultiply = feedmultiply;
  1059. feedmultiply = 100;
  1060. previous_millis_cmd = millis();
  1061. enable_endstops(true);
  1062. }
  1063. static void clean_up_after_endstop_move() {
  1064. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1065. enable_endstops(false);
  1066. #endif
  1067. feedrate = saved_feedrate;
  1068. feedmultiply = saved_feedmultiply;
  1069. previous_millis_cmd = millis();
  1070. }
  1071. static void engage_z_probe() {
  1072. // Engage Z Servo endstop if enabled
  1073. #ifdef SERVO_ENDSTOPS
  1074. if (servo_endstops[Z_AXIS] > -1) {
  1075. #if SERVO_LEVELING
  1076. servos[servo_endstops[Z_AXIS]].attach(0);
  1077. #endif
  1078. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1079. #if SERVO_LEVELING
  1080. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1081. servos[servo_endstops[Z_AXIS]].detach();
  1082. #endif
  1083. }
  1084. #elif defined(Z_PROBE_ALLEN_KEY)
  1085. feedrate = homing_feedrate[X_AXIS];
  1086. // Move to the start position to initiate deployment
  1087. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1088. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1089. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1090. prepare_move_raw();
  1091. // Home X to touch the belt
  1092. feedrate = homing_feedrate[X_AXIS]/10;
  1093. destination[X_AXIS] = 0;
  1094. prepare_move_raw();
  1095. // Home Y for safety
  1096. feedrate = homing_feedrate[X_AXIS]/2;
  1097. destination[Y_AXIS] = 0;
  1098. prepare_move_raw();
  1099. st_synchronize();
  1100. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1101. if (z_min_endstop)
  1102. {
  1103. if (!Stopped)
  1104. {
  1105. SERIAL_ERROR_START;
  1106. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1107. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1108. }
  1109. Stop();
  1110. }
  1111. #endif
  1112. }
  1113. static void retract_z_probe() {
  1114. // Retract Z Servo endstop if enabled
  1115. #ifdef SERVO_ENDSTOPS
  1116. if (servo_endstops[Z_AXIS] > -1)
  1117. {
  1118. #if Z_RAISE_AFTER_PROBING > 0
  1119. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1120. st_synchronize();
  1121. #endif
  1122. #if SERVO_LEVELING
  1123. servos[servo_endstops[Z_AXIS]].attach(0);
  1124. #endif
  1125. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1126. #if SERVO_LEVELING
  1127. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1128. servos[servo_endstops[Z_AXIS]].detach();
  1129. #endif
  1130. }
  1131. #elif defined(Z_PROBE_ALLEN_KEY)
  1132. // Move up for safety
  1133. feedrate = homing_feedrate[X_AXIS];
  1134. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1135. prepare_move_raw();
  1136. // Move to the start position to initiate retraction
  1137. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1138. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1139. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1140. prepare_move_raw();
  1141. // Move the nozzle down to push the probe into retracted position
  1142. feedrate = homing_feedrate[Z_AXIS]/10;
  1143. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1144. prepare_move_raw();
  1145. // Move up for safety
  1146. feedrate = homing_feedrate[Z_AXIS]/2;
  1147. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1148. prepare_move_raw();
  1149. // Home XY for safety
  1150. feedrate = homing_feedrate[X_AXIS]/2;
  1151. destination[X_AXIS] = 0;
  1152. destination[Y_AXIS] = 0;
  1153. prepare_move_raw();
  1154. st_synchronize();
  1155. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1156. if (!z_min_endstop)
  1157. {
  1158. if (!Stopped)
  1159. {
  1160. SERIAL_ERROR_START;
  1161. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1162. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1163. }
  1164. Stop();
  1165. }
  1166. #endif
  1167. }
  1168. enum ProbeAction {
  1169. ProbeStay = 0,
  1170. ProbeEngage = BIT(0),
  1171. ProbeRetract = BIT(1),
  1172. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1173. };
  1174. /// Probe bed height at position (x,y), returns the measured z value
  1175. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1176. // move to right place
  1177. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1178. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1179. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1180. if (retract_action & ProbeEngage) engage_z_probe();
  1181. #endif
  1182. run_z_probe();
  1183. float measured_z = current_position[Z_AXIS];
  1184. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1185. if (retract_action & ProbeRetract) retract_z_probe();
  1186. #endif
  1187. if (verbose_level > 2) {
  1188. SERIAL_PROTOCOLPGM(MSG_BED);
  1189. SERIAL_PROTOCOLPGM(" X: ");
  1190. SERIAL_PROTOCOL(x + 0.0001);
  1191. SERIAL_PROTOCOLPGM(" Y: ");
  1192. SERIAL_PROTOCOL(y + 0.0001);
  1193. SERIAL_PROTOCOLPGM(" Z: ");
  1194. SERIAL_PROTOCOL(measured_z + 0.0001);
  1195. SERIAL_EOL;
  1196. }
  1197. return measured_z;
  1198. }
  1199. #ifdef DELTA
  1200. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1201. if (bed_level[x][y] != 0.0) {
  1202. return; // Don't overwrite good values.
  1203. }
  1204. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1205. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1206. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1207. float median = c; // Median is robust (ignores outliers).
  1208. if (a < b) {
  1209. if (b < c) median = b;
  1210. if (c < a) median = a;
  1211. } else { // b <= a
  1212. if (c < b) median = b;
  1213. if (a < c) median = a;
  1214. }
  1215. bed_level[x][y] = median;
  1216. }
  1217. // Fill in the unprobed points (corners of circular print surface)
  1218. // using linear extrapolation, away from the center.
  1219. static void extrapolate_unprobed_bed_level() {
  1220. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1221. for (int y = 0; y <= half; y++) {
  1222. for (int x = 0; x <= half; x++) {
  1223. if (x + y < 3) continue;
  1224. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1225. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1226. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1227. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1228. }
  1229. }
  1230. }
  1231. // Print calibration results for plotting or manual frame adjustment.
  1232. static void print_bed_level() {
  1233. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1234. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1235. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1236. SERIAL_PROTOCOLPGM(" ");
  1237. }
  1238. SERIAL_ECHOLN("");
  1239. }
  1240. }
  1241. // Reset calibration results to zero.
  1242. void reset_bed_level() {
  1243. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1244. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1245. bed_level[x][y] = 0.0;
  1246. }
  1247. }
  1248. }
  1249. #endif // DELTA
  1250. #endif // ENABLE_AUTO_BED_LEVELING
  1251. static void homeaxis(int axis) {
  1252. #define HOMEAXIS_DO(LETTER) \
  1253. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1254. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1255. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1256. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1257. 0) {
  1258. int axis_home_dir = home_dir(axis);
  1259. #ifdef DUAL_X_CARRIAGE
  1260. if (axis == X_AXIS)
  1261. axis_home_dir = x_home_dir(active_extruder);
  1262. #endif
  1263. current_position[axis] = 0;
  1264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1265. #ifndef Z_PROBE_SLED
  1266. // Engage Servo endstop if enabled
  1267. #ifdef SERVO_ENDSTOPS
  1268. #if SERVO_LEVELING
  1269. if (axis==Z_AXIS) {
  1270. engage_z_probe();
  1271. }
  1272. else
  1273. #endif
  1274. if (servo_endstops[axis] > -1) {
  1275. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1276. }
  1277. #endif
  1278. #endif // Z_PROBE_SLED
  1279. #ifdef Z_DUAL_ENDSTOPS
  1280. if (axis==Z_AXIS) In_Homing_Process(true);
  1281. #endif
  1282. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1283. feedrate = homing_feedrate[axis];
  1284. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1285. st_synchronize();
  1286. current_position[axis] = 0;
  1287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1288. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1289. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1290. st_synchronize();
  1291. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1292. if (homing_bump_divisor[axis] >= 1)
  1293. {
  1294. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1295. }
  1296. else
  1297. {
  1298. feedrate = homing_feedrate[axis]/10;
  1299. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1300. }
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. st_synchronize();
  1303. #ifdef Z_DUAL_ENDSTOPS
  1304. if (axis==Z_AXIS)
  1305. {
  1306. feedrate = homing_feedrate[axis];
  1307. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1308. if (axis_home_dir > 0)
  1309. {
  1310. destination[axis] = (-1) * fabs(z_endstop_adj);
  1311. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1312. } else {
  1313. destination[axis] = fabs(z_endstop_adj);
  1314. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1315. }
  1316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1317. st_synchronize();
  1318. Lock_z_motor(false);
  1319. Lock_z2_motor(false);
  1320. In_Homing_Process(false);
  1321. }
  1322. #endif
  1323. #ifdef DELTA
  1324. // retrace by the amount specified in endstop_adj
  1325. if (endstop_adj[axis] * axis_home_dir < 0) {
  1326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1327. destination[axis] = endstop_adj[axis];
  1328. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1329. st_synchronize();
  1330. }
  1331. #endif
  1332. axis_is_at_home(axis);
  1333. destination[axis] = current_position[axis];
  1334. feedrate = 0.0;
  1335. endstops_hit_on_purpose();
  1336. axis_known_position[axis] = true;
  1337. // Retract Servo endstop if enabled
  1338. #ifdef SERVO_ENDSTOPS
  1339. if (servo_endstops[axis] > -1) {
  1340. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1341. }
  1342. #endif
  1343. #if SERVO_LEVELING
  1344. #ifndef Z_PROBE_SLED
  1345. if (axis==Z_AXIS) retract_z_probe();
  1346. #endif
  1347. #endif
  1348. }
  1349. }
  1350. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1351. void refresh_cmd_timeout(void)
  1352. {
  1353. previous_millis_cmd = millis();
  1354. }
  1355. #ifdef FWRETRACT
  1356. void retract(bool retracting, bool swapretract = false) {
  1357. if(retracting && !retracted[active_extruder]) {
  1358. destination[X_AXIS]=current_position[X_AXIS];
  1359. destination[Y_AXIS]=current_position[Y_AXIS];
  1360. destination[Z_AXIS]=current_position[Z_AXIS];
  1361. destination[E_AXIS]=current_position[E_AXIS];
  1362. if (swapretract) {
  1363. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1364. } else {
  1365. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1366. }
  1367. plan_set_e_position(current_position[E_AXIS]);
  1368. float oldFeedrate = feedrate;
  1369. feedrate=retract_feedrate*60;
  1370. retracted[active_extruder]=true;
  1371. prepare_move();
  1372. if(retract_zlift > 0.01) {
  1373. current_position[Z_AXIS]-=retract_zlift;
  1374. #ifdef DELTA
  1375. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1376. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1377. #else
  1378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1379. #endif
  1380. prepare_move();
  1381. }
  1382. feedrate = oldFeedrate;
  1383. } else if(!retracting && retracted[active_extruder]) {
  1384. destination[X_AXIS]=current_position[X_AXIS];
  1385. destination[Y_AXIS]=current_position[Y_AXIS];
  1386. destination[Z_AXIS]=current_position[Z_AXIS];
  1387. destination[E_AXIS]=current_position[E_AXIS];
  1388. if(retract_zlift > 0.01) {
  1389. current_position[Z_AXIS]+=retract_zlift;
  1390. #ifdef DELTA
  1391. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1392. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1393. #else
  1394. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1395. #endif
  1396. //prepare_move();
  1397. }
  1398. if (swapretract) {
  1399. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1400. } else {
  1401. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1402. }
  1403. plan_set_e_position(current_position[E_AXIS]);
  1404. float oldFeedrate = feedrate;
  1405. feedrate=retract_recover_feedrate*60;
  1406. retracted[active_extruder]=false;
  1407. prepare_move();
  1408. feedrate = oldFeedrate;
  1409. }
  1410. } //retract
  1411. #endif //FWRETRACT
  1412. #ifdef Z_PROBE_SLED
  1413. #ifndef SLED_DOCKING_OFFSET
  1414. #define SLED_DOCKING_OFFSET 0
  1415. #endif
  1416. //
  1417. // Method to dock/undock a sled designed by Charles Bell.
  1418. //
  1419. // dock[in] If true, move to MAX_X and engage the electromagnet
  1420. // offset[in] The additional distance to move to adjust docking location
  1421. //
  1422. static void dock_sled(bool dock, int offset=0) {
  1423. int z_loc;
  1424. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1425. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1426. SERIAL_ECHO_START;
  1427. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1428. return;
  1429. }
  1430. if (dock) {
  1431. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1432. current_position[Y_AXIS],
  1433. current_position[Z_AXIS]);
  1434. // turn off magnet
  1435. digitalWrite(SERVO0_PIN, LOW);
  1436. } else {
  1437. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1438. z_loc = Z_RAISE_BEFORE_PROBING;
  1439. else
  1440. z_loc = current_position[Z_AXIS];
  1441. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1442. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1443. // turn on magnet
  1444. digitalWrite(SERVO0_PIN, HIGH);
  1445. }
  1446. }
  1447. #endif
  1448. /**
  1449. *
  1450. * G-Code Handler functions
  1451. *
  1452. */
  1453. /**
  1454. * G0, G1: Coordinated movement of X Y Z E axes
  1455. */
  1456. inline void gcode_G0_G1() {
  1457. if (!Stopped) {
  1458. get_coordinates(); // For X Y Z E F
  1459. #ifdef FWRETRACT
  1460. if (autoretract_enabled)
  1461. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1462. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1463. // Is this move an attempt to retract or recover?
  1464. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1465. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1466. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1467. retract(!retracted[active_extruder]);
  1468. return;
  1469. }
  1470. }
  1471. #endif //FWRETRACT
  1472. prepare_move();
  1473. //ClearToSend();
  1474. }
  1475. }
  1476. /**
  1477. * G2: Clockwise Arc
  1478. * G3: Counterclockwise Arc
  1479. */
  1480. inline void gcode_G2_G3(bool clockwise) {
  1481. if (!Stopped) {
  1482. get_arc_coordinates();
  1483. prepare_arc_move(clockwise);
  1484. }
  1485. }
  1486. /**
  1487. * G4: Dwell S<seconds> or P<milliseconds>
  1488. */
  1489. inline void gcode_G4() {
  1490. unsigned long codenum=0;
  1491. LCD_MESSAGEPGM(MSG_DWELL);
  1492. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1493. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1494. st_synchronize();
  1495. previous_millis_cmd = millis();
  1496. codenum += previous_millis_cmd; // keep track of when we started waiting
  1497. while(millis() < codenum) {
  1498. manage_heater();
  1499. manage_inactivity();
  1500. lcd_update();
  1501. }
  1502. }
  1503. #ifdef FWRETRACT
  1504. /**
  1505. * G10 - Retract filament according to settings of M207
  1506. * G11 - Recover filament according to settings of M208
  1507. */
  1508. inline void gcode_G10_G11(bool doRetract=false) {
  1509. #if EXTRUDERS > 1
  1510. if (doRetract) {
  1511. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1512. }
  1513. #endif
  1514. retract(doRetract
  1515. #if EXTRUDERS > 1
  1516. , retracted_swap[active_extruder]
  1517. #endif
  1518. );
  1519. }
  1520. #endif //FWRETRACT
  1521. /**
  1522. * G28: Home all axes, one at a time
  1523. */
  1524. inline void gcode_G28() {
  1525. #ifdef ENABLE_AUTO_BED_LEVELING
  1526. #ifdef DELTA
  1527. reset_bed_level();
  1528. #else
  1529. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1530. #endif
  1531. #endif
  1532. #if defined(MESH_BED_LEVELING)
  1533. uint8_t mbl_was_active = mbl.active;
  1534. mbl.active = 0;
  1535. #endif // MESH_BED_LEVELING
  1536. saved_feedrate = feedrate;
  1537. saved_feedmultiply = feedmultiply;
  1538. feedmultiply = 100;
  1539. previous_millis_cmd = millis();
  1540. enable_endstops(true);
  1541. for (int i = X_AXIS; i <= NUM_AXIS; i++) destination[i] = current_position[i];
  1542. feedrate = 0.0;
  1543. #ifdef DELTA
  1544. // A delta can only safely home all axis at the same time
  1545. // all axis have to home at the same time
  1546. // Move all carriages up together until the first endstop is hit.
  1547. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1549. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1550. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1551. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1552. st_synchronize();
  1553. endstops_hit_on_purpose();
  1554. // Destination reached
  1555. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1556. // take care of back off and rehome now we are all at the top
  1557. HOMEAXIS(X);
  1558. HOMEAXIS(Y);
  1559. HOMEAXIS(Z);
  1560. calculate_delta(current_position);
  1561. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1562. #else // NOT DELTA
  1563. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1564. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1565. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1566. HOMEAXIS(Z);
  1567. }
  1568. #endif
  1569. #ifdef QUICK_HOME
  1570. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1571. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1572. #ifndef DUAL_X_CARRIAGE
  1573. int x_axis_home_dir = home_dir(X_AXIS);
  1574. #else
  1575. int x_axis_home_dir = x_home_dir(active_extruder);
  1576. extruder_duplication_enabled = false;
  1577. #endif
  1578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1579. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1580. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1581. feedrate = homing_feedrate[X_AXIS];
  1582. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1583. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1584. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1585. } else {
  1586. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1587. }
  1588. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1589. st_synchronize();
  1590. axis_is_at_home(X_AXIS);
  1591. axis_is_at_home(Y_AXIS);
  1592. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1593. destination[X_AXIS] = current_position[X_AXIS];
  1594. destination[Y_AXIS] = current_position[Y_AXIS];
  1595. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1596. feedrate = 0.0;
  1597. st_synchronize();
  1598. endstops_hit_on_purpose();
  1599. current_position[X_AXIS] = destination[X_AXIS];
  1600. current_position[Y_AXIS] = destination[Y_AXIS];
  1601. #ifndef SCARA
  1602. current_position[Z_AXIS] = destination[Z_AXIS];
  1603. #endif
  1604. }
  1605. #endif //QUICK_HOME
  1606. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1607. #ifdef DUAL_X_CARRIAGE
  1608. int tmp_extruder = active_extruder;
  1609. extruder_duplication_enabled = false;
  1610. active_extruder = !active_extruder;
  1611. HOMEAXIS(X);
  1612. inactive_extruder_x_pos = current_position[X_AXIS];
  1613. active_extruder = tmp_extruder;
  1614. HOMEAXIS(X);
  1615. // reset state used by the different modes
  1616. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1617. delayed_move_time = 0;
  1618. active_extruder_parked = true;
  1619. #else
  1620. HOMEAXIS(X);
  1621. #endif
  1622. }
  1623. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1624. if (code_seen(axis_codes[X_AXIS])) {
  1625. if (code_value_long() != 0) {
  1626. current_position[X_AXIS] = code_value()
  1627. #ifndef SCARA
  1628. + home_offset[X_AXIS]
  1629. #endif
  1630. ;
  1631. }
  1632. }
  1633. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1634. current_position[Y_AXIS] = code_value()
  1635. #ifndef SCARA
  1636. + home_offset[Y_AXIS]
  1637. #endif
  1638. ;
  1639. }
  1640. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1641. #ifndef Z_SAFE_HOMING
  1642. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1643. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1644. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1645. feedrate = max_feedrate[Z_AXIS];
  1646. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1647. st_synchronize();
  1648. #endif
  1649. HOMEAXIS(Z);
  1650. }
  1651. #else // Z_SAFE_HOMING
  1652. if (home_all_axis) {
  1653. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1654. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1655. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1656. feedrate = XY_TRAVEL_SPEED / 60;
  1657. current_position[Z_AXIS] = 0;
  1658. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1659. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1660. st_synchronize();
  1661. current_position[X_AXIS] = destination[X_AXIS];
  1662. current_position[Y_AXIS] = destination[Y_AXIS];
  1663. HOMEAXIS(Z);
  1664. }
  1665. // Let's see if X and Y are homed and probe is inside bed area.
  1666. if (code_seen(axis_codes[Z_AXIS])) {
  1667. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1668. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1669. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1670. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1671. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1672. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1673. current_position[Z_AXIS] = 0;
  1674. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1675. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1676. feedrate = max_feedrate[Z_AXIS];
  1677. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1678. st_synchronize();
  1679. HOMEAXIS(Z);
  1680. }
  1681. else {
  1682. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1683. SERIAL_ECHO_START;
  1684. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1685. }
  1686. }
  1687. else {
  1688. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1689. SERIAL_ECHO_START;
  1690. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1691. }
  1692. }
  1693. #endif // Z_SAFE_HOMING
  1694. #endif // Z_HOME_DIR < 0
  1695. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1696. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1697. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1698. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1699. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1700. #endif
  1701. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1702. #endif // else DELTA
  1703. #ifdef SCARA
  1704. calculate_delta(current_position);
  1705. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1706. #endif
  1707. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1708. enable_endstops(false);
  1709. #endif
  1710. #if defined(MESH_BED_LEVELING)
  1711. if (mbl_was_active) {
  1712. current_position[X_AXIS] = mbl.get_x(0);
  1713. current_position[Y_AXIS] = mbl.get_y(0);
  1714. destination[X_AXIS] = current_position[X_AXIS];
  1715. destination[Y_AXIS] = current_position[Y_AXIS];
  1716. destination[Z_AXIS] = current_position[Z_AXIS];
  1717. destination[E_AXIS] = current_position[E_AXIS];
  1718. feedrate = homing_feedrate[X_AXIS];
  1719. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1720. st_synchronize();
  1721. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. mbl.active = 1;
  1724. }
  1725. #endif
  1726. feedrate = saved_feedrate;
  1727. feedmultiply = saved_feedmultiply;
  1728. previous_millis_cmd = millis();
  1729. endstops_hit_on_purpose();
  1730. }
  1731. #if defined(MESH_BED_LEVELING)
  1732. inline void gcode_G29() {
  1733. static int probe_point = -1;
  1734. int state = 0;
  1735. if (code_seen('S') || code_seen('s')) {
  1736. state = code_value_long();
  1737. if (state < 0 || state > 2) {
  1738. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1739. return;
  1740. }
  1741. }
  1742. if (state == 0) { // Dump mesh_bed_leveling
  1743. if (mbl.active) {
  1744. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1745. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1746. SERIAL_PROTOCOLPGM(",");
  1747. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1748. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1749. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1750. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1751. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1752. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1753. SERIAL_PROTOCOLPGM(" ");
  1754. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1755. }
  1756. SERIAL_EOL;
  1757. }
  1758. } else {
  1759. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1760. }
  1761. } else if (state == 1) { // Begin probing mesh points
  1762. mbl.reset();
  1763. probe_point = 0;
  1764. enquecommands_P(PSTR("G28"));
  1765. enquecommands_P(PSTR("G29 S2"));
  1766. } else if (state == 2) { // Goto next point
  1767. if (probe_point < 0) {
  1768. SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
  1769. return;
  1770. }
  1771. int ix, iy;
  1772. if (probe_point == 0) {
  1773. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. } else {
  1776. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1777. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1778. if (iy&1) { // Zig zag
  1779. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1780. }
  1781. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1782. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1784. st_synchronize();
  1785. }
  1786. if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
  1787. SERIAL_PROTOCOLPGM("Mesh done.\n");
  1788. probe_point = -1;
  1789. mbl.active = 1;
  1790. enquecommands_P(PSTR("G28"));
  1791. return;
  1792. }
  1793. ix = probe_point % MESH_NUM_X_POINTS;
  1794. iy = probe_point / MESH_NUM_X_POINTS;
  1795. if (iy&1) { // Zig zag
  1796. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1797. }
  1798. current_position[X_AXIS] = mbl.get_x(ix);
  1799. current_position[Y_AXIS] = mbl.get_y(iy);
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1801. st_synchronize();
  1802. probe_point++;
  1803. }
  1804. }
  1805. #endif
  1806. #ifdef ENABLE_AUTO_BED_LEVELING
  1807. /**
  1808. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1809. * Will fail if the printer has not been homed with G28.
  1810. *
  1811. * Enhanced G29 Auto Bed Leveling Probe Routine
  1812. *
  1813. * Parameters With AUTO_BED_LEVELING_GRID:
  1814. *
  1815. * P Set the size of the grid that will be probed (P x P points).
  1816. * Not supported by non-linear delta printer bed leveling.
  1817. * Example: "G29 P4"
  1818. *
  1819. * S Set the XY travel speed between probe points (in mm/min)
  1820. *
  1821. * V Set the verbose level (0-4). Example: "G29 V3"
  1822. *
  1823. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1824. * This is useful for manual bed leveling and finding flaws in the bed (to
  1825. * assist with part placement).
  1826. * Not supported by non-linear delta printer bed leveling.
  1827. *
  1828. * F Set the Front limit of the probing grid
  1829. * B Set the Back limit of the probing grid
  1830. * L Set the Left limit of the probing grid
  1831. * R Set the Right limit of the probing grid
  1832. *
  1833. * Global Parameters:
  1834. *
  1835. * E/e By default G29 engages / disengages the probe for each point.
  1836. * Include "E" to engage and disengage the probe just once.
  1837. * There's no extra effect if you have a fixed probe.
  1838. * Usage: "G29 E" or "G29 e"
  1839. *
  1840. */
  1841. inline void gcode_G29() {
  1842. // Prevent user from running a G29 without first homing in X and Y
  1843. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1844. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1845. SERIAL_ECHO_START;
  1846. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1847. return;
  1848. }
  1849. int verbose_level = 1;
  1850. float x_tmp, y_tmp, z_tmp, real_z;
  1851. if (code_seen('V') || code_seen('v')) {
  1852. verbose_level = code_value_long();
  1853. if (verbose_level < 0 || verbose_level > 4) {
  1854. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1855. return;
  1856. }
  1857. }
  1858. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1859. #ifdef AUTO_BED_LEVELING_GRID
  1860. #ifndef DELTA
  1861. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1862. #endif
  1863. if (verbose_level > 0)
  1864. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1865. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1866. #ifndef DELTA
  1867. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1868. if (auto_bed_leveling_grid_points < 2) {
  1869. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1870. return;
  1871. }
  1872. #endif
  1873. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1874. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1875. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1876. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1877. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1878. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1879. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1880. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1881. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1882. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1883. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1884. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1885. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1886. if (left_out || right_out || front_out || back_out) {
  1887. if (left_out) {
  1888. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1889. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1890. }
  1891. if (right_out) {
  1892. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1893. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1894. }
  1895. if (front_out) {
  1896. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1897. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1898. }
  1899. if (back_out) {
  1900. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1901. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1902. }
  1903. return;
  1904. }
  1905. #endif // AUTO_BED_LEVELING_GRID
  1906. #ifdef Z_PROBE_SLED
  1907. dock_sled(false); // engage (un-dock) the probe
  1908. #elif defined(Z_PROBE_ALLEN_KEY)
  1909. engage_z_probe();
  1910. #endif
  1911. st_synchronize();
  1912. #ifdef DELTA
  1913. reset_bed_level();
  1914. #else
  1915. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1916. //vector_3 corrected_position = plan_get_position_mm();
  1917. //corrected_position.debug("position before G29");
  1918. plan_bed_level_matrix.set_to_identity();
  1919. vector_3 uncorrected_position = plan_get_position();
  1920. //uncorrected_position.debug("position during G29");
  1921. current_position[X_AXIS] = uncorrected_position.x;
  1922. current_position[Y_AXIS] = uncorrected_position.y;
  1923. current_position[Z_AXIS] = uncorrected_position.z;
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. #endif
  1926. setup_for_endstop_move();
  1927. feedrate = homing_feedrate[Z_AXIS];
  1928. #ifdef AUTO_BED_LEVELING_GRID
  1929. // probe at the points of a lattice grid
  1930. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1931. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1932. #ifndef DELTA
  1933. // solve the plane equation ax + by + d = z
  1934. // A is the matrix with rows [x y 1] for all the probed points
  1935. // B is the vector of the Z positions
  1936. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1937. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1938. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1939. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1940. eqnBVector[abl2], // "B" vector of Z points
  1941. mean = 0.0;
  1942. #else
  1943. delta_grid_spacing[0] = xGridSpacing;
  1944. delta_grid_spacing[1] = yGridSpacing;
  1945. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1946. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1947. #endif
  1948. int probePointCounter = 0;
  1949. bool zig = true;
  1950. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1951. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1952. int xStart, xStop, xInc;
  1953. if (zig) {
  1954. xStart = 0;
  1955. xStop = auto_bed_leveling_grid_points;
  1956. xInc = 1;
  1957. }
  1958. else {
  1959. xStart = auto_bed_leveling_grid_points - 1;
  1960. xStop = -1;
  1961. xInc = -1;
  1962. }
  1963. #ifndef DELTA
  1964. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1965. // This gets the probe points in more readable order.
  1966. if (!do_topography_map) zig = !zig;
  1967. #endif
  1968. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1969. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1970. // raise extruder
  1971. float measured_z,
  1972. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1973. #ifdef DELTA
  1974. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1975. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1976. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1977. continue;
  1978. #endif //DELTA
  1979. // Enhanced G29 - Do not retract servo between probes
  1980. ProbeAction act;
  1981. if (enhanced_g29) {
  1982. if (yProbe == front_probe_bed_position && xCount == 0)
  1983. act = ProbeEngage;
  1984. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1985. act = ProbeRetract;
  1986. else
  1987. act = ProbeStay;
  1988. }
  1989. else
  1990. act = ProbeEngageAndRetract;
  1991. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1992. #ifndef DELTA
  1993. mean += measured_z;
  1994. eqnBVector[probePointCounter] = measured_z;
  1995. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1996. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1997. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1998. #else
  1999. bed_level[xCount][yCount] = measured_z + z_offset;
  2000. #endif
  2001. probePointCounter++;
  2002. } //xProbe
  2003. } //yProbe
  2004. clean_up_after_endstop_move();
  2005. #ifndef DELTA
  2006. // solve lsq problem
  2007. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2008. mean /= abl2;
  2009. if (verbose_level) {
  2010. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2011. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2012. SERIAL_PROTOCOLPGM(" b: ");
  2013. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2014. SERIAL_PROTOCOLPGM(" d: ");
  2015. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2016. SERIAL_EOL;
  2017. if (verbose_level > 2) {
  2018. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2019. SERIAL_PROTOCOL_F(mean, 8);
  2020. SERIAL_EOL;
  2021. }
  2022. }
  2023. // Show the Topography map if enabled
  2024. if (do_topography_map) {
  2025. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2026. SERIAL_PROTOCOLPGM("+-----------+\n");
  2027. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2028. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2029. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2030. SERIAL_PROTOCOLPGM("+-----------+\n");
  2031. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2032. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2033. int ind = yy * auto_bed_leveling_grid_points + xx;
  2034. float diff = eqnBVector[ind] - mean;
  2035. if (diff >= 0.0)
  2036. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2037. else
  2038. SERIAL_PROTOCOLPGM(" ");
  2039. SERIAL_PROTOCOL_F(diff, 5);
  2040. } // xx
  2041. SERIAL_EOL;
  2042. } // yy
  2043. SERIAL_EOL;
  2044. } //do_topography_map
  2045. set_bed_level_equation_lsq(plane_equation_coefficients);
  2046. free(plane_equation_coefficients);
  2047. #else
  2048. extrapolate_unprobed_bed_level();
  2049. print_bed_level();
  2050. #endif
  2051. #else // !AUTO_BED_LEVELING_GRID
  2052. // Probe at 3 arbitrary points
  2053. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2054. if (enhanced_g29) {
  2055. // Basic Enhanced G29
  2056. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2057. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2058. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2059. }
  2060. else {
  2061. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
  2062. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2063. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2064. }
  2065. clean_up_after_endstop_move();
  2066. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2067. #endif // !AUTO_BED_LEVELING_GRID
  2068. #ifndef DELTA
  2069. if (verbose_level > 0)
  2070. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2071. // Correct the Z height difference from z-probe position and hotend tip position.
  2072. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2073. // When the bed is uneven, this height must be corrected.
  2074. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2075. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2076. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2077. z_tmp = current_position[Z_AXIS];
  2078. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2079. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2080. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2081. #endif
  2082. #ifdef Z_PROBE_SLED
  2083. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2084. #elif defined(Z_PROBE_ALLEN_KEY)
  2085. retract_z_probe();
  2086. #endif
  2087. #ifdef Z_PROBE_END_SCRIPT
  2088. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2089. st_synchronize();
  2090. #endif
  2091. }
  2092. #ifndef Z_PROBE_SLED
  2093. inline void gcode_G30() {
  2094. engage_z_probe(); // Engage Z Servo endstop if available
  2095. st_synchronize();
  2096. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2097. setup_for_endstop_move();
  2098. feedrate = homing_feedrate[Z_AXIS];
  2099. run_z_probe();
  2100. SERIAL_PROTOCOLPGM(MSG_BED);
  2101. SERIAL_PROTOCOLPGM(" X: ");
  2102. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2103. SERIAL_PROTOCOLPGM(" Y: ");
  2104. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2105. SERIAL_PROTOCOLPGM(" Z: ");
  2106. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2107. SERIAL_EOL;
  2108. clean_up_after_endstop_move();
  2109. retract_z_probe(); // Retract Z Servo endstop if available
  2110. }
  2111. #endif //!Z_PROBE_SLED
  2112. #endif //ENABLE_AUTO_BED_LEVELING
  2113. /**
  2114. * G92: Set current position to given X Y Z E
  2115. */
  2116. inline void gcode_G92() {
  2117. if (!code_seen(axis_codes[E_AXIS]))
  2118. st_synchronize();
  2119. for (int i = 0; i < NUM_AXIS; i++) {
  2120. if (code_seen(axis_codes[i])) {
  2121. current_position[i] = code_value();
  2122. if (i == E_AXIS)
  2123. plan_set_e_position(current_position[E_AXIS]);
  2124. else
  2125. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2126. }
  2127. }
  2128. }
  2129. #ifdef ULTIPANEL
  2130. /**
  2131. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2132. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2133. */
  2134. inline void gcode_M0_M1() {
  2135. char *src = strchr_pointer + 2;
  2136. unsigned long codenum = 0;
  2137. bool hasP = false, hasS = false;
  2138. if (code_seen('P')) {
  2139. codenum = code_value(); // milliseconds to wait
  2140. hasP = codenum > 0;
  2141. }
  2142. if (code_seen('S')) {
  2143. codenum = code_value() * 1000; // seconds to wait
  2144. hasS = codenum > 0;
  2145. }
  2146. char* starpos = strchr(src, '*');
  2147. if (starpos != NULL) *(starpos) = '\0';
  2148. while (*src == ' ') ++src;
  2149. if (!hasP && !hasS && *src != '\0')
  2150. lcd_setstatus(src);
  2151. else
  2152. LCD_MESSAGEPGM(MSG_USERWAIT);
  2153. lcd_ignore_click();
  2154. st_synchronize();
  2155. previous_millis_cmd = millis();
  2156. if (codenum > 0) {
  2157. codenum += previous_millis_cmd; // keep track of when we started waiting
  2158. while(millis() < codenum && !lcd_clicked()) {
  2159. manage_heater();
  2160. manage_inactivity();
  2161. lcd_update();
  2162. }
  2163. lcd_ignore_click(false);
  2164. }
  2165. else {
  2166. if (!lcd_detected()) return;
  2167. while (!lcd_clicked()) {
  2168. manage_heater();
  2169. manage_inactivity();
  2170. lcd_update();
  2171. }
  2172. }
  2173. if (IS_SD_PRINTING)
  2174. LCD_MESSAGEPGM(MSG_RESUMING);
  2175. else
  2176. LCD_MESSAGEPGM(WELCOME_MSG);
  2177. }
  2178. #endif // ULTIPANEL
  2179. /**
  2180. * M17: Enable power on all stepper motors
  2181. */
  2182. inline void gcode_M17() {
  2183. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2184. enable_x();
  2185. enable_y();
  2186. enable_z();
  2187. enable_e0();
  2188. enable_e1();
  2189. enable_e2();
  2190. enable_e3();
  2191. }
  2192. #ifdef SDSUPPORT
  2193. /**
  2194. * M20: List SD card to serial output
  2195. */
  2196. inline void gcode_M20() {
  2197. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2198. card.ls();
  2199. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2200. }
  2201. /**
  2202. * M21: Init SD Card
  2203. */
  2204. inline void gcode_M21() {
  2205. card.initsd();
  2206. }
  2207. /**
  2208. * M22: Release SD Card
  2209. */
  2210. inline void gcode_M22() {
  2211. card.release();
  2212. }
  2213. /**
  2214. * M23: Select a file
  2215. */
  2216. inline void gcode_M23() {
  2217. char* codepos = strchr_pointer + 4;
  2218. char* starpos = strchr(codepos, '*');
  2219. if (starpos) *starpos = '\0';
  2220. card.openFile(codepos, true);
  2221. }
  2222. /**
  2223. * M24: Start SD Print
  2224. */
  2225. inline void gcode_M24() {
  2226. card.startFileprint();
  2227. starttime = millis();
  2228. }
  2229. /**
  2230. * M25: Pause SD Print
  2231. */
  2232. inline void gcode_M25() {
  2233. card.pauseSDPrint();
  2234. }
  2235. /**
  2236. * M26: Set SD Card file index
  2237. */
  2238. inline void gcode_M26() {
  2239. if (card.cardOK && code_seen('S'))
  2240. card.setIndex(code_value_long());
  2241. }
  2242. /**
  2243. * M27: Get SD Card status
  2244. */
  2245. inline void gcode_M27() {
  2246. card.getStatus();
  2247. }
  2248. /**
  2249. * M28: Start SD Write
  2250. */
  2251. inline void gcode_M28() {
  2252. char* codepos = strchr_pointer + 4;
  2253. char* starpos = strchr(codepos, '*');
  2254. if (starpos) {
  2255. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2256. strchr_pointer = strchr(npos, ' ') + 1;
  2257. *(starpos) = '\0';
  2258. }
  2259. card.openFile(codepos, false);
  2260. }
  2261. /**
  2262. * M29: Stop SD Write
  2263. * Processed in write to file routine above
  2264. */
  2265. inline void gcode_M29() {
  2266. // card.saving = false;
  2267. }
  2268. /**
  2269. * M30 <filename>: Delete SD Card file
  2270. */
  2271. inline void gcode_M30() {
  2272. if (card.cardOK) {
  2273. card.closefile();
  2274. char* starpos = strchr(strchr_pointer + 4, '*');
  2275. if (starpos) {
  2276. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2277. strchr_pointer = strchr(npos, ' ') + 1;
  2278. *(starpos) = '\0';
  2279. }
  2280. card.removeFile(strchr_pointer + 4);
  2281. }
  2282. }
  2283. #endif
  2284. /**
  2285. * M31: Get the time since the start of SD Print (or last M109)
  2286. */
  2287. inline void gcode_M31() {
  2288. stoptime = millis();
  2289. unsigned long t = (stoptime - starttime) / 1000;
  2290. int min = t / 60, sec = t % 60;
  2291. char time[30];
  2292. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2293. SERIAL_ECHO_START;
  2294. SERIAL_ECHOLN(time);
  2295. lcd_setstatus(time);
  2296. autotempShutdown();
  2297. }
  2298. #ifdef SDSUPPORT
  2299. /**
  2300. * M32: Select file and start SD Print
  2301. */
  2302. inline void gcode_M32() {
  2303. if (card.sdprinting)
  2304. st_synchronize();
  2305. char* codepos = strchr_pointer + 4;
  2306. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2307. if (! namestartpos)
  2308. namestartpos = codepos; //default name position, 4 letters after the M
  2309. else
  2310. namestartpos++; //to skip the '!'
  2311. char* starpos = strchr(codepos, '*');
  2312. if (starpos) *(starpos) = '\0';
  2313. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2314. if (card.cardOK) {
  2315. card.openFile(namestartpos, true, !call_procedure);
  2316. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2317. card.setIndex(code_value_long());
  2318. card.startFileprint();
  2319. if (!call_procedure)
  2320. starttime = millis(); //procedure calls count as normal print time.
  2321. }
  2322. }
  2323. /**
  2324. * M928: Start SD Write
  2325. */
  2326. inline void gcode_M928() {
  2327. char* starpos = strchr(strchr_pointer + 5, '*');
  2328. if (starpos) {
  2329. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2330. strchr_pointer = strchr(npos, ' ') + 1;
  2331. *(starpos) = '\0';
  2332. }
  2333. card.openLogFile(strchr_pointer + 5);
  2334. }
  2335. #endif // SDSUPPORT
  2336. /**
  2337. * M42: Change pin status via GCode
  2338. */
  2339. inline void gcode_M42() {
  2340. if (code_seen('S')) {
  2341. int pin_status = code_value(),
  2342. pin_number = LED_PIN;
  2343. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2344. pin_number = code_value();
  2345. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2346. if (sensitive_pins[i] == pin_number) {
  2347. pin_number = -1;
  2348. break;
  2349. }
  2350. }
  2351. #if defined(FAN_PIN) && FAN_PIN > -1
  2352. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2353. #endif
  2354. if (pin_number > -1) {
  2355. pinMode(pin_number, OUTPUT);
  2356. digitalWrite(pin_number, pin_status);
  2357. analogWrite(pin_number, pin_status);
  2358. }
  2359. } // code_seen('S')
  2360. }
  2361. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2362. #if Z_MIN_PIN == -1
  2363. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2364. #endif
  2365. /**
  2366. * M48: Z-Probe repeatability measurement function.
  2367. *
  2368. * Usage:
  2369. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2370. * n = Number of samples (4-50, default 10)
  2371. * X = Sample X position
  2372. * Y = Sample Y position
  2373. * V = Verbose level (0-4, default=1)
  2374. * E = Engage probe for each reading
  2375. * L = Number of legs of movement before probe
  2376. *
  2377. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2378. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2379. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2380. * regenerated.
  2381. *
  2382. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2383. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2384. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2385. */
  2386. inline void gcode_M48() {
  2387. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2388. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2389. double X_current, Y_current, Z_current;
  2390. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2391. if (code_seen('V') || code_seen('v')) {
  2392. verbose_level = code_value();
  2393. if (verbose_level < 0 || verbose_level > 4 ) {
  2394. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2395. return;
  2396. }
  2397. }
  2398. if (verbose_level > 0)
  2399. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2400. if (code_seen('n')) {
  2401. n_samples = code_value();
  2402. if (n_samples < 4 || n_samples > 50) {
  2403. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2404. return;
  2405. }
  2406. }
  2407. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2408. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2409. Z_current = st_get_position_mm(Z_AXIS);
  2410. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2411. ext_position = st_get_position_mm(E_AXIS);
  2412. if (code_seen('E') || code_seen('e'))
  2413. engage_probe_for_each_reading++;
  2414. if (code_seen('X') || code_seen('x')) {
  2415. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2416. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2417. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2418. return;
  2419. }
  2420. }
  2421. if (code_seen('Y') || code_seen('y')) {
  2422. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2423. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2424. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2425. return;
  2426. }
  2427. }
  2428. if (code_seen('L') || code_seen('l')) {
  2429. n_legs = code_value();
  2430. if (n_legs == 1) n_legs = 2;
  2431. if (n_legs < 0 || n_legs > 15) {
  2432. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2433. return;
  2434. }
  2435. }
  2436. //
  2437. // Do all the preliminary setup work. First raise the probe.
  2438. //
  2439. st_synchronize();
  2440. plan_bed_level_matrix.set_to_identity();
  2441. plan_buffer_line(X_current, Y_current, Z_start_location,
  2442. ext_position,
  2443. homing_feedrate[Z_AXIS] / 60,
  2444. active_extruder);
  2445. st_synchronize();
  2446. //
  2447. // Now get everything to the specified probe point So we can safely do a probe to
  2448. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2449. // use that as a starting point for each probe.
  2450. //
  2451. if (verbose_level > 2)
  2452. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2453. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2454. ext_position,
  2455. homing_feedrate[X_AXIS]/60,
  2456. active_extruder);
  2457. st_synchronize();
  2458. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2459. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2460. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2461. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2462. //
  2463. // OK, do the inital probe to get us close to the bed.
  2464. // Then retrace the right amount and use that in subsequent probes
  2465. //
  2466. engage_z_probe();
  2467. setup_for_endstop_move();
  2468. run_z_probe();
  2469. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2470. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2471. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2472. ext_position,
  2473. homing_feedrate[X_AXIS]/60,
  2474. active_extruder);
  2475. st_synchronize();
  2476. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2477. if (engage_probe_for_each_reading) retract_z_probe();
  2478. for (n=0; n < n_samples; n++) {
  2479. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2480. if (n_legs) {
  2481. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2482. int l;
  2483. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2484. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2485. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2486. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2487. //SERIAL_ECHOPAIR(" theta: ",theta);
  2488. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2489. //SERIAL_PROTOCOLLNPGM("");
  2490. float dir = rotational_direction ? 1 : -1;
  2491. for (l = 0; l < n_legs - 1; l++) {
  2492. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2493. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2494. if (radius < 0.0) radius = -radius;
  2495. X_current = X_probe_location + cos(theta) * radius;
  2496. Y_current = Y_probe_location + sin(theta) * radius;
  2497. // Make sure our X & Y are sane
  2498. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2499. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2500. if (verbose_level > 3) {
  2501. SERIAL_ECHOPAIR("x: ", X_current);
  2502. SERIAL_ECHOPAIR("y: ", Y_current);
  2503. SERIAL_PROTOCOLLNPGM("");
  2504. }
  2505. do_blocking_move_to( X_current, Y_current, Z_current );
  2506. }
  2507. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2508. }
  2509. if (engage_probe_for_each_reading) {
  2510. engage_z_probe();
  2511. delay(1000);
  2512. }
  2513. setup_for_endstop_move();
  2514. run_z_probe();
  2515. sample_set[n] = current_position[Z_AXIS];
  2516. //
  2517. // Get the current mean for the data points we have so far
  2518. //
  2519. sum = 0.0;
  2520. for (j=0; j<=n; j++) sum += sample_set[j];
  2521. mean = sum / (double (n+1));
  2522. //
  2523. // Now, use that mean to calculate the standard deviation for the
  2524. // data points we have so far
  2525. //
  2526. sum = 0.0;
  2527. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2528. sigma = sqrt( sum / (double (n+1)) );
  2529. if (verbose_level > 1) {
  2530. SERIAL_PROTOCOL(n+1);
  2531. SERIAL_PROTOCOL(" of ");
  2532. SERIAL_PROTOCOL(n_samples);
  2533. SERIAL_PROTOCOLPGM(" z: ");
  2534. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2535. }
  2536. if (verbose_level > 2) {
  2537. SERIAL_PROTOCOL(" mean: ");
  2538. SERIAL_PROTOCOL_F(mean,6);
  2539. SERIAL_PROTOCOL(" sigma: ");
  2540. SERIAL_PROTOCOL_F(sigma,6);
  2541. }
  2542. if (verbose_level > 0) SERIAL_EOL;
  2543. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2544. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2545. st_synchronize();
  2546. if (engage_probe_for_each_reading) {
  2547. retract_z_probe();
  2548. delay(1000);
  2549. }
  2550. }
  2551. retract_z_probe();
  2552. delay(1000);
  2553. clean_up_after_endstop_move();
  2554. // enable_endstops(true);
  2555. if (verbose_level > 0) {
  2556. SERIAL_PROTOCOLPGM("Mean: ");
  2557. SERIAL_PROTOCOL_F(mean, 6);
  2558. SERIAL_EOL;
  2559. }
  2560. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2561. SERIAL_PROTOCOL_F(sigma, 6);
  2562. SERIAL_EOL; SERIAL_EOL;
  2563. }
  2564. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2565. /**
  2566. * M104: Set hot end temperature
  2567. */
  2568. inline void gcode_M104() {
  2569. if (setTargetedHotend(104)) return;
  2570. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2571. #ifdef DUAL_X_CARRIAGE
  2572. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2573. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2574. #endif
  2575. setWatch();
  2576. }
  2577. /**
  2578. * M105: Read hot end and bed temperature
  2579. */
  2580. inline void gcode_M105() {
  2581. if (setTargetedHotend(105)) return;
  2582. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2583. SERIAL_PROTOCOLPGM("ok T:");
  2584. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2585. SERIAL_PROTOCOLPGM(" /");
  2586. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2587. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2588. SERIAL_PROTOCOLPGM(" B:");
  2589. SERIAL_PROTOCOL_F(degBed(),1);
  2590. SERIAL_PROTOCOLPGM(" /");
  2591. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2592. #endif //TEMP_BED_PIN
  2593. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2594. SERIAL_PROTOCOLPGM(" T");
  2595. SERIAL_PROTOCOL(cur_extruder);
  2596. SERIAL_PROTOCOLPGM(":");
  2597. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2598. SERIAL_PROTOCOLPGM(" /");
  2599. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2600. }
  2601. #else
  2602. SERIAL_ERROR_START;
  2603. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2604. #endif
  2605. SERIAL_PROTOCOLPGM(" @:");
  2606. #ifdef EXTRUDER_WATTS
  2607. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2608. SERIAL_PROTOCOLPGM("W");
  2609. #else
  2610. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2611. #endif
  2612. SERIAL_PROTOCOLPGM(" B@:");
  2613. #ifdef BED_WATTS
  2614. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2615. SERIAL_PROTOCOLPGM("W");
  2616. #else
  2617. SERIAL_PROTOCOL(getHeaterPower(-1));
  2618. #endif
  2619. #ifdef SHOW_TEMP_ADC_VALUES
  2620. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2621. SERIAL_PROTOCOLPGM(" ADC B:");
  2622. SERIAL_PROTOCOL_F(degBed(),1);
  2623. SERIAL_PROTOCOLPGM("C->");
  2624. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2625. #endif
  2626. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2627. SERIAL_PROTOCOLPGM(" T");
  2628. SERIAL_PROTOCOL(cur_extruder);
  2629. SERIAL_PROTOCOLPGM(":");
  2630. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2631. SERIAL_PROTOCOLPGM("C->");
  2632. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2633. }
  2634. #endif
  2635. SERIAL_PROTOCOLLN("");
  2636. }
  2637. #if defined(FAN_PIN) && FAN_PIN > -1
  2638. /**
  2639. * M106: Set Fan Speed
  2640. */
  2641. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2642. /**
  2643. * M107: Fan Off
  2644. */
  2645. inline void gcode_M107() { fanSpeed = 0; }
  2646. #endif //FAN_PIN
  2647. /**
  2648. * M109: Wait for extruder(s) to reach temperature
  2649. */
  2650. inline void gcode_M109() {
  2651. if (setTargetedHotend(109)) return;
  2652. LCD_MESSAGEPGM(MSG_HEATING);
  2653. CooldownNoWait = code_seen('S');
  2654. if (CooldownNoWait || code_seen('R')) {
  2655. setTargetHotend(code_value(), tmp_extruder);
  2656. #ifdef DUAL_X_CARRIAGE
  2657. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2658. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2659. #endif
  2660. }
  2661. #ifdef AUTOTEMP
  2662. autotemp_enabled = code_seen('F');
  2663. if (autotemp_enabled) autotemp_factor = code_value();
  2664. if (code_seen('S')) autotemp_min = code_value();
  2665. if (code_seen('B')) autotemp_max = code_value();
  2666. #endif
  2667. setWatch();
  2668. unsigned long timetemp = millis();
  2669. /* See if we are heating up or cooling down */
  2670. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2671. cancel_heatup = false;
  2672. #ifdef TEMP_RESIDENCY_TIME
  2673. long residencyStart = -1;
  2674. /* continue to loop until we have reached the target temp
  2675. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2676. while((!cancel_heatup)&&((residencyStart == -1) ||
  2677. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2678. #else
  2679. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2680. #endif //TEMP_RESIDENCY_TIME
  2681. { // while loop
  2682. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2683. SERIAL_PROTOCOLPGM("T:");
  2684. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2685. SERIAL_PROTOCOLPGM(" E:");
  2686. SERIAL_PROTOCOL((int)tmp_extruder);
  2687. #ifdef TEMP_RESIDENCY_TIME
  2688. SERIAL_PROTOCOLPGM(" W:");
  2689. if (residencyStart > -1) {
  2690. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2691. SERIAL_PROTOCOLLN( timetemp );
  2692. }
  2693. else {
  2694. SERIAL_PROTOCOLLN( "?" );
  2695. }
  2696. #else
  2697. SERIAL_PROTOCOLLN("");
  2698. #endif
  2699. timetemp = millis();
  2700. }
  2701. manage_heater();
  2702. manage_inactivity();
  2703. lcd_update();
  2704. #ifdef TEMP_RESIDENCY_TIME
  2705. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2706. // or when current temp falls outside the hysteresis after target temp was reached
  2707. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2708. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2709. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2710. {
  2711. residencyStart = millis();
  2712. }
  2713. #endif //TEMP_RESIDENCY_TIME
  2714. }
  2715. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2716. starttime = previous_millis_cmd = millis();
  2717. }
  2718. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2719. /**
  2720. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2721. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2722. */
  2723. inline void gcode_M190() {
  2724. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2725. CooldownNoWait = code_seen('S');
  2726. if (CooldownNoWait || code_seen('R'))
  2727. setTargetBed(code_value());
  2728. unsigned long timetemp = millis();
  2729. cancel_heatup = false;
  2730. target_direction = isHeatingBed(); // true if heating, false if cooling
  2731. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2732. unsigned long ms = millis();
  2733. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2734. timetemp = ms;
  2735. float tt = degHotend(active_extruder);
  2736. SERIAL_PROTOCOLPGM("T:");
  2737. SERIAL_PROTOCOL(tt);
  2738. SERIAL_PROTOCOLPGM(" E:");
  2739. SERIAL_PROTOCOL((int)active_extruder);
  2740. SERIAL_PROTOCOLPGM(" B:");
  2741. SERIAL_PROTOCOL_F(degBed(), 1);
  2742. SERIAL_PROTOCOLLN("");
  2743. }
  2744. manage_heater();
  2745. manage_inactivity();
  2746. lcd_update();
  2747. }
  2748. LCD_MESSAGEPGM(MSG_BED_DONE);
  2749. previous_millis_cmd = millis();
  2750. }
  2751. #endif // TEMP_BED_PIN > -1
  2752. /**
  2753. * M112: Emergency Stop
  2754. */
  2755. inline void gcode_M112() {
  2756. kill();
  2757. }
  2758. #ifdef BARICUDA
  2759. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2760. /**
  2761. * M126: Heater 1 valve open
  2762. */
  2763. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2764. /**
  2765. * M127: Heater 1 valve close
  2766. */
  2767. inline void gcode_M127() { ValvePressure = 0; }
  2768. #endif
  2769. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2770. /**
  2771. * M128: Heater 2 valve open
  2772. */
  2773. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2774. /**
  2775. * M129: Heater 2 valve close
  2776. */
  2777. inline void gcode_M129() { EtoPPressure = 0; }
  2778. #endif
  2779. #endif //BARICUDA
  2780. /**
  2781. * M140: Set bed temperature
  2782. */
  2783. inline void gcode_M140() {
  2784. if (code_seen('S')) setTargetBed(code_value());
  2785. }
  2786. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2787. /**
  2788. * M80: Turn on Power Supply
  2789. */
  2790. inline void gcode_M80() {
  2791. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2792. // If you have a switch on suicide pin, this is useful
  2793. // if you want to start another print with suicide feature after
  2794. // a print without suicide...
  2795. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2796. OUT_WRITE(SUICIDE_PIN, HIGH);
  2797. #endif
  2798. #ifdef ULTIPANEL
  2799. powersupply = true;
  2800. LCD_MESSAGEPGM(WELCOME_MSG);
  2801. lcd_update();
  2802. #endif
  2803. }
  2804. #endif // PS_ON_PIN
  2805. /**
  2806. * M81: Turn off Power Supply
  2807. */
  2808. inline void gcode_M81() {
  2809. disable_heater();
  2810. st_synchronize();
  2811. disable_e0();
  2812. disable_e1();
  2813. disable_e2();
  2814. disable_e3();
  2815. finishAndDisableSteppers();
  2816. fanSpeed = 0;
  2817. delay(1000); // Wait 1 second before switching off
  2818. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2819. st_synchronize();
  2820. suicide();
  2821. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2822. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2823. #endif
  2824. #ifdef ULTIPANEL
  2825. powersupply = false;
  2826. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2827. lcd_update();
  2828. #endif
  2829. }
  2830. /**
  2831. * M82: Set E codes absolute (default)
  2832. */
  2833. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2834. /**
  2835. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2836. */
  2837. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2838. /**
  2839. * M18, M84: Disable all stepper motors
  2840. */
  2841. inline void gcode_M18_M84() {
  2842. if (code_seen('S')) {
  2843. stepper_inactive_time = code_value() * 1000;
  2844. }
  2845. else {
  2846. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2847. if (all_axis) {
  2848. st_synchronize();
  2849. disable_e0();
  2850. disable_e1();
  2851. disable_e2();
  2852. disable_e3();
  2853. finishAndDisableSteppers();
  2854. }
  2855. else {
  2856. st_synchronize();
  2857. if (code_seen('X')) disable_x();
  2858. if (code_seen('Y')) disable_y();
  2859. if (code_seen('Z')) disable_z();
  2860. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2861. if (code_seen('E')) {
  2862. disable_e0();
  2863. disable_e1();
  2864. disable_e2();
  2865. disable_e3();
  2866. }
  2867. #endif
  2868. }
  2869. }
  2870. }
  2871. /**
  2872. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2873. */
  2874. inline void gcode_M85() {
  2875. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2876. }
  2877. /**
  2878. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2879. */
  2880. inline void gcode_M92() {
  2881. for(int8_t i=0; i < NUM_AXIS; i++) {
  2882. if (code_seen(axis_codes[i])) {
  2883. if (i == E_AXIS) {
  2884. float value = code_value();
  2885. if (value < 20.0) {
  2886. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2887. max_e_jerk *= factor;
  2888. max_feedrate[i] *= factor;
  2889. axis_steps_per_sqr_second[i] *= factor;
  2890. }
  2891. axis_steps_per_unit[i] = value;
  2892. }
  2893. else {
  2894. axis_steps_per_unit[i] = code_value();
  2895. }
  2896. }
  2897. }
  2898. }
  2899. /**
  2900. * M114: Output current position to serial port
  2901. */
  2902. inline void gcode_M114() {
  2903. SERIAL_PROTOCOLPGM("X:");
  2904. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2905. SERIAL_PROTOCOLPGM(" Y:");
  2906. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2907. SERIAL_PROTOCOLPGM(" Z:");
  2908. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2909. SERIAL_PROTOCOLPGM(" E:");
  2910. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2911. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2912. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2913. SERIAL_PROTOCOLPGM(" Y:");
  2914. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2915. SERIAL_PROTOCOLPGM(" Z:");
  2916. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2917. SERIAL_PROTOCOLLN("");
  2918. #ifdef SCARA
  2919. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2920. SERIAL_PROTOCOL(delta[X_AXIS]);
  2921. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2922. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2923. SERIAL_PROTOCOLLN("");
  2924. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2925. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2926. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2927. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2928. SERIAL_PROTOCOLLN("");
  2929. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2930. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2931. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2932. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2933. SERIAL_PROTOCOLLN("");
  2934. SERIAL_PROTOCOLLN("");
  2935. #endif
  2936. }
  2937. /**
  2938. * M115: Capabilities string
  2939. */
  2940. inline void gcode_M115() {
  2941. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2942. }
  2943. /**
  2944. * M117: Set LCD Status Message
  2945. */
  2946. inline void gcode_M117() {
  2947. char* codepos = strchr_pointer + 5;
  2948. char* starpos = strchr(codepos, '*');
  2949. if (starpos) *starpos = '\0';
  2950. lcd_setstatus(codepos);
  2951. }
  2952. /**
  2953. * M119: Output endstop states to serial output
  2954. */
  2955. inline void gcode_M119() {
  2956. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2957. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2958. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2959. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2960. #endif
  2961. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2962. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2963. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2964. #endif
  2965. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2966. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2967. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2968. #endif
  2969. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2970. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2971. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2972. #endif
  2973. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2974. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2975. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2976. #endif
  2977. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2978. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2979. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2980. #endif
  2981. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2982. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2983. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2984. #endif
  2985. }
  2986. /**
  2987. * M120: Enable endstops
  2988. */
  2989. inline void gcode_M120() { enable_endstops(false); }
  2990. /**
  2991. * M121: Disable endstops
  2992. */
  2993. inline void gcode_M121() { enable_endstops(true); }
  2994. #ifdef BLINKM
  2995. /**
  2996. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2997. */
  2998. inline void gcode_M150() {
  2999. SendColors(
  3000. code_seen('R') ? (byte)code_value() : 0,
  3001. code_seen('U') ? (byte)code_value() : 0,
  3002. code_seen('B') ? (byte)code_value() : 0
  3003. );
  3004. }
  3005. #endif // BLINKM
  3006. /**
  3007. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3008. * T<extruder>
  3009. * D<millimeters>
  3010. */
  3011. inline void gcode_M200() {
  3012. tmp_extruder = active_extruder;
  3013. if (code_seen('T')) {
  3014. tmp_extruder = code_value();
  3015. if (tmp_extruder >= EXTRUDERS) {
  3016. SERIAL_ECHO_START;
  3017. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3018. return;
  3019. }
  3020. }
  3021. float area = .0;
  3022. if (code_seen('D')) {
  3023. float diameter = code_value();
  3024. // setting any extruder filament size disables volumetric on the assumption that
  3025. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3026. // for all extruders
  3027. volumetric_enabled = (diameter != 0.0);
  3028. if (volumetric_enabled) {
  3029. filament_size[tmp_extruder] = diameter;
  3030. // make sure all extruders have some sane value for the filament size
  3031. for (int i=0; i<EXTRUDERS; i++)
  3032. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3033. }
  3034. }
  3035. else {
  3036. //reserved for setting filament diameter via UFID or filament measuring device
  3037. return;
  3038. }
  3039. calculate_volumetric_multipliers();
  3040. }
  3041. /**
  3042. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3043. */
  3044. inline void gcode_M201() {
  3045. for (int8_t i=0; i < NUM_AXIS; i++) {
  3046. if (code_seen(axis_codes[i])) {
  3047. max_acceleration_units_per_sq_second[i] = code_value();
  3048. }
  3049. }
  3050. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3051. reset_acceleration_rates();
  3052. }
  3053. #if 0 // Not used for Sprinter/grbl gen6
  3054. inline void gcode_M202() {
  3055. for(int8_t i=0; i < NUM_AXIS; i++) {
  3056. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3057. }
  3058. }
  3059. #endif
  3060. /**
  3061. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3062. */
  3063. inline void gcode_M203() {
  3064. for (int8_t i=0; i < NUM_AXIS; i++) {
  3065. if (code_seen(axis_codes[i])) {
  3066. max_feedrate[i] = code_value();
  3067. }
  3068. }
  3069. }
  3070. /**
  3071. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3072. *
  3073. * P = Printing moves
  3074. * R = Retract only (no X, Y, Z) moves
  3075. * T = Travel (non printing) moves
  3076. *
  3077. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3078. */
  3079. inline void gcode_M204() {
  3080. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3081. {
  3082. acceleration = code_value();
  3083. travel_acceleration = acceleration;
  3084. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3085. SERIAL_EOL;
  3086. }
  3087. if (code_seen('P'))
  3088. {
  3089. acceleration = code_value();
  3090. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3091. SERIAL_EOL;
  3092. }
  3093. if (code_seen('R'))
  3094. {
  3095. retract_acceleration = code_value();
  3096. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3097. SERIAL_EOL;
  3098. }
  3099. if (code_seen('T'))
  3100. {
  3101. travel_acceleration = code_value();
  3102. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3103. SERIAL_EOL;
  3104. }
  3105. }
  3106. /**
  3107. * M205: Set Advanced Settings
  3108. *
  3109. * S = Min Feed Rate (mm/s)
  3110. * T = Min Travel Feed Rate (mm/s)
  3111. * B = Min Segment Time (µs)
  3112. * X = Max XY Jerk (mm/s/s)
  3113. * Z = Max Z Jerk (mm/s/s)
  3114. * E = Max E Jerk (mm/s/s)
  3115. */
  3116. inline void gcode_M205() {
  3117. if (code_seen('S')) minimumfeedrate = code_value();
  3118. if (code_seen('T')) mintravelfeedrate = code_value();
  3119. if (code_seen('B')) minsegmenttime = code_value();
  3120. if (code_seen('X')) max_xy_jerk = code_value();
  3121. if (code_seen('Z')) max_z_jerk = code_value();
  3122. if (code_seen('E')) max_e_jerk = code_value();
  3123. }
  3124. /**
  3125. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3126. */
  3127. inline void gcode_M206() {
  3128. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3129. if (code_seen(axis_codes[i])) {
  3130. home_offset[i] = code_value();
  3131. }
  3132. }
  3133. #ifdef SCARA
  3134. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3135. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3136. #endif
  3137. }
  3138. #ifdef DELTA
  3139. /**
  3140. * M665: Set delta configurations
  3141. *
  3142. * L = diagonal rod
  3143. * R = delta radius
  3144. * S = segments per second
  3145. */
  3146. inline void gcode_M665() {
  3147. if (code_seen('L')) delta_diagonal_rod = code_value();
  3148. if (code_seen('R')) delta_radius = code_value();
  3149. if (code_seen('S')) delta_segments_per_second = code_value();
  3150. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3151. }
  3152. /**
  3153. * M666: Set delta endstop adjustment
  3154. */
  3155. inline void gcode_M666() {
  3156. for (int8_t i = 0; i < 3; i++) {
  3157. if (code_seen(axis_codes[i])) {
  3158. endstop_adj[i] = code_value();
  3159. }
  3160. }
  3161. }
  3162. #elif defined(Z_DUAL_ENDSTOPS)
  3163. /**
  3164. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3165. */
  3166. inline void gcode_M666() {
  3167. if (code_seen('Z')) z_endstop_adj = code_value();
  3168. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3169. SERIAL_EOL;
  3170. }
  3171. #endif // DELTA
  3172. #ifdef FWRETRACT
  3173. /**
  3174. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3175. */
  3176. inline void gcode_M207() {
  3177. if (code_seen('S')) retract_length = code_value();
  3178. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3179. if (code_seen('Z')) retract_zlift = code_value();
  3180. }
  3181. /**
  3182. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3183. */
  3184. inline void gcode_M208() {
  3185. if (code_seen('S')) retract_recover_length = code_value();
  3186. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3187. }
  3188. /**
  3189. * M209: Enable automatic retract (M209 S1)
  3190. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3191. */
  3192. inline void gcode_M209() {
  3193. if (code_seen('S')) {
  3194. int t = code_value();
  3195. switch(t) {
  3196. case 0:
  3197. autoretract_enabled = false;
  3198. break;
  3199. case 1:
  3200. autoretract_enabled = true;
  3201. break;
  3202. default:
  3203. SERIAL_ECHO_START;
  3204. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3205. SERIAL_ECHO(cmdbuffer[bufindr]);
  3206. SERIAL_ECHOLNPGM("\"");
  3207. return;
  3208. }
  3209. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3210. }
  3211. }
  3212. #endif // FWRETRACT
  3213. #if EXTRUDERS > 1
  3214. /**
  3215. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3216. */
  3217. inline void gcode_M218() {
  3218. if (setTargetedHotend(218)) return;
  3219. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3220. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3221. #ifdef DUAL_X_CARRIAGE
  3222. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3223. #endif
  3224. SERIAL_ECHO_START;
  3225. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3226. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3227. SERIAL_ECHO(" ");
  3228. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3229. SERIAL_ECHO(",");
  3230. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3231. #ifdef DUAL_X_CARRIAGE
  3232. SERIAL_ECHO(",");
  3233. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3234. #endif
  3235. }
  3236. SERIAL_EOL;
  3237. }
  3238. #endif // EXTRUDERS > 1
  3239. /**
  3240. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3241. */
  3242. inline void gcode_M220() {
  3243. if (code_seen('S')) feedmultiply = code_value();
  3244. }
  3245. /**
  3246. * M221: Set extrusion percentage (M221 T0 S95)
  3247. */
  3248. inline void gcode_M221() {
  3249. if (code_seen('S')) {
  3250. int sval = code_value();
  3251. if (code_seen('T')) {
  3252. if (setTargetedHotend(221)) return;
  3253. extruder_multiply[tmp_extruder] = sval;
  3254. }
  3255. else {
  3256. extrudemultiply = sval;
  3257. }
  3258. }
  3259. }
  3260. /**
  3261. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3262. */
  3263. inline void gcode_M226() {
  3264. if (code_seen('P')) {
  3265. int pin_number = code_value();
  3266. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3267. if (pin_state >= -1 && pin_state <= 1) {
  3268. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3269. if (sensitive_pins[i] == pin_number) {
  3270. pin_number = -1;
  3271. break;
  3272. }
  3273. }
  3274. if (pin_number > -1) {
  3275. int target = LOW;
  3276. st_synchronize();
  3277. pinMode(pin_number, INPUT);
  3278. switch(pin_state){
  3279. case 1:
  3280. target = HIGH;
  3281. break;
  3282. case 0:
  3283. target = LOW;
  3284. break;
  3285. case -1:
  3286. target = !digitalRead(pin_number);
  3287. break;
  3288. }
  3289. while(digitalRead(pin_number) != target) {
  3290. manage_heater();
  3291. manage_inactivity();
  3292. lcd_update();
  3293. }
  3294. } // pin_number > -1
  3295. } // pin_state -1 0 1
  3296. } // code_seen('P')
  3297. }
  3298. #if NUM_SERVOS > 0
  3299. /**
  3300. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3301. */
  3302. inline void gcode_M280() {
  3303. int servo_index = code_seen('P') ? code_value() : -1;
  3304. int servo_position = 0;
  3305. if (code_seen('S')) {
  3306. servo_position = code_value();
  3307. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3308. #if SERVO_LEVELING
  3309. servos[servo_index].attach(0);
  3310. #endif
  3311. servos[servo_index].write(servo_position);
  3312. #if SERVO_LEVELING
  3313. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3314. servos[servo_index].detach();
  3315. #endif
  3316. }
  3317. else {
  3318. SERIAL_ECHO_START;
  3319. SERIAL_ECHO("Servo ");
  3320. SERIAL_ECHO(servo_index);
  3321. SERIAL_ECHOLN(" out of range");
  3322. }
  3323. }
  3324. else if (servo_index >= 0) {
  3325. SERIAL_PROTOCOL(MSG_OK);
  3326. SERIAL_PROTOCOL(" Servo ");
  3327. SERIAL_PROTOCOL(servo_index);
  3328. SERIAL_PROTOCOL(": ");
  3329. SERIAL_PROTOCOL(servos[servo_index].read());
  3330. SERIAL_PROTOCOLLN("");
  3331. }
  3332. }
  3333. #endif // NUM_SERVOS > 0
  3334. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3335. /**
  3336. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3337. */
  3338. inline void gcode_M300() {
  3339. int beepS = code_seen('S') ? code_value() : 110;
  3340. int beepP = code_seen('P') ? code_value() : 1000;
  3341. if (beepS > 0) {
  3342. #if BEEPER > 0
  3343. tone(BEEPER, beepS);
  3344. delay(beepP);
  3345. noTone(BEEPER);
  3346. #elif defined(ULTRALCD)
  3347. lcd_buzz(beepS, beepP);
  3348. #elif defined(LCD_USE_I2C_BUZZER)
  3349. lcd_buzz(beepP, beepS);
  3350. #endif
  3351. }
  3352. else {
  3353. delay(beepP);
  3354. }
  3355. }
  3356. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3357. #ifdef PIDTEMP
  3358. /**
  3359. * M301: Set PID parameters P I D (and optionally C)
  3360. */
  3361. inline void gcode_M301() {
  3362. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3363. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3364. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3365. if (e < EXTRUDERS) { // catch bad input value
  3366. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3367. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3368. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3369. #ifdef PID_ADD_EXTRUSION_RATE
  3370. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3371. #endif
  3372. updatePID();
  3373. SERIAL_PROTOCOL(MSG_OK);
  3374. #ifdef PID_PARAMS_PER_EXTRUDER
  3375. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3376. SERIAL_PROTOCOL(e);
  3377. #endif // PID_PARAMS_PER_EXTRUDER
  3378. SERIAL_PROTOCOL(" p:");
  3379. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3380. SERIAL_PROTOCOL(" i:");
  3381. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3382. SERIAL_PROTOCOL(" d:");
  3383. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3384. #ifdef PID_ADD_EXTRUSION_RATE
  3385. SERIAL_PROTOCOL(" c:");
  3386. //Kc does not have scaling applied above, or in resetting defaults
  3387. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3388. #endif
  3389. SERIAL_PROTOCOLLN("");
  3390. }
  3391. else {
  3392. SERIAL_ECHO_START;
  3393. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3394. }
  3395. }
  3396. #endif // PIDTEMP
  3397. #ifdef PIDTEMPBED
  3398. inline void gcode_M304() {
  3399. if (code_seen('P')) bedKp = code_value();
  3400. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3401. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3402. updatePID();
  3403. SERIAL_PROTOCOL(MSG_OK);
  3404. SERIAL_PROTOCOL(" p:");
  3405. SERIAL_PROTOCOL(bedKp);
  3406. SERIAL_PROTOCOL(" i:");
  3407. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3408. SERIAL_PROTOCOL(" d:");
  3409. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3410. SERIAL_PROTOCOLLN("");
  3411. }
  3412. #endif // PIDTEMPBED
  3413. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3414. /**
  3415. * M240: Trigger a camera by emulating a Canon RC-1
  3416. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3417. */
  3418. inline void gcode_M240() {
  3419. #ifdef CHDK
  3420. OUT_WRITE(CHDK, HIGH);
  3421. chdkHigh = millis();
  3422. chdkActive = true;
  3423. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3424. const uint8_t NUM_PULSES = 16;
  3425. const float PULSE_LENGTH = 0.01524;
  3426. for (int i = 0; i < NUM_PULSES; i++) {
  3427. WRITE(PHOTOGRAPH_PIN, HIGH);
  3428. _delay_ms(PULSE_LENGTH);
  3429. WRITE(PHOTOGRAPH_PIN, LOW);
  3430. _delay_ms(PULSE_LENGTH);
  3431. }
  3432. delay(7.33);
  3433. for (int i = 0; i < NUM_PULSES; i++) {
  3434. WRITE(PHOTOGRAPH_PIN, HIGH);
  3435. _delay_ms(PULSE_LENGTH);
  3436. WRITE(PHOTOGRAPH_PIN, LOW);
  3437. _delay_ms(PULSE_LENGTH);
  3438. }
  3439. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3440. }
  3441. #endif // CHDK || PHOTOGRAPH_PIN
  3442. #ifdef DOGLCD
  3443. /**
  3444. * M250: Read and optionally set the LCD contrast
  3445. */
  3446. inline void gcode_M250() {
  3447. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3448. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3449. SERIAL_PROTOCOL(lcd_contrast);
  3450. SERIAL_PROTOCOLLN("");
  3451. }
  3452. #endif // DOGLCD
  3453. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3454. /**
  3455. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3456. */
  3457. inline void gcode_M302() {
  3458. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3459. }
  3460. #endif // PREVENT_DANGEROUS_EXTRUDE
  3461. /**
  3462. * M303: PID relay autotune
  3463. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3464. * E<extruder> (-1 for the bed)
  3465. * C<cycles>
  3466. */
  3467. inline void gcode_M303() {
  3468. int e = code_seen('E') ? code_value_long() : 0;
  3469. int c = code_seen('C') ? code_value_long() : 5;
  3470. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3471. PID_autotune(temp, e, c);
  3472. }
  3473. #ifdef SCARA
  3474. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3475. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3476. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3477. if (! Stopped) {
  3478. //get_coordinates(); // For X Y Z E F
  3479. delta[X_AXIS] = delta_x;
  3480. delta[Y_AXIS] = delta_y;
  3481. calculate_SCARA_forward_Transform(delta);
  3482. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3483. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3484. prepare_move();
  3485. //ClearToSend();
  3486. return true;
  3487. }
  3488. return false;
  3489. }
  3490. /**
  3491. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3492. */
  3493. inline bool gcode_M360() {
  3494. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3495. return SCARA_move_to_cal(0, 120);
  3496. }
  3497. /**
  3498. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3499. */
  3500. inline bool gcode_M361() {
  3501. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3502. return SCARA_move_to_cal(90, 130);
  3503. }
  3504. /**
  3505. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3506. */
  3507. inline bool gcode_M362() {
  3508. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3509. return SCARA_move_to_cal(60, 180);
  3510. }
  3511. /**
  3512. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3513. */
  3514. inline bool gcode_M363() {
  3515. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3516. return SCARA_move_to_cal(50, 90);
  3517. }
  3518. /**
  3519. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3520. */
  3521. inline bool gcode_M364() {
  3522. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3523. return SCARA_move_to_cal(45, 135);
  3524. }
  3525. /**
  3526. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3527. */
  3528. inline void gcode_M365() {
  3529. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3530. if (code_seen(axis_codes[i])) {
  3531. axis_scaling[i] = code_value();
  3532. }
  3533. }
  3534. }
  3535. #endif // SCARA
  3536. #ifdef EXT_SOLENOID
  3537. void enable_solenoid(uint8_t num) {
  3538. switch(num) {
  3539. case 0:
  3540. OUT_WRITE(SOL0_PIN, HIGH);
  3541. break;
  3542. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3543. case 1:
  3544. OUT_WRITE(SOL1_PIN, HIGH);
  3545. break;
  3546. #endif
  3547. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3548. case 2:
  3549. OUT_WRITE(SOL2_PIN, HIGH);
  3550. break;
  3551. #endif
  3552. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3553. case 3:
  3554. OUT_WRITE(SOL3_PIN, HIGH);
  3555. break;
  3556. #endif
  3557. default:
  3558. SERIAL_ECHO_START;
  3559. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3560. break;
  3561. }
  3562. }
  3563. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3564. void disable_all_solenoids() {
  3565. OUT_WRITE(SOL0_PIN, LOW);
  3566. OUT_WRITE(SOL1_PIN, LOW);
  3567. OUT_WRITE(SOL2_PIN, LOW);
  3568. OUT_WRITE(SOL3_PIN, LOW);
  3569. }
  3570. /**
  3571. * M380: Enable solenoid on the active extruder
  3572. */
  3573. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3574. /**
  3575. * M381: Disable all solenoids
  3576. */
  3577. inline void gcode_M381() { disable_all_solenoids(); }
  3578. #endif // EXT_SOLENOID
  3579. /**
  3580. * M400: Finish all moves
  3581. */
  3582. inline void gcode_M400() { st_synchronize(); }
  3583. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3584. /**
  3585. * M401: Engage Z Servo endstop if available
  3586. */
  3587. inline void gcode_M401() { engage_z_probe(); }
  3588. /**
  3589. * M402: Retract Z Servo endstop if enabled
  3590. */
  3591. inline void gcode_M402() { retract_z_probe(); }
  3592. #endif
  3593. #ifdef FILAMENT_SENSOR
  3594. /**
  3595. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3596. */
  3597. inline void gcode_M404() {
  3598. #if FILWIDTH_PIN > -1
  3599. if (code_seen('W')) {
  3600. filament_width_nominal = code_value();
  3601. }
  3602. else {
  3603. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3604. SERIAL_PROTOCOLLN(filament_width_nominal);
  3605. }
  3606. #endif
  3607. }
  3608. /**
  3609. * M405: Turn on filament sensor for control
  3610. */
  3611. inline void gcode_M405() {
  3612. if (code_seen('D')) meas_delay_cm = code_value();
  3613. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3614. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3615. int temp_ratio = widthFil_to_size_ratio();
  3616. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3617. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3618. delay_index1 = delay_index2 = 0;
  3619. }
  3620. filament_sensor = true;
  3621. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3622. //SERIAL_PROTOCOL(filament_width_meas);
  3623. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3624. //SERIAL_PROTOCOL(extrudemultiply);
  3625. }
  3626. /**
  3627. * M406: Turn off filament sensor for control
  3628. */
  3629. inline void gcode_M406() { filament_sensor = false; }
  3630. /**
  3631. * M407: Get measured filament diameter on serial output
  3632. */
  3633. inline void gcode_M407() {
  3634. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3635. SERIAL_PROTOCOLLN(filament_width_meas);
  3636. }
  3637. #endif // FILAMENT_SENSOR
  3638. /**
  3639. * M500: Store settings in EEPROM
  3640. */
  3641. inline void gcode_M500() {
  3642. Config_StoreSettings();
  3643. }
  3644. /**
  3645. * M501: Read settings from EEPROM
  3646. */
  3647. inline void gcode_M501() {
  3648. Config_RetrieveSettings();
  3649. }
  3650. /**
  3651. * M502: Revert to default settings
  3652. */
  3653. inline void gcode_M502() {
  3654. Config_ResetDefault();
  3655. }
  3656. /**
  3657. * M503: print settings currently in memory
  3658. */
  3659. inline void gcode_M503() {
  3660. Config_PrintSettings(code_seen('S') && code_value == 0);
  3661. }
  3662. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3663. /**
  3664. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3665. */
  3666. inline void gcode_M540() {
  3667. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3668. }
  3669. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3670. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3671. inline void gcode_SET_Z_PROBE_OFFSET() {
  3672. float value;
  3673. if (code_seen('Z')) {
  3674. value = code_value();
  3675. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3676. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3677. SERIAL_ECHO_START;
  3678. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3679. SERIAL_PROTOCOLLN("");
  3680. }
  3681. else {
  3682. SERIAL_ECHO_START;
  3683. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3684. SERIAL_ECHOPGM(MSG_Z_MIN);
  3685. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3686. SERIAL_ECHOPGM(MSG_Z_MAX);
  3687. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3688. SERIAL_PROTOCOLLN("");
  3689. }
  3690. }
  3691. else {
  3692. SERIAL_ECHO_START;
  3693. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3694. SERIAL_ECHO(-zprobe_zoffset);
  3695. SERIAL_PROTOCOLLN("");
  3696. }
  3697. }
  3698. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3699. #ifdef FILAMENTCHANGEENABLE
  3700. /**
  3701. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3702. */
  3703. inline void gcode_M600() {
  3704. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3705. for (int i=0; i<NUM_AXIS; i++)
  3706. target[i] = lastpos[i] = current_position[i];
  3707. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3708. #ifdef DELTA
  3709. #define RUNPLAN calculate_delta(target); BASICPLAN
  3710. #else
  3711. #define RUNPLAN BASICPLAN
  3712. #endif
  3713. //retract by E
  3714. if (code_seen('E')) target[E_AXIS] += code_value();
  3715. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3716. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3717. #endif
  3718. RUNPLAN;
  3719. //lift Z
  3720. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3721. #ifdef FILAMENTCHANGE_ZADD
  3722. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3723. #endif
  3724. RUNPLAN;
  3725. //move xy
  3726. if (code_seen('X')) target[X_AXIS] = code_value();
  3727. #ifdef FILAMENTCHANGE_XPOS
  3728. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3729. #endif
  3730. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3731. #ifdef FILAMENTCHANGE_YPOS
  3732. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3733. #endif
  3734. RUNPLAN;
  3735. if (code_seen('L')) target[E_AXIS] += code_value();
  3736. #ifdef FILAMENTCHANGE_FINALRETRACT
  3737. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3738. #endif
  3739. RUNPLAN;
  3740. //finish moves
  3741. st_synchronize();
  3742. //disable extruder steppers so filament can be removed
  3743. disable_e0();
  3744. disable_e1();
  3745. disable_e2();
  3746. disable_e3();
  3747. delay(100);
  3748. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3749. uint8_t cnt = 0;
  3750. while (!lcd_clicked()) {
  3751. cnt++;
  3752. manage_heater();
  3753. manage_inactivity(true);
  3754. lcd_update();
  3755. if (cnt == 0) {
  3756. #if BEEPER > 0
  3757. OUT_WRITE(BEEPER,HIGH);
  3758. delay(3);
  3759. WRITE(BEEPER,LOW);
  3760. delay(3);
  3761. #else
  3762. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3763. lcd_buzz(1000/6, 100);
  3764. #else
  3765. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3766. #endif
  3767. #endif
  3768. }
  3769. } // while(!lcd_clicked)
  3770. //return to normal
  3771. if (code_seen('L')) target[E_AXIS] -= code_value();
  3772. #ifdef FILAMENTCHANGE_FINALRETRACT
  3773. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3774. #endif
  3775. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3776. plan_set_e_position(current_position[E_AXIS]);
  3777. RUNPLAN; //should do nothing
  3778. lcd_reset_alert_level();
  3779. #ifdef DELTA
  3780. calculate_delta(lastpos);
  3781. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3782. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3783. #else
  3784. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3785. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3786. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3787. #endif
  3788. #ifdef FILAMENT_RUNOUT_SENSOR
  3789. filrunoutEnqued = false;
  3790. #endif
  3791. }
  3792. #endif // FILAMENTCHANGEENABLE
  3793. #ifdef DUAL_X_CARRIAGE
  3794. /**
  3795. * M605: Set dual x-carriage movement mode
  3796. *
  3797. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3798. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3799. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3800. * millimeters x-offset and an optional differential hotend temperature of
  3801. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3802. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3803. *
  3804. * Note: the X axis should be homed after changing dual x-carriage mode.
  3805. */
  3806. inline void gcode_M605() {
  3807. st_synchronize();
  3808. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3809. switch(dual_x_carriage_mode) {
  3810. case DXC_DUPLICATION_MODE:
  3811. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3812. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3813. SERIAL_ECHO_START;
  3814. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3815. SERIAL_ECHO(" ");
  3816. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3817. SERIAL_ECHO(",");
  3818. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3819. SERIAL_ECHO(" ");
  3820. SERIAL_ECHO(duplicate_extruder_x_offset);
  3821. SERIAL_ECHO(",");
  3822. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3823. break;
  3824. case DXC_FULL_CONTROL_MODE:
  3825. case DXC_AUTO_PARK_MODE:
  3826. break;
  3827. default:
  3828. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3829. break;
  3830. }
  3831. active_extruder_parked = false;
  3832. extruder_duplication_enabled = false;
  3833. delayed_move_time = 0;
  3834. }
  3835. #endif // DUAL_X_CARRIAGE
  3836. /**
  3837. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3838. */
  3839. inline void gcode_M907() {
  3840. #if HAS_DIGIPOTSS
  3841. for (int i=0;i<NUM_AXIS;i++)
  3842. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3843. if (code_seen('B')) digipot_current(4, code_value());
  3844. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3845. #endif
  3846. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3847. if (code_seen('X')) digipot_current(0, code_value());
  3848. #endif
  3849. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3850. if (code_seen('Z')) digipot_current(1, code_value());
  3851. #endif
  3852. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3853. if (code_seen('E')) digipot_current(2, code_value());
  3854. #endif
  3855. #ifdef DIGIPOT_I2C
  3856. // this one uses actual amps in floating point
  3857. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3858. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3859. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3860. #endif
  3861. }
  3862. #if HAS_DIGIPOTSS
  3863. /**
  3864. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3865. */
  3866. inline void gcode_M908() {
  3867. digitalPotWrite(
  3868. code_seen('P') ? code_value() : 0,
  3869. code_seen('S') ? code_value() : 0
  3870. );
  3871. }
  3872. #endif // HAS_DIGIPOTSS
  3873. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3874. inline void gcode_M350() {
  3875. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3876. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3877. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3878. if(code_seen('B')) microstep_mode(4,code_value());
  3879. microstep_readings();
  3880. #endif
  3881. }
  3882. /**
  3883. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3884. * S# determines MS1 or MS2, X# sets the pin high/low.
  3885. */
  3886. inline void gcode_M351() {
  3887. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3888. if (code_seen('S')) switch(code_value_long()) {
  3889. case 1:
  3890. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3891. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3892. break;
  3893. case 2:
  3894. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3895. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3896. break;
  3897. }
  3898. microstep_readings();
  3899. #endif
  3900. }
  3901. /**
  3902. * M999: Restart after being stopped
  3903. */
  3904. inline void gcode_M999() {
  3905. Stopped = false;
  3906. lcd_reset_alert_level();
  3907. gcode_LastN = Stopped_gcode_LastN;
  3908. FlushSerialRequestResend();
  3909. }
  3910. inline void gcode_T() {
  3911. tmp_extruder = code_value();
  3912. if (tmp_extruder >= EXTRUDERS) {
  3913. SERIAL_ECHO_START;
  3914. SERIAL_ECHO("T");
  3915. SERIAL_ECHO(tmp_extruder);
  3916. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3917. }
  3918. else {
  3919. boolean make_move = false;
  3920. if (code_seen('F')) {
  3921. make_move = true;
  3922. next_feedrate = code_value();
  3923. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3924. }
  3925. #if EXTRUDERS > 1
  3926. if (tmp_extruder != active_extruder) {
  3927. // Save current position to return to after applying extruder offset
  3928. memcpy(destination, current_position, sizeof(destination));
  3929. #ifdef DUAL_X_CARRIAGE
  3930. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3931. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3932. // Park old head: 1) raise 2) move to park position 3) lower
  3933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3934. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3935. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3936. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3937. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3938. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3939. st_synchronize();
  3940. }
  3941. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3942. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3943. extruder_offset[Y_AXIS][active_extruder] +
  3944. extruder_offset[Y_AXIS][tmp_extruder];
  3945. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3946. extruder_offset[Z_AXIS][active_extruder] +
  3947. extruder_offset[Z_AXIS][tmp_extruder];
  3948. active_extruder = tmp_extruder;
  3949. // This function resets the max/min values - the current position may be overwritten below.
  3950. axis_is_at_home(X_AXIS);
  3951. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3952. current_position[X_AXIS] = inactive_extruder_x_pos;
  3953. inactive_extruder_x_pos = destination[X_AXIS];
  3954. }
  3955. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3956. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3957. if (active_extruder == 0 || active_extruder_parked)
  3958. current_position[X_AXIS] = inactive_extruder_x_pos;
  3959. else
  3960. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3961. inactive_extruder_x_pos = destination[X_AXIS];
  3962. extruder_duplication_enabled = false;
  3963. }
  3964. else {
  3965. // record raised toolhead position for use by unpark
  3966. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3967. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3968. active_extruder_parked = true;
  3969. delayed_move_time = 0;
  3970. }
  3971. #else // !DUAL_X_CARRIAGE
  3972. // Offset extruder (only by XY)
  3973. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3974. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3975. // Set the new active extruder and position
  3976. active_extruder = tmp_extruder;
  3977. #endif // !DUAL_X_CARRIAGE
  3978. #ifdef DELTA
  3979. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3980. //sent position to plan_set_position();
  3981. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3982. #else
  3983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3984. #endif
  3985. // Move to the old position if 'F' was in the parameters
  3986. if (make_move && !Stopped) prepare_move();
  3987. }
  3988. #ifdef EXT_SOLENOID
  3989. st_synchronize();
  3990. disable_all_solenoids();
  3991. enable_solenoid_on_active_extruder();
  3992. #endif // EXT_SOLENOID
  3993. #endif // EXTRUDERS > 1
  3994. SERIAL_ECHO_START;
  3995. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3996. SERIAL_PROTOCOLLN((int)active_extruder);
  3997. }
  3998. }
  3999. /**
  4000. * Process Commands and dispatch them to handlers
  4001. */
  4002. void process_commands() {
  4003. if (code_seen('G')) {
  4004. int gCode = code_value_long();
  4005. switch(gCode) {
  4006. // G0, G1
  4007. case 0:
  4008. case 1:
  4009. gcode_G0_G1();
  4010. break;
  4011. // G2, G3
  4012. #ifndef SCARA
  4013. case 2: // G2 - CW ARC
  4014. case 3: // G3 - CCW ARC
  4015. gcode_G2_G3(gCode == 2);
  4016. break;
  4017. #endif
  4018. // G4 Dwell
  4019. case 4:
  4020. gcode_G4();
  4021. break;
  4022. #ifdef FWRETRACT
  4023. case 10: // G10: retract
  4024. case 11: // G11: retract_recover
  4025. gcode_G10_G11(gCode == 10);
  4026. break;
  4027. #endif //FWRETRACT
  4028. case 28: // G28: Home all axes, one at a time
  4029. gcode_G28();
  4030. break;
  4031. #if defined(MESH_BED_LEVELING)
  4032. case 29: // G29 Handle mesh based leveling
  4033. gcode_G29();
  4034. break;
  4035. #endif
  4036. #ifdef ENABLE_AUTO_BED_LEVELING
  4037. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4038. gcode_G29();
  4039. break;
  4040. #ifndef Z_PROBE_SLED
  4041. case 30: // G30 Single Z Probe
  4042. gcode_G30();
  4043. break;
  4044. #else // Z_PROBE_SLED
  4045. case 31: // G31: dock the sled
  4046. case 32: // G32: undock the sled
  4047. dock_sled(gCode == 31);
  4048. break;
  4049. #endif // Z_PROBE_SLED
  4050. #endif // ENABLE_AUTO_BED_LEVELING
  4051. case 90: // G90
  4052. relative_mode = false;
  4053. break;
  4054. case 91: // G91
  4055. relative_mode = true;
  4056. break;
  4057. case 92: // G92
  4058. gcode_G92();
  4059. break;
  4060. }
  4061. }
  4062. else if (code_seen('M')) {
  4063. switch( code_value_long() ) {
  4064. #ifdef ULTIPANEL
  4065. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4066. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4067. gcode_M0_M1();
  4068. break;
  4069. #endif // ULTIPANEL
  4070. case 17:
  4071. gcode_M17();
  4072. break;
  4073. #ifdef SDSUPPORT
  4074. case 20: // M20 - list SD card
  4075. gcode_M20(); break;
  4076. case 21: // M21 - init SD card
  4077. gcode_M21(); break;
  4078. case 22: //M22 - release SD card
  4079. gcode_M22(); break;
  4080. case 23: //M23 - Select file
  4081. gcode_M23(); break;
  4082. case 24: //M24 - Start SD print
  4083. gcode_M24(); break;
  4084. case 25: //M25 - Pause SD print
  4085. gcode_M25(); break;
  4086. case 26: //M26 - Set SD index
  4087. gcode_M26(); break;
  4088. case 27: //M27 - Get SD status
  4089. gcode_M27(); break;
  4090. case 28: //M28 - Start SD write
  4091. gcode_M28(); break;
  4092. case 29: //M29 - Stop SD write
  4093. gcode_M29(); break;
  4094. case 30: //M30 <filename> Delete File
  4095. gcode_M30(); break;
  4096. case 32: //M32 - Select file and start SD print
  4097. gcode_M32(); break;
  4098. case 928: //M928 - Start SD write
  4099. gcode_M928(); break;
  4100. #endif //SDSUPPORT
  4101. case 31: //M31 take time since the start of the SD print or an M109 command
  4102. gcode_M31();
  4103. break;
  4104. case 42: //M42 -Change pin status via gcode
  4105. gcode_M42();
  4106. break;
  4107. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4108. case 48: // M48 Z-Probe repeatability
  4109. gcode_M48();
  4110. break;
  4111. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4112. case 104: // M104
  4113. gcode_M104();
  4114. break;
  4115. case 112: // M112 Emergency Stop
  4116. gcode_M112();
  4117. break;
  4118. case 140: // M140 Set bed temp
  4119. gcode_M140();
  4120. break;
  4121. case 105: // M105 Read current temperature
  4122. gcode_M105();
  4123. return;
  4124. break;
  4125. case 109: // M109 Wait for temperature
  4126. gcode_M109();
  4127. break;
  4128. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4129. case 190: // M190 - Wait for bed heater to reach target.
  4130. gcode_M190();
  4131. break;
  4132. #endif //TEMP_BED_PIN
  4133. #if defined(FAN_PIN) && FAN_PIN > -1
  4134. case 106: //M106 Fan On
  4135. gcode_M106();
  4136. break;
  4137. case 107: //M107 Fan Off
  4138. gcode_M107();
  4139. break;
  4140. #endif //FAN_PIN
  4141. #ifdef BARICUDA
  4142. // PWM for HEATER_1_PIN
  4143. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4144. case 126: // M126 valve open
  4145. gcode_M126();
  4146. break;
  4147. case 127: // M127 valve closed
  4148. gcode_M127();
  4149. break;
  4150. #endif //HEATER_1_PIN
  4151. // PWM for HEATER_2_PIN
  4152. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4153. case 128: // M128 valve open
  4154. gcode_M128();
  4155. break;
  4156. case 129: // M129 valve closed
  4157. gcode_M129();
  4158. break;
  4159. #endif //HEATER_2_PIN
  4160. #endif //BARICUDA
  4161. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4162. case 80: // M80 - Turn on Power Supply
  4163. gcode_M80();
  4164. break;
  4165. #endif // PS_ON_PIN
  4166. case 81: // M81 - Turn off Power Supply
  4167. gcode_M81();
  4168. break;
  4169. case 82:
  4170. gcode_M82();
  4171. break;
  4172. case 83:
  4173. gcode_M83();
  4174. break;
  4175. case 18: //compatibility
  4176. case 84: // M84
  4177. gcode_M18_M84();
  4178. break;
  4179. case 85: // M85
  4180. gcode_M85();
  4181. break;
  4182. case 92: // M92
  4183. gcode_M92();
  4184. break;
  4185. case 115: // M115
  4186. gcode_M115();
  4187. break;
  4188. case 117: // M117 display message
  4189. gcode_M117();
  4190. break;
  4191. case 114: // M114
  4192. gcode_M114();
  4193. break;
  4194. case 120: // M120
  4195. gcode_M120();
  4196. break;
  4197. case 121: // M121
  4198. gcode_M121();
  4199. break;
  4200. case 119: // M119
  4201. gcode_M119();
  4202. break;
  4203. //TODO: update for all axis, use for loop
  4204. #ifdef BLINKM
  4205. case 150: // M150
  4206. gcode_M150();
  4207. break;
  4208. #endif //BLINKM
  4209. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4210. gcode_M200();
  4211. break;
  4212. case 201: // M201
  4213. gcode_M201();
  4214. break;
  4215. #if 0 // Not used for Sprinter/grbl gen6
  4216. case 202: // M202
  4217. gcode_M202();
  4218. break;
  4219. #endif
  4220. case 203: // M203 max feedrate mm/sec
  4221. gcode_M203();
  4222. break;
  4223. case 204: // M204 acclereration S normal moves T filmanent only moves
  4224. gcode_M204();
  4225. break;
  4226. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4227. gcode_M205();
  4228. break;
  4229. case 206: // M206 additional homing offset
  4230. gcode_M206();
  4231. break;
  4232. #ifdef DELTA
  4233. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4234. gcode_M665();
  4235. break;
  4236. case 666: // M666 set delta endstop adjustment
  4237. gcode_M666();
  4238. break;
  4239. #elif defined(Z_DUAL_ENDSTOPS)
  4240. case 666: // M666 set delta endstop adjustment
  4241. gcode_M666();
  4242. break;
  4243. #endif // DELTA
  4244. #ifdef FWRETRACT
  4245. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4246. gcode_M207();
  4247. break;
  4248. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4249. gcode_M208();
  4250. break;
  4251. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4252. gcode_M209();
  4253. break;
  4254. #endif // FWRETRACT
  4255. #if EXTRUDERS > 1
  4256. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4257. gcode_M218();
  4258. break;
  4259. #endif
  4260. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4261. gcode_M220();
  4262. break;
  4263. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4264. gcode_M221();
  4265. break;
  4266. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4267. gcode_M226();
  4268. break;
  4269. #if NUM_SERVOS > 0
  4270. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4271. gcode_M280();
  4272. break;
  4273. #endif // NUM_SERVOS > 0
  4274. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4275. case 300: // M300 - Play beep tone
  4276. gcode_M300();
  4277. break;
  4278. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4279. #ifdef PIDTEMP
  4280. case 301: // M301
  4281. gcode_M301();
  4282. break;
  4283. #endif // PIDTEMP
  4284. #ifdef PIDTEMPBED
  4285. case 304: // M304
  4286. gcode_M304();
  4287. break;
  4288. #endif // PIDTEMPBED
  4289. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4290. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4291. gcode_M240();
  4292. break;
  4293. #endif // CHDK || PHOTOGRAPH_PIN
  4294. #ifdef DOGLCD
  4295. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4296. gcode_M250();
  4297. break;
  4298. #endif // DOGLCD
  4299. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4300. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4301. gcode_M302();
  4302. break;
  4303. #endif // PREVENT_DANGEROUS_EXTRUDE
  4304. case 303: // M303 PID autotune
  4305. gcode_M303();
  4306. break;
  4307. #ifdef SCARA
  4308. case 360: // M360 SCARA Theta pos1
  4309. if (gcode_M360()) return;
  4310. break;
  4311. case 361: // M361 SCARA Theta pos2
  4312. if (gcode_M361()) return;
  4313. break;
  4314. case 362: // M362 SCARA Psi pos1
  4315. if (gcode_M362()) return;
  4316. break;
  4317. case 363: // M363 SCARA Psi pos2
  4318. if (gcode_M363()) return;
  4319. break;
  4320. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4321. if (gcode_M364()) return;
  4322. break;
  4323. case 365: // M365 Set SCARA scaling for X Y Z
  4324. gcode_M365();
  4325. break;
  4326. #endif // SCARA
  4327. case 400: // M400 finish all moves
  4328. gcode_M400();
  4329. break;
  4330. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4331. case 401:
  4332. gcode_M401();
  4333. break;
  4334. case 402:
  4335. gcode_M402();
  4336. break;
  4337. #endif
  4338. #ifdef FILAMENT_SENSOR
  4339. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4340. gcode_M404();
  4341. break;
  4342. case 405: //M405 Turn on filament sensor for control
  4343. gcode_M405();
  4344. break;
  4345. case 406: //M406 Turn off filament sensor for control
  4346. gcode_M406();
  4347. break;
  4348. case 407: //M407 Display measured filament diameter
  4349. gcode_M407();
  4350. break;
  4351. #endif // FILAMENT_SENSOR
  4352. case 500: // M500 Store settings in EEPROM
  4353. gcode_M500();
  4354. break;
  4355. case 501: // M501 Read settings from EEPROM
  4356. gcode_M501();
  4357. break;
  4358. case 502: // M502 Revert to default settings
  4359. gcode_M502();
  4360. break;
  4361. case 503: // M503 print settings currently in memory
  4362. gcode_M503();
  4363. break;
  4364. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4365. case 540:
  4366. gcode_M540();
  4367. break;
  4368. #endif
  4369. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4370. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4371. gcode_SET_Z_PROBE_OFFSET();
  4372. break;
  4373. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4374. #ifdef FILAMENTCHANGEENABLE
  4375. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4376. gcode_M600();
  4377. break;
  4378. #endif // FILAMENTCHANGEENABLE
  4379. #ifdef DUAL_X_CARRIAGE
  4380. case 605:
  4381. gcode_M605();
  4382. break;
  4383. #endif // DUAL_X_CARRIAGE
  4384. case 907: // M907 Set digital trimpot motor current using axis codes.
  4385. gcode_M907();
  4386. break;
  4387. #if HAS_DIGIPOTSS
  4388. case 908: // M908 Control digital trimpot directly.
  4389. gcode_M908();
  4390. break;
  4391. #endif // HAS_DIGIPOTSS
  4392. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4393. gcode_M350();
  4394. break;
  4395. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4396. gcode_M351();
  4397. break;
  4398. case 999: // M999: Restart after being Stopped
  4399. gcode_M999();
  4400. break;
  4401. }
  4402. }
  4403. else if (code_seen('T')) {
  4404. gcode_T();
  4405. }
  4406. else {
  4407. SERIAL_ECHO_START;
  4408. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4409. SERIAL_ECHO(cmdbuffer[bufindr]);
  4410. SERIAL_ECHOLNPGM("\"");
  4411. }
  4412. ClearToSend();
  4413. }
  4414. void FlushSerialRequestResend()
  4415. {
  4416. //char cmdbuffer[bufindr][100]="Resend:";
  4417. MYSERIAL.flush();
  4418. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4419. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4420. ClearToSend();
  4421. }
  4422. void ClearToSend()
  4423. {
  4424. previous_millis_cmd = millis();
  4425. #ifdef SDSUPPORT
  4426. if(fromsd[bufindr])
  4427. return;
  4428. #endif //SDSUPPORT
  4429. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4430. }
  4431. void get_coordinates()
  4432. {
  4433. bool seen[4]={false,false,false,false};
  4434. for(int8_t i=0; i < NUM_AXIS; i++) {
  4435. if(code_seen(axis_codes[i]))
  4436. {
  4437. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4438. seen[i]=true;
  4439. }
  4440. else destination[i] = current_position[i]; //Are these else lines really needed?
  4441. }
  4442. if(code_seen('F')) {
  4443. next_feedrate = code_value();
  4444. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4445. }
  4446. }
  4447. void get_arc_coordinates()
  4448. {
  4449. #ifdef SF_ARC_FIX
  4450. bool relative_mode_backup = relative_mode;
  4451. relative_mode = true;
  4452. #endif
  4453. get_coordinates();
  4454. #ifdef SF_ARC_FIX
  4455. relative_mode=relative_mode_backup;
  4456. #endif
  4457. if(code_seen('I')) {
  4458. offset[0] = code_value();
  4459. }
  4460. else {
  4461. offset[0] = 0.0;
  4462. }
  4463. if(code_seen('J')) {
  4464. offset[1] = code_value();
  4465. }
  4466. else {
  4467. offset[1] = 0.0;
  4468. }
  4469. }
  4470. void clamp_to_software_endstops(float target[3])
  4471. {
  4472. if (min_software_endstops) {
  4473. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4474. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4475. float negative_z_offset = 0;
  4476. #ifdef ENABLE_AUTO_BED_LEVELING
  4477. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4478. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4479. #endif
  4480. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4481. }
  4482. if (max_software_endstops) {
  4483. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4484. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4485. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4486. }
  4487. }
  4488. #ifdef DELTA
  4489. void recalc_delta_settings(float radius, float diagonal_rod)
  4490. {
  4491. delta_tower1_x= -SIN_60*radius; // front left tower
  4492. delta_tower1_y= -COS_60*radius;
  4493. delta_tower2_x= SIN_60*radius; // front right tower
  4494. delta_tower2_y= -COS_60*radius;
  4495. delta_tower3_x= 0.0; // back middle tower
  4496. delta_tower3_y= radius;
  4497. delta_diagonal_rod_2= sq(diagonal_rod);
  4498. }
  4499. void calculate_delta(float cartesian[3])
  4500. {
  4501. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4502. - sq(delta_tower1_x-cartesian[X_AXIS])
  4503. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4504. ) + cartesian[Z_AXIS];
  4505. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4506. - sq(delta_tower2_x-cartesian[X_AXIS])
  4507. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4508. ) + cartesian[Z_AXIS];
  4509. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4510. - sq(delta_tower3_x-cartesian[X_AXIS])
  4511. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4512. ) + cartesian[Z_AXIS];
  4513. /*
  4514. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4515. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4516. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4517. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4518. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4519. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4520. */
  4521. }
  4522. #ifdef ENABLE_AUTO_BED_LEVELING
  4523. // Adjust print surface height by linear interpolation over the bed_level array.
  4524. int delta_grid_spacing[2] = { 0, 0 };
  4525. void adjust_delta(float cartesian[3])
  4526. {
  4527. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4528. return; // G29 not done
  4529. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4530. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4531. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4532. int floor_x = floor(grid_x);
  4533. int floor_y = floor(grid_y);
  4534. float ratio_x = grid_x - floor_x;
  4535. float ratio_y = grid_y - floor_y;
  4536. float z1 = bed_level[floor_x+half][floor_y+half];
  4537. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4538. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4539. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4540. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4541. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4542. float offset = (1-ratio_x)*left + ratio_x*right;
  4543. delta[X_AXIS] += offset;
  4544. delta[Y_AXIS] += offset;
  4545. delta[Z_AXIS] += offset;
  4546. /*
  4547. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4548. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4549. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4550. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4551. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4552. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4553. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4554. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4555. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4556. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4557. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4558. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4559. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4560. */
  4561. }
  4562. #endif //ENABLE_AUTO_BED_LEVELING
  4563. void prepare_move_raw()
  4564. {
  4565. previous_millis_cmd = millis();
  4566. calculate_delta(destination);
  4567. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4568. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4569. active_extruder);
  4570. for(int8_t i=0; i < NUM_AXIS; i++) {
  4571. current_position[i] = destination[i];
  4572. }
  4573. }
  4574. #endif //DELTA
  4575. #if defined(MESH_BED_LEVELING)
  4576. #if !defined(MIN)
  4577. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4578. #endif // ! MIN
  4579. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4580. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4581. {
  4582. if (!mbl.active) {
  4583. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4584. for(int8_t i=0; i < NUM_AXIS; i++) {
  4585. current_position[i] = destination[i];
  4586. }
  4587. return;
  4588. }
  4589. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4590. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4591. int ix = mbl.select_x_index(x);
  4592. int iy = mbl.select_y_index(y);
  4593. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4594. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4595. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4596. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4597. if (pix == ix && piy == iy) {
  4598. // Start and end on same mesh square
  4599. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4600. for(int8_t i=0; i < NUM_AXIS; i++) {
  4601. current_position[i] = destination[i];
  4602. }
  4603. return;
  4604. }
  4605. float nx, ny, ne, normalized_dist;
  4606. if (ix > pix && (x_splits) & BIT(ix)) {
  4607. nx = mbl.get_x(ix);
  4608. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4609. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4610. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4611. x_splits ^= BIT(ix);
  4612. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4613. nx = mbl.get_x(pix);
  4614. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4615. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4616. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4617. x_splits ^= BIT(pix);
  4618. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4619. ny = mbl.get_y(iy);
  4620. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4621. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4622. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4623. y_splits ^= BIT(iy);
  4624. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4625. ny = mbl.get_y(piy);
  4626. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4627. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4628. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4629. y_splits ^= BIT(piy);
  4630. } else {
  4631. // Already split on a border
  4632. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4633. for(int8_t i=0; i < NUM_AXIS; i++) {
  4634. current_position[i] = destination[i];
  4635. }
  4636. return;
  4637. }
  4638. // Do the split and look for more borders
  4639. destination[X_AXIS] = nx;
  4640. destination[Y_AXIS] = ny;
  4641. destination[E_AXIS] = ne;
  4642. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4643. destination[X_AXIS] = x;
  4644. destination[Y_AXIS] = y;
  4645. destination[E_AXIS] = e;
  4646. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4647. }
  4648. #endif // MESH_BED_LEVELING
  4649. void prepare_move()
  4650. {
  4651. clamp_to_software_endstops(destination);
  4652. previous_millis_cmd = millis();
  4653. #ifdef SCARA //for now same as delta-code
  4654. float difference[NUM_AXIS];
  4655. for (int8_t i=0; i < NUM_AXIS; i++) {
  4656. difference[i] = destination[i] - current_position[i];
  4657. }
  4658. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4659. sq(difference[Y_AXIS]) +
  4660. sq(difference[Z_AXIS]));
  4661. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4662. if (cartesian_mm < 0.000001) { return; }
  4663. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4664. int steps = max(1, int(scara_segments_per_second * seconds));
  4665. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4666. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4667. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4668. for (int s = 1; s <= steps; s++) {
  4669. float fraction = float(s) / float(steps);
  4670. for(int8_t i=0; i < NUM_AXIS; i++) {
  4671. destination[i] = current_position[i] + difference[i] * fraction;
  4672. }
  4673. calculate_delta(destination);
  4674. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4675. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4676. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4677. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4678. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4679. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4680. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4681. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4682. active_extruder);
  4683. }
  4684. #endif // SCARA
  4685. #ifdef DELTA
  4686. float difference[NUM_AXIS];
  4687. for (int8_t i=0; i < NUM_AXIS; i++) {
  4688. difference[i] = destination[i] - current_position[i];
  4689. }
  4690. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4691. sq(difference[Y_AXIS]) +
  4692. sq(difference[Z_AXIS]));
  4693. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4694. if (cartesian_mm < 0.000001) { return; }
  4695. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4696. int steps = max(1, int(delta_segments_per_second * seconds));
  4697. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4698. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4699. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4700. for (int s = 1; s <= steps; s++) {
  4701. float fraction = float(s) / float(steps);
  4702. for(int8_t i=0; i < NUM_AXIS; i++) {
  4703. destination[i] = current_position[i] + difference[i] * fraction;
  4704. }
  4705. calculate_delta(destination);
  4706. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4707. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4708. active_extruder);
  4709. }
  4710. #endif // DELTA
  4711. #ifdef DUAL_X_CARRIAGE
  4712. if (active_extruder_parked)
  4713. {
  4714. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4715. {
  4716. // move duplicate extruder into correct duplication position.
  4717. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4718. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4719. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4720. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4721. st_synchronize();
  4722. extruder_duplication_enabled = true;
  4723. active_extruder_parked = false;
  4724. }
  4725. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4726. {
  4727. if (current_position[E_AXIS] == destination[E_AXIS])
  4728. {
  4729. // this is a travel move - skit it but keep track of current position (so that it can later
  4730. // be used as start of first non-travel move)
  4731. if (delayed_move_time != 0xFFFFFFFFUL)
  4732. {
  4733. memcpy(current_position, destination, sizeof(current_position));
  4734. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4735. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4736. delayed_move_time = millis();
  4737. return;
  4738. }
  4739. }
  4740. delayed_move_time = 0;
  4741. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4742. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4744. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4746. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4747. active_extruder_parked = false;
  4748. }
  4749. }
  4750. #endif //DUAL_X_CARRIAGE
  4751. #if ! (defined DELTA || defined SCARA)
  4752. // Do not use feedmultiply for E or Z only moves
  4753. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4754. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4755. } else {
  4756. #if defined(MESH_BED_LEVELING)
  4757. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4758. return;
  4759. #else
  4760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4761. #endif // MESH_BED_LEVELING
  4762. }
  4763. #endif // !(DELTA || SCARA)
  4764. for(int8_t i=0; i < NUM_AXIS; i++) {
  4765. current_position[i] = destination[i];
  4766. }
  4767. }
  4768. void prepare_arc_move(char isclockwise) {
  4769. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4770. // Trace the arc
  4771. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4772. // As far as the parser is concerned, the position is now == target. In reality the
  4773. // motion control system might still be processing the action and the real tool position
  4774. // in any intermediate location.
  4775. for(int8_t i=0; i < NUM_AXIS; i++) {
  4776. current_position[i] = destination[i];
  4777. }
  4778. previous_millis_cmd = millis();
  4779. }
  4780. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4781. #if defined(FAN_PIN)
  4782. #if CONTROLLERFAN_PIN == FAN_PIN
  4783. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4784. #endif
  4785. #endif
  4786. unsigned long lastMotor = 0; // Last time a motor was turned on
  4787. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4788. void controllerFan() {
  4789. uint32_t ms = millis();
  4790. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4791. lastMotorCheck = ms;
  4792. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4793. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4794. #if EXTRUDERS > 1
  4795. || E1_ENABLE_READ == E_ENABLE_ON
  4796. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4797. || X2_ENABLE_READ == X_ENABLE_ON
  4798. #endif
  4799. #if EXTRUDERS > 2
  4800. || E2_ENABLE_READ == E_ENABLE_ON
  4801. #if EXTRUDERS > 3
  4802. || E3_ENABLE_READ == E_ENABLE_ON
  4803. #endif
  4804. #endif
  4805. #endif
  4806. ) {
  4807. lastMotor = ms; //... set time to NOW so the fan will turn on
  4808. }
  4809. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4810. // allows digital or PWM fan output to be used (see M42 handling)
  4811. digitalWrite(CONTROLLERFAN_PIN, speed);
  4812. analogWrite(CONTROLLERFAN_PIN, speed);
  4813. }
  4814. }
  4815. #endif
  4816. #ifdef SCARA
  4817. void calculate_SCARA_forward_Transform(float f_scara[3])
  4818. {
  4819. // Perform forward kinematics, and place results in delta[3]
  4820. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4821. float x_sin, x_cos, y_sin, y_cos;
  4822. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4823. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4824. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4825. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4826. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4827. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4828. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4829. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4830. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4831. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4832. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4833. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4834. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4835. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4836. }
  4837. void calculate_delta(float cartesian[3]){
  4838. //reverse kinematics.
  4839. // Perform reversed kinematics, and place results in delta[3]
  4840. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4841. float SCARA_pos[2];
  4842. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4843. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4844. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4845. #if (Linkage_1 == Linkage_2)
  4846. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4847. #else
  4848. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4849. #endif
  4850. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4851. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4852. SCARA_K2 = Linkage_2 * SCARA_S2;
  4853. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4854. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4855. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4856. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4857. delta[Z_AXIS] = cartesian[Z_AXIS];
  4858. /*
  4859. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4860. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4861. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4862. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4863. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4864. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4865. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4866. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4867. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4868. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4869. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4870. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4871. SERIAL_ECHOLN(" ");*/
  4872. }
  4873. #endif
  4874. #ifdef TEMP_STAT_LEDS
  4875. static bool blue_led = false;
  4876. static bool red_led = false;
  4877. static uint32_t stat_update = 0;
  4878. void handle_status_leds(void) {
  4879. float max_temp = 0.0;
  4880. if(millis() > stat_update) {
  4881. stat_update += 500; // Update every 0.5s
  4882. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4883. max_temp = max(max_temp, degHotend(cur_extruder));
  4884. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4885. }
  4886. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4887. max_temp = max(max_temp, degTargetBed());
  4888. max_temp = max(max_temp, degBed());
  4889. #endif
  4890. if((max_temp > 55.0) && (red_led == false)) {
  4891. digitalWrite(STAT_LED_RED, 1);
  4892. digitalWrite(STAT_LED_BLUE, 0);
  4893. red_led = true;
  4894. blue_led = false;
  4895. }
  4896. if((max_temp < 54.0) && (blue_led == false)) {
  4897. digitalWrite(STAT_LED_RED, 0);
  4898. digitalWrite(STAT_LED_BLUE, 1);
  4899. red_led = false;
  4900. blue_led = true;
  4901. }
  4902. }
  4903. }
  4904. #endif
  4905. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4906. {
  4907. #if defined(KILL_PIN) && KILL_PIN > -1
  4908. static int killCount = 0; // make the inactivity button a bit less responsive
  4909. const int KILL_DELAY = 750;
  4910. #endif
  4911. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4912. if(card.sdprinting) {
  4913. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4914. filrunout(); }
  4915. #endif
  4916. #if defined(HOME_PIN) && HOME_PIN > -1
  4917. static int homeDebounceCount = 0; // poor man's debouncing count
  4918. const int HOME_DEBOUNCE_DELAY = 750;
  4919. #endif
  4920. if(buflen < (BUFSIZE-1))
  4921. get_command();
  4922. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4923. if(max_inactive_time)
  4924. kill();
  4925. if(stepper_inactive_time) {
  4926. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4927. {
  4928. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4929. disable_x();
  4930. disable_y();
  4931. disable_z();
  4932. disable_e0();
  4933. disable_e1();
  4934. disable_e2();
  4935. disable_e3();
  4936. }
  4937. }
  4938. }
  4939. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4940. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4941. {
  4942. chdkActive = false;
  4943. WRITE(CHDK, LOW);
  4944. }
  4945. #endif
  4946. #if defined(KILL_PIN) && KILL_PIN > -1
  4947. // Check if the kill button was pressed and wait just in case it was an accidental
  4948. // key kill key press
  4949. // -------------------------------------------------------------------------------
  4950. if( 0 == READ(KILL_PIN) )
  4951. {
  4952. killCount++;
  4953. }
  4954. else if (killCount > 0)
  4955. {
  4956. killCount--;
  4957. }
  4958. // Exceeded threshold and we can confirm that it was not accidental
  4959. // KILL the machine
  4960. // ----------------------------------------------------------------
  4961. if ( killCount >= KILL_DELAY)
  4962. {
  4963. kill();
  4964. }
  4965. #endif
  4966. #if defined(HOME_PIN) && HOME_PIN > -1
  4967. // Check to see if we have to home, use poor man's debouncer
  4968. // ---------------------------------------------------------
  4969. if ( 0 == READ(HOME_PIN) )
  4970. {
  4971. if (homeDebounceCount == 0)
  4972. {
  4973. enquecommands_P((PSTR("G28")));
  4974. homeDebounceCount++;
  4975. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4976. }
  4977. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4978. {
  4979. homeDebounceCount++;
  4980. }
  4981. else
  4982. {
  4983. homeDebounceCount = 0;
  4984. }
  4985. }
  4986. #endif
  4987. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4988. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4989. #endif
  4990. #ifdef EXTRUDER_RUNOUT_PREVENT
  4991. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4992. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4993. {
  4994. bool oldstatus=E0_ENABLE_READ;
  4995. enable_e0();
  4996. float oldepos=current_position[E_AXIS];
  4997. float oldedes=destination[E_AXIS];
  4998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4999. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5000. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5001. current_position[E_AXIS]=oldepos;
  5002. destination[E_AXIS]=oldedes;
  5003. plan_set_e_position(oldepos);
  5004. previous_millis_cmd=millis();
  5005. st_synchronize();
  5006. E0_ENABLE_WRITE(oldstatus);
  5007. }
  5008. #endif
  5009. #if defined(DUAL_X_CARRIAGE)
  5010. // handle delayed move timeout
  5011. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5012. {
  5013. // travel moves have been received so enact them
  5014. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5015. memcpy(destination,current_position,sizeof(destination));
  5016. prepare_move();
  5017. }
  5018. #endif
  5019. #ifdef TEMP_STAT_LEDS
  5020. handle_status_leds();
  5021. #endif
  5022. check_axes_activity();
  5023. }
  5024. void kill()
  5025. {
  5026. cli(); // Stop interrupts
  5027. disable_heater();
  5028. disable_x();
  5029. disable_y();
  5030. disable_z();
  5031. disable_e0();
  5032. disable_e1();
  5033. disable_e2();
  5034. disable_e3();
  5035. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5036. pinMode(PS_ON_PIN,INPUT);
  5037. #endif
  5038. SERIAL_ERROR_START;
  5039. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5040. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5041. // FMC small patch to update the LCD before ending
  5042. sei(); // enable interrupts
  5043. for ( int i=5; i--; lcd_update())
  5044. {
  5045. delay(200);
  5046. }
  5047. cli(); // disable interrupts
  5048. suicide();
  5049. while(1) { /* Intentionally left empty */ } // Wait for reset
  5050. }
  5051. #ifdef FILAMENT_RUNOUT_SENSOR
  5052. void filrunout()
  5053. {
  5054. if filrunoutEnqued == false {
  5055. filrunoutEnqued = true;
  5056. enquecommand("M600");
  5057. }
  5058. }
  5059. #endif
  5060. void Stop()
  5061. {
  5062. disable_heater();
  5063. if(Stopped == false) {
  5064. Stopped = true;
  5065. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5066. SERIAL_ERROR_START;
  5067. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5068. LCD_MESSAGEPGM(MSG_STOPPED);
  5069. }
  5070. }
  5071. bool IsStopped() { return Stopped; };
  5072. #ifdef FAST_PWM_FAN
  5073. void setPwmFrequency(uint8_t pin, int val)
  5074. {
  5075. val &= 0x07;
  5076. switch(digitalPinToTimer(pin))
  5077. {
  5078. #if defined(TCCR0A)
  5079. case TIMER0A:
  5080. case TIMER0B:
  5081. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5082. // TCCR0B |= val;
  5083. break;
  5084. #endif
  5085. #if defined(TCCR1A)
  5086. case TIMER1A:
  5087. case TIMER1B:
  5088. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5089. // TCCR1B |= val;
  5090. break;
  5091. #endif
  5092. #if defined(TCCR2)
  5093. case TIMER2:
  5094. case TIMER2:
  5095. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5096. TCCR2 |= val;
  5097. break;
  5098. #endif
  5099. #if defined(TCCR2A)
  5100. case TIMER2A:
  5101. case TIMER2B:
  5102. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5103. TCCR2B |= val;
  5104. break;
  5105. #endif
  5106. #if defined(TCCR3A)
  5107. case TIMER3A:
  5108. case TIMER3B:
  5109. case TIMER3C:
  5110. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5111. TCCR3B |= val;
  5112. break;
  5113. #endif
  5114. #if defined(TCCR4A)
  5115. case TIMER4A:
  5116. case TIMER4B:
  5117. case TIMER4C:
  5118. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5119. TCCR4B |= val;
  5120. break;
  5121. #endif
  5122. #if defined(TCCR5A)
  5123. case TIMER5A:
  5124. case TIMER5B:
  5125. case TIMER5C:
  5126. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5127. TCCR5B |= val;
  5128. break;
  5129. #endif
  5130. }
  5131. }
  5132. #endif //FAST_PWM_FAN
  5133. bool setTargetedHotend(int code){
  5134. tmp_extruder = active_extruder;
  5135. if(code_seen('T')) {
  5136. tmp_extruder = code_value();
  5137. if(tmp_extruder >= EXTRUDERS) {
  5138. SERIAL_ECHO_START;
  5139. switch(code){
  5140. case 104:
  5141. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5142. break;
  5143. case 105:
  5144. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5145. break;
  5146. case 109:
  5147. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5148. break;
  5149. case 218:
  5150. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5151. break;
  5152. case 221:
  5153. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5154. break;
  5155. }
  5156. SERIAL_ECHOLN(tmp_extruder);
  5157. return true;
  5158. }
  5159. }
  5160. return false;
  5161. }
  5162. float calculate_volumetric_multiplier(float diameter) {
  5163. if (!volumetric_enabled || diameter == 0) return 1.0;
  5164. float d2 = diameter * 0.5;
  5165. return 1.0 / (M_PI * d2 * d2);
  5166. }
  5167. void calculate_volumetric_multipliers() {
  5168. for (int i=0; i<EXTRUDERS; i++)
  5169. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5170. }