My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 327KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. /**
  33. * -----------------
  34. * G-Codes in Marlin
  35. * -----------------
  36. *
  37. * Helpful G-code references:
  38. * - http://linuxcnc.org/handbook/gcode/g-code.html
  39. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. *
  41. * Help to document Marlin's G-codes online:
  42. * - http://reprap.org/wiki/G-code
  43. * - https://github.com/MarlinFirmware/MarlinDocumentation
  44. *
  45. * -----------------
  46. *
  47. * "G" Codes
  48. *
  49. * G0 -> G1
  50. * G1 - Coordinated Movement X Y Z E
  51. * G2 - CW ARC
  52. * G3 - CCW ARC
  53. * G4 - Dwell S<seconds> or P<milliseconds>
  54. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  55. * G10 - Retract filament according to settings of M207
  56. * G11 - Retract recover filament according to settings of M208
  57. * G12 - Clean tool
  58. * G20 - Set input units to inches
  59. * G21 - Set input units to millimeters
  60. * G28 - Home one or more axes
  61. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  62. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  63. * G31 - Dock sled (Z_PROBE_SLED only)
  64. * G32 - Undock sled (Z_PROBE_SLED only)
  65. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  66. * G90 - Use Absolute Coordinates
  67. * G91 - Use Relative Coordinates
  68. * G92 - Set current position to coordinates given
  69. *
  70. * "M" Codes
  71. *
  72. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. * M1 - Same as M0
  74. * M17 - Enable/Power all stepper motors
  75. * M18 - Disable all stepper motors; same as M84
  76. * M20 - List SD card. (Requires SDSUPPORT)
  77. * M21 - Init SD card. (Requires SDSUPPORT)
  78. * M22 - Release SD card. (Requires SDSUPPORT)
  79. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  80. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  81. * M25 - Pause SD print. (Requires SDSUPPORT)
  82. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  83. * M27 - Report SD print status. (Requires SDSUPPORT)
  84. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  85. * M29 - Stop SD write. (Requires SDSUPPORT)
  86. * M30 - Delete file from SD: "M30 /path/file.gco"
  87. * M31 - Report time since last M109 or SD card start to serial.
  88. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  89. * Use P to run other files as sub-programs: "M32 P !filename#"
  90. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  92. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  93. * M43 - Monitor pins & report changes - report active pins
  94. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  95. * M75 - Start the print job timer.
  96. * M76 - Pause the print job timer.
  97. * M77 - Stop the print job timer.
  98. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  99. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  100. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  101. * M82 - Set E codes absolute (default).
  102. * M83 - Set E codes relative while in Absolute (G90) mode.
  103. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  104. * duration after which steppers should turn off. S0 disables the timeout.
  105. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  107. * M104 - Set extruder target temp.
  108. * M105 - Report current temperatures.
  109. * M106 - Fan on.
  110. * M107 - Fan off.
  111. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  112. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  113. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  114. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  115. * M110 - Set the current line number. (Used by host printing)
  116. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  117. * M112 - Emergency stop.
  118. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  119. * M114 - Report current position.
  120. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  121. * M117 - Display a message on the controller screen. (Requires an LCD)
  122. * M119 - Report endstops status.
  123. * M120 - Enable endstops detection.
  124. * M121 - Disable endstops detection.
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset.
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  197. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  198. *
  199. * ************ SCARA Specific - This can change to suit future G-code regulations
  200. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  201. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  202. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  203. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  204. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. bool Running = true;
  281. uint8_t marlin_debug_flags = DEBUG_NONE;
  282. /**
  283. * Cartesian Current Position
  284. * Used to track the logical position as moves are queued.
  285. * Used by 'line_to_current_position' to do a move after changing it.
  286. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  287. */
  288. float current_position[XYZE] = { 0.0 };
  289. /**
  290. * Cartesian Destination
  291. * A temporary position, usually applied to 'current_position'.
  292. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  293. * 'line_to_destination' sets 'current_position' to 'destination'.
  294. */
  295. static float destination[XYZE] = { 0.0 };
  296. /**
  297. * axis_homed
  298. * Flags that each linear axis was homed.
  299. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  300. *
  301. * axis_known_position
  302. * Flags that the position is known in each linear axis. Set when homed.
  303. * Cleared whenever a stepper powers off, potentially losing its position.
  304. */
  305. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  306. /**
  307. * GCode line number handling. Hosts may opt to include line numbers when
  308. * sending commands to Marlin, and lines will be checked for sequentiality.
  309. * M110 S<int> sets the current line number.
  310. */
  311. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  312. /**
  313. * GCode Command Queue
  314. * A simple ring buffer of BUFSIZE command strings.
  315. *
  316. * Commands are copied into this buffer by the command injectors
  317. * (immediate, serial, sd card) and they are processed sequentially by
  318. * the main loop. The process_next_command function parses the next
  319. * command and hands off execution to individual handler functions.
  320. */
  321. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  322. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  323. cmd_queue_index_w = 0, // Ring buffer write position
  324. commands_in_queue = 0; // Count of commands in the queue
  325. /**
  326. * Current GCode Command
  327. * When a GCode handler is running, these will be set
  328. */
  329. static char *current_command, // The command currently being executed
  330. *current_command_args, // The address where arguments begin
  331. *seen_pointer; // Set by code_seen(), used by the code_value functions
  332. /**
  333. * Next Injected Command pointer. NULL if no commands are being injected.
  334. * Used by Marlin internally to ensure that commands initiated from within
  335. * are enqueued ahead of any pending serial or sd card commands.
  336. */
  337. static const char *injected_commands_P = NULL;
  338. #if ENABLED(INCH_MODE_SUPPORT)
  339. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  340. #endif
  341. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  342. TempUnit input_temp_units = TEMPUNIT_C;
  343. #endif
  344. /**
  345. * Feed rates are often configured with mm/m
  346. * but the planner and stepper like mm/s units.
  347. */
  348. float constexpr homing_feedrate_mm_s[] = {
  349. #if ENABLED(DELTA)
  350. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  351. #else
  352. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  353. #endif
  354. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  355. };
  356. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  357. int feedrate_percentage = 100, saved_feedrate_percentage,
  358. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  359. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  360. volumetric_enabled = false;
  361. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  362. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  363. // The distance that XYZ has been offset by G92. Reset by G28.
  364. float position_shift[XYZ] = { 0 };
  365. // This offset is added to the configured home position.
  366. // Set by M206, M428, or menu item. Saved to EEPROM.
  367. float home_offset[XYZ] = { 0 };
  368. // Software Endstops are based on the configured limits.
  369. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  370. bool soft_endstops_enabled = true;
  371. #endif
  372. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  373. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  374. #if FAN_COUNT > 0
  375. int fanSpeeds[FAN_COUNT] = { 0 };
  376. #endif
  377. // The active extruder (tool). Set with T<extruder> command.
  378. uint8_t active_extruder = 0;
  379. // Relative Mode. Enable with G91, disable with G90.
  380. static bool relative_mode = false;
  381. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  382. volatile bool wait_for_heatup = true;
  383. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  384. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  385. volatile bool wait_for_user = false;
  386. #endif
  387. const char errormagic[] PROGMEM = "Error:";
  388. const char echomagic[] PROGMEM = "echo:";
  389. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  390. // Number of characters read in the current line of serial input
  391. static int serial_count = 0;
  392. // Inactivity shutdown
  393. millis_t previous_cmd_ms = 0;
  394. static millis_t max_inactive_time = 0;
  395. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  396. // Print Job Timer
  397. #if ENABLED(PRINTCOUNTER)
  398. PrintCounter print_job_timer = PrintCounter();
  399. #else
  400. Stopwatch print_job_timer = Stopwatch();
  401. #endif
  402. // Buzzer - I2C on the LCD or a BEEPER_PIN
  403. #if ENABLED(LCD_USE_I2C_BUZZER)
  404. #define BUZZ(d,f) lcd_buzz(d, f)
  405. #elif PIN_EXISTS(BEEPER)
  406. Buzzer buzzer;
  407. #define BUZZ(d,f) buzzer.tone(d, f)
  408. #else
  409. #define BUZZ(d,f) NOOP
  410. #endif
  411. static uint8_t target_extruder;
  412. #if HAS_BED_PROBE
  413. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  414. #endif
  415. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  416. #if HAS_ABL
  417. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  418. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  419. #elif defined(XY_PROBE_SPEED)
  420. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  421. #else
  422. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  423. #endif
  424. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  425. #if ENABLED(DELTA)
  426. #define ADJUST_DELTA(V) \
  427. if (planner.abl_enabled) { \
  428. const float zadj = bilinear_z_offset(V); \
  429. delta[A_AXIS] += zadj; \
  430. delta[B_AXIS] += zadj; \
  431. delta[C_AXIS] += zadj; \
  432. }
  433. #else
  434. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  435. #endif
  436. #elif IS_KINEMATIC
  437. #define ADJUST_DELTA(V) NOOP
  438. #endif
  439. #if ENABLED(Z_DUAL_ENDSTOPS)
  440. float z_endstop_adj = 0;
  441. #endif
  442. // Extruder offsets
  443. #if HOTENDS > 1
  444. float hotend_offset[XYZ][HOTENDS];
  445. #endif
  446. #if HAS_Z_SERVO_ENDSTOP
  447. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  448. #endif
  449. #if ENABLED(BARICUDA)
  450. int baricuda_valve_pressure = 0;
  451. int baricuda_e_to_p_pressure = 0;
  452. #endif
  453. #if ENABLED(FWRETRACT)
  454. bool autoretract_enabled = false;
  455. bool retracted[EXTRUDERS] = { false };
  456. bool retracted_swap[EXTRUDERS] = { false };
  457. float retract_length = RETRACT_LENGTH;
  458. float retract_length_swap = RETRACT_LENGTH_SWAP;
  459. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  460. float retract_zlift = RETRACT_ZLIFT;
  461. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  462. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  463. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  464. #endif // FWRETRACT
  465. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  466. bool powersupply =
  467. #if ENABLED(PS_DEFAULT_OFF)
  468. false
  469. #else
  470. true
  471. #endif
  472. ;
  473. #endif
  474. #if HAS_CASE_LIGHT
  475. bool case_light_on =
  476. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  477. true
  478. #else
  479. false
  480. #endif
  481. ;
  482. #endif
  483. #if ENABLED(DELTA)
  484. #define SIN_60 0.8660254037844386
  485. #define COS_60 0.5
  486. float delta[ABC],
  487. endstop_adj[ABC] = { 0 };
  488. // these are the default values, can be overriden with M665
  489. float delta_radius = DELTA_RADIUS,
  490. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  491. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  492. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  493. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  494. delta_tower3_x = 0, // back middle tower
  495. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  496. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  497. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  498. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  499. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  500. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  501. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  502. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  503. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  504. delta_clip_start_height = Z_MAX_POS;
  505. float delta_safe_distance_from_top();
  506. #else
  507. static bool home_all_axis = true;
  508. #endif
  509. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  510. #define UNPROBED 9999.0f
  511. int bilinear_grid_spacing[2], bilinear_start[2];
  512. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  513. #endif
  514. #if IS_SCARA
  515. // Float constants for SCARA calculations
  516. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  517. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  518. L2_2 = sq(float(L2));
  519. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  520. delta[ABC];
  521. #endif
  522. float cartes[XYZ] = { 0 };
  523. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  524. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  525. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  526. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  527. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  528. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  529. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  530. #endif
  531. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  532. static bool filament_ran_out = false;
  533. #endif
  534. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  535. FilamentChangeMenuResponse filament_change_menu_response;
  536. #endif
  537. #if ENABLED(MIXING_EXTRUDER)
  538. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  539. #if MIXING_VIRTUAL_TOOLS > 1
  540. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  541. #endif
  542. #endif
  543. static bool send_ok[BUFSIZE];
  544. #if HAS_SERVOS
  545. Servo servo[NUM_SERVOS];
  546. #define MOVE_SERVO(I, P) servo[I].move(P)
  547. #if HAS_Z_SERVO_ENDSTOP
  548. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  549. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  550. #endif
  551. #endif
  552. #ifdef CHDK
  553. millis_t chdkHigh = 0;
  554. boolean chdkActive = false;
  555. #endif
  556. #if ENABLED(PID_EXTRUSION_SCALING)
  557. int lpq_len = 20;
  558. #endif
  559. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  560. static MarlinBusyState busy_state = NOT_BUSY;
  561. static millis_t next_busy_signal_ms = 0;
  562. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  563. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  564. #else
  565. #define host_keepalive() ;
  566. #define KEEPALIVE_STATE(n) ;
  567. #endif // HOST_KEEPALIVE_FEATURE
  568. #define DEFINE_PGM_READ_ANY(type, reader) \
  569. static inline type pgm_read_any(const type *p) \
  570. { return pgm_read_##reader##_near(p); }
  571. DEFINE_PGM_READ_ANY(float, float)
  572. DEFINE_PGM_READ_ANY(signed char, byte)
  573. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  574. static const PROGMEM type array##_P[XYZ] = \
  575. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  576. static inline type array(int axis) \
  577. { return pgm_read_any(&array##_P[axis]); }
  578. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  579. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  580. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  581. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  582. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  583. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  584. /**
  585. * ***************************************************************************
  586. * ******************************** FUNCTIONS ********************************
  587. * ***************************************************************************
  588. */
  589. void stop();
  590. void get_available_commands();
  591. void process_next_command();
  592. void prepare_move_to_destination();
  593. void get_cartesian_from_steppers();
  594. void set_current_from_steppers_for_axis(const AxisEnum axis);
  595. #if ENABLED(ARC_SUPPORT)
  596. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  597. #endif
  598. #if ENABLED(BEZIER_CURVE_SUPPORT)
  599. void plan_cubic_move(const float offset[4]);
  600. #endif
  601. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  602. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  603. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  604. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  605. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  606. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  607. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  608. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  609. static void report_current_position();
  610. #if ENABLED(DEBUG_LEVELING_FEATURE)
  611. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  612. serialprintPGM(prefix);
  613. SERIAL_ECHOPAIR("(", x);
  614. SERIAL_ECHOPAIR(", ", y);
  615. SERIAL_ECHOPAIR(", ", z);
  616. SERIAL_ECHOPGM(")");
  617. if (suffix) serialprintPGM(suffix);
  618. else SERIAL_EOL;
  619. }
  620. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  621. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  622. }
  623. #if HAS_ABL
  624. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  625. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  626. }
  627. #endif
  628. #define DEBUG_POS(SUFFIX,VAR) do { \
  629. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  630. #endif
  631. /**
  632. * sync_plan_position
  633. *
  634. * Set the planner/stepper positions directly from current_position with
  635. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  636. */
  637. inline void sync_plan_position() {
  638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  639. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  640. #endif
  641. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  642. }
  643. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  644. #if IS_KINEMATIC
  645. inline void sync_plan_position_kinematic() {
  646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  647. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  648. #endif
  649. planner.set_position_mm_kinematic(current_position);
  650. }
  651. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  652. #else
  653. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  654. #endif
  655. #if ENABLED(SDSUPPORT)
  656. #include "SdFatUtil.h"
  657. int freeMemory() { return SdFatUtil::FreeRam(); }
  658. #else
  659. extern "C" {
  660. extern char __bss_end;
  661. extern char __heap_start;
  662. extern void* __brkval;
  663. int freeMemory() {
  664. int free_memory;
  665. if ((int)__brkval == 0)
  666. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  667. else
  668. free_memory = ((int)&free_memory) - ((int)__brkval);
  669. return free_memory;
  670. }
  671. }
  672. #endif //!SDSUPPORT
  673. #if ENABLED(DIGIPOT_I2C)
  674. extern void digipot_i2c_set_current(int channel, float current);
  675. extern void digipot_i2c_init();
  676. #endif
  677. /**
  678. * Inject the next "immediate" command, when possible.
  679. * Return true if any immediate commands remain to inject.
  680. */
  681. static bool drain_injected_commands_P() {
  682. if (injected_commands_P != NULL) {
  683. size_t i = 0;
  684. char c, cmd[30];
  685. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  686. cmd[sizeof(cmd) - 1] = '\0';
  687. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  688. cmd[i] = '\0';
  689. if (enqueue_and_echo_command(cmd)) { // success?
  690. if (c) // newline char?
  691. injected_commands_P += i + 1; // advance to the next command
  692. else
  693. injected_commands_P = NULL; // nul char? no more commands
  694. }
  695. }
  696. return (injected_commands_P != NULL); // return whether any more remain
  697. }
  698. /**
  699. * Record one or many commands to run from program memory.
  700. * Aborts the current queue, if any.
  701. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  702. */
  703. void enqueue_and_echo_commands_P(const char* pgcode) {
  704. injected_commands_P = pgcode;
  705. drain_injected_commands_P(); // first command executed asap (when possible)
  706. }
  707. void clear_command_queue() {
  708. cmd_queue_index_r = cmd_queue_index_w;
  709. commands_in_queue = 0;
  710. }
  711. /**
  712. * Once a new command is in the ring buffer, call this to commit it
  713. */
  714. inline void _commit_command(bool say_ok) {
  715. send_ok[cmd_queue_index_w] = say_ok;
  716. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  717. commands_in_queue++;
  718. }
  719. /**
  720. * Copy a command directly into the main command buffer, from RAM.
  721. * Returns true if successfully adds the command
  722. */
  723. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  724. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  725. strcpy(command_queue[cmd_queue_index_w], cmd);
  726. _commit_command(say_ok);
  727. return true;
  728. }
  729. void enqueue_and_echo_command_now(const char* cmd) {
  730. while (!enqueue_and_echo_command(cmd)) idle();
  731. }
  732. /**
  733. * Enqueue with Serial Echo
  734. */
  735. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  736. if (_enqueuecommand(cmd, say_ok)) {
  737. SERIAL_ECHO_START;
  738. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  739. SERIAL_CHAR('"');
  740. SERIAL_EOL;
  741. return true;
  742. }
  743. return false;
  744. }
  745. void setup_killpin() {
  746. #if HAS_KILL
  747. SET_INPUT(KILL_PIN);
  748. WRITE(KILL_PIN, HIGH);
  749. #endif
  750. }
  751. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  752. void setup_filrunoutpin() {
  753. SET_INPUT(FIL_RUNOUT_PIN);
  754. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  755. WRITE(FIL_RUNOUT_PIN, HIGH);
  756. #endif
  757. }
  758. #endif
  759. // Set home pin
  760. void setup_homepin(void) {
  761. #if HAS_HOME
  762. SET_INPUT(HOME_PIN);
  763. WRITE(HOME_PIN, HIGH);
  764. #endif
  765. }
  766. void setup_powerhold() {
  767. #if HAS_SUICIDE
  768. OUT_WRITE(SUICIDE_PIN, HIGH);
  769. #endif
  770. #if HAS_POWER_SWITCH
  771. #if ENABLED(PS_DEFAULT_OFF)
  772. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  773. #else
  774. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  775. #endif
  776. #endif
  777. }
  778. void suicide() {
  779. #if HAS_SUICIDE
  780. OUT_WRITE(SUICIDE_PIN, LOW);
  781. #endif
  782. }
  783. void servo_init() {
  784. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  785. servo[0].attach(SERVO0_PIN);
  786. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  787. #endif
  788. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  789. servo[1].attach(SERVO1_PIN);
  790. servo[1].detach();
  791. #endif
  792. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  793. servo[2].attach(SERVO2_PIN);
  794. servo[2].detach();
  795. #endif
  796. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  797. servo[3].attach(SERVO3_PIN);
  798. servo[3].detach();
  799. #endif
  800. #if HAS_Z_SERVO_ENDSTOP
  801. /**
  802. * Set position of Z Servo Endstop
  803. *
  804. * The servo might be deployed and positioned too low to stow
  805. * when starting up the machine or rebooting the board.
  806. * There's no way to know where the nozzle is positioned until
  807. * homing has been done - no homing with z-probe without init!
  808. *
  809. */
  810. STOW_Z_SERVO();
  811. #endif
  812. }
  813. /**
  814. * Stepper Reset (RigidBoard, et.al.)
  815. */
  816. #if HAS_STEPPER_RESET
  817. void disableStepperDrivers() {
  818. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  819. }
  820. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  821. #endif
  822. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  823. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  824. i2c.receive(bytes);
  825. }
  826. void i2c_on_request() { // just send dummy data for now
  827. i2c.reply("Hello World!\n");
  828. }
  829. #endif
  830. void gcode_line_error(const char* err, bool doFlush = true) {
  831. SERIAL_ERROR_START;
  832. serialprintPGM(err);
  833. SERIAL_ERRORLN(gcode_LastN);
  834. //Serial.println(gcode_N);
  835. if (doFlush) FlushSerialRequestResend();
  836. serial_count = 0;
  837. }
  838. inline void get_serial_commands() {
  839. static char serial_line_buffer[MAX_CMD_SIZE];
  840. static boolean serial_comment_mode = false;
  841. // If the command buffer is empty for too long,
  842. // send "wait" to indicate Marlin is still waiting.
  843. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  844. static millis_t last_command_time = 0;
  845. millis_t ms = millis();
  846. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  847. SERIAL_ECHOLNPGM(MSG_WAIT);
  848. last_command_time = ms;
  849. }
  850. #endif
  851. /**
  852. * Loop while serial characters are incoming and the queue is not full
  853. */
  854. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  855. char serial_char = MYSERIAL.read();
  856. /**
  857. * If the character ends the line
  858. */
  859. if (serial_char == '\n' || serial_char == '\r') {
  860. serial_comment_mode = false; // end of line == end of comment
  861. if (!serial_count) continue; // skip empty lines
  862. serial_line_buffer[serial_count] = 0; // terminate string
  863. serial_count = 0; //reset buffer
  864. char* command = serial_line_buffer;
  865. while (*command == ' ') command++; // skip any leading spaces
  866. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  867. char* apos = strchr(command, '*');
  868. if (npos) {
  869. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  870. if (M110) {
  871. char* n2pos = strchr(command + 4, 'N');
  872. if (n2pos) npos = n2pos;
  873. }
  874. gcode_N = strtol(npos + 1, NULL, 10);
  875. if (gcode_N != gcode_LastN + 1 && !M110) {
  876. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  877. return;
  878. }
  879. if (apos) {
  880. byte checksum = 0, count = 0;
  881. while (command[count] != '*') checksum ^= command[count++];
  882. if (strtol(apos + 1, NULL, 10) != checksum) {
  883. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  884. return;
  885. }
  886. // if no errors, continue parsing
  887. }
  888. else {
  889. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  890. return;
  891. }
  892. gcode_LastN = gcode_N;
  893. // if no errors, continue parsing
  894. }
  895. else if (apos) { // No '*' without 'N'
  896. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  897. return;
  898. }
  899. // Movement commands alert when stopped
  900. if (IsStopped()) {
  901. char* gpos = strchr(command, 'G');
  902. if (gpos) {
  903. int codenum = strtol(gpos + 1, NULL, 10);
  904. switch (codenum) {
  905. case 0:
  906. case 1:
  907. case 2:
  908. case 3:
  909. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  910. LCD_MESSAGEPGM(MSG_STOPPED);
  911. break;
  912. }
  913. }
  914. }
  915. #if DISABLED(EMERGENCY_PARSER)
  916. // If command was e-stop process now
  917. if (strcmp(command, "M108") == 0) {
  918. wait_for_heatup = false;
  919. #if ENABLED(ULTIPANEL)
  920. wait_for_user = false;
  921. #endif
  922. }
  923. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  924. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  925. #endif
  926. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  927. last_command_time = ms;
  928. #endif
  929. // Add the command to the queue
  930. _enqueuecommand(serial_line_buffer, true);
  931. }
  932. else if (serial_count >= MAX_CMD_SIZE - 1) {
  933. // Keep fetching, but ignore normal characters beyond the max length
  934. // The command will be injected when EOL is reached
  935. }
  936. else if (serial_char == '\\') { // Handle escapes
  937. if (MYSERIAL.available() > 0) {
  938. // if we have one more character, copy it over
  939. serial_char = MYSERIAL.read();
  940. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  941. }
  942. // otherwise do nothing
  943. }
  944. else { // it's not a newline, carriage return or escape char
  945. if (serial_char == ';') serial_comment_mode = true;
  946. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  947. }
  948. } // queue has space, serial has data
  949. }
  950. #if ENABLED(SDSUPPORT)
  951. inline void get_sdcard_commands() {
  952. static bool stop_buffering = false,
  953. sd_comment_mode = false;
  954. if (!card.sdprinting) return;
  955. /**
  956. * '#' stops reading from SD to the buffer prematurely, so procedural
  957. * macro calls are possible. If it occurs, stop_buffering is triggered
  958. * and the buffer is run dry; this character _can_ occur in serial com
  959. * due to checksums, however, no checksums are used in SD printing.
  960. */
  961. if (commands_in_queue == 0) stop_buffering = false;
  962. uint16_t sd_count = 0;
  963. bool card_eof = card.eof();
  964. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  965. int16_t n = card.get();
  966. char sd_char = (char)n;
  967. card_eof = card.eof();
  968. if (card_eof || n == -1
  969. || sd_char == '\n' || sd_char == '\r'
  970. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  971. ) {
  972. if (card_eof) {
  973. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  974. card.printingHasFinished();
  975. card.checkautostart(true);
  976. }
  977. else if (n == -1) {
  978. SERIAL_ERROR_START;
  979. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  980. }
  981. if (sd_char == '#') stop_buffering = true;
  982. sd_comment_mode = false; //for new command
  983. if (!sd_count) continue; //skip empty lines
  984. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  985. sd_count = 0; //clear buffer
  986. _commit_command(false);
  987. }
  988. else if (sd_count >= MAX_CMD_SIZE - 1) {
  989. /**
  990. * Keep fetching, but ignore normal characters beyond the max length
  991. * The command will be injected when EOL is reached
  992. */
  993. }
  994. else {
  995. if (sd_char == ';') sd_comment_mode = true;
  996. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  997. }
  998. }
  999. }
  1000. #endif // SDSUPPORT
  1001. /**
  1002. * Add to the circular command queue the next command from:
  1003. * - The command-injection queue (injected_commands_P)
  1004. * - The active serial input (usually USB)
  1005. * - The SD card file being actively printed
  1006. */
  1007. void get_available_commands() {
  1008. // if any immediate commands remain, don't get other commands yet
  1009. if (drain_injected_commands_P()) return;
  1010. get_serial_commands();
  1011. #if ENABLED(SDSUPPORT)
  1012. get_sdcard_commands();
  1013. #endif
  1014. }
  1015. inline bool code_has_value() {
  1016. int i = 1;
  1017. char c = seen_pointer[i];
  1018. while (c == ' ') c = seen_pointer[++i];
  1019. if (c == '-' || c == '+') c = seen_pointer[++i];
  1020. if (c == '.') c = seen_pointer[++i];
  1021. return NUMERIC(c);
  1022. }
  1023. inline float code_value_float() {
  1024. float ret;
  1025. char* e = strchr(seen_pointer, 'E');
  1026. if (e) {
  1027. *e = 0;
  1028. ret = strtod(seen_pointer + 1, NULL);
  1029. *e = 'E';
  1030. }
  1031. else
  1032. ret = strtod(seen_pointer + 1, NULL);
  1033. return ret;
  1034. }
  1035. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1036. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1037. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1038. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1039. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1040. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1041. #if ENABLED(INCH_MODE_SUPPORT)
  1042. inline void set_input_linear_units(LinearUnit units) {
  1043. switch (units) {
  1044. case LINEARUNIT_INCH:
  1045. linear_unit_factor = 25.4;
  1046. break;
  1047. case LINEARUNIT_MM:
  1048. default:
  1049. linear_unit_factor = 1.0;
  1050. break;
  1051. }
  1052. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1053. }
  1054. inline float axis_unit_factor(int axis) {
  1055. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1056. }
  1057. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1058. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1059. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1060. #else
  1061. inline float code_value_linear_units() { return code_value_float(); }
  1062. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1063. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1064. #endif
  1065. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1066. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1067. float code_value_temp_abs() {
  1068. switch (input_temp_units) {
  1069. case TEMPUNIT_C:
  1070. return code_value_float();
  1071. case TEMPUNIT_F:
  1072. return (code_value_float() - 32) * 0.5555555556;
  1073. case TEMPUNIT_K:
  1074. return code_value_float() - 272.15;
  1075. default:
  1076. return code_value_float();
  1077. }
  1078. }
  1079. float code_value_temp_diff() {
  1080. switch (input_temp_units) {
  1081. case TEMPUNIT_C:
  1082. case TEMPUNIT_K:
  1083. return code_value_float();
  1084. case TEMPUNIT_F:
  1085. return code_value_float() * 0.5555555556;
  1086. default:
  1087. return code_value_float();
  1088. }
  1089. }
  1090. #else
  1091. float code_value_temp_abs() { return code_value_float(); }
  1092. float code_value_temp_diff() { return code_value_float(); }
  1093. #endif
  1094. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1095. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1096. bool code_seen(char code) {
  1097. seen_pointer = strchr(current_command_args, code);
  1098. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1099. }
  1100. /**
  1101. * Set target_extruder from the T parameter or the active_extruder
  1102. *
  1103. * Returns TRUE if the target is invalid
  1104. */
  1105. bool get_target_extruder_from_command(int code) {
  1106. if (code_seen('T')) {
  1107. if (code_value_byte() >= EXTRUDERS) {
  1108. SERIAL_ECHO_START;
  1109. SERIAL_CHAR('M');
  1110. SERIAL_ECHO(code);
  1111. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1112. return true;
  1113. }
  1114. target_extruder = code_value_byte();
  1115. }
  1116. else
  1117. target_extruder = active_extruder;
  1118. return false;
  1119. }
  1120. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1121. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1122. #endif
  1123. #if ENABLED(DUAL_X_CARRIAGE)
  1124. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1125. static float x_home_pos(const int extruder) {
  1126. if (extruder == 0)
  1127. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1128. else
  1129. /**
  1130. * In dual carriage mode the extruder offset provides an override of the
  1131. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1132. * This allows soft recalibration of the second extruder home position
  1133. * without firmware reflash (through the M218 command).
  1134. */
  1135. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1136. }
  1137. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1138. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1139. static bool active_extruder_parked = false; // used in mode 1 & 2
  1140. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1141. static millis_t delayed_move_time = 0; // used in mode 1
  1142. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1143. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1144. #endif // DUAL_X_CARRIAGE
  1145. /**
  1146. * Software endstops can be used to monitor the open end of
  1147. * an axis that has a hardware endstop on the other end. Or
  1148. * they can prevent axes from moving past endstops and grinding.
  1149. *
  1150. * To keep doing their job as the coordinate system changes,
  1151. * the software endstop positions must be refreshed to remain
  1152. * at the same positions relative to the machine.
  1153. */
  1154. void update_software_endstops(AxisEnum axis) {
  1155. float offs = LOGICAL_POSITION(0, axis);
  1156. #if ENABLED(DUAL_X_CARRIAGE)
  1157. if (axis == X_AXIS) {
  1158. // In Dual X mode hotend_offset[X] is T1's home position
  1159. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1160. if (active_extruder != 0) {
  1161. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1162. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1163. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1164. }
  1165. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1166. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1167. // but not so far to the right that T1 would move past the end
  1168. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1169. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1170. }
  1171. else {
  1172. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1173. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1174. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1175. }
  1176. }
  1177. #else
  1178. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1179. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1180. #endif
  1181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1182. if (DEBUGGING(LEVELING)) {
  1183. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1184. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1185. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1186. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1187. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1188. }
  1189. #endif
  1190. #if ENABLED(DELTA)
  1191. if (axis == Z_AXIS)
  1192. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1193. #endif
  1194. }
  1195. /**
  1196. * Change the home offset for an axis, update the current
  1197. * position and the software endstops to retain the same
  1198. * relative distance to the new home.
  1199. *
  1200. * Since this changes the current_position, code should
  1201. * call sync_plan_position soon after this.
  1202. */
  1203. static void set_home_offset(AxisEnum axis, float v) {
  1204. current_position[axis] += v - home_offset[axis];
  1205. home_offset[axis] = v;
  1206. update_software_endstops(axis);
  1207. }
  1208. /**
  1209. * Set an axis' current position to its home position (after homing).
  1210. *
  1211. * For Core and Cartesian robots this applies one-to-one when an
  1212. * individual axis has been homed.
  1213. *
  1214. * DELTA should wait until all homing is done before setting the XYZ
  1215. * current_position to home, because homing is a single operation.
  1216. * In the case where the axis positions are already known and previously
  1217. * homed, DELTA could home to X or Y individually by moving either one
  1218. * to the center. However, homing Z always homes XY and Z.
  1219. *
  1220. * SCARA should wait until all XY homing is done before setting the XY
  1221. * current_position to home, because neither X nor Y is at home until
  1222. * both are at home. Z can however be homed individually.
  1223. *
  1224. * Callers must sync the planner position after calling this!
  1225. */
  1226. static void set_axis_is_at_home(AxisEnum axis) {
  1227. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1228. if (DEBUGGING(LEVELING)) {
  1229. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1230. SERIAL_CHAR(')');
  1231. SERIAL_EOL;
  1232. }
  1233. #endif
  1234. axis_known_position[axis] = axis_homed[axis] = true;
  1235. position_shift[axis] = 0;
  1236. update_software_endstops(axis);
  1237. #if ENABLED(DUAL_X_CARRIAGE)
  1238. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1239. current_position[X_AXIS] = x_home_pos(active_extruder);
  1240. return;
  1241. }
  1242. #endif
  1243. #if ENABLED(MORGAN_SCARA)
  1244. /**
  1245. * Morgan SCARA homes XY at the same time
  1246. */
  1247. if (axis == X_AXIS || axis == Y_AXIS) {
  1248. float homeposition[XYZ];
  1249. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1250. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1251. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1252. /**
  1253. * Get Home position SCARA arm angles using inverse kinematics,
  1254. * and calculate homing offset using forward kinematics
  1255. */
  1256. inverse_kinematics(homeposition);
  1257. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1258. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1259. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1260. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1261. /**
  1262. * SCARA home positions are based on configuration since the actual
  1263. * limits are determined by the inverse kinematic transform.
  1264. */
  1265. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1266. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1267. }
  1268. else
  1269. #endif
  1270. {
  1271. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1272. }
  1273. /**
  1274. * Z Probe Z Homing? Account for the probe's Z offset.
  1275. */
  1276. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1277. if (axis == Z_AXIS) {
  1278. #if HOMING_Z_WITH_PROBE
  1279. current_position[Z_AXIS] -= zprobe_zoffset;
  1280. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1281. if (DEBUGGING(LEVELING)) {
  1282. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1283. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1284. }
  1285. #endif
  1286. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1287. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1288. #endif
  1289. }
  1290. #endif
  1291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1292. if (DEBUGGING(LEVELING)) {
  1293. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1294. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1295. DEBUG_POS("", current_position);
  1296. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1297. SERIAL_CHAR(')');
  1298. SERIAL_EOL;
  1299. }
  1300. #endif
  1301. }
  1302. /**
  1303. * Some planner shorthand inline functions
  1304. */
  1305. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1306. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1307. int hbd = homing_bump_divisor[axis];
  1308. if (hbd < 1) {
  1309. hbd = 10;
  1310. SERIAL_ECHO_START;
  1311. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1312. }
  1313. return homing_feedrate_mm_s[axis] / hbd;
  1314. }
  1315. //
  1316. // line_to_current_position
  1317. // Move the planner to the current position from wherever it last moved
  1318. // (or from wherever it has been told it is located).
  1319. //
  1320. inline void line_to_current_position() {
  1321. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1322. }
  1323. //
  1324. // line_to_destination
  1325. // Move the planner, not necessarily synced with current_position
  1326. //
  1327. inline void line_to_destination(float fr_mm_s) {
  1328. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1329. }
  1330. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1331. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1332. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1333. #if IS_KINEMATIC
  1334. /**
  1335. * Calculate delta, start a line, and set current_position to destination
  1336. */
  1337. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1339. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1340. #endif
  1341. if ( current_position[X_AXIS] == destination[X_AXIS]
  1342. && current_position[Y_AXIS] == destination[Y_AXIS]
  1343. && current_position[Z_AXIS] == destination[Z_AXIS]
  1344. && current_position[E_AXIS] == destination[E_AXIS]
  1345. ) return;
  1346. refresh_cmd_timeout();
  1347. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1348. set_current_to_destination();
  1349. }
  1350. #endif // IS_KINEMATIC
  1351. /**
  1352. * Plan a move to (X, Y, Z) and set the current_position
  1353. * The final current_position may not be the one that was requested
  1354. */
  1355. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1356. float old_feedrate_mm_s = feedrate_mm_s;
  1357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1358. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1359. #endif
  1360. #if ENABLED(DELTA)
  1361. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1362. set_destination_to_current(); // sync destination at the start
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1365. #endif
  1366. // when in the danger zone
  1367. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1368. if (z > delta_clip_start_height) { // staying in the danger zone
  1369. destination[X_AXIS] = x; // move directly (uninterpolated)
  1370. destination[Y_AXIS] = y;
  1371. destination[Z_AXIS] = z;
  1372. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1374. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1375. #endif
  1376. return;
  1377. }
  1378. else {
  1379. destination[Z_AXIS] = delta_clip_start_height;
  1380. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1383. #endif
  1384. }
  1385. }
  1386. if (z > current_position[Z_AXIS]) { // raising?
  1387. destination[Z_AXIS] = z;
  1388. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1391. #endif
  1392. }
  1393. destination[X_AXIS] = x;
  1394. destination[Y_AXIS] = y;
  1395. prepare_move_to_destination(); // set_current_to_destination
  1396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1397. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1398. #endif
  1399. if (z < current_position[Z_AXIS]) { // lowering?
  1400. destination[Z_AXIS] = z;
  1401. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1403. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1404. #endif
  1405. }
  1406. #elif IS_SCARA
  1407. set_destination_to_current();
  1408. // If Z needs to raise, do it before moving XY
  1409. if (destination[Z_AXIS] < z) {
  1410. destination[Z_AXIS] = z;
  1411. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1412. }
  1413. destination[X_AXIS] = x;
  1414. destination[Y_AXIS] = y;
  1415. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1416. // If Z needs to lower, do it after moving XY
  1417. if (destination[Z_AXIS] > z) {
  1418. destination[Z_AXIS] = z;
  1419. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1420. }
  1421. #else
  1422. // If Z needs to raise, do it before moving XY
  1423. if (current_position[Z_AXIS] < z) {
  1424. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1425. current_position[Z_AXIS] = z;
  1426. line_to_current_position();
  1427. }
  1428. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1429. current_position[X_AXIS] = x;
  1430. current_position[Y_AXIS] = y;
  1431. line_to_current_position();
  1432. // If Z needs to lower, do it after moving XY
  1433. if (current_position[Z_AXIS] > z) {
  1434. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1435. current_position[Z_AXIS] = z;
  1436. line_to_current_position();
  1437. }
  1438. #endif
  1439. stepper.synchronize();
  1440. feedrate_mm_s = old_feedrate_mm_s;
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1443. #endif
  1444. }
  1445. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1446. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1447. }
  1448. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1449. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1450. }
  1451. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1452. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1453. }
  1454. //
  1455. // Prepare to do endstop or probe moves
  1456. // with custom feedrates.
  1457. //
  1458. // - Save current feedrates
  1459. // - Reset the rate multiplier
  1460. // - Reset the command timeout
  1461. // - Enable the endstops (for endstop moves)
  1462. //
  1463. static void setup_for_endstop_or_probe_move() {
  1464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1465. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1466. #endif
  1467. saved_feedrate_mm_s = feedrate_mm_s;
  1468. saved_feedrate_percentage = feedrate_percentage;
  1469. feedrate_percentage = 100;
  1470. refresh_cmd_timeout();
  1471. }
  1472. static void clean_up_after_endstop_or_probe_move() {
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1475. #endif
  1476. feedrate_mm_s = saved_feedrate_mm_s;
  1477. feedrate_percentage = saved_feedrate_percentage;
  1478. refresh_cmd_timeout();
  1479. }
  1480. #if HAS_BED_PROBE
  1481. /**
  1482. * Raise Z to a minimum height to make room for a probe to move
  1483. */
  1484. inline void do_probe_raise(float z_raise) {
  1485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1486. if (DEBUGGING(LEVELING)) {
  1487. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1488. SERIAL_CHAR(')');
  1489. SERIAL_EOL;
  1490. }
  1491. #endif
  1492. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1493. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1494. if (z_dest > current_position[Z_AXIS])
  1495. do_blocking_move_to_z(z_dest);
  1496. }
  1497. #endif //HAS_BED_PROBE
  1498. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1499. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1500. const bool xx = x && !axis_homed[X_AXIS],
  1501. yy = y && !axis_homed[Y_AXIS],
  1502. zz = z && !axis_homed[Z_AXIS];
  1503. if (xx || yy || zz) {
  1504. SERIAL_ECHO_START;
  1505. SERIAL_ECHOPGM(MSG_HOME " ");
  1506. if (xx) SERIAL_ECHOPGM(MSG_X);
  1507. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1508. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1509. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1510. #if ENABLED(ULTRA_LCD)
  1511. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1512. strcat_P(message, PSTR(MSG_HOME " "));
  1513. if (xx) strcat_P(message, PSTR(MSG_X));
  1514. if (yy) strcat_P(message, PSTR(MSG_Y));
  1515. if (zz) strcat_P(message, PSTR(MSG_Z));
  1516. strcat_P(message, PSTR(" " MSG_FIRST));
  1517. lcd_setstatus(message);
  1518. #endif
  1519. return true;
  1520. }
  1521. return false;
  1522. }
  1523. #endif
  1524. #if ENABLED(Z_PROBE_SLED)
  1525. #ifndef SLED_DOCKING_OFFSET
  1526. #define SLED_DOCKING_OFFSET 0
  1527. #endif
  1528. /**
  1529. * Method to dock/undock a sled designed by Charles Bell.
  1530. *
  1531. * stow[in] If false, move to MAX_X and engage the solenoid
  1532. * If true, move to MAX_X and release the solenoid
  1533. */
  1534. static void dock_sled(bool stow) {
  1535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1536. if (DEBUGGING(LEVELING)) {
  1537. SERIAL_ECHOPAIR("dock_sled(", stow);
  1538. SERIAL_CHAR(')');
  1539. SERIAL_EOL;
  1540. }
  1541. #endif
  1542. // Dock sled a bit closer to ensure proper capturing
  1543. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1544. #if PIN_EXISTS(SLED)
  1545. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1546. #endif
  1547. }
  1548. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1549. void run_deploy_moves_script() {
  1550. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1551. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1552. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1562. #endif
  1563. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1564. #endif
  1565. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1566. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1567. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1577. #endif
  1578. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1579. #endif
  1580. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1581. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1582. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1592. #endif
  1593. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1594. #endif
  1595. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1607. #endif
  1608. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1609. #endif
  1610. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1613. #endif
  1614. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1615. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1622. #endif
  1623. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1624. #endif
  1625. }
  1626. void run_stow_moves_script() {
  1627. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1628. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1629. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1632. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1635. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1638. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1639. #endif
  1640. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1641. #endif
  1642. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1643. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1644. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1647. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1650. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1653. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1654. #endif
  1655. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1656. #endif
  1657. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1658. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1659. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1662. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1665. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1668. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1669. #endif
  1670. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1671. #endif
  1672. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1673. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1674. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1677. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1680. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1683. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1684. #endif
  1685. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1686. #endif
  1687. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1688. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1689. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1692. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1695. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1698. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1699. #endif
  1700. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1701. #endif
  1702. }
  1703. #endif
  1704. #if HAS_BED_PROBE
  1705. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1706. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1707. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1708. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1709. #else
  1710. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1711. #endif
  1712. #endif
  1713. #define DEPLOY_PROBE() set_probe_deployed(true)
  1714. #define STOW_PROBE() set_probe_deployed(false)
  1715. #if ENABLED(BLTOUCH)
  1716. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1717. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1718. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1719. if (DEBUGGING(LEVELING)) {
  1720. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1721. SERIAL_CHAR(')');
  1722. SERIAL_EOL;
  1723. }
  1724. #endif
  1725. }
  1726. #endif
  1727. // returns false for ok and true for failure
  1728. static bool set_probe_deployed(bool deploy) {
  1729. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1730. if (DEBUGGING(LEVELING)) {
  1731. DEBUG_POS("set_probe_deployed", current_position);
  1732. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1733. }
  1734. #endif
  1735. if (endstops.z_probe_enabled == deploy) return false;
  1736. // Make room for probe
  1737. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1738. // When deploying make sure BLTOUCH is not already triggered
  1739. #if ENABLED(BLTOUCH)
  1740. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1741. #elif ENABLED(Z_PROBE_SLED)
  1742. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1743. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1744. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1745. #endif
  1746. float oldXpos = current_position[X_AXIS],
  1747. oldYpos = current_position[Y_AXIS];
  1748. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1749. // If endstop is already false, the Z probe is deployed
  1750. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1751. // Would a goto be less ugly?
  1752. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1753. // for a triggered when stowed manual probe.
  1754. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1755. // otherwise an Allen-Key probe can't be stowed.
  1756. #endif
  1757. #if ENABLED(Z_PROBE_SLED)
  1758. dock_sled(!deploy);
  1759. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1760. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1761. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1762. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1763. #endif
  1764. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1765. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1766. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1767. if (IsRunning()) {
  1768. SERIAL_ERROR_START;
  1769. SERIAL_ERRORLNPGM("Z-Probe failed");
  1770. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1771. }
  1772. stop();
  1773. return true;
  1774. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1775. #endif
  1776. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1777. endstops.enable_z_probe(deploy);
  1778. return false;
  1779. }
  1780. static void do_probe_move(float z, float fr_mm_m) {
  1781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1782. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1783. #endif
  1784. // Deploy BLTouch at the start of any probe
  1785. #if ENABLED(BLTOUCH)
  1786. set_bltouch_deployed(true);
  1787. #endif
  1788. // Move down until probe triggered
  1789. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1790. // Retract BLTouch immediately after a probe
  1791. #if ENABLED(BLTOUCH)
  1792. set_bltouch_deployed(false);
  1793. #endif
  1794. // Clear endstop flags
  1795. endstops.hit_on_purpose();
  1796. // Get Z where the steppers were interrupted
  1797. set_current_from_steppers_for_axis(Z_AXIS);
  1798. // Tell the planner where we actually are
  1799. SYNC_PLAN_POSITION_KINEMATIC();
  1800. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1801. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1802. #endif
  1803. }
  1804. // Do a single Z probe and return with current_position[Z_AXIS]
  1805. // at the height where the probe triggered.
  1806. static float run_z_probe() {
  1807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1808. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1809. #endif
  1810. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1811. refresh_cmd_timeout();
  1812. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1813. // Do a first probe at the fast speed
  1814. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1816. float first_probe_z = current_position[Z_AXIS];
  1817. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1818. #endif
  1819. // move up by the bump distance
  1820. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1821. #else
  1822. // If the nozzle is above the travel height then
  1823. // move down quickly before doing the slow probe
  1824. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1825. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1826. if (z < current_position[Z_AXIS])
  1827. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1828. #endif
  1829. // move down slowly to find bed
  1830. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1832. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1833. #endif
  1834. // Debug: compare probe heights
  1835. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1836. if (DEBUGGING(LEVELING)) {
  1837. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1838. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1839. }
  1840. #endif
  1841. return current_position[Z_AXIS];
  1842. }
  1843. //
  1844. // - Move to the given XY
  1845. // - Deploy the probe, if not already deployed
  1846. // - Probe the bed, get the Z position
  1847. // - Depending on the 'stow' flag
  1848. // - Stow the probe, or
  1849. // - Raise to the BETWEEN height
  1850. // - Return the probed Z position
  1851. //
  1852. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1853. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1854. if (DEBUGGING(LEVELING)) {
  1855. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1856. SERIAL_ECHOPAIR(", ", y);
  1857. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1858. SERIAL_ECHOLNPGM("stow)");
  1859. DEBUG_POS("", current_position);
  1860. }
  1861. #endif
  1862. float old_feedrate_mm_s = feedrate_mm_s;
  1863. #if ENABLED(DELTA)
  1864. if (current_position[Z_AXIS] > delta_clip_start_height)
  1865. do_blocking_move_to_z(delta_clip_start_height);
  1866. #endif
  1867. // Ensure a minimum height before moving the probe
  1868. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1869. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1870. // Move the probe to the given XY
  1871. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1872. if (DEPLOY_PROBE()) return NAN;
  1873. float measured_z = run_z_probe();
  1874. if (!stow)
  1875. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1876. else
  1877. if (STOW_PROBE()) return NAN;
  1878. if (verbose_level > 2) {
  1879. SERIAL_PROTOCOLPGM("Bed X: ");
  1880. SERIAL_PROTOCOL_F(x, 3);
  1881. SERIAL_PROTOCOLPGM(" Y: ");
  1882. SERIAL_PROTOCOL_F(y, 3);
  1883. SERIAL_PROTOCOLPGM(" Z: ");
  1884. SERIAL_PROTOCOL_F(measured_z, 3);
  1885. SERIAL_EOL;
  1886. }
  1887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1888. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1889. #endif
  1890. feedrate_mm_s = old_feedrate_mm_s;
  1891. return measured_z;
  1892. }
  1893. #endif // HAS_BED_PROBE
  1894. #if PLANNER_LEVELING
  1895. /**
  1896. * Turn bed leveling on or off, fixing the current
  1897. * position as-needed.
  1898. *
  1899. * Disable: Current position = physical position
  1900. * Enable: Current position = "unleveled" physical position
  1901. */
  1902. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1903. #if ENABLED(MESH_BED_LEVELING)
  1904. if (enable != mbl.active()) {
  1905. if (!enable)
  1906. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1907. mbl.set_active(enable && mbl.has_mesh());
  1908. if (enable) planner.unapply_leveling(current_position);
  1909. }
  1910. #elif HAS_ABL
  1911. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1912. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1913. #else
  1914. constexpr bool can_change = true;
  1915. #endif
  1916. if (can_change && enable != planner.abl_enabled) {
  1917. planner.abl_enabled = enable;
  1918. if (!enable)
  1919. set_current_from_steppers_for_axis(
  1920. #if ABL_PLANAR
  1921. ALL_AXES
  1922. #else
  1923. Z_AXIS
  1924. #endif
  1925. );
  1926. else
  1927. planner.unapply_leveling(current_position);
  1928. }
  1929. #endif
  1930. }
  1931. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1932. void set_z_fade_height(const float zfh) {
  1933. planner.z_fade_height = zfh;
  1934. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1935. if (
  1936. #if ENABLED(MESH_BED_LEVELING)
  1937. mbl.active()
  1938. #else
  1939. planner.abl_enabled
  1940. #endif
  1941. ) {
  1942. set_current_from_steppers_for_axis(
  1943. #if ABL_PLANAR
  1944. ALL_AXES
  1945. #else
  1946. Z_AXIS
  1947. #endif
  1948. );
  1949. }
  1950. }
  1951. #endif // LEVELING_FADE_HEIGHT
  1952. /**
  1953. * Reset calibration results to zero.
  1954. */
  1955. void reset_bed_level() {
  1956. set_bed_leveling_enabled(false);
  1957. #if ENABLED(MESH_BED_LEVELING)
  1958. if (mbl.has_mesh()) {
  1959. mbl.reset();
  1960. mbl.set_has_mesh(false);
  1961. }
  1962. #else
  1963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1964. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1965. #endif
  1966. #if ABL_PLANAR
  1967. planner.bed_level_matrix.set_to_identity();
  1968. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1969. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  1970. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  1971. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  1972. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  1973. bed_level_grid[x][y] = UNPROBED;
  1974. #endif
  1975. #endif
  1976. }
  1977. #endif // PLANNER_LEVELING
  1978. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1979. /**
  1980. * Extrapolate a single point from its neighbors
  1981. */
  1982. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1984. if (DEBUGGING(LEVELING)) {
  1985. SERIAL_ECHOPGM("Extrapolate [");
  1986. if (x < 10) SERIAL_CHAR(' ');
  1987. SERIAL_ECHO((int)x);
  1988. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1989. SERIAL_CHAR(' ');
  1990. if (y < 10) SERIAL_CHAR(' ');
  1991. SERIAL_ECHO((int)y);
  1992. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1993. SERIAL_CHAR(']');
  1994. }
  1995. #endif
  1996. if (bed_level_grid[x][y] != UNPROBED) {
  1997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1998. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1999. #endif
  2000. return; // Don't overwrite good values.
  2001. }
  2002. SERIAL_EOL;
  2003. // Get X neighbors, Y neighbors, and XY neighbors
  2004. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2005. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2006. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2007. // Treat far unprobed points as zero, near as equal to far
  2008. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2009. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2010. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2011. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2012. // Take the average instead of the median
  2013. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2014. // Median is robust (ignores outliers).
  2015. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2016. // : ((c < b) ? b : (a < c) ? a : c);
  2017. }
  2018. //Enable this if your SCARA uses 180° of total area
  2019. //#define EXTRAPOLATE_FROM_EDGE
  2020. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2021. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2022. #define HALF_IN_X
  2023. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2024. #define HALF_IN_Y
  2025. #endif
  2026. #endif
  2027. /**
  2028. * Fill in the unprobed points (corners of circular print surface)
  2029. * using linear extrapolation, away from the center.
  2030. */
  2031. static void extrapolate_unprobed_bed_level() {
  2032. #ifdef HALF_IN_X
  2033. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2034. #else
  2035. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2036. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2037. xlen = ctrx1;
  2038. #endif
  2039. #ifdef HALF_IN_Y
  2040. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2041. #else
  2042. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2043. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2044. ylen = ctry1;
  2045. #endif
  2046. for (uint8_t xo = 0; xo <= xlen; xo++)
  2047. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2048. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2049. #ifndef HALF_IN_X
  2050. uint8_t x1 = ctrx1 - xo;
  2051. #endif
  2052. #ifndef HALF_IN_Y
  2053. uint8_t y1 = ctry1 - yo;
  2054. #ifndef HALF_IN_X
  2055. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2056. #endif
  2057. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2058. #endif
  2059. #ifndef HALF_IN_X
  2060. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2061. #endif
  2062. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2063. }
  2064. }
  2065. /**
  2066. * Print calibration results for plotting or manual frame adjustment.
  2067. */
  2068. static void print_bilinear_leveling_grid() {
  2069. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2070. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) {
  2071. SERIAL_PROTOCOLPGM(" ");
  2072. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2073. SERIAL_PROTOCOL((int)x);
  2074. }
  2075. SERIAL_EOL;
  2076. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++) {
  2077. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2078. SERIAL_PROTOCOL((int)y);
  2079. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) {
  2080. SERIAL_PROTOCOLCHAR(' ');
  2081. float offset = bed_level_grid[x][y];
  2082. if (offset != UNPROBED) {
  2083. if (offset > 0) SERIAL_CHAR('+');
  2084. SERIAL_PROTOCOL_F(offset, 2);
  2085. }
  2086. else
  2087. SERIAL_PROTOCOLPGM(" ====");
  2088. }
  2089. SERIAL_EOL;
  2090. }
  2091. SERIAL_EOL;
  2092. }
  2093. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2094. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2095. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2096. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2097. float bed_level_grid_virt_temp[ABL_GRID_MAX_POINTS_X + 2][ABL_GRID_MAX_POINTS_Y + 2]; //temporary for calculation (maybe dynamical?)
  2098. int bilinear_grid_spacing_virt[2] = { 0 };
  2099. static void bed_level_virt_print() {
  2100. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2101. for (uint8_t x = 0; x < ABL_GRID_POINTS_VIRT_X; x++) {
  2102. SERIAL_PROTOCOLPGM(" ");
  2103. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2104. SERIAL_PROTOCOL((int)x);
  2105. }
  2106. SERIAL_EOL;
  2107. for (uint8_t y = 0; y < ABL_GRID_POINTS_VIRT_Y; y++) {
  2108. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2109. SERIAL_PROTOCOL((int)y);
  2110. for (uint8_t x = 0; x < ABL_GRID_POINTS_VIRT_X; x++) {
  2111. SERIAL_PROTOCOLCHAR(' ');
  2112. float offset = bed_level_grid_virt[x][y];
  2113. if (offset != UNPROBED) {
  2114. if (offset > 0) SERIAL_CHAR('+');
  2115. SERIAL_PROTOCOL_F(offset, 5);
  2116. }
  2117. else
  2118. SERIAL_PROTOCOLPGM(" ====");
  2119. }
  2120. SERIAL_EOL;
  2121. }
  2122. SERIAL_EOL;
  2123. }
  2124. #define LINEAR_EXTRAPOLATION(E, I) (E * 2 - I)
  2125. void bed_level_virt_prepare() {
  2126. for (uint8_t y = 1; y <= ABL_GRID_MAX_POINTS_Y; y++) {
  2127. for (uint8_t x = 1; x <= ABL_GRID_MAX_POINTS_X; x++)
  2128. bed_level_grid_virt_temp[x][y] = bed_level_grid[x - 1][y - 1];
  2129. bed_level_grid_virt_temp[0][y] = LINEAR_EXTRAPOLATION(
  2130. bed_level_grid_virt_temp[1][y],
  2131. bed_level_grid_virt_temp[2][y]
  2132. );
  2133. bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 1][y] =
  2134. LINEAR_EXTRAPOLATION(
  2135. bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 2][y],
  2136. bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 3][y]
  2137. );
  2138. }
  2139. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X + 2; x++) {
  2140. bed_level_grid_virt_temp[x][0] = LINEAR_EXTRAPOLATION(
  2141. bed_level_grid_virt_temp[x][1],
  2142. bed_level_grid_virt_temp[x][2]
  2143. );
  2144. bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 1] =
  2145. LINEAR_EXTRAPOLATION(
  2146. bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 2],
  2147. bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 3]
  2148. );
  2149. }
  2150. }
  2151. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2152. return (
  2153. p[i-1] * -t * sq(1 - t)
  2154. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2155. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2156. - p[i+2] * sq(t) * (1 - t)
  2157. ) * 0.5;
  2158. }
  2159. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2160. float row[4], column[4];
  2161. for (uint8_t i = 0; i < 4; i++) {
  2162. for (uint8_t j = 0; j < 4; j++) // can be memcopy or through memory access
  2163. column[j] = bed_level_grid_virt_temp[i + x - 1][j + y - 1];
  2164. row[i] = bed_level_virt_cmr(column, 1, ty);
  2165. }
  2166. return bed_level_virt_cmr(row, 1, tx);
  2167. }
  2168. void bed_level_virt_interpolate() {
  2169. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2170. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2171. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2172. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2173. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2174. continue;
  2175. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2176. bed_level_virt_2cmr(
  2177. x + 1,
  2178. y + 1,
  2179. (float)tx / (BILINEAR_SUBDIVISIONS),
  2180. (float)ty / (BILINEAR_SUBDIVISIONS)
  2181. );
  2182. }
  2183. }
  2184. #endif // ABL_BILINEAR_SUBDIVISION
  2185. #endif // AUTO_BED_LEVELING_BILINEAR
  2186. /**
  2187. * Home an individual linear axis
  2188. */
  2189. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2190. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2191. if (DEBUGGING(LEVELING)) {
  2192. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2193. SERIAL_ECHOPAIR(", ", distance);
  2194. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2195. SERIAL_CHAR(')');
  2196. SERIAL_EOL;
  2197. }
  2198. #endif
  2199. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2200. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2201. if (deploy_bltouch) set_bltouch_deployed(true);
  2202. #endif
  2203. // Tell the planner we're at Z=0
  2204. current_position[axis] = 0;
  2205. #if IS_SCARA
  2206. SYNC_PLAN_POSITION_KINEMATIC();
  2207. current_position[axis] = distance;
  2208. inverse_kinematics(current_position);
  2209. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2210. #else
  2211. sync_plan_position();
  2212. current_position[axis] = distance;
  2213. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2214. #endif
  2215. stepper.synchronize();
  2216. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2217. if (deploy_bltouch) set_bltouch_deployed(false);
  2218. #endif
  2219. endstops.hit_on_purpose();
  2220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2221. if (DEBUGGING(LEVELING)) {
  2222. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2223. SERIAL_CHAR(')');
  2224. SERIAL_EOL;
  2225. }
  2226. #endif
  2227. }
  2228. /**
  2229. * Home an individual "raw axis" to its endstop.
  2230. * This applies to XYZ on Cartesian and Core robots, and
  2231. * to the individual ABC steppers on DELTA and SCARA.
  2232. *
  2233. * At the end of the procedure the axis is marked as
  2234. * homed and the current position of that axis is updated.
  2235. * Kinematic robots should wait till all axes are homed
  2236. * before updating the current position.
  2237. */
  2238. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2239. static void homeaxis(AxisEnum axis) {
  2240. #if IS_SCARA
  2241. // Only Z homing (with probe) is permitted
  2242. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2243. #else
  2244. #define CAN_HOME(A) \
  2245. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2246. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2247. #endif
  2248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2249. if (DEBUGGING(LEVELING)) {
  2250. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2251. SERIAL_CHAR(')');
  2252. SERIAL_EOL;
  2253. }
  2254. #endif
  2255. int axis_home_dir =
  2256. #if ENABLED(DUAL_X_CARRIAGE)
  2257. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2258. #endif
  2259. home_dir(axis);
  2260. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2261. #if HOMING_Z_WITH_PROBE
  2262. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2263. #endif
  2264. // Set a flag for Z motor locking
  2265. #if ENABLED(Z_DUAL_ENDSTOPS)
  2266. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2267. #endif
  2268. // Fast move towards endstop until triggered
  2269. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2270. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2271. #endif
  2272. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2273. // When homing Z with probe respect probe clearance
  2274. const float bump = axis_home_dir * (
  2275. #if HOMING_Z_WITH_PROBE
  2276. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2277. #endif
  2278. home_bump_mm(axis)
  2279. );
  2280. // If a second homing move is configured...
  2281. if (bump) {
  2282. // Move away from the endstop by the axis HOME_BUMP_MM
  2283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2284. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2285. #endif
  2286. do_homing_move(axis, -bump);
  2287. // Slow move towards endstop until triggered
  2288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2289. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2290. #endif
  2291. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2292. }
  2293. #if ENABLED(Z_DUAL_ENDSTOPS)
  2294. if (axis == Z_AXIS) {
  2295. float adj = fabs(z_endstop_adj);
  2296. bool lockZ1;
  2297. if (axis_home_dir > 0) {
  2298. adj = -adj;
  2299. lockZ1 = (z_endstop_adj > 0);
  2300. }
  2301. else
  2302. lockZ1 = (z_endstop_adj < 0);
  2303. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2304. // Move to the adjusted endstop height
  2305. do_homing_move(axis, adj);
  2306. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2307. stepper.set_homing_flag(false);
  2308. } // Z_AXIS
  2309. #endif
  2310. #if IS_SCARA
  2311. set_axis_is_at_home(axis);
  2312. SYNC_PLAN_POSITION_KINEMATIC();
  2313. #elif ENABLED(DELTA)
  2314. // Delta has already moved all three towers up in G28
  2315. // so here it re-homes each tower in turn.
  2316. // Delta homing treats the axes as normal linear axes.
  2317. // retrace by the amount specified in endstop_adj
  2318. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2320. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2321. #endif
  2322. do_homing_move(axis, endstop_adj[axis]);
  2323. }
  2324. #else
  2325. // For cartesian/core machines,
  2326. // set the axis to its home position
  2327. set_axis_is_at_home(axis);
  2328. sync_plan_position();
  2329. destination[axis] = current_position[axis];
  2330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2331. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2332. #endif
  2333. #endif
  2334. // Put away the Z probe
  2335. #if HOMING_Z_WITH_PROBE
  2336. if (axis == Z_AXIS && STOW_PROBE()) return;
  2337. #endif
  2338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2339. if (DEBUGGING(LEVELING)) {
  2340. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2341. SERIAL_CHAR(')');
  2342. SERIAL_EOL;
  2343. }
  2344. #endif
  2345. } // homeaxis()
  2346. #if ENABLED(FWRETRACT)
  2347. void retract(bool retracting, bool swapping = false) {
  2348. static float hop_height;
  2349. if (retracting == retracted[active_extruder]) return;
  2350. float old_feedrate_mm_s = feedrate_mm_s;
  2351. set_destination_to_current();
  2352. if (retracting) {
  2353. feedrate_mm_s = retract_feedrate_mm_s;
  2354. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2355. sync_plan_position_e();
  2356. prepare_move_to_destination();
  2357. if (retract_zlift > 0.01) {
  2358. hop_height = current_position[Z_AXIS];
  2359. // Pretend current position is lower
  2360. current_position[Z_AXIS] -= retract_zlift;
  2361. SYNC_PLAN_POSITION_KINEMATIC();
  2362. // Raise up to the old current_position
  2363. prepare_move_to_destination();
  2364. }
  2365. }
  2366. else {
  2367. // If the height hasn't been altered, undo the Z hop
  2368. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2369. // Pretend current position is higher. Z will lower on the next move
  2370. current_position[Z_AXIS] += retract_zlift;
  2371. SYNC_PLAN_POSITION_KINEMATIC();
  2372. }
  2373. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2374. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2375. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2376. sync_plan_position_e();
  2377. // Lower Z and recover E
  2378. prepare_move_to_destination();
  2379. }
  2380. feedrate_mm_s = old_feedrate_mm_s;
  2381. retracted[active_extruder] = retracting;
  2382. } // retract()
  2383. #endif // FWRETRACT
  2384. #if ENABLED(MIXING_EXTRUDER)
  2385. void normalize_mix() {
  2386. float mix_total = 0.0;
  2387. for (int i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2388. // Scale all values if they don't add up to ~1.0
  2389. if (!NEAR(mix_total, 1.0)) {
  2390. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2391. for (int i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2392. }
  2393. }
  2394. #if ENABLED(DIRECT_MIXING_IN_G1)
  2395. // Get mixing parameters from the GCode
  2396. // The total "must" be 1.0 (but it will be normalized)
  2397. // If no mix factors are given, the old mix is preserved
  2398. void gcode_get_mix() {
  2399. const char* mixing_codes = "ABCDHI";
  2400. byte mix_bits = 0;
  2401. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2402. if (code_seen(mixing_codes[i])) {
  2403. SBI(mix_bits, i);
  2404. float v = code_value_float();
  2405. NOLESS(v, 0.0);
  2406. mixing_factor[i] = RECIPROCAL(v);
  2407. }
  2408. }
  2409. // If any mixing factors were included, clear the rest
  2410. // If none were included, preserve the last mix
  2411. if (mix_bits) {
  2412. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2413. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2414. normalize_mix();
  2415. }
  2416. }
  2417. #endif
  2418. #endif
  2419. /**
  2420. * ***************************************************************************
  2421. * ***************************** G-CODE HANDLING *****************************
  2422. * ***************************************************************************
  2423. */
  2424. /**
  2425. * Set XYZE destination and feedrate from the current GCode command
  2426. *
  2427. * - Set destination from included axis codes
  2428. * - Set to current for missing axis codes
  2429. * - Set the feedrate, if included
  2430. */
  2431. void gcode_get_destination() {
  2432. LOOP_XYZE(i) {
  2433. if (code_seen(axis_codes[i]))
  2434. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2435. else
  2436. destination[i] = current_position[i];
  2437. }
  2438. if (code_seen('F') && code_value_linear_units() > 0.0)
  2439. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2440. #if ENABLED(PRINTCOUNTER)
  2441. if (!DEBUGGING(DRYRUN))
  2442. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2443. #endif
  2444. // Get ABCDHI mixing factors
  2445. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2446. gcode_get_mix();
  2447. #endif
  2448. }
  2449. void unknown_command_error() {
  2450. SERIAL_ECHO_START;
  2451. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2452. SERIAL_CHAR('"');
  2453. SERIAL_EOL;
  2454. }
  2455. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2456. /**
  2457. * Output a "busy" message at regular intervals
  2458. * while the machine is not accepting commands.
  2459. */
  2460. void host_keepalive() {
  2461. millis_t ms = millis();
  2462. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2463. if (PENDING(ms, next_busy_signal_ms)) return;
  2464. switch (busy_state) {
  2465. case IN_HANDLER:
  2466. case IN_PROCESS:
  2467. SERIAL_ECHO_START;
  2468. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2469. break;
  2470. case PAUSED_FOR_USER:
  2471. SERIAL_ECHO_START;
  2472. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2473. break;
  2474. case PAUSED_FOR_INPUT:
  2475. SERIAL_ECHO_START;
  2476. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2477. break;
  2478. default:
  2479. break;
  2480. }
  2481. }
  2482. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2483. }
  2484. #endif //HOST_KEEPALIVE_FEATURE
  2485. bool position_is_reachable(float target[XYZ]
  2486. #if HAS_BED_PROBE
  2487. , bool by_probe=false
  2488. #endif
  2489. ) {
  2490. float dx = RAW_X_POSITION(target[X_AXIS]),
  2491. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2492. #if HAS_BED_PROBE
  2493. if (by_probe) {
  2494. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2495. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2496. }
  2497. #endif
  2498. #if IS_SCARA
  2499. #if MIDDLE_DEAD_ZONE_R > 0
  2500. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2501. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2502. #else
  2503. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2504. #endif
  2505. #elif ENABLED(DELTA)
  2506. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2507. #else
  2508. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2509. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2510. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2511. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2512. #endif
  2513. }
  2514. /**************************************************
  2515. ***************** GCode Handlers *****************
  2516. **************************************************/
  2517. /**
  2518. * G0, G1: Coordinated movement of X Y Z E axes
  2519. */
  2520. inline void gcode_G0_G1(
  2521. #if IS_SCARA
  2522. bool fast_move=false
  2523. #endif
  2524. ) {
  2525. if (IsRunning()) {
  2526. gcode_get_destination(); // For X Y Z E F
  2527. #if ENABLED(FWRETRACT)
  2528. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2529. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2530. // Is this move an attempt to retract or recover?
  2531. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2532. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2533. sync_plan_position_e(); // AND from the planner
  2534. retract(!retracted[active_extruder]);
  2535. return;
  2536. }
  2537. }
  2538. #endif //FWRETRACT
  2539. #if IS_SCARA
  2540. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2541. #else
  2542. prepare_move_to_destination();
  2543. #endif
  2544. }
  2545. }
  2546. /**
  2547. * G2: Clockwise Arc
  2548. * G3: Counterclockwise Arc
  2549. *
  2550. * This command has two forms: IJ-form and R-form.
  2551. *
  2552. * - I specifies an X offset. J specifies a Y offset.
  2553. * At least one of the IJ parameters is required.
  2554. * X and Y can be omitted to do a complete circle.
  2555. * The given XY is not error-checked. The arc ends
  2556. * based on the angle of the destination.
  2557. * Mixing I or J with R will throw an error.
  2558. *
  2559. * - R specifies the radius. X or Y is required.
  2560. * Omitting both X and Y will throw an error.
  2561. * X or Y must differ from the current XY.
  2562. * Mixing R with I or J will throw an error.
  2563. *
  2564. * Examples:
  2565. *
  2566. * G2 I10 ; CW circle centered at X+10
  2567. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2568. */
  2569. #if ENABLED(ARC_SUPPORT)
  2570. inline void gcode_G2_G3(bool clockwise) {
  2571. if (IsRunning()) {
  2572. #if ENABLED(SF_ARC_FIX)
  2573. bool relative_mode_backup = relative_mode;
  2574. relative_mode = true;
  2575. #endif
  2576. gcode_get_destination();
  2577. #if ENABLED(SF_ARC_FIX)
  2578. relative_mode = relative_mode_backup;
  2579. #endif
  2580. float arc_offset[2] = { 0.0, 0.0 };
  2581. if (code_seen('R')) {
  2582. const float r = code_value_axis_units(X_AXIS),
  2583. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2584. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2585. if (r && (x2 != x1 || y2 != y1)) {
  2586. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2587. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2588. d = HYPOT(dx, dy), // Linear distance between the points
  2589. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2590. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2591. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2592. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2593. arc_offset[X_AXIS] = cx - x1;
  2594. arc_offset[Y_AXIS] = cy - y1;
  2595. }
  2596. }
  2597. else {
  2598. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2599. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2600. }
  2601. if (arc_offset[0] || arc_offset[1]) {
  2602. // Send an arc to the planner
  2603. plan_arc(destination, arc_offset, clockwise);
  2604. refresh_cmd_timeout();
  2605. }
  2606. else {
  2607. // Bad arguments
  2608. SERIAL_ERROR_START;
  2609. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2610. }
  2611. }
  2612. }
  2613. #endif
  2614. /**
  2615. * G4: Dwell S<seconds> or P<milliseconds>
  2616. */
  2617. inline void gcode_G4() {
  2618. millis_t dwell_ms = 0;
  2619. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2620. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2621. stepper.synchronize();
  2622. refresh_cmd_timeout();
  2623. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2624. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2625. while (PENDING(millis(), dwell_ms)) idle();
  2626. }
  2627. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2628. /**
  2629. * Parameters interpreted according to:
  2630. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2631. * However I, J omission is not supported at this point; all
  2632. * parameters can be omitted and default to zero.
  2633. */
  2634. /**
  2635. * G5: Cubic B-spline
  2636. */
  2637. inline void gcode_G5() {
  2638. if (IsRunning()) {
  2639. gcode_get_destination();
  2640. float offset[] = {
  2641. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2642. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2643. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2644. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2645. };
  2646. plan_cubic_move(offset);
  2647. }
  2648. }
  2649. #endif // BEZIER_CURVE_SUPPORT
  2650. #if ENABLED(FWRETRACT)
  2651. /**
  2652. * G10 - Retract filament according to settings of M207
  2653. * G11 - Recover filament according to settings of M208
  2654. */
  2655. inline void gcode_G10_G11(bool doRetract=false) {
  2656. #if EXTRUDERS > 1
  2657. if (doRetract) {
  2658. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2659. }
  2660. #endif
  2661. retract(doRetract
  2662. #if EXTRUDERS > 1
  2663. , retracted_swap[active_extruder]
  2664. #endif
  2665. );
  2666. }
  2667. #endif //FWRETRACT
  2668. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2669. /**
  2670. * G12: Clean the nozzle
  2671. */
  2672. inline void gcode_G12() {
  2673. // Don't allow nozzle cleaning without homing first
  2674. if (axis_unhomed_error(true, true, true)) { return; }
  2675. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2676. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2677. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2678. Nozzle::clean(pattern, strokes, objects);
  2679. }
  2680. #endif
  2681. #if ENABLED(INCH_MODE_SUPPORT)
  2682. /**
  2683. * G20: Set input mode to inches
  2684. */
  2685. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2686. /**
  2687. * G21: Set input mode to millimeters
  2688. */
  2689. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2690. #endif
  2691. #if ENABLED(NOZZLE_PARK_FEATURE)
  2692. /**
  2693. * G27: Park the nozzle
  2694. */
  2695. inline void gcode_G27() {
  2696. // Don't allow nozzle parking without homing first
  2697. if (axis_unhomed_error(true, true, true)) { return; }
  2698. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2699. Nozzle::park(z_action);
  2700. }
  2701. #endif // NOZZLE_PARK_FEATURE
  2702. #if ENABLED(QUICK_HOME)
  2703. static void quick_home_xy() {
  2704. // Pretend the current position is 0,0
  2705. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2706. sync_plan_position();
  2707. int x_axis_home_dir =
  2708. #if ENABLED(DUAL_X_CARRIAGE)
  2709. x_home_dir(active_extruder)
  2710. #else
  2711. home_dir(X_AXIS)
  2712. #endif
  2713. ;
  2714. float mlx = max_length(X_AXIS),
  2715. mly = max_length(Y_AXIS),
  2716. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2717. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2718. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2719. endstops.hit_on_purpose(); // clear endstop hit flags
  2720. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2721. }
  2722. #endif // QUICK_HOME
  2723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2724. void log_machine_info() {
  2725. SERIAL_ECHOPGM("Machine Type: ");
  2726. #if ENABLED(DELTA)
  2727. SERIAL_ECHOLNPGM("Delta");
  2728. #elif IS_SCARA
  2729. SERIAL_ECHOLNPGM("SCARA");
  2730. #elif IS_CORE
  2731. SERIAL_ECHOLNPGM("Core");
  2732. #else
  2733. SERIAL_ECHOLNPGM("Cartesian");
  2734. #endif
  2735. SERIAL_ECHOPGM("Probe: ");
  2736. #if ENABLED(FIX_MOUNTED_PROBE)
  2737. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2738. #elif ENABLED(BLTOUCH)
  2739. SERIAL_ECHOLNPGM("BLTOUCH");
  2740. #elif HAS_Z_SERVO_ENDSTOP
  2741. SERIAL_ECHOLNPGM("SERVO PROBE");
  2742. #elif ENABLED(Z_PROBE_SLED)
  2743. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2744. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2745. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2746. #else
  2747. SERIAL_ECHOLNPGM("NONE");
  2748. #endif
  2749. #if HAS_BED_PROBE
  2750. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2751. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2752. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2753. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2754. SERIAL_ECHOPGM(" (Right");
  2755. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2756. SERIAL_ECHOPGM(" (Left");
  2757. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2758. SERIAL_ECHOPGM(" (Middle");
  2759. #else
  2760. SERIAL_ECHOPGM(" (Aligned With");
  2761. #endif
  2762. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2763. SERIAL_ECHOPGM("-Back");
  2764. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2765. SERIAL_ECHOPGM("-Front");
  2766. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2767. SERIAL_ECHOPGM("-Center");
  2768. #endif
  2769. if (zprobe_zoffset < 0)
  2770. SERIAL_ECHOPGM(" & Below");
  2771. else if (zprobe_zoffset > 0)
  2772. SERIAL_ECHOPGM(" & Above");
  2773. else
  2774. SERIAL_ECHOPGM(" & Same Z as");
  2775. SERIAL_ECHOLNPGM(" Nozzle)");
  2776. #endif
  2777. #if HAS_ABL
  2778. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2779. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2780. SERIAL_ECHOPGM("LINEAR");
  2781. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2782. SERIAL_ECHOPGM("BILINEAR");
  2783. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2784. SERIAL_ECHOPGM("3POINT");
  2785. #endif
  2786. if (planner.abl_enabled) {
  2787. SERIAL_ECHOLNPGM(" (enabled)");
  2788. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2789. float diff[XYZ] = {
  2790. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2791. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2792. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2793. };
  2794. SERIAL_ECHOPGM("ABL Adjustment X");
  2795. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2796. SERIAL_ECHO(diff[X_AXIS]);
  2797. SERIAL_ECHOPGM(" Y");
  2798. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2799. SERIAL_ECHO(diff[Y_AXIS]);
  2800. SERIAL_ECHOPGM(" Z");
  2801. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2802. SERIAL_ECHO(diff[Z_AXIS]);
  2803. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2804. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2805. #endif
  2806. }
  2807. SERIAL_EOL;
  2808. #elif ENABLED(MESH_BED_LEVELING)
  2809. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2810. if (mbl.active()) {
  2811. float lz = current_position[Z_AXIS];
  2812. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2813. SERIAL_ECHOLNPGM(" (enabled)");
  2814. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2815. }
  2816. SERIAL_EOL;
  2817. #endif
  2818. }
  2819. #endif // DEBUG_LEVELING_FEATURE
  2820. #if ENABLED(DELTA)
  2821. /**
  2822. * A delta can only safely home all axes at the same time
  2823. * This is like quick_home_xy() but for 3 towers.
  2824. */
  2825. inline void home_delta() {
  2826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2827. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2828. #endif
  2829. // Init the current position of all carriages to 0,0,0
  2830. ZERO(current_position);
  2831. sync_plan_position();
  2832. // Move all carriages together linearly until an endstop is hit.
  2833. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2834. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2835. line_to_current_position();
  2836. stepper.synchronize();
  2837. endstops.hit_on_purpose(); // clear endstop hit flags
  2838. // At least one carriage has reached the top.
  2839. // Now re-home each carriage separately.
  2840. HOMEAXIS(A);
  2841. HOMEAXIS(B);
  2842. HOMEAXIS(C);
  2843. // Set all carriages to their home positions
  2844. // Do this here all at once for Delta, because
  2845. // XYZ isn't ABC. Applying this per-tower would
  2846. // give the impression that they are the same.
  2847. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2848. SYNC_PLAN_POSITION_KINEMATIC();
  2849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2850. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2851. #endif
  2852. }
  2853. #endif // DELTA
  2854. #if ENABLED(Z_SAFE_HOMING)
  2855. inline void home_z_safely() {
  2856. // Disallow Z homing if X or Y are unknown
  2857. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2858. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2859. SERIAL_ECHO_START;
  2860. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2861. return;
  2862. }
  2863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2864. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2865. #endif
  2866. SYNC_PLAN_POSITION_KINEMATIC();
  2867. /**
  2868. * Move the Z probe (or just the nozzle) to the safe homing point
  2869. */
  2870. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2871. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2872. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2873. if (position_is_reachable(
  2874. destination
  2875. #if HOMING_Z_WITH_PROBE
  2876. , true
  2877. #endif
  2878. )
  2879. ) {
  2880. #if HOMING_Z_WITH_PROBE
  2881. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2882. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2883. #endif
  2884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2885. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2886. #endif
  2887. // This causes the carriage on Dual X to unpark
  2888. #if ENABLED(DUAL_X_CARRIAGE)
  2889. active_extruder_parked = false;
  2890. #endif
  2891. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2892. HOMEAXIS(Z);
  2893. }
  2894. else {
  2895. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2896. SERIAL_ECHO_START;
  2897. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2898. }
  2899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2900. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2901. #endif
  2902. }
  2903. #endif // Z_SAFE_HOMING
  2904. /**
  2905. * G28: Home all axes according to settings
  2906. *
  2907. * Parameters
  2908. *
  2909. * None Home to all axes with no parameters.
  2910. * With QUICK_HOME enabled XY will home together, then Z.
  2911. *
  2912. * Cartesian parameters
  2913. *
  2914. * X Home to the X endstop
  2915. * Y Home to the Y endstop
  2916. * Z Home to the Z endstop
  2917. *
  2918. */
  2919. inline void gcode_G28() {
  2920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2921. if (DEBUGGING(LEVELING)) {
  2922. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2923. log_machine_info();
  2924. }
  2925. #endif
  2926. // Wait for planner moves to finish!
  2927. stepper.synchronize();
  2928. // Disable the leveling matrix before homing
  2929. #if PLANNER_LEVELING
  2930. set_bed_leveling_enabled(false);
  2931. #endif
  2932. // Always home with tool 0 active
  2933. #if HOTENDS > 1
  2934. uint8_t old_tool_index = active_extruder;
  2935. tool_change(0, 0, true);
  2936. #endif
  2937. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2938. extruder_duplication_enabled = false;
  2939. #endif
  2940. /**
  2941. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2942. * on again when homing all axis
  2943. */
  2944. #if ENABLED(MESH_BED_LEVELING)
  2945. float pre_home_z = MESH_HOME_SEARCH_Z;
  2946. if (mbl.active()) {
  2947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2948. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2949. #endif
  2950. // Use known Z position if already homed
  2951. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2952. set_bed_leveling_enabled(false);
  2953. pre_home_z = current_position[Z_AXIS];
  2954. }
  2955. else {
  2956. mbl.set_active(false);
  2957. current_position[Z_AXIS] = pre_home_z;
  2958. }
  2959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2960. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2961. #endif
  2962. }
  2963. #endif
  2964. setup_for_endstop_or_probe_move();
  2965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2966. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2967. #endif
  2968. endstops.enable(true); // Enable endstops for next homing move
  2969. #if ENABLED(DELTA)
  2970. home_delta();
  2971. #else // NOT DELTA
  2972. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2973. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2974. set_destination_to_current();
  2975. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2976. if (home_all_axis || homeZ) {
  2977. HOMEAXIS(Z);
  2978. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2979. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2980. #endif
  2981. }
  2982. #else
  2983. if (home_all_axis || homeX || homeY) {
  2984. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2985. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2986. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2988. if (DEBUGGING(LEVELING))
  2989. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2990. #endif
  2991. do_blocking_move_to_z(destination[Z_AXIS]);
  2992. }
  2993. }
  2994. #endif
  2995. #if ENABLED(QUICK_HOME)
  2996. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2997. #endif
  2998. #if ENABLED(HOME_Y_BEFORE_X)
  2999. // Home Y
  3000. if (home_all_axis || homeY) {
  3001. HOMEAXIS(Y);
  3002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3003. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3004. #endif
  3005. }
  3006. #endif
  3007. // Home X
  3008. if (home_all_axis || homeX) {
  3009. #if ENABLED(DUAL_X_CARRIAGE)
  3010. // Always home the 2nd (right) extruder first
  3011. active_extruder = 1;
  3012. HOMEAXIS(X);
  3013. // Remember this extruder's position for later tool change
  3014. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3015. // Home the 1st (left) extruder
  3016. active_extruder = 0;
  3017. HOMEAXIS(X);
  3018. // Consider the active extruder to be parked
  3019. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3020. delayed_move_time = 0;
  3021. active_extruder_parked = true;
  3022. #else
  3023. HOMEAXIS(X);
  3024. #endif
  3025. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3026. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3027. #endif
  3028. }
  3029. #if DISABLED(HOME_Y_BEFORE_X)
  3030. // Home Y
  3031. if (home_all_axis || homeY) {
  3032. HOMEAXIS(Y);
  3033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3034. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3035. #endif
  3036. }
  3037. #endif
  3038. // Home Z last if homing towards the bed
  3039. #if Z_HOME_DIR < 0
  3040. if (home_all_axis || homeZ) {
  3041. #if ENABLED(Z_SAFE_HOMING)
  3042. home_z_safely();
  3043. #else
  3044. HOMEAXIS(Z);
  3045. #endif
  3046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3047. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3048. #endif
  3049. } // home_all_axis || homeZ
  3050. #endif // Z_HOME_DIR < 0
  3051. SYNC_PLAN_POSITION_KINEMATIC();
  3052. #endif // !DELTA (gcode_G28)
  3053. endstops.not_homing();
  3054. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3055. // move to a height where we can use the full xy-area
  3056. do_blocking_move_to_z(delta_clip_start_height);
  3057. #endif
  3058. // Enable mesh leveling again
  3059. #if ENABLED(MESH_BED_LEVELING)
  3060. if (mbl.has_mesh()) {
  3061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3062. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  3063. #endif
  3064. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3066. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  3067. #endif
  3068. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3069. #if Z_HOME_DIR > 0
  3070. + Z_MAX_POS
  3071. #endif
  3072. ;
  3073. SYNC_PLAN_POSITION_KINEMATIC();
  3074. mbl.set_active(true);
  3075. #if ENABLED(MESH_G28_REST_ORIGIN)
  3076. current_position[Z_AXIS] = 0.0;
  3077. set_destination_to_current();
  3078. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3079. stepper.synchronize();
  3080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3081. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  3082. #endif
  3083. #else
  3084. planner.unapply_leveling(current_position);
  3085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3086. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  3087. #endif
  3088. #endif
  3089. }
  3090. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  3091. current_position[Z_AXIS] = pre_home_z;
  3092. SYNC_PLAN_POSITION_KINEMATIC();
  3093. mbl.set_active(true);
  3094. planner.unapply_leveling(current_position);
  3095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3096. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  3097. #endif
  3098. }
  3099. }
  3100. #endif
  3101. clean_up_after_endstop_or_probe_move();
  3102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3103. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3104. #endif
  3105. // Restore the active tool after homing
  3106. #if HOTENDS > 1
  3107. tool_change(old_tool_index, 0, true);
  3108. #endif
  3109. report_current_position();
  3110. }
  3111. #if HAS_PROBING_PROCEDURE
  3112. void out_of_range_error(const char* p_edge) {
  3113. SERIAL_PROTOCOLPGM("?Probe ");
  3114. serialprintPGM(p_edge);
  3115. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3116. }
  3117. #endif
  3118. #if ENABLED(MESH_BED_LEVELING)
  3119. inline void _mbl_goto_xy(float x, float y) {
  3120. float old_feedrate_mm_s = feedrate_mm_s;
  3121. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3122. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3123. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3124. + Z_CLEARANCE_BETWEEN_PROBES
  3125. #elif Z_HOMING_HEIGHT > 0
  3126. + Z_HOMING_HEIGHT
  3127. #endif
  3128. ;
  3129. line_to_current_position();
  3130. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3131. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3132. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3133. line_to_current_position();
  3134. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  3135. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3136. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  3137. line_to_current_position();
  3138. #endif
  3139. feedrate_mm_s = old_feedrate_mm_s;
  3140. stepper.synchronize();
  3141. }
  3142. // Save 130 bytes with non-duplication of PSTR
  3143. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3144. void mbl_mesh_report() {
  3145. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3146. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3147. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3148. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3149. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3150. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3151. SERIAL_PROTOCOLPGM(" ");
  3152. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3153. }
  3154. SERIAL_EOL;
  3155. }
  3156. }
  3157. /**
  3158. * G29: Mesh-based Z probe, probes a grid and produces a
  3159. * mesh to compensate for variable bed height
  3160. *
  3161. * Parameters With MESH_BED_LEVELING:
  3162. *
  3163. * S0 Produce a mesh report
  3164. * S1 Start probing mesh points
  3165. * S2 Probe the next mesh point
  3166. * S3 Xn Yn Zn.nn Manually modify a single point
  3167. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3168. * S5 Reset and disable mesh
  3169. *
  3170. * The S0 report the points as below
  3171. *
  3172. * +----> X-axis 1-n
  3173. * |
  3174. * |
  3175. * v Y-axis 1-n
  3176. *
  3177. */
  3178. inline void gcode_G29() {
  3179. static int probe_point = -1;
  3180. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3181. if (state < 0 || state > 5) {
  3182. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3183. return;
  3184. }
  3185. int8_t px, py;
  3186. switch (state) {
  3187. case MeshReport:
  3188. if (mbl.has_mesh()) {
  3189. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3190. mbl_mesh_report();
  3191. }
  3192. else
  3193. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3194. break;
  3195. case MeshStart:
  3196. mbl.reset();
  3197. probe_point = 0;
  3198. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3199. break;
  3200. case MeshNext:
  3201. if (probe_point < 0) {
  3202. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3203. return;
  3204. }
  3205. // For each G29 S2...
  3206. if (probe_point == 0) {
  3207. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3208. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3209. #if Z_HOME_DIR > 0
  3210. + Z_MAX_POS
  3211. #endif
  3212. ;
  3213. SYNC_PLAN_POSITION_KINEMATIC();
  3214. }
  3215. else {
  3216. // For G29 S2 after adjusting Z.
  3217. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3218. }
  3219. // If there's another point to sample, move there with optional lift.
  3220. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3221. mbl.zigzag(probe_point, px, py);
  3222. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3223. probe_point++;
  3224. }
  3225. else {
  3226. // One last "return to the bed" (as originally coded) at completion
  3227. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3228. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3229. + Z_CLEARANCE_BETWEEN_PROBES
  3230. #elif Z_HOMING_HEIGHT > 0
  3231. + Z_HOMING_HEIGHT
  3232. #endif
  3233. ;
  3234. line_to_current_position();
  3235. stepper.synchronize();
  3236. // After recording the last point, activate the mbl and home
  3237. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3238. probe_point = -1;
  3239. mbl.set_has_mesh(true);
  3240. enqueue_and_echo_commands_P(PSTR("G28"));
  3241. }
  3242. break;
  3243. case MeshSet:
  3244. if (code_seen('X')) {
  3245. px = code_value_int() - 1;
  3246. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3247. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3248. return;
  3249. }
  3250. }
  3251. else {
  3252. SERIAL_CHAR('X'); say_not_entered();
  3253. return;
  3254. }
  3255. if (code_seen('Y')) {
  3256. py = code_value_int() - 1;
  3257. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3258. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3259. return;
  3260. }
  3261. }
  3262. else {
  3263. SERIAL_CHAR('Y'); say_not_entered();
  3264. return;
  3265. }
  3266. if (code_seen('Z')) {
  3267. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3268. }
  3269. else {
  3270. SERIAL_CHAR('Z'); say_not_entered();
  3271. return;
  3272. }
  3273. break;
  3274. case MeshSetZOffset:
  3275. if (code_seen('Z')) {
  3276. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3277. }
  3278. else {
  3279. SERIAL_CHAR('Z'); say_not_entered();
  3280. return;
  3281. }
  3282. break;
  3283. case MeshReset:
  3284. if (mbl.active()) {
  3285. current_position[Z_AXIS] -= MESH_HOME_SEARCH_Z;
  3286. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  3287. mbl.reset();
  3288. SYNC_PLAN_POSITION_KINEMATIC();
  3289. }
  3290. else
  3291. mbl.reset();
  3292. } // switch(state)
  3293. report_current_position();
  3294. }
  3295. #elif HAS_ABL
  3296. /**
  3297. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3298. * Will fail if the printer has not been homed with G28.
  3299. *
  3300. * Enhanced G29 Auto Bed Leveling Probe Routine
  3301. *
  3302. * Parameters With LINEAR and BILINEAR:
  3303. *
  3304. * P Set the size of the grid that will be probed (P x P points).
  3305. * Not supported by non-linear delta printer bed leveling.
  3306. * Example: "G29 P4"
  3307. *
  3308. * S Set the XY travel speed between probe points (in units/min)
  3309. *
  3310. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3311. * or clean the rotation Matrix. Useful to check the topology
  3312. * after a first run of G29.
  3313. *
  3314. * V Set the verbose level (0-4). Example: "G29 V3"
  3315. *
  3316. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3317. * This is useful for manual bed leveling and finding flaws in the bed (to
  3318. * assist with part placement).
  3319. * Not supported by non-linear delta printer bed leveling.
  3320. *
  3321. * F Set the Front limit of the probing grid
  3322. * B Set the Back limit of the probing grid
  3323. * L Set the Left limit of the probing grid
  3324. * R Set the Right limit of the probing grid
  3325. *
  3326. * Parameters with BILINEAR only:
  3327. *
  3328. * Z Supply an additional Z probe offset
  3329. *
  3330. * Global Parameters:
  3331. *
  3332. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3333. * Include "E" to engage/disengage the Z probe for each sample.
  3334. * There's no extra effect if you have a fixed Z probe.
  3335. * Usage: "G29 E" or "G29 e"
  3336. *
  3337. */
  3338. inline void gcode_G29() {
  3339. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3340. bool query = code_seen('Q');
  3341. uint8_t old_debug_flags = marlin_debug_flags;
  3342. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3343. if (DEBUGGING(LEVELING)) {
  3344. DEBUG_POS(">>> gcode_G29", current_position);
  3345. log_machine_info();
  3346. }
  3347. marlin_debug_flags = old_debug_flags;
  3348. if (query) return;
  3349. #endif
  3350. // Don't allow auto-leveling without homing first
  3351. if (axis_unhomed_error(true, true, true)) return;
  3352. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3353. if (verbose_level < 0 || verbose_level > 4) {
  3354. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3355. return;
  3356. }
  3357. bool dryrun = code_seen('D'),
  3358. stow_probe_after_each = code_seen('E');
  3359. #if ABL_GRID
  3360. if (verbose_level > 0) {
  3361. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3362. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3363. }
  3364. #if ABL_PLANAR
  3365. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3366. // X and Y specify points in each direction, overriding the default
  3367. // These values may be saved with the completed mesh
  3368. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X,
  3369. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3370. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3371. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3372. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3373. return;
  3374. }
  3375. #else
  3376. const uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X, abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3377. #endif
  3378. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3379. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3380. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3381. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3382. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3383. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3384. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3385. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3386. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3387. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3388. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3389. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3390. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3391. if (left_out || right_out || front_out || back_out) {
  3392. if (left_out) {
  3393. out_of_range_error(PSTR("(L)eft"));
  3394. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3395. }
  3396. if (right_out) {
  3397. out_of_range_error(PSTR("(R)ight"));
  3398. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3399. }
  3400. if (front_out) {
  3401. out_of_range_error(PSTR("(F)ront"));
  3402. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3403. }
  3404. if (back_out) {
  3405. out_of_range_error(PSTR("(B)ack"));
  3406. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3407. }
  3408. return;
  3409. }
  3410. #endif // ABL_GRID
  3411. stepper.synchronize();
  3412. // Disable auto bed leveling during G29
  3413. bool abl_should_enable = planner.abl_enabled;
  3414. planner.abl_enabled = false;
  3415. if (!dryrun) {
  3416. // Re-orient the current position without leveling
  3417. // based on where the steppers are positioned.
  3418. set_current_from_steppers_for_axis(ALL_AXES);
  3419. // Sync the planner to where the steppers stopped
  3420. SYNC_PLAN_POSITION_KINEMATIC();
  3421. }
  3422. setup_for_endstop_or_probe_move();
  3423. // Deploy the probe. Probe will raise if needed.
  3424. if (DEPLOY_PROBE()) {
  3425. planner.abl_enabled = abl_should_enable;
  3426. return;
  3427. }
  3428. float xProbe = 0, yProbe = 0, measured_z = 0;
  3429. #if ABL_GRID
  3430. // probe at the points of a lattice grid
  3431. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3432. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3433. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3434. float zoffset = zprobe_zoffset;
  3435. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3436. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3437. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3438. || left_probe_bed_position != bilinear_start[X_AXIS]
  3439. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3440. ) {
  3441. // Before reset bed level, re-enable to correct the position
  3442. planner.abl_enabled = abl_should_enable;
  3443. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3444. reset_bed_level();
  3445. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3446. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3447. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3448. #endif
  3449. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3450. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3451. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3452. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3453. // Can't re-enable (on error) until the new grid is written
  3454. abl_should_enable = false;
  3455. }
  3456. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3457. /**
  3458. * solve the plane equation ax + by + d = z
  3459. * A is the matrix with rows [x y 1] for all the probed points
  3460. * B is the vector of the Z positions
  3461. * the normal vector to the plane is formed by the coefficients of the
  3462. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3463. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3464. */
  3465. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3466. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3467. probePointCounter = -1;
  3468. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3469. eqnBVector[abl2], // "B" vector of Z points
  3470. mean = 0.0;
  3471. #endif // AUTO_BED_LEVELING_LINEAR
  3472. #if ENABLED(PROBE_Y_FIRST)
  3473. #define PR_OUTER_VAR xCount
  3474. #define PR_OUTER_END abl_grid_points_x
  3475. #define PR_INNER_VAR yCount
  3476. #define PR_INNER_END abl_grid_points_y
  3477. #else
  3478. #define PR_OUTER_VAR yCount
  3479. #define PR_OUTER_END abl_grid_points_y
  3480. #define PR_INNER_VAR xCount
  3481. #define PR_INNER_END abl_grid_points_x
  3482. #endif
  3483. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3484. // Outer loop is Y with PROBE_Y_FIRST disabled
  3485. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3486. int8_t inStart, inStop, inInc;
  3487. if (zig) { // away from origin
  3488. inStart = 0;
  3489. inStop = PR_INNER_END;
  3490. inInc = 1;
  3491. }
  3492. else { // towards origin
  3493. inStart = PR_INNER_END - 1;
  3494. inStop = -1;
  3495. inInc = -1;
  3496. }
  3497. zig = !zig; // zag
  3498. // Inner loop is Y with PROBE_Y_FIRST enabled
  3499. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3500. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3501. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3502. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3503. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3504. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3505. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3506. #endif
  3507. #if IS_KINEMATIC
  3508. // Avoid probing outside the round or hexagonal area
  3509. float pos[XYZ] = { xProbe, yProbe, 0 };
  3510. if (!position_is_reachable(pos, true)) continue;
  3511. #endif
  3512. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3513. if (measured_z == NAN) {
  3514. planner.abl_enabled = abl_should_enable;
  3515. return;
  3516. }
  3517. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3518. mean += measured_z;
  3519. eqnBVector[probePointCounter] = measured_z;
  3520. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3521. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3522. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3523. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3524. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3525. #endif
  3526. idle();
  3527. } //xProbe
  3528. } //yProbe
  3529. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3531. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3532. #endif
  3533. // Probe at 3 arbitrary points
  3534. vector_3 points[3] = {
  3535. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3536. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3537. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3538. };
  3539. for (uint8_t i = 0; i < 3; ++i) {
  3540. // Retain the last probe position
  3541. xProbe = LOGICAL_X_POSITION(points[i].x);
  3542. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3543. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3544. }
  3545. if (measured_z == NAN) {
  3546. planner.abl_enabled = abl_should_enable;
  3547. return;
  3548. }
  3549. if (!dryrun) {
  3550. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3551. if (planeNormal.z < 0) {
  3552. planeNormal.x *= -1;
  3553. planeNormal.y *= -1;
  3554. planeNormal.z *= -1;
  3555. }
  3556. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3557. // Can't re-enable (on error) until the new grid is written
  3558. abl_should_enable = false;
  3559. }
  3560. #endif // AUTO_BED_LEVELING_3POINT
  3561. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3562. if (STOW_PROBE()) {
  3563. planner.abl_enabled = abl_should_enable;
  3564. return;
  3565. }
  3566. //
  3567. // Unless this is a dry run, auto bed leveling will
  3568. // definitely be enabled after this point
  3569. //
  3570. // Restore state after probing
  3571. clean_up_after_endstop_or_probe_move();
  3572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3573. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3574. #endif
  3575. // Calculate leveling, print reports, correct the position
  3576. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3577. if (!dryrun) extrapolate_unprobed_bed_level();
  3578. print_bilinear_leveling_grid();
  3579. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3580. bed_level_virt_prepare();
  3581. bed_level_virt_interpolate();
  3582. bed_level_virt_print();
  3583. #endif
  3584. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3585. // For LINEAR leveling calculate matrix, print reports, correct the position
  3586. // solve lsq problem
  3587. float plane_equation_coefficients[3];
  3588. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3589. mean /= abl2;
  3590. if (verbose_level) {
  3591. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3592. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3593. SERIAL_PROTOCOLPGM(" b: ");
  3594. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3595. SERIAL_PROTOCOLPGM(" d: ");
  3596. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3597. SERIAL_EOL;
  3598. if (verbose_level > 2) {
  3599. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3600. SERIAL_PROTOCOL_F(mean, 8);
  3601. SERIAL_EOL;
  3602. }
  3603. }
  3604. // Create the matrix but don't correct the position yet
  3605. if (!dryrun) {
  3606. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3607. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3608. );
  3609. }
  3610. // Show the Topography map if enabled
  3611. if (do_topography_map) {
  3612. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3613. " +--- BACK --+\n"
  3614. " | |\n"
  3615. " L | (+) | R\n"
  3616. " E | | I\n"
  3617. " F | (-) N (+) | G\n"
  3618. " T | | H\n"
  3619. " | (-) | T\n"
  3620. " | |\n"
  3621. " O-- FRONT --+\n"
  3622. " (0,0)");
  3623. float min_diff = 999;
  3624. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3625. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3626. int ind = indexIntoAB[xx][yy];
  3627. float diff = eqnBVector[ind] - mean,
  3628. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3629. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3630. z_tmp = 0;
  3631. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3632. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3633. if (diff >= 0.0)
  3634. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3635. else
  3636. SERIAL_PROTOCOLCHAR(' ');
  3637. SERIAL_PROTOCOL_F(diff, 5);
  3638. } // xx
  3639. SERIAL_EOL;
  3640. } // yy
  3641. SERIAL_EOL;
  3642. if (verbose_level > 3) {
  3643. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3644. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3645. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3646. int ind = indexIntoAB[xx][yy];
  3647. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3648. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3649. z_tmp = 0;
  3650. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3651. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3652. if (diff >= 0.0)
  3653. SERIAL_PROTOCOLPGM(" +");
  3654. // Include + for column alignment
  3655. else
  3656. SERIAL_PROTOCOLCHAR(' ');
  3657. SERIAL_PROTOCOL_F(diff, 5);
  3658. } // xx
  3659. SERIAL_EOL;
  3660. } // yy
  3661. SERIAL_EOL;
  3662. }
  3663. } //do_topography_map
  3664. #endif // AUTO_BED_LEVELING_LINEAR
  3665. #if ABL_PLANAR
  3666. // For LINEAR and 3POINT leveling correct the current position
  3667. if (verbose_level > 0)
  3668. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3669. if (!dryrun) {
  3670. //
  3671. // Correct the current XYZ position based on the tilted plane.
  3672. //
  3673. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3674. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3675. #endif
  3676. float converted[XYZ];
  3677. memcpy(converted, current_position, sizeof(converted));
  3678. planner.abl_enabled = true;
  3679. planner.unapply_leveling(converted); // use conversion machinery
  3680. planner.abl_enabled = false;
  3681. // Use the last measured distance to the bed, if possible
  3682. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3683. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3684. ) {
  3685. float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset));
  3686. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3687. if (DEBUGGING(LEVELING)) {
  3688. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3689. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3690. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3691. }
  3692. #endif
  3693. converted[Z_AXIS] = simple_z;
  3694. }
  3695. // The rotated XY and corrected Z are now current_position
  3696. memcpy(current_position, converted, sizeof(converted));
  3697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3698. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3699. #endif
  3700. }
  3701. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3702. if (!dryrun) {
  3703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3704. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3705. #endif
  3706. // Unapply the offset because it is going to be immediately applied
  3707. // and cause compensation movement in Z
  3708. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3710. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3711. #endif
  3712. }
  3713. #endif // ABL_PLANAR
  3714. #ifdef Z_PROBE_END_SCRIPT
  3715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3716. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3717. #endif
  3718. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3719. stepper.synchronize();
  3720. #endif
  3721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3722. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3723. #endif
  3724. report_current_position();
  3725. KEEPALIVE_STATE(IN_HANDLER);
  3726. // Auto Bed Leveling is complete! Enable if possible.
  3727. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3728. if (planner.abl_enabled)
  3729. SYNC_PLAN_POSITION_KINEMATIC();
  3730. }
  3731. #endif // HAS_ABL
  3732. #if HAS_BED_PROBE
  3733. /**
  3734. * G30: Do a single Z probe at the current XY
  3735. * Usage:
  3736. * G30 <X#> <Y#> <S#>
  3737. * X = Probe X position (default=current probe position)
  3738. * Y = Probe Y position (default=current probe position)
  3739. * S = Stows the probe if 1 (default=1)
  3740. */
  3741. inline void gcode_G30() {
  3742. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3743. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3744. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3745. if (!position_is_reachable(pos, true)) return;
  3746. bool stow = code_seen('S') ? code_value_bool() : true;
  3747. // Disable leveling so the planner won't mess with us
  3748. #if PLANNER_LEVELING
  3749. set_bed_leveling_enabled(false);
  3750. #endif
  3751. setup_for_endstop_or_probe_move();
  3752. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3753. SERIAL_PROTOCOLPGM("Bed X: ");
  3754. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3755. SERIAL_PROTOCOLPGM(" Y: ");
  3756. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3757. SERIAL_PROTOCOLPGM(" Z: ");
  3758. SERIAL_PROTOCOLLN(measured_z + 0.0001);
  3759. clean_up_after_endstop_or_probe_move();
  3760. report_current_position();
  3761. }
  3762. #if ENABLED(Z_PROBE_SLED)
  3763. /**
  3764. * G31: Deploy the Z probe
  3765. */
  3766. inline void gcode_G31() { DEPLOY_PROBE(); }
  3767. /**
  3768. * G32: Stow the Z probe
  3769. */
  3770. inline void gcode_G32() { STOW_PROBE(); }
  3771. #endif // Z_PROBE_SLED
  3772. #endif // HAS_BED_PROBE
  3773. #if ENABLED(G38_PROBE_TARGET)
  3774. static bool G38_run_probe() {
  3775. bool G38_pass_fail = false;
  3776. // Get direction of move and retract
  3777. float retract_mm[XYZ];
  3778. LOOP_XYZ(i) {
  3779. float dist = destination[i] - current_position[i];
  3780. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3781. }
  3782. stepper.synchronize(); // wait until the machine is idle
  3783. // Move until destination reached or target hit
  3784. endstops.enable(true);
  3785. G38_move = true;
  3786. G38_endstop_hit = false;
  3787. prepare_move_to_destination();
  3788. stepper.synchronize();
  3789. G38_move = false;
  3790. endstops.hit_on_purpose();
  3791. set_current_from_steppers_for_axis(ALL_AXES);
  3792. SYNC_PLAN_POSITION_KINEMATIC();
  3793. // Only do remaining moves if target was hit
  3794. if (G38_endstop_hit) {
  3795. G38_pass_fail = true;
  3796. // Move away by the retract distance
  3797. set_destination_to_current();
  3798. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3799. endstops.enable(false);
  3800. prepare_move_to_destination();
  3801. stepper.synchronize();
  3802. feedrate_mm_s /= 4;
  3803. // Bump the target more slowly
  3804. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3805. endstops.enable(true);
  3806. G38_move = true;
  3807. prepare_move_to_destination();
  3808. stepper.synchronize();
  3809. G38_move = false;
  3810. set_current_from_steppers_for_axis(ALL_AXES);
  3811. SYNC_PLAN_POSITION_KINEMATIC();
  3812. }
  3813. endstops.hit_on_purpose();
  3814. endstops.not_homing();
  3815. return G38_pass_fail;
  3816. }
  3817. /**
  3818. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3819. * G38.3 - probe toward workpiece, stop on contact
  3820. *
  3821. * Like G28 except uses Z min endstop for all axes
  3822. */
  3823. inline void gcode_G38(bool is_38_2) {
  3824. // Get X Y Z E F
  3825. gcode_get_destination();
  3826. setup_for_endstop_or_probe_move();
  3827. // If any axis has enough movement, do the move
  3828. LOOP_XYZ(i)
  3829. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3830. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3831. // If G38.2 fails throw an error
  3832. if (!G38_run_probe() && is_38_2) {
  3833. SERIAL_ERROR_START;
  3834. SERIAL_ERRORLNPGM("Failed to reach target");
  3835. }
  3836. break;
  3837. }
  3838. clean_up_after_endstop_or_probe_move();
  3839. }
  3840. #endif // G38_PROBE_TARGET
  3841. /**
  3842. * G92: Set current position to given X Y Z E
  3843. */
  3844. inline void gcode_G92() {
  3845. bool didXYZ = false,
  3846. didE = code_seen('E');
  3847. if (!didE) stepper.synchronize();
  3848. LOOP_XYZE(i) {
  3849. if (code_seen(axis_codes[i])) {
  3850. #if IS_SCARA
  3851. current_position[i] = code_value_axis_units(i);
  3852. if (i != E_AXIS) didXYZ = true;
  3853. #else
  3854. float p = current_position[i],
  3855. v = code_value_axis_units(i);
  3856. current_position[i] = v;
  3857. if (i != E_AXIS) {
  3858. didXYZ = true;
  3859. position_shift[i] += v - p; // Offset the coordinate space
  3860. update_software_endstops((AxisEnum)i);
  3861. }
  3862. #endif
  3863. }
  3864. }
  3865. if (didXYZ)
  3866. SYNC_PLAN_POSITION_KINEMATIC();
  3867. else if (didE)
  3868. sync_plan_position_e();
  3869. report_current_position();
  3870. }
  3871. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3872. /**
  3873. * M0: Unconditional stop - Wait for user button press on LCD
  3874. * M1: Conditional stop - Wait for user button press on LCD
  3875. */
  3876. inline void gcode_M0_M1() {
  3877. char* args = current_command_args;
  3878. millis_t codenum = 0;
  3879. bool hasP = false, hasS = false;
  3880. if (code_seen('P')) {
  3881. codenum = code_value_millis(); // milliseconds to wait
  3882. hasP = codenum > 0;
  3883. }
  3884. if (code_seen('S')) {
  3885. codenum = code_value_millis_from_seconds(); // seconds to wait
  3886. hasS = codenum > 0;
  3887. }
  3888. #if ENABLED(ULTIPANEL)
  3889. if (!hasP && !hasS && *args != '\0')
  3890. lcd_setstatus(args, true);
  3891. else {
  3892. LCD_MESSAGEPGM(MSG_USERWAIT);
  3893. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3894. dontExpireStatus();
  3895. #endif
  3896. }
  3897. #else
  3898. if (!hasP && !hasS && *args != '\0') {
  3899. SERIAL_ECHO_START;
  3900. SERIAL_ECHOLN(args);
  3901. }
  3902. #endif
  3903. wait_for_user = true;
  3904. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3905. stepper.synchronize();
  3906. refresh_cmd_timeout();
  3907. if (codenum > 0) {
  3908. codenum += previous_cmd_ms; // wait until this time for a click
  3909. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3910. }
  3911. else {
  3912. #if ENABLED(ULTIPANEL)
  3913. if (lcd_detected()) {
  3914. while (wait_for_user) idle();
  3915. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3916. }
  3917. #else
  3918. while (wait_for_user) idle();
  3919. #endif
  3920. }
  3921. wait_for_user = false;
  3922. KEEPALIVE_STATE(IN_HANDLER);
  3923. }
  3924. #endif // EMERGENCY_PARSER || ULTIPANEL
  3925. /**
  3926. * M17: Enable power on all stepper motors
  3927. */
  3928. inline void gcode_M17() {
  3929. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3930. enable_all_steppers();
  3931. }
  3932. #if ENABLED(SDSUPPORT)
  3933. /**
  3934. * M20: List SD card to serial output
  3935. */
  3936. inline void gcode_M20() {
  3937. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3938. card.ls();
  3939. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3940. }
  3941. /**
  3942. * M21: Init SD Card
  3943. */
  3944. inline void gcode_M21() { card.initsd(); }
  3945. /**
  3946. * M22: Release SD Card
  3947. */
  3948. inline void gcode_M22() { card.release(); }
  3949. /**
  3950. * M23: Open a file
  3951. */
  3952. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3953. /**
  3954. * M24: Start SD Print
  3955. */
  3956. inline void gcode_M24() {
  3957. card.startFileprint();
  3958. print_job_timer.start();
  3959. }
  3960. /**
  3961. * M25: Pause SD Print
  3962. */
  3963. inline void gcode_M25() { card.pauseSDPrint(); }
  3964. /**
  3965. * M26: Set SD Card file index
  3966. */
  3967. inline void gcode_M26() {
  3968. if (card.cardOK && code_seen('S'))
  3969. card.setIndex(code_value_long());
  3970. }
  3971. /**
  3972. * M27: Get SD Card status
  3973. */
  3974. inline void gcode_M27() { card.getStatus(); }
  3975. /**
  3976. * M28: Start SD Write
  3977. */
  3978. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3979. /**
  3980. * M29: Stop SD Write
  3981. * Processed in write to file routine above
  3982. */
  3983. inline void gcode_M29() {
  3984. // card.saving = false;
  3985. }
  3986. /**
  3987. * M30 <filename>: Delete SD Card file
  3988. */
  3989. inline void gcode_M30() {
  3990. if (card.cardOK) {
  3991. card.closefile();
  3992. card.removeFile(current_command_args);
  3993. }
  3994. }
  3995. #endif // SDSUPPORT
  3996. /**
  3997. * M31: Get the time since the start of SD Print (or last M109)
  3998. */
  3999. inline void gcode_M31() {
  4000. char buffer[21];
  4001. duration_t elapsed = print_job_timer.duration();
  4002. elapsed.toString(buffer);
  4003. lcd_setstatus(buffer);
  4004. SERIAL_ECHO_START;
  4005. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4006. #if ENABLED(AUTOTEMP)
  4007. thermalManager.autotempShutdown();
  4008. #endif
  4009. }
  4010. #if ENABLED(SDSUPPORT)
  4011. /**
  4012. * M32: Select file and start SD Print
  4013. */
  4014. inline void gcode_M32() {
  4015. if (card.sdprinting)
  4016. stepper.synchronize();
  4017. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4018. if (!namestartpos)
  4019. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4020. else
  4021. namestartpos++; //to skip the '!'
  4022. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4023. if (card.cardOK) {
  4024. card.openFile(namestartpos, true, call_procedure);
  4025. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4026. card.setIndex(code_value_long());
  4027. card.startFileprint();
  4028. // Procedure calls count as normal print time.
  4029. if (!call_procedure) print_job_timer.start();
  4030. }
  4031. }
  4032. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4033. /**
  4034. * M33: Get the long full path of a file or folder
  4035. *
  4036. * Parameters:
  4037. * <dospath> Case-insensitive DOS-style path to a file or folder
  4038. *
  4039. * Example:
  4040. * M33 miscel~1/armchair/armcha~1.gco
  4041. *
  4042. * Output:
  4043. * /Miscellaneous/Armchair/Armchair.gcode
  4044. */
  4045. inline void gcode_M33() {
  4046. card.printLongPath(current_command_args);
  4047. }
  4048. #endif
  4049. /**
  4050. * M928: Start SD Write
  4051. */
  4052. inline void gcode_M928() {
  4053. card.openLogFile(current_command_args);
  4054. }
  4055. #endif // SDSUPPORT
  4056. /**
  4057. * Sensitive pin test for M42, M226
  4058. */
  4059. static bool pin_is_protected(uint8_t pin) {
  4060. static const int sensitive_pins[] = SENSITIVE_PINS;
  4061. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4062. if (sensitive_pins[i] == pin) return true;
  4063. return false;
  4064. }
  4065. /**
  4066. * M42: Change pin status via GCode
  4067. *
  4068. * P<pin> Pin number (LED if omitted)
  4069. * S<byte> Pin status from 0 - 255
  4070. */
  4071. inline void gcode_M42() {
  4072. if (!code_seen('S')) return;
  4073. int pin_status = code_value_int();
  4074. if (pin_status < 0 || pin_status > 255) return;
  4075. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4076. if (pin_number < 0) return;
  4077. if (pin_is_protected(pin_number)) {
  4078. SERIAL_ERROR_START;
  4079. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4080. return;
  4081. }
  4082. pinMode(pin_number, OUTPUT);
  4083. digitalWrite(pin_number, pin_status);
  4084. analogWrite(pin_number, pin_status);
  4085. #if FAN_COUNT > 0
  4086. switch (pin_number) {
  4087. #if HAS_FAN0
  4088. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4089. #endif
  4090. #if HAS_FAN1
  4091. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4092. #endif
  4093. #if HAS_FAN2
  4094. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4095. #endif
  4096. }
  4097. #endif
  4098. }
  4099. #if ENABLED(PINS_DEBUGGING)
  4100. #include "pinsDebug.h"
  4101. /**
  4102. * M43: Pin report and debug
  4103. *
  4104. * E<bool> Enable / disable background endstop monitoring
  4105. * - Machine continues to operate
  4106. * - Reports changes to endstops
  4107. * - Toggles LED when an endstop changes
  4108. *
  4109. * or
  4110. *
  4111. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4112. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4113. * I<bool> Flag to ignore Marlin's pin protection.
  4114. *
  4115. */
  4116. inline void gcode_M43() {
  4117. // Enable or disable endstop monitoring
  4118. if (code_seen('E')) {
  4119. endstop_monitor_flag = code_value_bool();
  4120. SERIAL_PROTOCOLPGM("endstop monitor ");
  4121. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4122. SERIAL_PROTOCOLLNPGM("abled");
  4123. return;
  4124. }
  4125. // Get the range of pins to test or watch
  4126. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4127. if (code_seen('P')) {
  4128. first_pin = last_pin = code_value_byte();
  4129. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4130. }
  4131. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4132. // Watch until click, M108, or reset
  4133. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4134. byte pin_state[last_pin - first_pin + 1];
  4135. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4136. if (pin_is_protected(pin) && !ignore_protection) continue;
  4137. pinMode(pin, INPUT_PULLUP);
  4138. // if (IS_ANALOG(pin))
  4139. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4140. // else
  4141. pin_state[pin - first_pin] = digitalRead(pin);
  4142. }
  4143. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4144. wait_for_user = true;
  4145. #endif
  4146. for(;;) {
  4147. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4148. if (pin_is_protected(pin)) continue;
  4149. byte val;
  4150. // if (IS_ANALOG(pin))
  4151. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4152. // else
  4153. val = digitalRead(pin);
  4154. if (val != pin_state[pin - first_pin]) {
  4155. report_pin_state(pin);
  4156. pin_state[pin - first_pin] = val;
  4157. }
  4158. }
  4159. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4160. if (!wait_for_user) break;
  4161. #endif
  4162. safe_delay(500);
  4163. }
  4164. return;
  4165. }
  4166. // Report current state of selected pin(s)
  4167. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4168. report_pin_state_extended(pin, ignore_protection);
  4169. }
  4170. #endif // PINS_DEBUGGING
  4171. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4172. /**
  4173. * M48: Z probe repeatability measurement function.
  4174. *
  4175. * Usage:
  4176. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4177. * P = Number of sampled points (4-50, default 10)
  4178. * X = Sample X position
  4179. * Y = Sample Y position
  4180. * V = Verbose level (0-4, default=1)
  4181. * E = Engage Z probe for each reading
  4182. * L = Number of legs of movement before probe
  4183. * S = Schizoid (Or Star if you prefer)
  4184. *
  4185. * This function assumes the bed has been homed. Specifically, that a G28 command
  4186. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4187. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4188. * regenerated.
  4189. */
  4190. inline void gcode_M48() {
  4191. if (axis_unhomed_error(true, true, true)) return;
  4192. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4193. if (verbose_level < 0 || verbose_level > 4) {
  4194. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4195. return;
  4196. }
  4197. if (verbose_level > 0)
  4198. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4199. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4200. if (n_samples < 4 || n_samples > 50) {
  4201. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4202. return;
  4203. }
  4204. float X_current = current_position[X_AXIS],
  4205. Y_current = current_position[Y_AXIS];
  4206. bool stow_probe_after_each = code_seen('E');
  4207. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4208. #if DISABLED(DELTA)
  4209. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4210. out_of_range_error(PSTR("X"));
  4211. return;
  4212. }
  4213. #endif
  4214. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4215. #if DISABLED(DELTA)
  4216. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4217. out_of_range_error(PSTR("Y"));
  4218. return;
  4219. }
  4220. #else
  4221. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4222. if (!position_is_reachable(pos, true)) {
  4223. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4224. return;
  4225. }
  4226. #endif
  4227. bool seen_L = code_seen('L');
  4228. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4229. if (n_legs > 15) {
  4230. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4231. return;
  4232. }
  4233. if (n_legs == 1) n_legs = 2;
  4234. bool schizoid_flag = code_seen('S');
  4235. if (schizoid_flag && !seen_L) n_legs = 7;
  4236. /**
  4237. * Now get everything to the specified probe point So we can safely do a
  4238. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4239. * we don't want to use that as a starting point for each probe.
  4240. */
  4241. if (verbose_level > 2)
  4242. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4243. // Disable bed level correction in M48 because we want the raw data when we probe
  4244. #if HAS_ABL
  4245. const bool abl_was_enabled = planner.abl_enabled;
  4246. set_bed_leveling_enabled(false);
  4247. #endif
  4248. setup_for_endstop_or_probe_move();
  4249. // Move to the first point, deploy, and probe
  4250. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4251. randomSeed(millis());
  4252. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4253. for (uint8_t n = 0; n < n_samples; n++) {
  4254. if (n_legs) {
  4255. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4256. float angle = random(0.0, 360.0),
  4257. radius = random(
  4258. #if ENABLED(DELTA)
  4259. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4260. #else
  4261. 5, X_MAX_LENGTH / 8
  4262. #endif
  4263. );
  4264. if (verbose_level > 3) {
  4265. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4266. SERIAL_ECHOPAIR(" angle: ", angle);
  4267. SERIAL_ECHOPGM(" Direction: ");
  4268. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4269. SERIAL_ECHOLNPGM("Clockwise");
  4270. }
  4271. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4272. double delta_angle;
  4273. if (schizoid_flag)
  4274. // The points of a 5 point star are 72 degrees apart. We need to
  4275. // skip a point and go to the next one on the star.
  4276. delta_angle = dir * 2.0 * 72.0;
  4277. else
  4278. // If we do this line, we are just trying to move further
  4279. // around the circle.
  4280. delta_angle = dir * (float) random(25, 45);
  4281. angle += delta_angle;
  4282. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4283. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4284. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4285. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4286. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4287. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4288. #if DISABLED(DELTA)
  4289. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4290. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4291. #else
  4292. // If we have gone out too far, we can do a simple fix and scale the numbers
  4293. // back in closer to the origin.
  4294. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4295. X_current /= 1.25;
  4296. Y_current /= 1.25;
  4297. if (verbose_level > 3) {
  4298. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4299. SERIAL_ECHOLNPAIR(", ", Y_current);
  4300. }
  4301. }
  4302. #endif
  4303. if (verbose_level > 3) {
  4304. SERIAL_PROTOCOLPGM("Going to:");
  4305. SERIAL_ECHOPAIR(" X", X_current);
  4306. SERIAL_ECHOPAIR(" Y", Y_current);
  4307. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4308. }
  4309. do_blocking_move_to_xy(X_current, Y_current);
  4310. } // n_legs loop
  4311. } // n_legs
  4312. // Probe a single point
  4313. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4314. /**
  4315. * Get the current mean for the data points we have so far
  4316. */
  4317. double sum = 0.0;
  4318. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4319. mean = sum / (n + 1);
  4320. NOMORE(min, sample_set[n]);
  4321. NOLESS(max, sample_set[n]);
  4322. /**
  4323. * Now, use that mean to calculate the standard deviation for the
  4324. * data points we have so far
  4325. */
  4326. sum = 0.0;
  4327. for (uint8_t j = 0; j <= n; j++)
  4328. sum += sq(sample_set[j] - mean);
  4329. sigma = sqrt(sum / (n + 1));
  4330. if (verbose_level > 0) {
  4331. if (verbose_level > 1) {
  4332. SERIAL_PROTOCOL(n + 1);
  4333. SERIAL_PROTOCOLPGM(" of ");
  4334. SERIAL_PROTOCOL((int)n_samples);
  4335. SERIAL_PROTOCOLPGM(": z: ");
  4336. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4337. if (verbose_level > 2) {
  4338. SERIAL_PROTOCOLPGM(" mean: ");
  4339. SERIAL_PROTOCOL_F(mean, 4);
  4340. SERIAL_PROTOCOLPGM(" sigma: ");
  4341. SERIAL_PROTOCOL_F(sigma, 6);
  4342. SERIAL_PROTOCOLPGM(" min: ");
  4343. SERIAL_PROTOCOL_F(min, 3);
  4344. SERIAL_PROTOCOLPGM(" max: ");
  4345. SERIAL_PROTOCOL_F(max, 3);
  4346. SERIAL_PROTOCOLPGM(" range: ");
  4347. SERIAL_PROTOCOL_F(max-min, 3);
  4348. }
  4349. }
  4350. SERIAL_EOL;
  4351. }
  4352. } // End of probe loop
  4353. if (STOW_PROBE()) return;
  4354. SERIAL_PROTOCOLPGM("Finished!");
  4355. SERIAL_EOL;
  4356. if (verbose_level > 0) {
  4357. SERIAL_PROTOCOLPGM("Mean: ");
  4358. SERIAL_PROTOCOL_F(mean, 6);
  4359. SERIAL_PROTOCOLPGM(" Min: ");
  4360. SERIAL_PROTOCOL_F(min, 3);
  4361. SERIAL_PROTOCOLPGM(" Max: ");
  4362. SERIAL_PROTOCOL_F(max, 3);
  4363. SERIAL_PROTOCOLPGM(" Range: ");
  4364. SERIAL_PROTOCOL_F(max-min, 3);
  4365. SERIAL_EOL;
  4366. }
  4367. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4368. SERIAL_PROTOCOL_F(sigma, 6);
  4369. SERIAL_EOL;
  4370. SERIAL_EOL;
  4371. clean_up_after_endstop_or_probe_move();
  4372. // Re-enable bed level correction if it has been on
  4373. #if HAS_ABL
  4374. set_bed_leveling_enabled(abl_was_enabled);
  4375. #endif
  4376. report_current_position();
  4377. }
  4378. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4379. /**
  4380. * M75: Start print timer
  4381. */
  4382. inline void gcode_M75() { print_job_timer.start(); }
  4383. /**
  4384. * M76: Pause print timer
  4385. */
  4386. inline void gcode_M76() { print_job_timer.pause(); }
  4387. /**
  4388. * M77: Stop print timer
  4389. */
  4390. inline void gcode_M77() { print_job_timer.stop(); }
  4391. #if ENABLED(PRINTCOUNTER)
  4392. /**
  4393. * M78: Show print statistics
  4394. */
  4395. inline void gcode_M78() {
  4396. // "M78 S78" will reset the statistics
  4397. if (code_seen('S') && code_value_int() == 78)
  4398. print_job_timer.initStats();
  4399. else
  4400. print_job_timer.showStats();
  4401. }
  4402. #endif
  4403. /**
  4404. * M104: Set hot end temperature
  4405. */
  4406. inline void gcode_M104() {
  4407. if (get_target_extruder_from_command(104)) return;
  4408. if (DEBUGGING(DRYRUN)) return;
  4409. #if ENABLED(SINGLENOZZLE)
  4410. if (target_extruder != active_extruder) return;
  4411. #endif
  4412. if (code_seen('S')) {
  4413. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4414. #if ENABLED(DUAL_X_CARRIAGE)
  4415. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4416. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4417. #endif
  4418. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4419. /**
  4420. * Stop the timer at the end of print, starting is managed by
  4421. * 'heat and wait' M109.
  4422. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4423. * stand by mode, for instance in a dual extruder setup, without affecting
  4424. * the running print timer.
  4425. */
  4426. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4427. print_job_timer.stop();
  4428. LCD_MESSAGEPGM(WELCOME_MSG);
  4429. }
  4430. #endif
  4431. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4432. }
  4433. #if ENABLED(AUTOTEMP)
  4434. planner.autotemp_M104_M109();
  4435. #endif
  4436. }
  4437. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4438. void print_heaterstates() {
  4439. #if HAS_TEMP_HOTEND
  4440. SERIAL_PROTOCOLPGM(" T:");
  4441. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4442. SERIAL_PROTOCOLPGM(" /");
  4443. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4444. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4445. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4446. SERIAL_CHAR(')');
  4447. #endif
  4448. #endif
  4449. #if HAS_TEMP_BED
  4450. SERIAL_PROTOCOLPGM(" B:");
  4451. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4452. SERIAL_PROTOCOLPGM(" /");
  4453. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4454. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4455. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4456. SERIAL_CHAR(')');
  4457. #endif
  4458. #endif
  4459. #if HOTENDS > 1
  4460. HOTEND_LOOP() {
  4461. SERIAL_PROTOCOLPAIR(" T", e);
  4462. SERIAL_PROTOCOLCHAR(':');
  4463. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4464. SERIAL_PROTOCOLPGM(" /");
  4465. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4466. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4467. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4468. SERIAL_CHAR(')');
  4469. #endif
  4470. }
  4471. #endif
  4472. SERIAL_PROTOCOLPGM(" @:");
  4473. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4474. #if HAS_TEMP_BED
  4475. SERIAL_PROTOCOLPGM(" B@:");
  4476. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4477. #endif
  4478. #if HOTENDS > 1
  4479. HOTEND_LOOP() {
  4480. SERIAL_PROTOCOLPAIR(" @", e);
  4481. SERIAL_PROTOCOLCHAR(':');
  4482. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4483. }
  4484. #endif
  4485. }
  4486. #endif
  4487. /**
  4488. * M105: Read hot end and bed temperature
  4489. */
  4490. inline void gcode_M105() {
  4491. if (get_target_extruder_from_command(105)) return;
  4492. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4493. SERIAL_PROTOCOLPGM(MSG_OK);
  4494. print_heaterstates();
  4495. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4496. SERIAL_ERROR_START;
  4497. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4498. #endif
  4499. SERIAL_EOL;
  4500. }
  4501. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4502. static uint8_t auto_report_temp_interval;
  4503. static millis_t next_temp_report_ms;
  4504. /**
  4505. * M155: Set temperature auto-report interval. M155 S<seconds>
  4506. */
  4507. inline void gcode_M155() {
  4508. if (code_seen('S')) {
  4509. auto_report_temp_interval = code_value_byte();
  4510. NOMORE(auto_report_temp_interval, 60);
  4511. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4512. }
  4513. }
  4514. inline void auto_report_temperatures() {
  4515. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4516. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4517. print_heaterstates();
  4518. SERIAL_EOL;
  4519. }
  4520. }
  4521. #endif // AUTO_REPORT_TEMPERATURES
  4522. #if FAN_COUNT > 0
  4523. /**
  4524. * M106: Set Fan Speed
  4525. *
  4526. * S<int> Speed between 0-255
  4527. * P<index> Fan index, if more than one fan
  4528. */
  4529. inline void gcode_M106() {
  4530. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4531. p = code_seen('P') ? code_value_ushort() : 0;
  4532. NOMORE(s, 255);
  4533. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4534. }
  4535. /**
  4536. * M107: Fan Off
  4537. */
  4538. inline void gcode_M107() {
  4539. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4540. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4541. }
  4542. #endif // FAN_COUNT > 0
  4543. #if DISABLED(EMERGENCY_PARSER)
  4544. /**
  4545. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4546. */
  4547. inline void gcode_M108() { wait_for_heatup = false; }
  4548. /**
  4549. * M112: Emergency Stop
  4550. */
  4551. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4552. /**
  4553. * M410: Quickstop - Abort all planned moves
  4554. *
  4555. * This will stop the carriages mid-move, so most likely they
  4556. * will be out of sync with the stepper position after this.
  4557. */
  4558. inline void gcode_M410() { quickstop_stepper(); }
  4559. #endif
  4560. #ifndef MIN_COOLING_SLOPE_DEG
  4561. #define MIN_COOLING_SLOPE_DEG 1.50
  4562. #endif
  4563. #ifndef MIN_COOLING_SLOPE_TIME
  4564. #define MIN_COOLING_SLOPE_TIME 60
  4565. #endif
  4566. /**
  4567. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4568. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4569. */
  4570. inline void gcode_M109() {
  4571. if (get_target_extruder_from_command(109)) return;
  4572. if (DEBUGGING(DRYRUN)) return;
  4573. #if ENABLED(SINGLENOZZLE)
  4574. if (target_extruder != active_extruder) return;
  4575. #endif
  4576. bool no_wait_for_cooling = code_seen('S');
  4577. if (no_wait_for_cooling || code_seen('R')) {
  4578. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4579. #if ENABLED(DUAL_X_CARRIAGE)
  4580. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4581. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4582. #endif
  4583. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4584. /**
  4585. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4586. * stand by mode, for instance in a dual extruder setup, without affecting
  4587. * the running print timer.
  4588. */
  4589. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4590. print_job_timer.stop();
  4591. LCD_MESSAGEPGM(WELCOME_MSG);
  4592. }
  4593. /**
  4594. * We do not check if the timer is already running because this check will
  4595. * be done for us inside the Stopwatch::start() method thus a running timer
  4596. * will not restart.
  4597. */
  4598. else print_job_timer.start();
  4599. #endif
  4600. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4601. }
  4602. #if ENABLED(AUTOTEMP)
  4603. planner.autotemp_M104_M109();
  4604. #endif
  4605. #if TEMP_RESIDENCY_TIME > 0
  4606. millis_t residency_start_ms = 0;
  4607. // Loop until the temperature has stabilized
  4608. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4609. #else
  4610. // Loop until the temperature is very close target
  4611. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4612. #endif //TEMP_RESIDENCY_TIME > 0
  4613. float theTarget = -1.0, old_temp = 9999.0;
  4614. bool wants_to_cool = false;
  4615. wait_for_heatup = true;
  4616. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4617. KEEPALIVE_STATE(NOT_BUSY);
  4618. do {
  4619. // Target temperature might be changed during the loop
  4620. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4621. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4622. theTarget = thermalManager.degTargetHotend(target_extruder);
  4623. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4624. if (no_wait_for_cooling && wants_to_cool) break;
  4625. }
  4626. now = millis();
  4627. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4628. next_temp_ms = now + 1000UL;
  4629. print_heaterstates();
  4630. #if TEMP_RESIDENCY_TIME > 0
  4631. SERIAL_PROTOCOLPGM(" W:");
  4632. if (residency_start_ms) {
  4633. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4634. SERIAL_PROTOCOLLN(rem);
  4635. }
  4636. else {
  4637. SERIAL_PROTOCOLLNPGM("?");
  4638. }
  4639. #else
  4640. SERIAL_EOL;
  4641. #endif
  4642. }
  4643. idle();
  4644. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4645. float temp = thermalManager.degHotend(target_extruder);
  4646. #if TEMP_RESIDENCY_TIME > 0
  4647. float temp_diff = fabs(theTarget - temp);
  4648. if (!residency_start_ms) {
  4649. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4650. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4651. }
  4652. else if (temp_diff > TEMP_HYSTERESIS) {
  4653. // Restart the timer whenever the temperature falls outside the hysteresis.
  4654. residency_start_ms = now;
  4655. }
  4656. #endif //TEMP_RESIDENCY_TIME > 0
  4657. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4658. if (wants_to_cool) {
  4659. // break after MIN_COOLING_SLOPE_TIME seconds
  4660. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4661. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4662. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4663. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4664. old_temp = temp;
  4665. }
  4666. }
  4667. } while (wait_for_heatup && TEMP_CONDITIONS);
  4668. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4669. KEEPALIVE_STATE(IN_HANDLER);
  4670. }
  4671. #if HAS_TEMP_BED
  4672. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4673. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4674. #endif
  4675. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4676. #define MIN_COOLING_SLOPE_TIME_BED 60
  4677. #endif
  4678. /**
  4679. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4680. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4681. */
  4682. inline void gcode_M190() {
  4683. if (DEBUGGING(DRYRUN)) return;
  4684. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4685. bool no_wait_for_cooling = code_seen('S');
  4686. if (no_wait_for_cooling || code_seen('R')) {
  4687. thermalManager.setTargetBed(code_value_temp_abs());
  4688. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4689. if (code_value_temp_abs() > BED_MINTEMP) {
  4690. /**
  4691. * We start the timer when 'heating and waiting' command arrives, LCD
  4692. * functions never wait. Cooling down managed by extruders.
  4693. *
  4694. * We do not check if the timer is already running because this check will
  4695. * be done for us inside the Stopwatch::start() method thus a running timer
  4696. * will not restart.
  4697. */
  4698. print_job_timer.start();
  4699. }
  4700. #endif
  4701. }
  4702. #if TEMP_BED_RESIDENCY_TIME > 0
  4703. millis_t residency_start_ms = 0;
  4704. // Loop until the temperature has stabilized
  4705. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4706. #else
  4707. // Loop until the temperature is very close target
  4708. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4709. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4710. float theTarget = -1.0, old_temp = 9999.0;
  4711. bool wants_to_cool = false;
  4712. wait_for_heatup = true;
  4713. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4714. KEEPALIVE_STATE(NOT_BUSY);
  4715. target_extruder = active_extruder; // for print_heaterstates
  4716. do {
  4717. // Target temperature might be changed during the loop
  4718. if (theTarget != thermalManager.degTargetBed()) {
  4719. wants_to_cool = thermalManager.isCoolingBed();
  4720. theTarget = thermalManager.degTargetBed();
  4721. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4722. if (no_wait_for_cooling && wants_to_cool) break;
  4723. }
  4724. now = millis();
  4725. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4726. next_temp_ms = now + 1000UL;
  4727. print_heaterstates();
  4728. #if TEMP_BED_RESIDENCY_TIME > 0
  4729. SERIAL_PROTOCOLPGM(" W:");
  4730. if (residency_start_ms) {
  4731. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4732. SERIAL_PROTOCOLLN(rem);
  4733. }
  4734. else {
  4735. SERIAL_PROTOCOLLNPGM("?");
  4736. }
  4737. #else
  4738. SERIAL_EOL;
  4739. #endif
  4740. }
  4741. idle();
  4742. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4743. float temp = thermalManager.degBed();
  4744. #if TEMP_BED_RESIDENCY_TIME > 0
  4745. float temp_diff = fabs(theTarget - temp);
  4746. if (!residency_start_ms) {
  4747. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4748. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4749. }
  4750. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4751. // Restart the timer whenever the temperature falls outside the hysteresis.
  4752. residency_start_ms = now;
  4753. }
  4754. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4755. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4756. if (wants_to_cool) {
  4757. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4758. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4759. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4760. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4761. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4762. old_temp = temp;
  4763. }
  4764. }
  4765. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4766. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4767. KEEPALIVE_STATE(IN_HANDLER);
  4768. }
  4769. #endif // HAS_TEMP_BED
  4770. /**
  4771. * M110: Set Current Line Number
  4772. */
  4773. inline void gcode_M110() {
  4774. if (code_seen('N')) gcode_N = code_value_long();
  4775. }
  4776. /**
  4777. * M111: Set the debug level
  4778. */
  4779. inline void gcode_M111() {
  4780. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4781. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4782. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4783. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4784. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4785. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4787. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4788. #endif
  4789. const static char* const debug_strings[] PROGMEM = {
  4790. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4792. str_debug_32
  4793. #endif
  4794. };
  4795. SERIAL_ECHO_START;
  4796. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4797. if (marlin_debug_flags) {
  4798. uint8_t comma = 0;
  4799. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4800. if (TEST(marlin_debug_flags, i)) {
  4801. if (comma++) SERIAL_CHAR(',');
  4802. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4803. }
  4804. }
  4805. }
  4806. else {
  4807. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4808. }
  4809. SERIAL_EOL;
  4810. }
  4811. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4812. /**
  4813. * M113: Get or set Host Keepalive interval (0 to disable)
  4814. *
  4815. * S<seconds> Optional. Set the keepalive interval.
  4816. */
  4817. inline void gcode_M113() {
  4818. if (code_seen('S')) {
  4819. host_keepalive_interval = code_value_byte();
  4820. NOMORE(host_keepalive_interval, 60);
  4821. }
  4822. else {
  4823. SERIAL_ECHO_START;
  4824. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4825. }
  4826. }
  4827. #endif
  4828. #if ENABLED(BARICUDA)
  4829. #if HAS_HEATER_1
  4830. /**
  4831. * M126: Heater 1 valve open
  4832. */
  4833. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4834. /**
  4835. * M127: Heater 1 valve close
  4836. */
  4837. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4838. #endif
  4839. #if HAS_HEATER_2
  4840. /**
  4841. * M128: Heater 2 valve open
  4842. */
  4843. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4844. /**
  4845. * M129: Heater 2 valve close
  4846. */
  4847. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4848. #endif
  4849. #endif //BARICUDA
  4850. /**
  4851. * M140: Set bed temperature
  4852. */
  4853. inline void gcode_M140() {
  4854. if (DEBUGGING(DRYRUN)) return;
  4855. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4856. }
  4857. #if ENABLED(ULTIPANEL)
  4858. /**
  4859. * M145: Set the heatup state for a material in the LCD menu
  4860. * S<material> (0=PLA, 1=ABS)
  4861. * H<hotend temp>
  4862. * B<bed temp>
  4863. * F<fan speed>
  4864. */
  4865. inline void gcode_M145() {
  4866. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4867. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4868. SERIAL_ERROR_START;
  4869. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4870. }
  4871. else {
  4872. int v;
  4873. if (code_seen('H')) {
  4874. v = code_value_int();
  4875. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4876. }
  4877. if (code_seen('F')) {
  4878. v = code_value_int();
  4879. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4880. }
  4881. #if TEMP_SENSOR_BED != 0
  4882. if (code_seen('B')) {
  4883. v = code_value_int();
  4884. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4885. }
  4886. #endif
  4887. }
  4888. }
  4889. #endif // ULTIPANEL
  4890. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4891. /**
  4892. * M149: Set temperature units
  4893. */
  4894. inline void gcode_M149() {
  4895. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4896. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4897. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4898. }
  4899. #endif
  4900. #if HAS_POWER_SWITCH
  4901. /**
  4902. * M80: Turn on Power Supply
  4903. */
  4904. inline void gcode_M80() {
  4905. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4906. /**
  4907. * If you have a switch on suicide pin, this is useful
  4908. * if you want to start another print with suicide feature after
  4909. * a print without suicide...
  4910. */
  4911. #if HAS_SUICIDE
  4912. OUT_WRITE(SUICIDE_PIN, HIGH);
  4913. #endif
  4914. #if ENABLED(ULTIPANEL)
  4915. powersupply = true;
  4916. LCD_MESSAGEPGM(WELCOME_MSG);
  4917. lcd_update();
  4918. #endif
  4919. }
  4920. #endif // HAS_POWER_SWITCH
  4921. /**
  4922. * M81: Turn off Power, including Power Supply, if there is one.
  4923. *
  4924. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4925. */
  4926. inline void gcode_M81() {
  4927. thermalManager.disable_all_heaters();
  4928. stepper.finish_and_disable();
  4929. #if FAN_COUNT > 0
  4930. #if FAN_COUNT > 1
  4931. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4932. #else
  4933. fanSpeeds[0] = 0;
  4934. #endif
  4935. #endif
  4936. delay(1000); // Wait 1 second before switching off
  4937. #if HAS_SUICIDE
  4938. stepper.synchronize();
  4939. suicide();
  4940. #elif HAS_POWER_SWITCH
  4941. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4942. #endif
  4943. #if ENABLED(ULTIPANEL)
  4944. #if HAS_POWER_SWITCH
  4945. powersupply = false;
  4946. #endif
  4947. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4948. lcd_update();
  4949. #endif
  4950. }
  4951. /**
  4952. * M82: Set E codes absolute (default)
  4953. */
  4954. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4955. /**
  4956. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4957. */
  4958. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4959. /**
  4960. * M18, M84: Disable all stepper motors
  4961. */
  4962. inline void gcode_M18_M84() {
  4963. if (code_seen('S')) {
  4964. stepper_inactive_time = code_value_millis_from_seconds();
  4965. }
  4966. else {
  4967. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4968. if (all_axis) {
  4969. stepper.finish_and_disable();
  4970. }
  4971. else {
  4972. stepper.synchronize();
  4973. if (code_seen('X')) disable_x();
  4974. if (code_seen('Y')) disable_y();
  4975. if (code_seen('Z')) disable_z();
  4976. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4977. if (code_seen('E')) {
  4978. disable_e0();
  4979. disable_e1();
  4980. disable_e2();
  4981. disable_e3();
  4982. }
  4983. #endif
  4984. }
  4985. }
  4986. }
  4987. /**
  4988. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4989. */
  4990. inline void gcode_M85() {
  4991. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4992. }
  4993. /**
  4994. * Multi-stepper support for M92, M201, M203
  4995. */
  4996. #if ENABLED(DISTINCT_E_FACTORS)
  4997. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  4998. #define TARGET_EXTRUDER target_extruder
  4999. #else
  5000. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5001. #define TARGET_EXTRUDER 0
  5002. #endif
  5003. /**
  5004. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5005. * (Follows the same syntax as G92)
  5006. *
  5007. * With multiple extruders use T to specify which one.
  5008. */
  5009. inline void gcode_M92() {
  5010. GET_TARGET_EXTRUDER(92);
  5011. LOOP_XYZE(i) {
  5012. if (code_seen(axis_codes[i])) {
  5013. if (i == E_AXIS) {
  5014. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5015. if (value < 20.0) {
  5016. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5017. planner.max_jerk[E_AXIS] *= factor;
  5018. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5019. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5020. }
  5021. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5022. }
  5023. else {
  5024. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5025. }
  5026. }
  5027. }
  5028. planner.refresh_positioning();
  5029. }
  5030. /**
  5031. * Output the current position to serial
  5032. */
  5033. static void report_current_position() {
  5034. SERIAL_PROTOCOLPGM("X:");
  5035. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5036. SERIAL_PROTOCOLPGM(" Y:");
  5037. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5038. SERIAL_PROTOCOLPGM(" Z:");
  5039. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5040. SERIAL_PROTOCOLPGM(" E:");
  5041. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5042. stepper.report_positions();
  5043. #if IS_SCARA
  5044. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5045. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5046. SERIAL_EOL;
  5047. #endif
  5048. }
  5049. /**
  5050. * M114: Output current position to serial port
  5051. */
  5052. inline void gcode_M114() { report_current_position(); }
  5053. /**
  5054. * M115: Capabilities string
  5055. */
  5056. inline void gcode_M115() {
  5057. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5058. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5059. // EEPROM (M500, M501)
  5060. #if ENABLED(EEPROM_SETTINGS)
  5061. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5062. #else
  5063. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5064. #endif
  5065. // AUTOREPORT_TEMP (M155)
  5066. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5067. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5068. #else
  5069. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5070. #endif
  5071. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5072. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5073. // AUTOLEVEL (G29)
  5074. #if HAS_ABL
  5075. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5076. #else
  5077. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5078. #endif
  5079. // Z_PROBE (G30)
  5080. #if HAS_BED_PROBE
  5081. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5082. #else
  5083. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5084. #endif
  5085. // SOFTWARE_POWER (G30)
  5086. #if HAS_POWER_SWITCH
  5087. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5088. #else
  5089. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5090. #endif
  5091. // TOGGLE_LIGHTS (M355)
  5092. #if HAS_CASE_LIGHT
  5093. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5094. #else
  5095. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5096. #endif
  5097. // EMERGENCY_PARSER (M108, M112, M410)
  5098. #if ENABLED(EMERGENCY_PARSER)
  5099. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5100. #else
  5101. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5102. #endif
  5103. #endif // EXTENDED_CAPABILITIES_REPORT
  5104. }
  5105. /**
  5106. * M117: Set LCD Status Message
  5107. */
  5108. inline void gcode_M117() {
  5109. lcd_setstatus(current_command_args);
  5110. }
  5111. /**
  5112. * M119: Output endstop states to serial output
  5113. */
  5114. inline void gcode_M119() { endstops.M119(); }
  5115. /**
  5116. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5117. */
  5118. inline void gcode_M120() { endstops.enable_globally(true); }
  5119. /**
  5120. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5121. */
  5122. inline void gcode_M121() { endstops.enable_globally(false); }
  5123. #if ENABLED(HAVE_TMC2130DRIVER)
  5124. /**
  5125. * M122: Output Trinamic TMC2130 status to serial output. Very bad formatting.
  5126. */
  5127. static void tmc2130_report(Trinamic_TMC2130 &stepr, const char *name) {
  5128. stepr.read_STAT();
  5129. SERIAL_PROTOCOL(name);
  5130. SERIAL_PROTOCOL(": ");
  5131. stepr.isReset() ? SERIAL_PROTOCOLPGM("RESET ") : SERIAL_PROTOCOLPGM("----- ");
  5132. stepr.isError() ? SERIAL_PROTOCOLPGM("ERROR ") : SERIAL_PROTOCOLPGM("----- ");
  5133. stepr.isStallguard() ? SERIAL_PROTOCOLPGM("SLGRD ") : SERIAL_PROTOCOLPGM("----- ");
  5134. stepr.isStandstill() ? SERIAL_PROTOCOLPGM("STILL ") : SERIAL_PROTOCOLPGM("----- ");
  5135. SERIAL_PROTOCOLLN(stepr.debug());
  5136. }
  5137. inline void gcode_M122() {
  5138. SERIAL_PROTOCOLLNPGM("Reporting TMC2130 status");
  5139. #if ENABLED(X_IS_TMC2130)
  5140. tmc2130_report(stepperX, "X");
  5141. #endif
  5142. #if ENABLED(X2_IS_TMC2130)
  5143. tmc2130_report(stepperX2, "X2");
  5144. #endif
  5145. #if ENABLED(Y_IS_TMC2130)
  5146. tmc2130_report(stepperY, "Y");
  5147. #endif
  5148. #if ENABLED(Y2_IS_TMC2130)
  5149. tmc2130_report(stepperY2, "Y2");
  5150. #endif
  5151. #if ENABLED(Z_IS_TMC2130)
  5152. tmc2130_report(stepperZ, "Z");
  5153. #endif
  5154. #if ENABLED(Z2_IS_TMC2130)
  5155. tmc2130_report(stepperZ2, "Z2");
  5156. #endif
  5157. #if ENABLED(E0_IS_TMC2130)
  5158. tmc2130_report(stepperE0, "E0");
  5159. #endif
  5160. #if ENABLED(E1_IS_TMC2130)
  5161. tmc2130_report(stepperE1, "E1");
  5162. #endif
  5163. #if ENABLED(E2_IS_TMC2130)
  5164. tmc2130_report(stepperE2, "E2");
  5165. #endif
  5166. #if ENABLED(E3_IS_TMC2130)
  5167. tmc2130_report(stepperE3, "E3");
  5168. #endif
  5169. }
  5170. #endif // HAVE_TMC2130DRIVER
  5171. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5172. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5173. #if ENABLED(BLINKM)
  5174. // This variant uses i2c to send the RGB components to the device.
  5175. SendColors(r, g, b);
  5176. #else
  5177. // This variant uses 3 separate pins for the RGB components.
  5178. // If the pins can do PWM then their intensity will be set.
  5179. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5180. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5181. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5182. analogWrite(RGB_LED_R_PIN, r);
  5183. analogWrite(RGB_LED_G_PIN, g);
  5184. analogWrite(RGB_LED_B_PIN, b);
  5185. #endif
  5186. }
  5187. /**
  5188. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5189. *
  5190. * Always sets all 3 components. If a component is left out, set to 0.
  5191. *
  5192. * Examples:
  5193. *
  5194. * M150 R255 ; Turn LED red
  5195. * M150 R255 U127 ; Turn LED orange (PWM only)
  5196. * M150 ; Turn LED off
  5197. * M150 R U B ; Turn LED white
  5198. *
  5199. */
  5200. inline void gcode_M150() {
  5201. set_led_color(
  5202. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5203. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5204. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5205. );
  5206. }
  5207. #endif // BLINKM || RGB_LED
  5208. /**
  5209. * M200: Set filament diameter and set E axis units to cubic units
  5210. *
  5211. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5212. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5213. */
  5214. inline void gcode_M200() {
  5215. if (get_target_extruder_from_command(200)) return;
  5216. if (code_seen('D')) {
  5217. // setting any extruder filament size disables volumetric on the assumption that
  5218. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5219. // for all extruders
  5220. volumetric_enabled = (code_value_linear_units() != 0.0);
  5221. if (volumetric_enabled) {
  5222. filament_size[target_extruder] = code_value_linear_units();
  5223. // make sure all extruders have some sane value for the filament size
  5224. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5225. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5226. }
  5227. }
  5228. else {
  5229. //reserved for setting filament diameter via UFID or filament measuring device
  5230. return;
  5231. }
  5232. calculate_volumetric_multipliers();
  5233. }
  5234. /**
  5235. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5236. *
  5237. * With multiple extruders use T to specify which one.
  5238. */
  5239. inline void gcode_M201() {
  5240. GET_TARGET_EXTRUDER(201);
  5241. LOOP_XYZE(i) {
  5242. if (code_seen(axis_codes[i])) {
  5243. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5244. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5245. }
  5246. }
  5247. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5248. planner.reset_acceleration_rates();
  5249. }
  5250. #if 0 // Not used for Sprinter/grbl gen6
  5251. inline void gcode_M202() {
  5252. LOOP_XYZE(i) {
  5253. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5254. }
  5255. }
  5256. #endif
  5257. /**
  5258. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5259. *
  5260. * With multiple extruders use T to specify which one.
  5261. */
  5262. inline void gcode_M203() {
  5263. GET_TARGET_EXTRUDER(203);
  5264. LOOP_XYZE(i)
  5265. if (code_seen(axis_codes[i])) {
  5266. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5267. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5268. }
  5269. }
  5270. /**
  5271. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5272. *
  5273. * P = Printing moves
  5274. * R = Retract only (no X, Y, Z) moves
  5275. * T = Travel (non printing) moves
  5276. *
  5277. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5278. */
  5279. inline void gcode_M204() {
  5280. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5281. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5282. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5283. }
  5284. if (code_seen('P')) {
  5285. planner.acceleration = code_value_linear_units();
  5286. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5287. }
  5288. if (code_seen('R')) {
  5289. planner.retract_acceleration = code_value_linear_units();
  5290. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5291. }
  5292. if (code_seen('T')) {
  5293. planner.travel_acceleration = code_value_linear_units();
  5294. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5295. }
  5296. }
  5297. /**
  5298. * M205: Set Advanced Settings
  5299. *
  5300. * S = Min Feed Rate (units/s)
  5301. * T = Min Travel Feed Rate (units/s)
  5302. * B = Min Segment Time (µs)
  5303. * X = Max X Jerk (units/sec^2)
  5304. * Y = Max Y Jerk (units/sec^2)
  5305. * Z = Max Z Jerk (units/sec^2)
  5306. * E = Max E Jerk (units/sec^2)
  5307. */
  5308. inline void gcode_M205() {
  5309. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5310. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5311. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5312. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5313. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5314. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5315. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5316. }
  5317. /**
  5318. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5319. */
  5320. inline void gcode_M206() {
  5321. LOOP_XYZ(i)
  5322. if (code_seen(axis_codes[i]))
  5323. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5324. #if ENABLED(MORGAN_SCARA)
  5325. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5326. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5327. #endif
  5328. SYNC_PLAN_POSITION_KINEMATIC();
  5329. report_current_position();
  5330. }
  5331. #if ENABLED(DELTA)
  5332. /**
  5333. * M665: Set delta configurations
  5334. *
  5335. * L = diagonal rod
  5336. * R = delta radius
  5337. * S = segments per second
  5338. * A = Alpha (Tower 1) diagonal rod trim
  5339. * B = Beta (Tower 2) diagonal rod trim
  5340. * C = Gamma (Tower 3) diagonal rod trim
  5341. */
  5342. inline void gcode_M665() {
  5343. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5344. if (code_seen('R')) delta_radius = code_value_linear_units();
  5345. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5346. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5347. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5348. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5349. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5350. }
  5351. /**
  5352. * M666: Set delta endstop adjustment
  5353. */
  5354. inline void gcode_M666() {
  5355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5356. if (DEBUGGING(LEVELING)) {
  5357. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5358. }
  5359. #endif
  5360. LOOP_XYZ(i) {
  5361. if (code_seen(axis_codes[i])) {
  5362. endstop_adj[i] = code_value_axis_units(i);
  5363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5364. if (DEBUGGING(LEVELING)) {
  5365. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5366. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5367. }
  5368. #endif
  5369. }
  5370. }
  5371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5372. if (DEBUGGING(LEVELING)) {
  5373. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5374. }
  5375. #endif
  5376. }
  5377. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5378. /**
  5379. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5380. */
  5381. inline void gcode_M666() {
  5382. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5383. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5384. }
  5385. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5386. #if ENABLED(FWRETRACT)
  5387. /**
  5388. * M207: Set firmware retraction values
  5389. *
  5390. * S[+units] retract_length
  5391. * W[+units] retract_length_swap (multi-extruder)
  5392. * F[units/min] retract_feedrate_mm_s
  5393. * Z[units] retract_zlift
  5394. */
  5395. inline void gcode_M207() {
  5396. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5397. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5398. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5399. #if EXTRUDERS > 1
  5400. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5401. #endif
  5402. }
  5403. /**
  5404. * M208: Set firmware un-retraction values
  5405. *
  5406. * S[+units] retract_recover_length (in addition to M207 S*)
  5407. * W[+units] retract_recover_length_swap (multi-extruder)
  5408. * F[units/min] retract_recover_feedrate_mm_s
  5409. */
  5410. inline void gcode_M208() {
  5411. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5412. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5413. #if EXTRUDERS > 1
  5414. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5415. #endif
  5416. }
  5417. /**
  5418. * M209: Enable automatic retract (M209 S1)
  5419. * For slicers that don't support G10/11, reversed extrude-only
  5420. * moves will be classified as retraction.
  5421. */
  5422. inline void gcode_M209() {
  5423. if (code_seen('S')) {
  5424. autoretract_enabled = code_value_bool();
  5425. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5426. }
  5427. }
  5428. #endif // FWRETRACT
  5429. /**
  5430. * M211: Enable, Disable, and/or Report software endstops
  5431. *
  5432. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5433. */
  5434. inline void gcode_M211() {
  5435. SERIAL_ECHO_START;
  5436. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5437. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5438. #endif
  5439. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5440. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5441. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5442. #else
  5443. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5444. SERIAL_ECHOPGM(MSG_OFF);
  5445. #endif
  5446. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5447. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5448. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5449. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5450. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5451. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5452. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5453. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5454. }
  5455. #if HOTENDS > 1
  5456. /**
  5457. * M218 - set hotend offset (in linear units)
  5458. *
  5459. * T<tool>
  5460. * X<xoffset>
  5461. * Y<yoffset>
  5462. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5463. */
  5464. inline void gcode_M218() {
  5465. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5466. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5467. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5468. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5469. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5470. #endif
  5471. SERIAL_ECHO_START;
  5472. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5473. HOTEND_LOOP() {
  5474. SERIAL_CHAR(' ');
  5475. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5476. SERIAL_CHAR(',');
  5477. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5478. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5479. SERIAL_CHAR(',');
  5480. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5481. #endif
  5482. }
  5483. SERIAL_EOL;
  5484. }
  5485. #endif // HOTENDS > 1
  5486. /**
  5487. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5488. */
  5489. inline void gcode_M220() {
  5490. if (code_seen('S')) feedrate_percentage = code_value_int();
  5491. }
  5492. /**
  5493. * M221: Set extrusion percentage (M221 T0 S95)
  5494. */
  5495. inline void gcode_M221() {
  5496. if (get_target_extruder_from_command(221)) return;
  5497. if (code_seen('S'))
  5498. flow_percentage[target_extruder] = code_value_int();
  5499. }
  5500. /**
  5501. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5502. */
  5503. inline void gcode_M226() {
  5504. if (code_seen('P')) {
  5505. int pin_number = code_value_int(),
  5506. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5507. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5508. int target = LOW;
  5509. stepper.synchronize();
  5510. pinMode(pin_number, INPUT);
  5511. switch (pin_state) {
  5512. case 1:
  5513. target = HIGH;
  5514. break;
  5515. case 0:
  5516. target = LOW;
  5517. break;
  5518. case -1:
  5519. target = !digitalRead(pin_number);
  5520. break;
  5521. }
  5522. while (digitalRead(pin_number) != target) idle();
  5523. } // pin_state -1 0 1 && pin_number > -1
  5524. } // code_seen('P')
  5525. }
  5526. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5527. /**
  5528. * M260: Send data to a I2C slave device
  5529. *
  5530. * This is a PoC, the formating and arguments for the GCODE will
  5531. * change to be more compatible, the current proposal is:
  5532. *
  5533. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5534. *
  5535. * M260 B<byte-1 value in base 10>
  5536. * M260 B<byte-2 value in base 10>
  5537. * M260 B<byte-3 value in base 10>
  5538. *
  5539. * M260 S1 ; Send the buffered data and reset the buffer
  5540. * M260 R1 ; Reset the buffer without sending data
  5541. *
  5542. */
  5543. inline void gcode_M260() {
  5544. // Set the target address
  5545. if (code_seen('A')) i2c.address(code_value_byte());
  5546. // Add a new byte to the buffer
  5547. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5548. // Flush the buffer to the bus
  5549. if (code_seen('S')) i2c.send();
  5550. // Reset and rewind the buffer
  5551. else if (code_seen('R')) i2c.reset();
  5552. }
  5553. /**
  5554. * M261: Request X bytes from I2C slave device
  5555. *
  5556. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5557. */
  5558. inline void gcode_M261() {
  5559. if (code_seen('A')) i2c.address(code_value_byte());
  5560. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5561. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5562. i2c.relay(bytes);
  5563. }
  5564. else {
  5565. SERIAL_ERROR_START;
  5566. SERIAL_ERRORLN("Bad i2c request");
  5567. }
  5568. }
  5569. #endif // EXPERIMENTAL_I2CBUS
  5570. #if HAS_SERVOS
  5571. /**
  5572. * M280: Get or set servo position. P<index> [S<angle>]
  5573. */
  5574. inline void gcode_M280() {
  5575. if (!code_seen('P')) return;
  5576. int servo_index = code_value_int();
  5577. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5578. if (code_seen('S'))
  5579. MOVE_SERVO(servo_index, code_value_int());
  5580. else {
  5581. SERIAL_ECHO_START;
  5582. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5583. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5584. }
  5585. }
  5586. else {
  5587. SERIAL_ERROR_START;
  5588. SERIAL_ECHOPAIR("Servo ", servo_index);
  5589. SERIAL_ECHOLNPGM(" out of range");
  5590. }
  5591. }
  5592. #endif // HAS_SERVOS
  5593. #if HAS_BUZZER
  5594. /**
  5595. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5596. */
  5597. inline void gcode_M300() {
  5598. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5599. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5600. // Limits the tone duration to 0-5 seconds.
  5601. NOMORE(duration, 5000);
  5602. BUZZ(duration, frequency);
  5603. }
  5604. #endif // HAS_BUZZER
  5605. #if ENABLED(PIDTEMP)
  5606. /**
  5607. * M301: Set PID parameters P I D (and optionally C, L)
  5608. *
  5609. * P[float] Kp term
  5610. * I[float] Ki term (unscaled)
  5611. * D[float] Kd term (unscaled)
  5612. *
  5613. * With PID_EXTRUSION_SCALING:
  5614. *
  5615. * C[float] Kc term
  5616. * L[float] LPQ length
  5617. */
  5618. inline void gcode_M301() {
  5619. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5620. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5621. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5622. if (e < HOTENDS) { // catch bad input value
  5623. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5624. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5625. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5626. #if ENABLED(PID_EXTRUSION_SCALING)
  5627. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5628. if (code_seen('L')) lpq_len = code_value_float();
  5629. NOMORE(lpq_len, LPQ_MAX_LEN);
  5630. #endif
  5631. thermalManager.updatePID();
  5632. SERIAL_ECHO_START;
  5633. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5634. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5635. #endif // PID_PARAMS_PER_HOTEND
  5636. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5637. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5638. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5639. #if ENABLED(PID_EXTRUSION_SCALING)
  5640. //Kc does not have scaling applied above, or in resetting defaults
  5641. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5642. #endif
  5643. SERIAL_EOL;
  5644. }
  5645. else {
  5646. SERIAL_ERROR_START;
  5647. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5648. }
  5649. }
  5650. #endif // PIDTEMP
  5651. #if ENABLED(PIDTEMPBED)
  5652. inline void gcode_M304() {
  5653. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5654. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5655. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5656. thermalManager.updatePID();
  5657. SERIAL_ECHO_START;
  5658. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5659. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5660. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5661. }
  5662. #endif // PIDTEMPBED
  5663. #if defined(CHDK) || HAS_PHOTOGRAPH
  5664. /**
  5665. * M240: Trigger a camera by emulating a Canon RC-1
  5666. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5667. */
  5668. inline void gcode_M240() {
  5669. #ifdef CHDK
  5670. OUT_WRITE(CHDK, HIGH);
  5671. chdkHigh = millis();
  5672. chdkActive = true;
  5673. #elif HAS_PHOTOGRAPH
  5674. const uint8_t NUM_PULSES = 16;
  5675. const float PULSE_LENGTH = 0.01524;
  5676. for (int i = 0; i < NUM_PULSES; i++) {
  5677. WRITE(PHOTOGRAPH_PIN, HIGH);
  5678. _delay_ms(PULSE_LENGTH);
  5679. WRITE(PHOTOGRAPH_PIN, LOW);
  5680. _delay_ms(PULSE_LENGTH);
  5681. }
  5682. delay(7.33);
  5683. for (int i = 0; i < NUM_PULSES; i++) {
  5684. WRITE(PHOTOGRAPH_PIN, HIGH);
  5685. _delay_ms(PULSE_LENGTH);
  5686. WRITE(PHOTOGRAPH_PIN, LOW);
  5687. _delay_ms(PULSE_LENGTH);
  5688. }
  5689. #endif // !CHDK && HAS_PHOTOGRAPH
  5690. }
  5691. #endif // CHDK || PHOTOGRAPH_PIN
  5692. #if HAS_LCD_CONTRAST
  5693. /**
  5694. * M250: Read and optionally set the LCD contrast
  5695. */
  5696. inline void gcode_M250() {
  5697. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5698. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5699. SERIAL_PROTOCOL(lcd_contrast);
  5700. SERIAL_EOL;
  5701. }
  5702. #endif // HAS_LCD_CONTRAST
  5703. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5704. /**
  5705. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5706. *
  5707. * S<temperature> sets the minimum extrude temperature
  5708. * P<bool> enables (1) or disables (0) cold extrusion
  5709. *
  5710. * Examples:
  5711. *
  5712. * M302 ; report current cold extrusion state
  5713. * M302 P0 ; enable cold extrusion checking
  5714. * M302 P1 ; disables cold extrusion checking
  5715. * M302 S0 ; always allow extrusion (disables checking)
  5716. * M302 S170 ; only allow extrusion above 170
  5717. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5718. */
  5719. inline void gcode_M302() {
  5720. bool seen_S = code_seen('S');
  5721. if (seen_S) {
  5722. thermalManager.extrude_min_temp = code_value_temp_abs();
  5723. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5724. }
  5725. if (code_seen('P'))
  5726. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5727. else if (!seen_S) {
  5728. // Report current state
  5729. SERIAL_ECHO_START;
  5730. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5731. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5732. SERIAL_ECHOLNPGM("C)");
  5733. }
  5734. }
  5735. #endif // PREVENT_COLD_EXTRUSION
  5736. /**
  5737. * M303: PID relay autotune
  5738. *
  5739. * S<temperature> sets the target temperature. (default 150C)
  5740. * E<extruder> (-1 for the bed) (default 0)
  5741. * C<cycles>
  5742. * U<bool> with a non-zero value will apply the result to current settings
  5743. */
  5744. inline void gcode_M303() {
  5745. #if HAS_PID_HEATING
  5746. int e = code_seen('E') ? code_value_int() : 0;
  5747. int c = code_seen('C') ? code_value_int() : 5;
  5748. bool u = code_seen('U') && code_value_bool();
  5749. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5750. if (e >= 0 && e < HOTENDS)
  5751. target_extruder = e;
  5752. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5753. thermalManager.PID_autotune(temp, e, c, u);
  5754. KEEPALIVE_STATE(IN_HANDLER);
  5755. #else
  5756. SERIAL_ERROR_START;
  5757. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5758. #endif
  5759. }
  5760. #if ENABLED(MORGAN_SCARA)
  5761. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5762. if (IsRunning()) {
  5763. forward_kinematics_SCARA(delta_a, delta_b);
  5764. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5765. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5766. destination[Z_AXIS] = current_position[Z_AXIS];
  5767. prepare_move_to_destination();
  5768. return true;
  5769. }
  5770. return false;
  5771. }
  5772. /**
  5773. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5774. */
  5775. inline bool gcode_M360() {
  5776. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5777. return SCARA_move_to_cal(0, 120);
  5778. }
  5779. /**
  5780. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5781. */
  5782. inline bool gcode_M361() {
  5783. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5784. return SCARA_move_to_cal(90, 130);
  5785. }
  5786. /**
  5787. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5788. */
  5789. inline bool gcode_M362() {
  5790. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5791. return SCARA_move_to_cal(60, 180);
  5792. }
  5793. /**
  5794. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5795. */
  5796. inline bool gcode_M363() {
  5797. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5798. return SCARA_move_to_cal(50, 90);
  5799. }
  5800. /**
  5801. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5802. */
  5803. inline bool gcode_M364() {
  5804. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5805. return SCARA_move_to_cal(45, 135);
  5806. }
  5807. #endif // SCARA
  5808. #if ENABLED(EXT_SOLENOID)
  5809. void enable_solenoid(uint8_t num) {
  5810. switch (num) {
  5811. case 0:
  5812. OUT_WRITE(SOL0_PIN, HIGH);
  5813. break;
  5814. #if HAS_SOLENOID_1
  5815. case 1:
  5816. OUT_WRITE(SOL1_PIN, HIGH);
  5817. break;
  5818. #endif
  5819. #if HAS_SOLENOID_2
  5820. case 2:
  5821. OUT_WRITE(SOL2_PIN, HIGH);
  5822. break;
  5823. #endif
  5824. #if HAS_SOLENOID_3
  5825. case 3:
  5826. OUT_WRITE(SOL3_PIN, HIGH);
  5827. break;
  5828. #endif
  5829. default:
  5830. SERIAL_ECHO_START;
  5831. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5832. break;
  5833. }
  5834. }
  5835. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5836. void disable_all_solenoids() {
  5837. OUT_WRITE(SOL0_PIN, LOW);
  5838. OUT_WRITE(SOL1_PIN, LOW);
  5839. OUT_WRITE(SOL2_PIN, LOW);
  5840. OUT_WRITE(SOL3_PIN, LOW);
  5841. }
  5842. /**
  5843. * M380: Enable solenoid on the active extruder
  5844. */
  5845. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5846. /**
  5847. * M381: Disable all solenoids
  5848. */
  5849. inline void gcode_M381() { disable_all_solenoids(); }
  5850. #endif // EXT_SOLENOID
  5851. /**
  5852. * M400: Finish all moves
  5853. */
  5854. inline void gcode_M400() { stepper.synchronize(); }
  5855. #if HAS_BED_PROBE
  5856. /**
  5857. * M401: Engage Z Servo endstop if available
  5858. */
  5859. inline void gcode_M401() { DEPLOY_PROBE(); }
  5860. /**
  5861. * M402: Retract Z Servo endstop if enabled
  5862. */
  5863. inline void gcode_M402() { STOW_PROBE(); }
  5864. #endif // HAS_BED_PROBE
  5865. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5866. /**
  5867. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5868. */
  5869. inline void gcode_M404() {
  5870. if (code_seen('W')) {
  5871. filament_width_nominal = code_value_linear_units();
  5872. }
  5873. else {
  5874. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5875. SERIAL_PROTOCOLLN(filament_width_nominal);
  5876. }
  5877. }
  5878. /**
  5879. * M405: Turn on filament sensor for control
  5880. */
  5881. inline void gcode_M405() {
  5882. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5883. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5884. if (code_seen('D')) meas_delay_cm = code_value_int();
  5885. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5886. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5887. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5888. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5889. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5890. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5891. }
  5892. filament_sensor = true;
  5893. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5894. //SERIAL_PROTOCOL(filament_width_meas);
  5895. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5896. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5897. }
  5898. /**
  5899. * M406: Turn off filament sensor for control
  5900. */
  5901. inline void gcode_M406() { filament_sensor = false; }
  5902. /**
  5903. * M407: Get measured filament diameter on serial output
  5904. */
  5905. inline void gcode_M407() {
  5906. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5907. SERIAL_PROTOCOLLN(filament_width_meas);
  5908. }
  5909. #endif // FILAMENT_WIDTH_SENSOR
  5910. void quickstop_stepper() {
  5911. stepper.quick_stop();
  5912. stepper.synchronize();
  5913. set_current_from_steppers_for_axis(ALL_AXES);
  5914. SYNC_PLAN_POSITION_KINEMATIC();
  5915. }
  5916. #if PLANNER_LEVELING
  5917. /**
  5918. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  5919. *
  5920. * S[bool] Turns leveling on or off
  5921. * Z[height] Sets the Z fade height (0 or none to disable)
  5922. * V[bool] Verbose - Print the levelng grid
  5923. */
  5924. inline void gcode_M420() {
  5925. bool to_enable = false;
  5926. if (code_seen('S')) {
  5927. to_enable = code_value_bool();
  5928. set_bed_leveling_enabled(to_enable);
  5929. }
  5930. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  5931. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  5932. #endif
  5933. if (to_enable && !(
  5934. #if ENABLED(MESH_BED_LEVELING)
  5935. mbl.active()
  5936. #else
  5937. planner.abl_enabled
  5938. #endif
  5939. ) ) {
  5940. to_enable = false;
  5941. SERIAL_ERROR_START;
  5942. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  5943. }
  5944. SERIAL_ECHO_START;
  5945. SERIAL_ECHOLNPAIR("Bed Leveling ", to_enable ? MSG_ON : MSG_OFF);
  5946. // V to print the matrix or mesh
  5947. if (code_seen('V')) {
  5948. #if ABL_PLANAR
  5949. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  5950. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  5951. if (bilinear_grid_spacing[X_AXIS]) {
  5952. print_bilinear_leveling_grid();
  5953. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  5954. bed_level_virt_print();
  5955. #endif
  5956. }
  5957. #elif ENABLED(MESH_BED_LEVELING)
  5958. if (mbl.has_mesh()) {
  5959. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  5960. mbl_mesh_report();
  5961. }
  5962. #endif
  5963. }
  5964. }
  5965. #endif
  5966. #if ENABLED(MESH_BED_LEVELING)
  5967. /**
  5968. * M421: Set a single Mesh Bed Leveling Z coordinate
  5969. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5970. */
  5971. inline void gcode_M421() {
  5972. int8_t px = 0, py = 0;
  5973. float z = 0;
  5974. bool hasX, hasY, hasZ, hasI, hasJ;
  5975. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5976. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5977. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5978. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5979. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5980. if (hasX && hasY && hasZ) {
  5981. if (px >= 0 && py >= 0)
  5982. mbl.set_z(px, py, z);
  5983. else {
  5984. SERIAL_ERROR_START;
  5985. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5986. }
  5987. }
  5988. else if (hasI && hasJ && hasZ) {
  5989. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5990. mbl.set_z(px, py, z);
  5991. else {
  5992. SERIAL_ERROR_START;
  5993. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5994. }
  5995. }
  5996. else {
  5997. SERIAL_ERROR_START;
  5998. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5999. }
  6000. }
  6001. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6002. /**
  6003. * M421: Set a single Mesh Bed Leveling Z coordinate
  6004. *
  6005. * M421 I<xindex> J<yindex> Z<linear>
  6006. */
  6007. inline void gcode_M421() {
  6008. int8_t px = 0, py = 0;
  6009. float z = 0;
  6010. bool hasI, hasJ, hasZ;
  6011. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6012. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6013. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6014. if (hasI && hasJ && hasZ) {
  6015. if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) {
  6016. bed_level_grid[px][py] = z;
  6017. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6018. bed_level_virt_prepare();
  6019. bed_level_virt_interpolate();
  6020. #endif
  6021. }
  6022. else {
  6023. SERIAL_ERROR_START;
  6024. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6025. }
  6026. }
  6027. else {
  6028. SERIAL_ERROR_START;
  6029. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6030. }
  6031. }
  6032. #endif
  6033. /**
  6034. * M428: Set home_offset based on the distance between the
  6035. * current_position and the nearest "reference point."
  6036. * If an axis is past center its endstop position
  6037. * is the reference-point. Otherwise it uses 0. This allows
  6038. * the Z offset to be set near the bed when using a max endstop.
  6039. *
  6040. * M428 can't be used more than 2cm away from 0 or an endstop.
  6041. *
  6042. * Use M206 to set these values directly.
  6043. */
  6044. inline void gcode_M428() {
  6045. bool err = false;
  6046. LOOP_XYZ(i) {
  6047. if (axis_homed[i]) {
  6048. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6049. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6050. if (diff > -20 && diff < 20) {
  6051. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6052. }
  6053. else {
  6054. SERIAL_ERROR_START;
  6055. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6056. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6057. BUZZ(200, 40);
  6058. err = true;
  6059. break;
  6060. }
  6061. }
  6062. }
  6063. if (!err) {
  6064. SYNC_PLAN_POSITION_KINEMATIC();
  6065. report_current_position();
  6066. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6067. BUZZ(200, 659);
  6068. BUZZ(200, 698);
  6069. }
  6070. }
  6071. /**
  6072. * M500: Store settings in EEPROM
  6073. */
  6074. inline void gcode_M500() {
  6075. Config_StoreSettings();
  6076. }
  6077. /**
  6078. * M501: Read settings from EEPROM
  6079. */
  6080. inline void gcode_M501() {
  6081. Config_RetrieveSettings();
  6082. }
  6083. /**
  6084. * M502: Revert to default settings
  6085. */
  6086. inline void gcode_M502() {
  6087. Config_ResetDefault();
  6088. }
  6089. /**
  6090. * M503: print settings currently in memory
  6091. */
  6092. inline void gcode_M503() {
  6093. Config_PrintSettings(code_seen('S') && !code_value_bool());
  6094. }
  6095. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6096. /**
  6097. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6098. */
  6099. inline void gcode_M540() {
  6100. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6101. }
  6102. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6103. #if HAS_BED_PROBE
  6104. inline void gcode_M851() {
  6105. SERIAL_ECHO_START;
  6106. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6107. SERIAL_CHAR(' ');
  6108. if (code_seen('Z')) {
  6109. float value = code_value_axis_units(Z_AXIS);
  6110. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  6111. zprobe_zoffset = value;
  6112. SERIAL_ECHO(zprobe_zoffset);
  6113. }
  6114. else {
  6115. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6116. SERIAL_CHAR(' ');
  6117. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6118. }
  6119. }
  6120. else {
  6121. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6122. }
  6123. SERIAL_EOL;
  6124. }
  6125. #endif // HAS_BED_PROBE
  6126. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6127. /**
  6128. * M600: Pause for filament change
  6129. *
  6130. * E[distance] - Retract the filament this far (negative value)
  6131. * Z[distance] - Move the Z axis by this distance
  6132. * X[position] - Move to this X position, with Y
  6133. * Y[position] - Move to this Y position, with X
  6134. * L[distance] - Retract distance for removal (manual reload)
  6135. *
  6136. * Default values are used for omitted arguments.
  6137. *
  6138. */
  6139. inline void gcode_M600() {
  6140. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6141. SERIAL_ERROR_START;
  6142. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6143. return;
  6144. }
  6145. // Show initial message and wait for synchronize steppers
  6146. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6147. stepper.synchronize();
  6148. float lastpos[NUM_AXIS];
  6149. // Save current position of all axes
  6150. LOOP_XYZE(i)
  6151. lastpos[i] = destination[i] = current_position[i];
  6152. // Define runplan for move axes
  6153. #if IS_KINEMATIC
  6154. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  6155. #else
  6156. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  6157. #endif
  6158. KEEPALIVE_STATE(IN_HANDLER);
  6159. // Initial retract before move to filament change position
  6160. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  6161. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6162. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  6163. #endif
  6164. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6165. // Lift Z axis
  6166. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6167. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6168. FILAMENT_CHANGE_Z_ADD
  6169. #else
  6170. 0
  6171. #endif
  6172. ;
  6173. if (z_lift > 0) {
  6174. destination[Z_AXIS] += z_lift;
  6175. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6176. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6177. }
  6178. // Move XY axes to filament exchange position
  6179. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6180. #ifdef FILAMENT_CHANGE_X_POS
  6181. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6182. #endif
  6183. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6184. #ifdef FILAMENT_CHANGE_Y_POS
  6185. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6186. #endif
  6187. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6188. stepper.synchronize();
  6189. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6190. // Unload filament
  6191. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  6192. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6193. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  6194. #endif
  6195. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6196. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6197. stepper.synchronize();
  6198. disable_e0();
  6199. disable_e1();
  6200. disable_e2();
  6201. disable_e3();
  6202. delay(100);
  6203. #if HAS_BUZZER
  6204. millis_t next_buzz = 0;
  6205. #endif
  6206. // Wait for filament insert by user and press button
  6207. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6208. // LCD click or M108 will clear this
  6209. wait_for_user = true;
  6210. while (wait_for_user) {
  6211. #if HAS_BUZZER
  6212. millis_t ms = millis();
  6213. if (ms >= next_buzz) {
  6214. BUZZ(300, 2000);
  6215. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  6216. }
  6217. #endif
  6218. idle(true);
  6219. }
  6220. // Show load message
  6221. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6222. // Load filament
  6223. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  6224. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  6225. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  6226. #endif
  6227. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6228. stepper.synchronize();
  6229. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6230. do {
  6231. // Extrude filament to get into hotend
  6232. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6233. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6234. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6235. stepper.synchronize();
  6236. // Ask user if more filament should be extruded
  6237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6238. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6239. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6240. KEEPALIVE_STATE(IN_HANDLER);
  6241. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  6242. #endif
  6243. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6244. KEEPALIVE_STATE(IN_HANDLER);
  6245. // Set extruder to saved position
  6246. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6247. planner.set_e_position_mm(current_position[E_AXIS]);
  6248. #if IS_KINEMATIC
  6249. // Move XYZ to starting position
  6250. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6251. #else
  6252. // Move XY to starting position, then Z
  6253. destination[X_AXIS] = lastpos[X_AXIS];
  6254. destination[Y_AXIS] = lastpos[Y_AXIS];
  6255. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6256. destination[Z_AXIS] = lastpos[Z_AXIS];
  6257. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6258. #endif
  6259. stepper.synchronize();
  6260. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6261. filament_ran_out = false;
  6262. #endif
  6263. // Show status screen
  6264. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6265. }
  6266. #endif // FILAMENT_CHANGE_FEATURE
  6267. #if ENABLED(DUAL_X_CARRIAGE)
  6268. /**
  6269. * M605: Set dual x-carriage movement mode
  6270. *
  6271. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6272. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6273. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6274. * units x-offset and an optional differential hotend temperature of
  6275. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6276. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6277. *
  6278. * Note: the X axis should be homed after changing dual x-carriage mode.
  6279. */
  6280. inline void gcode_M605() {
  6281. stepper.synchronize();
  6282. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6283. switch (dual_x_carriage_mode) {
  6284. case DXC_FULL_CONTROL_MODE:
  6285. case DXC_AUTO_PARK_MODE:
  6286. break;
  6287. case DXC_DUPLICATION_MODE:
  6288. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6289. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6290. SERIAL_ECHO_START;
  6291. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6292. SERIAL_CHAR(' ');
  6293. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6294. SERIAL_CHAR(',');
  6295. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6296. SERIAL_CHAR(' ');
  6297. SERIAL_ECHO(duplicate_extruder_x_offset);
  6298. SERIAL_CHAR(',');
  6299. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6300. break;
  6301. default:
  6302. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6303. break;
  6304. }
  6305. active_extruder_parked = false;
  6306. extruder_duplication_enabled = false;
  6307. delayed_move_time = 0;
  6308. }
  6309. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6310. inline void gcode_M605() {
  6311. stepper.synchronize();
  6312. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6313. SERIAL_ECHO_START;
  6314. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6315. }
  6316. #endif // M605
  6317. #if ENABLED(LIN_ADVANCE)
  6318. /**
  6319. * M905: Set advance factor
  6320. */
  6321. inline void gcode_M905() {
  6322. stepper.synchronize();
  6323. planner.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  6324. }
  6325. #endif
  6326. /**
  6327. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6328. */
  6329. inline void gcode_M907() {
  6330. #if HAS_DIGIPOTSS
  6331. LOOP_XYZE(i)
  6332. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6333. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6334. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6335. #elif HAS_MOTOR_CURRENT_PWM
  6336. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6337. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6338. #endif
  6339. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6340. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6341. #endif
  6342. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6343. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6344. #endif
  6345. #endif
  6346. #if ENABLED(DIGIPOT_I2C)
  6347. // this one uses actual amps in floating point
  6348. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6349. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6350. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6351. #endif
  6352. #if ENABLED(DAC_STEPPER_CURRENT)
  6353. if (code_seen('S')) {
  6354. float dac_percent = code_value_float();
  6355. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6356. }
  6357. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6358. #endif
  6359. }
  6360. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6361. /**
  6362. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6363. */
  6364. inline void gcode_M908() {
  6365. #if HAS_DIGIPOTSS
  6366. stepper.digitalPotWrite(
  6367. code_seen('P') ? code_value_int() : 0,
  6368. code_seen('S') ? code_value_int() : 0
  6369. );
  6370. #endif
  6371. #ifdef DAC_STEPPER_CURRENT
  6372. dac_current_raw(
  6373. code_seen('P') ? code_value_byte() : -1,
  6374. code_seen('S') ? code_value_ushort() : 0
  6375. );
  6376. #endif
  6377. }
  6378. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6379. inline void gcode_M909() { dac_print_values(); }
  6380. inline void gcode_M910() { dac_commit_eeprom(); }
  6381. #endif
  6382. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6383. #if HAS_MICROSTEPS
  6384. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6385. inline void gcode_M350() {
  6386. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6387. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6388. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6389. stepper.microstep_readings();
  6390. }
  6391. /**
  6392. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6393. * S# determines MS1 or MS2, X# sets the pin high/low.
  6394. */
  6395. inline void gcode_M351() {
  6396. if (code_seen('S')) switch (code_value_byte()) {
  6397. case 1:
  6398. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6399. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6400. break;
  6401. case 2:
  6402. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6403. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6404. break;
  6405. }
  6406. stepper.microstep_readings();
  6407. }
  6408. #endif // HAS_MICROSTEPS
  6409. #if HAS_CASE_LIGHT
  6410. uint8_t case_light_brightness = 255;
  6411. void update_case_light() {
  6412. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6413. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6414. }
  6415. /**
  6416. * M355: Turn case lights on/off and set brightness
  6417. *
  6418. * S<bool> Turn case light on or off
  6419. * P<byte> Set case light brightness (PWM pin required)
  6420. */
  6421. inline void gcode_M355() {
  6422. if (code_seen('P')) case_light_brightness = code_value_byte();
  6423. if (code_seen('S')) case_light_on = code_value_bool();
  6424. update_case_light();
  6425. SERIAL_ECHO_START;
  6426. SERIAL_ECHOPGM("Case lights ");
  6427. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6428. }
  6429. #endif // HAS_CASE_LIGHT
  6430. #if ENABLED(MIXING_EXTRUDER)
  6431. /**
  6432. * M163: Set a single mix factor for a mixing extruder
  6433. * This is called "weight" by some systems.
  6434. *
  6435. * S[index] The channel index to set
  6436. * P[float] The mix value
  6437. *
  6438. */
  6439. inline void gcode_M163() {
  6440. int mix_index = code_seen('S') ? code_value_int() : 0;
  6441. if (mix_index < MIXING_STEPPERS) {
  6442. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6443. NOLESS(mix_value, 0.0);
  6444. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6445. }
  6446. }
  6447. #if MIXING_VIRTUAL_TOOLS > 1
  6448. /**
  6449. * M164: Store the current mix factors as a virtual tool.
  6450. *
  6451. * S[index] The virtual tool to store
  6452. *
  6453. */
  6454. inline void gcode_M164() {
  6455. int tool_index = code_seen('S') ? code_value_int() : 0;
  6456. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6457. normalize_mix();
  6458. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6459. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6460. }
  6461. }
  6462. #endif
  6463. #if ENABLED(DIRECT_MIXING_IN_G1)
  6464. /**
  6465. * M165: Set multiple mix factors for a mixing extruder.
  6466. * Factors that are left out will be set to 0.
  6467. * All factors together must add up to 1.0.
  6468. *
  6469. * A[factor] Mix factor for extruder stepper 1
  6470. * B[factor] Mix factor for extruder stepper 2
  6471. * C[factor] Mix factor for extruder stepper 3
  6472. * D[factor] Mix factor for extruder stepper 4
  6473. * H[factor] Mix factor for extruder stepper 5
  6474. * I[factor] Mix factor for extruder stepper 6
  6475. *
  6476. */
  6477. inline void gcode_M165() { gcode_get_mix(); }
  6478. #endif
  6479. #endif // MIXING_EXTRUDER
  6480. /**
  6481. * M999: Restart after being stopped
  6482. *
  6483. * Default behaviour is to flush the serial buffer and request
  6484. * a resend to the host starting on the last N line received.
  6485. *
  6486. * Sending "M999 S1" will resume printing without flushing the
  6487. * existing command buffer.
  6488. *
  6489. */
  6490. inline void gcode_M999() {
  6491. Running = true;
  6492. lcd_reset_alert_level();
  6493. if (code_seen('S') && code_value_bool()) return;
  6494. // gcode_LastN = Stopped_gcode_LastN;
  6495. FlushSerialRequestResend();
  6496. }
  6497. #if ENABLED(SWITCHING_EXTRUDER)
  6498. inline void move_extruder_servo(uint8_t e) {
  6499. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6500. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6501. }
  6502. #endif
  6503. inline void invalid_extruder_error(const uint8_t &e) {
  6504. SERIAL_ECHO_START;
  6505. SERIAL_CHAR('T');
  6506. SERIAL_PROTOCOL_F(e, DEC);
  6507. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6508. }
  6509. /**
  6510. * Perform a tool-change, which may result in moving the
  6511. * previous tool out of the way and the new tool into place.
  6512. */
  6513. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6514. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6515. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  6516. return invalid_extruder_error(tmp_extruder);
  6517. // T0-Tnnn: Switch virtual tool by changing the mix
  6518. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6519. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6520. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6521. #if HOTENDS > 1
  6522. if (tmp_extruder >= EXTRUDERS)
  6523. return invalid_extruder_error(tmp_extruder);
  6524. float old_feedrate_mm_s = feedrate_mm_s;
  6525. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6526. if (tmp_extruder != active_extruder) {
  6527. if (!no_move && axis_unhomed_error(true, true, true)) {
  6528. SERIAL_ECHOLNPGM("No move on toolchange");
  6529. no_move = true;
  6530. }
  6531. // Save current position to destination, for use later
  6532. set_destination_to_current();
  6533. #if ENABLED(DUAL_X_CARRIAGE)
  6534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6535. if (DEBUGGING(LEVELING)) {
  6536. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6537. switch (dual_x_carriage_mode) {
  6538. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6539. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6540. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6541. }
  6542. }
  6543. #endif
  6544. const float xhome = x_home_pos(active_extruder);
  6545. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  6546. && IsRunning()
  6547. && (delayed_move_time || current_position[X_AXIS] != xhome)
  6548. ) {
  6549. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  6550. #if ENABLED(max_software_endstops)
  6551. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  6552. #endif
  6553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6554. if (DEBUGGING(LEVELING)) {
  6555. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  6556. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  6557. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  6558. }
  6559. #endif
  6560. // Park old head: 1) raise 2) move to park position 3) lower
  6561. for (uint8_t i = 0; i < 3; i++)
  6562. planner.buffer_line(
  6563. i == 0 ? current_position[X_AXIS] : xhome,
  6564. current_position[Y_AXIS],
  6565. i == 2 ? current_position[Z_AXIS] : raised_z,
  6566. current_position[E_AXIS],
  6567. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6568. active_extruder
  6569. );
  6570. stepper.synchronize();
  6571. }
  6572. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  6573. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6574. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6575. // Activate the new extruder
  6576. active_extruder = tmp_extruder;
  6577. // This function resets the max/min values - the current position may be overwritten below.
  6578. set_axis_is_at_home(X_AXIS);
  6579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6580. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6581. #endif
  6582. // Only when auto-parking are carriages safe to move
  6583. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  6584. switch (dual_x_carriage_mode) {
  6585. case DXC_FULL_CONTROL_MODE:
  6586. // New current position is the position of the activated extruder
  6587. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6588. // Save the inactive extruder's position (from the old current_position)
  6589. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6590. break;
  6591. case DXC_AUTO_PARK_MODE:
  6592. // record raised toolhead position for use by unpark
  6593. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6594. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6595. #if ENABLED(max_software_endstops)
  6596. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6597. #endif
  6598. active_extruder_parked = true;
  6599. delayed_move_time = 0;
  6600. break;
  6601. case DXC_DUPLICATION_MODE:
  6602. // If the new extruder is the left one, set it "parked"
  6603. // This triggers the second extruder to move into the duplication position
  6604. active_extruder_parked = (active_extruder == 0);
  6605. if (active_extruder_parked)
  6606. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6607. else
  6608. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6609. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6610. extruder_duplication_enabled = false;
  6611. break;
  6612. }
  6613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6614. if (DEBUGGING(LEVELING)) {
  6615. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6616. DEBUG_POS("New extruder (parked)", current_position);
  6617. }
  6618. #endif
  6619. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6620. #else // !DUAL_X_CARRIAGE
  6621. #if ENABLED(SWITCHING_EXTRUDER)
  6622. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6623. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6624. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6625. // Always raise by some amount (destination copied from current_position earlier)
  6626. destination[Z_AXIS] += z_raise;
  6627. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6628. stepper.synchronize();
  6629. move_extruder_servo(active_extruder);
  6630. delay(500);
  6631. // Move back down, if needed
  6632. if (z_raise != z_diff) {
  6633. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6634. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6635. stepper.synchronize();
  6636. }
  6637. #endif
  6638. /**
  6639. * Set current_position to the position of the new nozzle.
  6640. * Offsets are based on linear distance, so we need to get
  6641. * the resulting position in coordinate space.
  6642. *
  6643. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6644. * - With mesh leveling, update Z for the new position
  6645. * - Otherwise, just use the raw linear distance
  6646. *
  6647. * Software endstops are altered here too. Consider a case where:
  6648. * E0 at X=0 ... E1 at X=10
  6649. * When we switch to E1 now X=10, but E1 can't move left.
  6650. * To express this we apply the change in XY to the software endstops.
  6651. * E1 can move farther right than E0, so the right limit is extended.
  6652. *
  6653. * Note that we don't adjust the Z software endstops. Why not?
  6654. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6655. * because the bed is 1mm lower at the new position. As long as
  6656. * the first nozzle is out of the way, the carriage should be
  6657. * allowed to move 1mm lower. This technically "breaks" the
  6658. * Z software endstop. But this is technically correct (and
  6659. * there is no viable alternative).
  6660. */
  6661. #if ABL_PLANAR
  6662. // Offset extruder, make sure to apply the bed level rotation matrix
  6663. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6664. hotend_offset[Y_AXIS][tmp_extruder],
  6665. 0),
  6666. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6667. hotend_offset[Y_AXIS][active_extruder],
  6668. 0),
  6669. offset_vec = tmp_offset_vec - act_offset_vec;
  6670. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6671. if (DEBUGGING(LEVELING)) {
  6672. tmp_offset_vec.debug("tmp_offset_vec");
  6673. act_offset_vec.debug("act_offset_vec");
  6674. offset_vec.debug("offset_vec (BEFORE)");
  6675. }
  6676. #endif
  6677. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6678. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6679. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6680. #endif
  6681. // Adjustments to the current position
  6682. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6683. current_position[Z_AXIS] += offset_vec.z;
  6684. #else // !ABL_PLANAR
  6685. float xydiff[2] = {
  6686. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6687. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6688. };
  6689. #if ENABLED(MESH_BED_LEVELING)
  6690. if (mbl.active()) {
  6691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6692. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6693. #endif
  6694. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  6695. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  6696. z1 = current_position[Z_AXIS], z2 = z1;
  6697. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  6698. planner.apply_leveling(x2, y2, z2);
  6699. current_position[Z_AXIS] += z2 - z1;
  6700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6701. if (DEBUGGING(LEVELING))
  6702. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6703. #endif
  6704. }
  6705. #endif // MESH_BED_LEVELING
  6706. #endif // !HAS_ABL
  6707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6708. if (DEBUGGING(LEVELING)) {
  6709. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6710. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6711. SERIAL_ECHOLNPGM(" }");
  6712. }
  6713. #endif
  6714. // The newly-selected extruder XY is actually at...
  6715. current_position[X_AXIS] += xydiff[X_AXIS];
  6716. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6717. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6718. position_shift[i] += xydiff[i];
  6719. update_software_endstops((AxisEnum)i);
  6720. }
  6721. // Set the new active extruder
  6722. active_extruder = tmp_extruder;
  6723. #endif // !DUAL_X_CARRIAGE
  6724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6725. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6726. #endif
  6727. // Tell the planner the new "current position"
  6728. SYNC_PLAN_POSITION_KINEMATIC();
  6729. // Move to the "old position" (move the extruder into place)
  6730. if (!no_move && IsRunning()) {
  6731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6732. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6733. #endif
  6734. prepare_move_to_destination();
  6735. }
  6736. } // (tmp_extruder != active_extruder)
  6737. stepper.synchronize();
  6738. #if ENABLED(EXT_SOLENOID)
  6739. disable_all_solenoids();
  6740. enable_solenoid_on_active_extruder();
  6741. #endif // EXT_SOLENOID
  6742. feedrate_mm_s = old_feedrate_mm_s;
  6743. #else // HOTENDS <= 1
  6744. // Set the new active extruder
  6745. active_extruder = tmp_extruder;
  6746. UNUSED(fr_mm_s);
  6747. UNUSED(no_move);
  6748. #endif // HOTENDS <= 1
  6749. SERIAL_ECHO_START;
  6750. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6751. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6752. }
  6753. /**
  6754. * T0-T3: Switch tool, usually switching extruders
  6755. *
  6756. * F[units/min] Set the movement feedrate
  6757. * S1 Don't move the tool in XY after change
  6758. */
  6759. inline void gcode_T(uint8_t tmp_extruder) {
  6760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6761. if (DEBUGGING(LEVELING)) {
  6762. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6763. SERIAL_CHAR(')');
  6764. SERIAL_EOL;
  6765. DEBUG_POS("BEFORE", current_position);
  6766. }
  6767. #endif
  6768. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6769. tool_change(tmp_extruder);
  6770. #elif HOTENDS > 1
  6771. tool_change(
  6772. tmp_extruder,
  6773. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6774. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6775. );
  6776. #endif
  6777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6778. if (DEBUGGING(LEVELING)) {
  6779. DEBUG_POS("AFTER", current_position);
  6780. SERIAL_ECHOLNPGM("<<< gcode_T");
  6781. }
  6782. #endif
  6783. }
  6784. /**
  6785. * Process a single command and dispatch it to its handler
  6786. * This is called from the main loop()
  6787. */
  6788. void process_next_command() {
  6789. current_command = command_queue[cmd_queue_index_r];
  6790. if (DEBUGGING(ECHO)) {
  6791. SERIAL_ECHO_START;
  6792. SERIAL_ECHOLN(current_command);
  6793. }
  6794. // Sanitize the current command:
  6795. // - Skip leading spaces
  6796. // - Bypass N[-0-9][0-9]*[ ]*
  6797. // - Overwrite * with nul to mark the end
  6798. while (*current_command == ' ') ++current_command;
  6799. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6800. current_command += 2; // skip N[-0-9]
  6801. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6802. while (*current_command == ' ') ++current_command; // skip [ ]*
  6803. }
  6804. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6805. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6806. char *cmd_ptr = current_command;
  6807. // Get the command code, which must be G, M, or T
  6808. char command_code = *cmd_ptr++;
  6809. // Skip spaces to get the numeric part
  6810. while (*cmd_ptr == ' ') cmd_ptr++;
  6811. // Allow for decimal point in command
  6812. #if ENABLED(G38_PROBE_TARGET)
  6813. uint8_t subcode = 0;
  6814. #endif
  6815. uint16_t codenum = 0; // define ahead of goto
  6816. // Bail early if there's no code
  6817. bool code_is_good = NUMERIC(*cmd_ptr);
  6818. if (!code_is_good) goto ExitUnknownCommand;
  6819. // Get and skip the code number
  6820. do {
  6821. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6822. cmd_ptr++;
  6823. } while (NUMERIC(*cmd_ptr));
  6824. // Allow for decimal point in command
  6825. #if ENABLED(G38_PROBE_TARGET)
  6826. if (*cmd_ptr == '.') {
  6827. cmd_ptr++;
  6828. while (NUMERIC(*cmd_ptr))
  6829. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6830. }
  6831. #endif
  6832. // Skip all spaces to get to the first argument, or nul
  6833. while (*cmd_ptr == ' ') cmd_ptr++;
  6834. // The command's arguments (if any) start here, for sure!
  6835. current_command_args = cmd_ptr;
  6836. KEEPALIVE_STATE(IN_HANDLER);
  6837. // Handle a known G, M, or T
  6838. switch (command_code) {
  6839. case 'G': switch (codenum) {
  6840. // G0, G1
  6841. case 0:
  6842. case 1:
  6843. #if IS_SCARA
  6844. gcode_G0_G1(codenum == 0);
  6845. #else
  6846. gcode_G0_G1();
  6847. #endif
  6848. break;
  6849. // G2, G3
  6850. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6851. case 2: // G2 - CW ARC
  6852. case 3: // G3 - CCW ARC
  6853. gcode_G2_G3(codenum == 2);
  6854. break;
  6855. #endif
  6856. // G4 Dwell
  6857. case 4:
  6858. gcode_G4();
  6859. break;
  6860. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6861. // G5
  6862. case 5: // G5 - Cubic B_spline
  6863. gcode_G5();
  6864. break;
  6865. #endif // BEZIER_CURVE_SUPPORT
  6866. #if ENABLED(FWRETRACT)
  6867. case 10: // G10: retract
  6868. case 11: // G11: retract_recover
  6869. gcode_G10_G11(codenum == 10);
  6870. break;
  6871. #endif // FWRETRACT
  6872. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6873. case 12:
  6874. gcode_G12(); // G12: Nozzle Clean
  6875. break;
  6876. #endif // NOZZLE_CLEAN_FEATURE
  6877. #if ENABLED(INCH_MODE_SUPPORT)
  6878. case 20: //G20: Inch Mode
  6879. gcode_G20();
  6880. break;
  6881. case 21: //G21: MM Mode
  6882. gcode_G21();
  6883. break;
  6884. #endif // INCH_MODE_SUPPORT
  6885. #if ENABLED(NOZZLE_PARK_FEATURE)
  6886. case 27: // G27: Nozzle Park
  6887. gcode_G27();
  6888. break;
  6889. #endif // NOZZLE_PARK_FEATURE
  6890. case 28: // G28: Home all axes, one at a time
  6891. gcode_G28();
  6892. break;
  6893. #if PLANNER_LEVELING
  6894. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6895. gcode_G29();
  6896. break;
  6897. #endif // PLANNER_LEVELING
  6898. #if HAS_BED_PROBE
  6899. case 30: // G30 Single Z probe
  6900. gcode_G30();
  6901. break;
  6902. #if ENABLED(Z_PROBE_SLED)
  6903. case 31: // G31: dock the sled
  6904. gcode_G31();
  6905. break;
  6906. case 32: // G32: undock the sled
  6907. gcode_G32();
  6908. break;
  6909. #endif // Z_PROBE_SLED
  6910. #endif // HAS_BED_PROBE
  6911. #if ENABLED(G38_PROBE_TARGET)
  6912. case 38: // G38.2 & G38.3
  6913. if (subcode == 2 || subcode == 3)
  6914. gcode_G38(subcode == 2);
  6915. break;
  6916. #endif
  6917. case 90: // G90
  6918. relative_mode = false;
  6919. break;
  6920. case 91: // G91
  6921. relative_mode = true;
  6922. break;
  6923. case 92: // G92
  6924. gcode_G92();
  6925. break;
  6926. }
  6927. break;
  6928. case 'M': switch (codenum) {
  6929. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6930. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6931. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6932. gcode_M0_M1();
  6933. break;
  6934. #endif // ULTIPANEL
  6935. case 17: // M17: Enable all stepper motors
  6936. gcode_M17();
  6937. break;
  6938. #if ENABLED(SDSUPPORT)
  6939. case 20: // M20: list SD card
  6940. gcode_M20(); break;
  6941. case 21: // M21: init SD card
  6942. gcode_M21(); break;
  6943. case 22: // M22: release SD card
  6944. gcode_M22(); break;
  6945. case 23: // M23: Select file
  6946. gcode_M23(); break;
  6947. case 24: // M24: Start SD print
  6948. gcode_M24(); break;
  6949. case 25: // M25: Pause SD print
  6950. gcode_M25(); break;
  6951. case 26: // M26: Set SD index
  6952. gcode_M26(); break;
  6953. case 27: // M27: Get SD status
  6954. gcode_M27(); break;
  6955. case 28: // M28: Start SD write
  6956. gcode_M28(); break;
  6957. case 29: // M29: Stop SD write
  6958. gcode_M29(); break;
  6959. case 30: // M30 <filename> Delete File
  6960. gcode_M30(); break;
  6961. case 32: // M32: Select file and start SD print
  6962. gcode_M32(); break;
  6963. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6964. case 33: // M33: Get the long full path to a file or folder
  6965. gcode_M33(); break;
  6966. #endif
  6967. case 928: // M928: Start SD write
  6968. gcode_M928(); break;
  6969. #endif //SDSUPPORT
  6970. case 31: // M31: Report time since the start of SD print or last M109
  6971. gcode_M31(); break;
  6972. case 42: // M42: Change pin state
  6973. gcode_M42(); break;
  6974. #if ENABLED(PINS_DEBUGGING)
  6975. case 43: // M43: Read pin state
  6976. gcode_M43(); break;
  6977. #endif
  6978. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6979. case 48: // M48: Z probe repeatability test
  6980. gcode_M48();
  6981. break;
  6982. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6983. case 75: // M75: Start print timer
  6984. gcode_M75(); break;
  6985. case 76: // M76: Pause print timer
  6986. gcode_M76(); break;
  6987. case 77: // M77: Stop print timer
  6988. gcode_M77(); break;
  6989. #if ENABLED(PRINTCOUNTER)
  6990. case 78: // M78: Show print statistics
  6991. gcode_M78(); break;
  6992. #endif
  6993. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6994. case 100: // M100: Free Memory Report
  6995. gcode_M100();
  6996. break;
  6997. #endif
  6998. case 104: // M104: Set hot end temperature
  6999. gcode_M104();
  7000. break;
  7001. case 110: // M110: Set Current Line Number
  7002. gcode_M110();
  7003. break;
  7004. case 111: // M111: Set debug level
  7005. gcode_M111();
  7006. break;
  7007. #if DISABLED(EMERGENCY_PARSER)
  7008. case 108: // M108: Cancel Waiting
  7009. gcode_M108();
  7010. break;
  7011. case 112: // M112: Emergency Stop
  7012. gcode_M112();
  7013. break;
  7014. case 410: // M410 quickstop - Abort all the planned moves.
  7015. gcode_M410();
  7016. break;
  7017. #endif
  7018. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7019. case 113: // M113: Set Host Keepalive interval
  7020. gcode_M113();
  7021. break;
  7022. #endif
  7023. case 140: // M140: Set bed temperature
  7024. gcode_M140();
  7025. break;
  7026. case 105: // M105: Report current temperature
  7027. gcode_M105();
  7028. KEEPALIVE_STATE(NOT_BUSY);
  7029. return; // "ok" already printed
  7030. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7031. case 155: // M155: Set temperature auto-report interval
  7032. gcode_M155();
  7033. break;
  7034. #endif
  7035. case 109: // M109: Wait for hotend temperature to reach target
  7036. gcode_M109();
  7037. break;
  7038. #if HAS_TEMP_BED
  7039. case 190: // M190: Wait for bed temperature to reach target
  7040. gcode_M190();
  7041. break;
  7042. #endif // HAS_TEMP_BED
  7043. #if FAN_COUNT > 0
  7044. case 106: // M106: Fan On
  7045. gcode_M106();
  7046. break;
  7047. case 107: // M107: Fan Off
  7048. gcode_M107();
  7049. break;
  7050. #endif // FAN_COUNT > 0
  7051. #if ENABLED(BARICUDA)
  7052. // PWM for HEATER_1_PIN
  7053. #if HAS_HEATER_1
  7054. case 126: // M126: valve open
  7055. gcode_M126();
  7056. break;
  7057. case 127: // M127: valve closed
  7058. gcode_M127();
  7059. break;
  7060. #endif // HAS_HEATER_1
  7061. // PWM for HEATER_2_PIN
  7062. #if HAS_HEATER_2
  7063. case 128: // M128: valve open
  7064. gcode_M128();
  7065. break;
  7066. case 129: // M129: valve closed
  7067. gcode_M129();
  7068. break;
  7069. #endif // HAS_HEATER_2
  7070. #endif // BARICUDA
  7071. #if HAS_POWER_SWITCH
  7072. case 80: // M80: Turn on Power Supply
  7073. gcode_M80();
  7074. break;
  7075. #endif // HAS_POWER_SWITCH
  7076. case 81: // M81: Turn off Power, including Power Supply, if possible
  7077. gcode_M81();
  7078. break;
  7079. case 82: // M83: Set E axis normal mode (same as other axes)
  7080. gcode_M82();
  7081. break;
  7082. case 83: // M83: Set E axis relative mode
  7083. gcode_M83();
  7084. break;
  7085. case 18: // M18 => M84
  7086. case 84: // M84: Disable all steppers or set timeout
  7087. gcode_M18_M84();
  7088. break;
  7089. case 85: // M85: Set inactivity stepper shutdown timeout
  7090. gcode_M85();
  7091. break;
  7092. case 92: // M92: Set the steps-per-unit for one or more axes
  7093. gcode_M92();
  7094. break;
  7095. case 114: // M114: Report current position
  7096. gcode_M114();
  7097. break;
  7098. case 115: // M115: Report capabilities
  7099. gcode_M115();
  7100. break;
  7101. case 117: // M117: Set LCD message text, if possible
  7102. gcode_M117();
  7103. break;
  7104. case 119: // M119: Report endstop states
  7105. gcode_M119();
  7106. break;
  7107. case 120: // M120: Enable endstops
  7108. gcode_M120();
  7109. break;
  7110. case 121: // M121: Disable endstops
  7111. gcode_M121();
  7112. break;
  7113. #if ENABLED(HAVE_TMC2130DRIVER)
  7114. case 122: // M122: Diagnose, used to debug TMC2130
  7115. gcode_M122();
  7116. break;
  7117. #endif
  7118. #if ENABLED(ULTIPANEL)
  7119. case 145: // M145: Set material heatup parameters
  7120. gcode_M145();
  7121. break;
  7122. #endif
  7123. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7124. case 149: // M149: Set temperature units
  7125. gcode_M149();
  7126. break;
  7127. #endif
  7128. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7129. case 150: // M150: Set Status LED Color
  7130. gcode_M150();
  7131. break;
  7132. #endif // BLINKM
  7133. #if ENABLED(MIXING_EXTRUDER)
  7134. case 163: // M163: Set a component weight for mixing extruder
  7135. gcode_M163();
  7136. break;
  7137. #if MIXING_VIRTUAL_TOOLS > 1
  7138. case 164: // M164: Save current mix as a virtual extruder
  7139. gcode_M164();
  7140. break;
  7141. #endif
  7142. #if ENABLED(DIRECT_MIXING_IN_G1)
  7143. case 165: // M165: Set multiple mix weights
  7144. gcode_M165();
  7145. break;
  7146. #endif
  7147. #endif
  7148. case 200: // M200: Set filament diameter, E to cubic units
  7149. gcode_M200();
  7150. break;
  7151. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7152. gcode_M201();
  7153. break;
  7154. #if 0 // Not used for Sprinter/grbl gen6
  7155. case 202: // M202
  7156. gcode_M202();
  7157. break;
  7158. #endif
  7159. case 203: // M203: Set max feedrate (units/sec)
  7160. gcode_M203();
  7161. break;
  7162. case 204: // M204: Set acceleration
  7163. gcode_M204();
  7164. break;
  7165. case 205: //M205: Set advanced settings
  7166. gcode_M205();
  7167. break;
  7168. case 206: // M206: Set home offsets
  7169. gcode_M206();
  7170. break;
  7171. #if ENABLED(DELTA)
  7172. case 665: // M665: Set delta configurations
  7173. gcode_M665();
  7174. break;
  7175. #endif
  7176. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7177. case 666: // M666: Set delta or dual endstop adjustment
  7178. gcode_M666();
  7179. break;
  7180. #endif
  7181. #if ENABLED(FWRETRACT)
  7182. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7183. gcode_M207();
  7184. break;
  7185. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7186. gcode_M208();
  7187. break;
  7188. case 209: // M209: Turn Automatic Retract Detection on/off
  7189. gcode_M209();
  7190. break;
  7191. #endif // FWRETRACT
  7192. case 211: // M211: Enable, Disable, and/or Report software endstops
  7193. gcode_M211();
  7194. break;
  7195. #if HOTENDS > 1
  7196. case 218: // M218: Set a tool offset
  7197. gcode_M218();
  7198. break;
  7199. #endif
  7200. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7201. gcode_M220();
  7202. break;
  7203. case 221: // M221: Set Flow Percentage
  7204. gcode_M221();
  7205. break;
  7206. case 226: // M226: Wait until a pin reaches a state
  7207. gcode_M226();
  7208. break;
  7209. #if HAS_SERVOS
  7210. case 280: // M280: Set servo position absolute
  7211. gcode_M280();
  7212. break;
  7213. #endif // HAS_SERVOS
  7214. #if HAS_BUZZER
  7215. case 300: // M300: Play beep tone
  7216. gcode_M300();
  7217. break;
  7218. #endif // HAS_BUZZER
  7219. #if ENABLED(PIDTEMP)
  7220. case 301: // M301: Set hotend PID parameters
  7221. gcode_M301();
  7222. break;
  7223. #endif // PIDTEMP
  7224. #if ENABLED(PIDTEMPBED)
  7225. case 304: // M304: Set bed PID parameters
  7226. gcode_M304();
  7227. break;
  7228. #endif // PIDTEMPBED
  7229. #if defined(CHDK) || HAS_PHOTOGRAPH
  7230. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7231. gcode_M240();
  7232. break;
  7233. #endif // CHDK || PHOTOGRAPH_PIN
  7234. #if HAS_LCD_CONTRAST
  7235. case 250: // M250: Set LCD contrast
  7236. gcode_M250();
  7237. break;
  7238. #endif // HAS_LCD_CONTRAST
  7239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7240. case 260: // M260: Send data to an i2c slave
  7241. gcode_M260();
  7242. break;
  7243. case 261: // M261: Request data from an i2c slave
  7244. gcode_M261();
  7245. break;
  7246. #endif // EXPERIMENTAL_I2CBUS
  7247. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7248. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7249. gcode_M302();
  7250. break;
  7251. #endif // PREVENT_COLD_EXTRUSION
  7252. case 303: // M303: PID autotune
  7253. gcode_M303();
  7254. break;
  7255. #if ENABLED(MORGAN_SCARA)
  7256. case 360: // M360: SCARA Theta pos1
  7257. if (gcode_M360()) return;
  7258. break;
  7259. case 361: // M361: SCARA Theta pos2
  7260. if (gcode_M361()) return;
  7261. break;
  7262. case 362: // M362: SCARA Psi pos1
  7263. if (gcode_M362()) return;
  7264. break;
  7265. case 363: // M363: SCARA Psi pos2
  7266. if (gcode_M363()) return;
  7267. break;
  7268. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7269. if (gcode_M364()) return;
  7270. break;
  7271. #endif // SCARA
  7272. case 400: // M400: Finish all moves
  7273. gcode_M400();
  7274. break;
  7275. #if HAS_BED_PROBE
  7276. case 401: // M401: Deploy probe
  7277. gcode_M401();
  7278. break;
  7279. case 402: // M402: Stow probe
  7280. gcode_M402();
  7281. break;
  7282. #endif // HAS_BED_PROBE
  7283. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7284. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7285. gcode_M404();
  7286. break;
  7287. case 405: // M405: Turn on filament sensor for control
  7288. gcode_M405();
  7289. break;
  7290. case 406: // M406: Turn off filament sensor for control
  7291. gcode_M406();
  7292. break;
  7293. case 407: // M407: Display measured filament diameter
  7294. gcode_M407();
  7295. break;
  7296. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7297. #if PLANNER_LEVELING
  7298. case 420: // M420: Enable/Disable Bed Leveling
  7299. gcode_M420();
  7300. break;
  7301. #endif
  7302. #if ENABLED(MESH_BED_LEVELING)
  7303. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7304. gcode_M421();
  7305. break;
  7306. #endif
  7307. case 428: // M428: Apply current_position to home_offset
  7308. gcode_M428();
  7309. break;
  7310. case 500: // M500: Store settings in EEPROM
  7311. gcode_M500();
  7312. break;
  7313. case 501: // M501: Read settings from EEPROM
  7314. gcode_M501();
  7315. break;
  7316. case 502: // M502: Revert to default settings
  7317. gcode_M502();
  7318. break;
  7319. case 503: // M503: print settings currently in memory
  7320. gcode_M503();
  7321. break;
  7322. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7323. case 540: // M540: Set abort on endstop hit for SD printing
  7324. gcode_M540();
  7325. break;
  7326. #endif
  7327. #if HAS_BED_PROBE
  7328. case 851: // M851: Set Z Probe Z Offset
  7329. gcode_M851();
  7330. break;
  7331. #endif // HAS_BED_PROBE
  7332. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7333. case 600: // M600: Pause for filament change
  7334. gcode_M600();
  7335. break;
  7336. #endif // FILAMENT_CHANGE_FEATURE
  7337. #if ENABLED(DUAL_X_CARRIAGE)
  7338. case 605: // M605: Set Dual X Carriage movement mode
  7339. gcode_M605();
  7340. break;
  7341. #endif // DUAL_X_CARRIAGE
  7342. #if ENABLED(LIN_ADVANCE)
  7343. case 905: // M905: Set advance K factor.
  7344. gcode_M905();
  7345. break;
  7346. #endif
  7347. case 907: // M907: Set digital trimpot motor current using axis codes.
  7348. gcode_M907();
  7349. break;
  7350. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7351. case 908: // M908: Control digital trimpot directly.
  7352. gcode_M908();
  7353. break;
  7354. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7355. case 909: // M909: Print digipot/DAC current value
  7356. gcode_M909();
  7357. break;
  7358. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7359. gcode_M910();
  7360. break;
  7361. #endif
  7362. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7363. #if HAS_MICROSTEPS
  7364. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7365. gcode_M350();
  7366. break;
  7367. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7368. gcode_M351();
  7369. break;
  7370. #endif // HAS_MICROSTEPS
  7371. #if HAS_CASE_LIGHT
  7372. case 355: // M355 Turn case lights on/off
  7373. gcode_M355();
  7374. break;
  7375. #endif // HAS_CASE_LIGHT
  7376. case 999: // M999: Restart after being Stopped
  7377. gcode_M999();
  7378. break;
  7379. }
  7380. break;
  7381. case 'T':
  7382. gcode_T(codenum);
  7383. break;
  7384. default: code_is_good = false;
  7385. }
  7386. KEEPALIVE_STATE(NOT_BUSY);
  7387. ExitUnknownCommand:
  7388. // Still unknown command? Throw an error
  7389. if (!code_is_good) unknown_command_error();
  7390. ok_to_send();
  7391. }
  7392. /**
  7393. * Send a "Resend: nnn" message to the host to
  7394. * indicate that a command needs to be re-sent.
  7395. */
  7396. void FlushSerialRequestResend() {
  7397. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7398. MYSERIAL.flush();
  7399. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7400. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7401. ok_to_send();
  7402. }
  7403. /**
  7404. * Send an "ok" message to the host, indicating
  7405. * that a command was successfully processed.
  7406. *
  7407. * If ADVANCED_OK is enabled also include:
  7408. * N<int> Line number of the command, if any
  7409. * P<int> Planner space remaining
  7410. * B<int> Block queue space remaining
  7411. */
  7412. void ok_to_send() {
  7413. refresh_cmd_timeout();
  7414. if (!send_ok[cmd_queue_index_r]) return;
  7415. SERIAL_PROTOCOLPGM(MSG_OK);
  7416. #if ENABLED(ADVANCED_OK)
  7417. char* p = command_queue[cmd_queue_index_r];
  7418. if (*p == 'N') {
  7419. SERIAL_PROTOCOL(' ');
  7420. SERIAL_ECHO(*p++);
  7421. while (NUMERIC_SIGNED(*p))
  7422. SERIAL_ECHO(*p++);
  7423. }
  7424. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7425. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7426. #endif
  7427. SERIAL_EOL;
  7428. }
  7429. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  7430. /**
  7431. * Constrain the given coordinates to the software endstops.
  7432. */
  7433. void clamp_to_software_endstops(float target[XYZ]) {
  7434. #if ENABLED(min_software_endstops)
  7435. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7436. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7437. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7438. #endif
  7439. #if ENABLED(max_software_endstops)
  7440. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7441. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7442. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7443. #endif
  7444. }
  7445. #endif
  7446. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7447. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7448. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  7449. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  7450. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  7451. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  7452. #else
  7453. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  7454. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  7455. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  7456. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  7457. #endif
  7458. // Get the Z adjustment for non-linear bed leveling
  7459. float bilinear_z_offset(float cartesian[XYZ]) {
  7460. // XY relative to the probed area
  7461. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7462. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7463. // Convert to grid box units
  7464. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  7465. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  7466. // Whole units for the grid line indices. Constrained within bounds.
  7467. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  7468. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  7469. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  7470. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  7471. // Subtract whole to get the ratio within the grid box
  7472. ratio_x -= gridx; ratio_y -= gridy;
  7473. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7474. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7475. // Z at the box corners
  7476. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  7477. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  7478. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  7479. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  7480. // Bilinear interpolate
  7481. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7482. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7483. offset = L + ratio_x * (R - L);
  7484. /*
  7485. static float last_offset = 0;
  7486. if (fabs(last_offset - offset) > 0.2) {
  7487. SERIAL_ECHOPGM("Sudden Shift at ");
  7488. SERIAL_ECHOPAIR("x=", x);
  7489. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7490. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7491. SERIAL_ECHOPAIR(" y=", y);
  7492. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7493. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7494. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7495. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7496. SERIAL_ECHOPAIR(" z1=", z1);
  7497. SERIAL_ECHOPAIR(" z2=", z2);
  7498. SERIAL_ECHOPAIR(" z3=", z3);
  7499. SERIAL_ECHOLNPAIR(" z4=", z4);
  7500. SERIAL_ECHOPAIR(" L=", L);
  7501. SERIAL_ECHOPAIR(" R=", R);
  7502. SERIAL_ECHOLNPAIR(" offset=", offset);
  7503. }
  7504. last_offset = offset;
  7505. //*/
  7506. return offset;
  7507. }
  7508. #endif // AUTO_BED_LEVELING_BILINEAR
  7509. #if ENABLED(DELTA)
  7510. /**
  7511. * Recalculate factors used for delta kinematics whenever
  7512. * settings have been changed (e.g., by M665).
  7513. */
  7514. void recalc_delta_settings(float radius, float diagonal_rod) {
  7515. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7516. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7517. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7518. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7519. delta_tower3_x = 0.0; // back middle tower
  7520. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7521. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7522. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7523. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7524. }
  7525. #if ENABLED(DELTA_FAST_SQRT)
  7526. /**
  7527. * Fast inverse sqrt from Quake III Arena
  7528. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7529. */
  7530. float Q_rsqrt(float number) {
  7531. long i;
  7532. float x2, y;
  7533. const float threehalfs = 1.5f;
  7534. x2 = number * 0.5f;
  7535. y = number;
  7536. i = * ( long * ) &y; // evil floating point bit level hacking
  7537. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7538. y = * ( float * ) &i;
  7539. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7540. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7541. return y;
  7542. }
  7543. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7544. #else
  7545. #define _SQRT(n) sqrt(n)
  7546. #endif
  7547. /**
  7548. * Delta Inverse Kinematics
  7549. *
  7550. * Calculate the tower positions for a given logical
  7551. * position, storing the result in the delta[] array.
  7552. *
  7553. * This is an expensive calculation, requiring 3 square
  7554. * roots per segmented linear move, and strains the limits
  7555. * of a Mega2560 with a Graphical Display.
  7556. *
  7557. * Suggested optimizations include:
  7558. *
  7559. * - Disable the home_offset (M206) and/or position_shift (G92)
  7560. * features to remove up to 12 float additions.
  7561. *
  7562. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7563. * (see above)
  7564. */
  7565. // Macro to obtain the Z position of an individual tower
  7566. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7567. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7568. delta_tower##T##_x - raw[X_AXIS], \
  7569. delta_tower##T##_y - raw[Y_AXIS] \
  7570. ) \
  7571. )
  7572. #define DELTA_RAW_IK() do { \
  7573. delta[A_AXIS] = DELTA_Z(1); \
  7574. delta[B_AXIS] = DELTA_Z(2); \
  7575. delta[C_AXIS] = DELTA_Z(3); \
  7576. } while(0)
  7577. #define DELTA_LOGICAL_IK() do { \
  7578. const float raw[XYZ] = { \
  7579. RAW_X_POSITION(logical[X_AXIS]), \
  7580. RAW_Y_POSITION(logical[Y_AXIS]), \
  7581. RAW_Z_POSITION(logical[Z_AXIS]) \
  7582. }; \
  7583. DELTA_RAW_IK(); \
  7584. } while(0)
  7585. #define DELTA_DEBUG() do { \
  7586. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7587. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7588. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7589. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7590. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7591. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7592. } while(0)
  7593. void inverse_kinematics(const float logical[XYZ]) {
  7594. DELTA_LOGICAL_IK();
  7595. // DELTA_DEBUG();
  7596. }
  7597. /**
  7598. * Calculate the highest Z position where the
  7599. * effector has the full range of XY motion.
  7600. */
  7601. float delta_safe_distance_from_top() {
  7602. float cartesian[XYZ] = {
  7603. LOGICAL_X_POSITION(0),
  7604. LOGICAL_Y_POSITION(0),
  7605. LOGICAL_Z_POSITION(0)
  7606. };
  7607. inverse_kinematics(cartesian);
  7608. float distance = delta[A_AXIS];
  7609. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7610. inverse_kinematics(cartesian);
  7611. return abs(distance - delta[A_AXIS]);
  7612. }
  7613. /**
  7614. * Delta Forward Kinematics
  7615. *
  7616. * See the Wikipedia article "Trilateration"
  7617. * https://en.wikipedia.org/wiki/Trilateration
  7618. *
  7619. * Establish a new coordinate system in the plane of the
  7620. * three carriage points. This system has its origin at
  7621. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7622. * plane with a Z component of zero.
  7623. * We will define unit vectors in this coordinate system
  7624. * in our original coordinate system. Then when we calculate
  7625. * the Xnew, Ynew and Znew values, we can translate back into
  7626. * the original system by moving along those unit vectors
  7627. * by the corresponding values.
  7628. *
  7629. * Variable names matched to Marlin, c-version, and avoid the
  7630. * use of any vector library.
  7631. *
  7632. * by Andreas Hardtung 2016-06-07
  7633. * based on a Java function from "Delta Robot Kinematics V3"
  7634. * by Steve Graves
  7635. *
  7636. * The result is stored in the cartes[] array.
  7637. */
  7638. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7639. // Create a vector in old coordinates along x axis of new coordinate
  7640. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7641. // Get the Magnitude of vector.
  7642. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7643. // Create unit vector by dividing by magnitude.
  7644. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7645. // Get the vector from the origin of the new system to the third point.
  7646. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7647. // Use the dot product to find the component of this vector on the X axis.
  7648. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7649. // Create a vector along the x axis that represents the x component of p13.
  7650. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7651. // Subtract the X component from the original vector leaving only Y. We use the
  7652. // variable that will be the unit vector after we scale it.
  7653. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7654. // The magnitude of Y component
  7655. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7656. // Convert to a unit vector
  7657. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7658. // The cross product of the unit x and y is the unit z
  7659. // float[] ez = vectorCrossProd(ex, ey);
  7660. float ez[3] = {
  7661. ex[1] * ey[2] - ex[2] * ey[1],
  7662. ex[2] * ey[0] - ex[0] * ey[2],
  7663. ex[0] * ey[1] - ex[1] * ey[0]
  7664. };
  7665. // We now have the d, i and j values defined in Wikipedia.
  7666. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7667. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7668. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7669. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7670. // Start from the origin of the old coordinates and add vectors in the
  7671. // old coords that represent the Xnew, Ynew and Znew to find the point
  7672. // in the old system.
  7673. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7674. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7675. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7676. }
  7677. void forward_kinematics_DELTA(float point[ABC]) {
  7678. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7679. }
  7680. #endif // DELTA
  7681. /**
  7682. * Get the stepper positions in the cartes[] array.
  7683. * Forward kinematics are applied for DELTA and SCARA.
  7684. *
  7685. * The result is in the current coordinate space with
  7686. * leveling applied. The coordinates need to be run through
  7687. * unapply_leveling to obtain the "ideal" coordinates
  7688. * suitable for current_position, etc.
  7689. */
  7690. void get_cartesian_from_steppers() {
  7691. #if ENABLED(DELTA)
  7692. forward_kinematics_DELTA(
  7693. stepper.get_axis_position_mm(A_AXIS),
  7694. stepper.get_axis_position_mm(B_AXIS),
  7695. stepper.get_axis_position_mm(C_AXIS)
  7696. );
  7697. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7698. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7699. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7700. #elif IS_SCARA
  7701. forward_kinematics_SCARA(
  7702. stepper.get_axis_position_degrees(A_AXIS),
  7703. stepper.get_axis_position_degrees(B_AXIS)
  7704. );
  7705. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7706. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7707. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7708. #else
  7709. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7710. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7711. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7712. #endif
  7713. }
  7714. /**
  7715. * Set the current_position for an axis based on
  7716. * the stepper positions, removing any leveling that
  7717. * may have been applied.
  7718. */
  7719. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7720. get_cartesian_from_steppers();
  7721. #if PLANNER_LEVELING
  7722. planner.unapply_leveling(cartes);
  7723. #endif
  7724. if (axis == ALL_AXES)
  7725. memcpy(current_position, cartes, sizeof(cartes));
  7726. else
  7727. current_position[axis] = cartes[axis];
  7728. }
  7729. #if ENABLED(MESH_BED_LEVELING)
  7730. /**
  7731. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7732. * splitting the move where it crosses mesh borders.
  7733. */
  7734. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7735. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7736. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7737. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7738. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7739. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7740. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7741. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7742. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7743. if (cx1 == cx2 && cy1 == cy2) {
  7744. // Start and end on same mesh square
  7745. line_to_destination(fr_mm_s);
  7746. set_current_to_destination();
  7747. return;
  7748. }
  7749. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7750. float normalized_dist, end[XYZE];
  7751. // Split at the left/front border of the right/top square
  7752. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7753. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7754. memcpy(end, destination, sizeof(end));
  7755. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7756. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7757. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7758. CBI(x_splits, gcx);
  7759. }
  7760. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7761. memcpy(end, destination, sizeof(end));
  7762. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7763. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7764. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7765. CBI(y_splits, gcy);
  7766. }
  7767. else {
  7768. // Already split on a border
  7769. line_to_destination(fr_mm_s);
  7770. set_current_to_destination();
  7771. return;
  7772. }
  7773. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7774. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7775. // Do the split and look for more borders
  7776. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7777. // Restore destination from stack
  7778. memcpy(destination, end, sizeof(end));
  7779. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7780. }
  7781. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  7782. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  7783. /**
  7784. * Prepare a bilinear-leveled linear move on Cartesian,
  7785. * splitting the move where it crosses grid borders.
  7786. */
  7787. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  7788. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  7789. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  7790. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  7791. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  7792. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  7793. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  7794. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  7795. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  7796. if (cx1 == cx2 && cy1 == cy2) {
  7797. // Start and end on same mesh square
  7798. line_to_destination(fr_mm_s);
  7799. set_current_to_destination();
  7800. return;
  7801. }
  7802. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7803. float normalized_dist, end[XYZE];
  7804. // Split at the left/front border of the right/top square
  7805. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7806. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7807. memcpy(end, destination, sizeof(end));
  7808. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  7809. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7810. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  7811. CBI(x_splits, gcx);
  7812. }
  7813. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7814. memcpy(end, destination, sizeof(end));
  7815. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  7816. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7817. destination[X_AXIS] = LINE_SEGMENT_END(X);
  7818. CBI(y_splits, gcy);
  7819. }
  7820. else {
  7821. // Already split on a border
  7822. line_to_destination(fr_mm_s);
  7823. set_current_to_destination();
  7824. return;
  7825. }
  7826. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  7827. destination[E_AXIS] = LINE_SEGMENT_END(E);
  7828. // Do the split and look for more borders
  7829. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7830. // Restore destination from stack
  7831. memcpy(destination, end, sizeof(end));
  7832. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7833. }
  7834. #endif // AUTO_BED_LEVELING_BILINEAR
  7835. #if IS_KINEMATIC
  7836. /**
  7837. * Prepare a linear move in a DELTA or SCARA setup.
  7838. *
  7839. * This calls planner.buffer_line several times, adding
  7840. * small incremental moves for DELTA or SCARA.
  7841. */
  7842. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7843. // Get the top feedrate of the move in the XY plane
  7844. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7845. // If the move is only in Z/E don't split up the move
  7846. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7847. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7848. return true;
  7849. }
  7850. // Get the cartesian distances moved in XYZE
  7851. float difference[NUM_AXIS];
  7852. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7853. // Get the linear distance in XYZ
  7854. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7855. // If the move is very short, check the E move distance
  7856. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7857. // No E move either? Game over.
  7858. if (UNEAR_ZERO(cartesian_mm)) return false;
  7859. // Minimum number of seconds to move the given distance
  7860. float seconds = cartesian_mm / _feedrate_mm_s;
  7861. // The number of segments-per-second times the duration
  7862. // gives the number of segments
  7863. uint16_t segments = delta_segments_per_second * seconds;
  7864. // For SCARA minimum segment size is 0.5mm
  7865. #if IS_SCARA
  7866. NOMORE(segments, cartesian_mm * 2);
  7867. #endif
  7868. // At least one segment is required
  7869. NOLESS(segments, 1);
  7870. // The approximate length of each segment
  7871. float segment_distance[XYZE] = {
  7872. difference[X_AXIS] / segments,
  7873. difference[Y_AXIS] / segments,
  7874. difference[Z_AXIS] / segments,
  7875. difference[E_AXIS] / segments
  7876. };
  7877. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7878. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7879. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7880. // Drop one segment so the last move is to the exact target.
  7881. // If there's only 1 segment, loops will be skipped entirely.
  7882. --segments;
  7883. // Using "raw" coordinates saves 6 float subtractions
  7884. // per segment, saving valuable CPU cycles
  7885. #if ENABLED(USE_RAW_KINEMATICS)
  7886. // Get the raw current position as starting point
  7887. float raw[XYZE] = {
  7888. RAW_CURRENT_POSITION(X_AXIS),
  7889. RAW_CURRENT_POSITION(Y_AXIS),
  7890. RAW_CURRENT_POSITION(Z_AXIS),
  7891. current_position[E_AXIS]
  7892. };
  7893. #define DELTA_VAR raw
  7894. // Delta can inline its kinematics
  7895. #if ENABLED(DELTA)
  7896. #define DELTA_IK() DELTA_RAW_IK()
  7897. #else
  7898. #define DELTA_IK() inverse_kinematics(raw)
  7899. #endif
  7900. #else
  7901. // Get the logical current position as starting point
  7902. float logical[XYZE];
  7903. memcpy(logical, current_position, sizeof(logical));
  7904. #define DELTA_VAR logical
  7905. // Delta can inline its kinematics
  7906. #if ENABLED(DELTA)
  7907. #define DELTA_IK() DELTA_LOGICAL_IK()
  7908. #else
  7909. #define DELTA_IK() inverse_kinematics(logical)
  7910. #endif
  7911. #endif
  7912. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7913. // Only interpolate XYZ. Advance E normally.
  7914. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7915. // Get the starting delta if interpolation is possible
  7916. if (segments >= 2) {
  7917. DELTA_IK();
  7918. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7919. }
  7920. // Loop using decrement
  7921. for (uint16_t s = segments + 1; --s;) {
  7922. // Are there at least 2 moves left?
  7923. if (s >= 2) {
  7924. // Save the previous delta for interpolation
  7925. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7926. // Get the delta 2 segments ahead (rather than the next)
  7927. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7928. // Advance E normally
  7929. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7930. // Get the exact delta for the move after this
  7931. DELTA_IK();
  7932. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7933. // Move to the interpolated delta position first
  7934. planner.buffer_line(
  7935. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7936. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7937. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7938. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7939. );
  7940. // Advance E once more for the next move
  7941. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7942. // Do an extra decrement of the loop
  7943. --s;
  7944. }
  7945. else {
  7946. // Get the last segment delta. (Used when segments is odd)
  7947. DELTA_NEXT(segment_distance[i]);
  7948. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7949. DELTA_IK();
  7950. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7951. }
  7952. // Move to the non-interpolated position
  7953. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7954. }
  7955. #else
  7956. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7957. // For non-interpolated delta calculate every segment
  7958. for (uint16_t s = segments + 1; --s;) {
  7959. DELTA_NEXT(segment_distance[i]);
  7960. DELTA_IK();
  7961. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7962. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7963. }
  7964. #endif
  7965. // Since segment_distance is only approximate,
  7966. // the final move must be to the exact destination.
  7967. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7968. return true;
  7969. }
  7970. #else // !IS_KINEMATIC
  7971. /**
  7972. * Prepare a linear move in a Cartesian setup.
  7973. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7974. */
  7975. inline bool prepare_move_to_destination_cartesian() {
  7976. // Do not use feedrate_percentage for E or Z only moves
  7977. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7978. line_to_destination();
  7979. }
  7980. else {
  7981. #if ENABLED(MESH_BED_LEVELING)
  7982. if (mbl.active()) {
  7983. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7984. return false;
  7985. }
  7986. else
  7987. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7988. if (planner.abl_enabled) {
  7989. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7990. return false;
  7991. }
  7992. else
  7993. #endif
  7994. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7995. }
  7996. return true;
  7997. }
  7998. #endif // !IS_KINEMATIC
  7999. #if ENABLED(DUAL_X_CARRIAGE)
  8000. /**
  8001. * Prepare a linear move in a dual X axis setup
  8002. */
  8003. inline bool prepare_move_to_destination_dualx() {
  8004. if (active_extruder_parked) {
  8005. switch (dual_x_carriage_mode) {
  8006. case DXC_FULL_CONTROL_MODE:
  8007. break;
  8008. case DXC_AUTO_PARK_MODE:
  8009. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8010. // This is a travel move (with no extrusion)
  8011. // Skip it, but keep track of the current position
  8012. // (so it can be used as the start of the next non-travel move)
  8013. if (delayed_move_time != 0xFFFFFFFFUL) {
  8014. set_current_to_destination();
  8015. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8016. delayed_move_time = millis();
  8017. return false;
  8018. }
  8019. }
  8020. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8021. for (uint8_t i = 0; i < 3; i++)
  8022. planner.buffer_line(
  8023. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8024. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8025. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8026. current_position[E_AXIS],
  8027. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8028. active_extruder
  8029. );
  8030. delayed_move_time = 0;
  8031. active_extruder_parked = false;
  8032. break;
  8033. case DXC_DUPLICATION_MODE:
  8034. if (active_extruder == 0) {
  8035. // move duplicate extruder into correct duplication position.
  8036. planner.set_position_mm(
  8037. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8038. current_position[Y_AXIS],
  8039. current_position[Z_AXIS],
  8040. current_position[E_AXIS]
  8041. );
  8042. planner.buffer_line(
  8043. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8044. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8045. planner.max_feedrate_mm_s[X_AXIS], 1
  8046. );
  8047. SYNC_PLAN_POSITION_KINEMATIC();
  8048. stepper.synchronize();
  8049. extruder_duplication_enabled = true;
  8050. active_extruder_parked = false;
  8051. }
  8052. break;
  8053. }
  8054. }
  8055. return true;
  8056. }
  8057. #endif // DUAL_X_CARRIAGE
  8058. /**
  8059. * Prepare a single move and get ready for the next one
  8060. *
  8061. * This may result in several calls to planner.buffer_line to
  8062. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8063. */
  8064. void prepare_move_to_destination() {
  8065. clamp_to_software_endstops(destination);
  8066. refresh_cmd_timeout();
  8067. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8068. if (!DEBUGGING(DRYRUN)) {
  8069. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8070. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8071. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8072. SERIAL_ECHO_START;
  8073. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8074. }
  8075. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8076. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8077. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8078. SERIAL_ECHO_START;
  8079. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8080. }
  8081. #endif
  8082. }
  8083. }
  8084. #endif
  8085. #if IS_KINEMATIC
  8086. if (!prepare_kinematic_move_to(destination)) return;
  8087. #else
  8088. #if ENABLED(DUAL_X_CARRIAGE)
  8089. if (!prepare_move_to_destination_dualx()) return;
  8090. #endif
  8091. if (!prepare_move_to_destination_cartesian()) return;
  8092. #endif
  8093. set_current_to_destination();
  8094. }
  8095. #if ENABLED(ARC_SUPPORT)
  8096. /**
  8097. * Plan an arc in 2 dimensions
  8098. *
  8099. * The arc is approximated by generating many small linear segments.
  8100. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8101. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8102. * larger segments will tend to be more efficient. Your slicer should have
  8103. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8104. */
  8105. void plan_arc(
  8106. float logical[NUM_AXIS], // Destination position
  8107. float* offset, // Center of rotation relative to current_position
  8108. uint8_t clockwise // Clockwise?
  8109. ) {
  8110. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8111. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8112. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8113. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8114. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8115. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8116. r_Y = -offset[Y_AXIS],
  8117. rt_X = logical[X_AXIS] - center_X,
  8118. rt_Y = logical[Y_AXIS] - center_Y;
  8119. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8120. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8121. if (angular_travel < 0) angular_travel += RADIANS(360);
  8122. if (clockwise) angular_travel -= RADIANS(360);
  8123. // Make a circle if the angular rotation is 0
  8124. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8125. angular_travel += RADIANS(360);
  8126. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8127. if (mm_of_travel < 0.001) return;
  8128. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8129. if (segments == 0) segments = 1;
  8130. /**
  8131. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8132. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8133. * r_T = [cos(phi) -sin(phi);
  8134. * sin(phi) cos(phi)] * r ;
  8135. *
  8136. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8137. * defined from the circle center to the initial position. Each line segment is formed by successive
  8138. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8139. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8140. * all double numbers are single precision on the Arduino. (True double precision will not have
  8141. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8142. * tool precision in some cases. Therefore, arc path correction is implemented.
  8143. *
  8144. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8145. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8146. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8147. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8148. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8149. * issue for CNC machines with the single precision Arduino calculations.
  8150. *
  8151. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8152. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8153. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8154. * This is important when there are successive arc motions.
  8155. */
  8156. // Vector rotation matrix values
  8157. float arc_target[XYZE],
  8158. theta_per_segment = angular_travel / segments,
  8159. linear_per_segment = linear_travel / segments,
  8160. extruder_per_segment = extruder_travel / segments,
  8161. sin_T = theta_per_segment,
  8162. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8163. // Initialize the linear axis
  8164. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8165. // Initialize the extruder axis
  8166. arc_target[E_AXIS] = current_position[E_AXIS];
  8167. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8168. millis_t next_idle_ms = millis() + 200UL;
  8169. int8_t count = 0;
  8170. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8171. thermalManager.manage_heater();
  8172. if (ELAPSED(millis(), next_idle_ms)) {
  8173. next_idle_ms = millis() + 200UL;
  8174. idle();
  8175. }
  8176. if (++count < N_ARC_CORRECTION) {
  8177. // Apply vector rotation matrix to previous r_X / 1
  8178. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8179. r_X = r_X * cos_T - r_Y * sin_T;
  8180. r_Y = r_new_Y;
  8181. }
  8182. else {
  8183. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8184. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8185. // To reduce stuttering, the sin and cos could be computed at different times.
  8186. // For now, compute both at the same time.
  8187. float cos_Ti = cos(i * theta_per_segment),
  8188. sin_Ti = sin(i * theta_per_segment);
  8189. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8190. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8191. count = 0;
  8192. }
  8193. // Update arc_target location
  8194. arc_target[X_AXIS] = center_X + r_X;
  8195. arc_target[Y_AXIS] = center_Y + r_Y;
  8196. arc_target[Z_AXIS] += linear_per_segment;
  8197. arc_target[E_AXIS] += extruder_per_segment;
  8198. clamp_to_software_endstops(arc_target);
  8199. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8200. }
  8201. // Ensure last segment arrives at target location.
  8202. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8203. // As far as the parser is concerned, the position is now == target. In reality the
  8204. // motion control system might still be processing the action and the real tool position
  8205. // in any intermediate location.
  8206. set_current_to_destination();
  8207. }
  8208. #endif
  8209. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8210. void plan_cubic_move(const float offset[4]) {
  8211. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8212. // As far as the parser is concerned, the position is now == destination. In reality the
  8213. // motion control system might still be processing the action and the real tool position
  8214. // in any intermediate location.
  8215. set_current_to_destination();
  8216. }
  8217. #endif // BEZIER_CURVE_SUPPORT
  8218. #if HAS_CONTROLLERFAN
  8219. void controllerFan() {
  8220. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  8221. static millis_t nextMotorCheck = 0; // Last time the state was checked
  8222. millis_t ms = millis();
  8223. if (ELAPSED(ms, nextMotorCheck)) {
  8224. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8225. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8226. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8227. #if E_STEPPERS > 1
  8228. || E1_ENABLE_READ == E_ENABLE_ON
  8229. #if HAS_X2_ENABLE
  8230. || X2_ENABLE_READ == X_ENABLE_ON
  8231. #endif
  8232. #if E_STEPPERS > 2
  8233. || E2_ENABLE_READ == E_ENABLE_ON
  8234. #if E_STEPPERS > 3
  8235. || E3_ENABLE_READ == E_ENABLE_ON
  8236. #endif
  8237. #endif
  8238. #endif
  8239. ) {
  8240. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8241. }
  8242. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8243. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8244. // allows digital or PWM fan output to be used (see M42 handling)
  8245. digitalWrite(CONTROLLERFAN_PIN, speed);
  8246. analogWrite(CONTROLLERFAN_PIN, speed);
  8247. }
  8248. }
  8249. #endif // HAS_CONTROLLERFAN
  8250. #if ENABLED(MORGAN_SCARA)
  8251. /**
  8252. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8253. * Maths and first version by QHARLEY.
  8254. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8255. */
  8256. void forward_kinematics_SCARA(const float &a, const float &b) {
  8257. float a_sin = sin(RADIANS(a)) * L1,
  8258. a_cos = cos(RADIANS(a)) * L1,
  8259. b_sin = sin(RADIANS(b)) * L2,
  8260. b_cos = cos(RADIANS(b)) * L2;
  8261. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8262. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8263. /*
  8264. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8265. SERIAL_ECHOPAIR(" b=", b);
  8266. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8267. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8268. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8269. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8270. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8271. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8272. //*/
  8273. }
  8274. /**
  8275. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8276. *
  8277. * See http://forums.reprap.org/read.php?185,283327
  8278. *
  8279. * Maths and first version by QHARLEY.
  8280. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8281. */
  8282. void inverse_kinematics(const float logical[XYZ]) {
  8283. static float C2, S2, SK1, SK2, THETA, PSI;
  8284. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8285. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8286. if (L1 == L2)
  8287. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8288. else
  8289. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8290. S2 = sqrt(sq(C2) - 1);
  8291. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8292. SK1 = L1 + L2 * C2;
  8293. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8294. SK2 = L2 * S2;
  8295. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8296. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8297. // Angle of Arm2
  8298. PSI = atan2(S2, C2);
  8299. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8300. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8301. delta[C_AXIS] = logical[Z_AXIS];
  8302. /*
  8303. DEBUG_POS("SCARA IK", logical);
  8304. DEBUG_POS("SCARA IK", delta);
  8305. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8306. SERIAL_ECHOPAIR(",", sy);
  8307. SERIAL_ECHOPAIR(" C2=", C2);
  8308. SERIAL_ECHOPAIR(" S2=", S2);
  8309. SERIAL_ECHOPAIR(" Theta=", THETA);
  8310. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8311. //*/
  8312. }
  8313. #endif // MORGAN_SCARA
  8314. #if ENABLED(TEMP_STAT_LEDS)
  8315. static bool red_led = false;
  8316. static millis_t next_status_led_update_ms = 0;
  8317. void handle_status_leds(void) {
  8318. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8319. next_status_led_update_ms += 500; // Update every 0.5s
  8320. float max_temp = 0.0;
  8321. #if HAS_TEMP_BED
  8322. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8323. #endif
  8324. HOTEND_LOOP() {
  8325. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8326. }
  8327. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8328. if (new_led != red_led) {
  8329. red_led = new_led;
  8330. #if PIN_EXISTS(STAT_LED_RED)
  8331. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8332. #if PIN_EXISTS(STAT_LED_BLUE)
  8333. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8334. #endif
  8335. #else
  8336. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8337. #endif
  8338. }
  8339. }
  8340. }
  8341. #endif
  8342. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8343. void handle_filament_runout() {
  8344. if (!filament_ran_out) {
  8345. filament_ran_out = true;
  8346. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8347. stepper.synchronize();
  8348. }
  8349. }
  8350. #endif // FILAMENT_RUNOUT_SENSOR
  8351. #if ENABLED(FAST_PWM_FAN)
  8352. void setPwmFrequency(uint8_t pin, int val) {
  8353. val &= 0x07;
  8354. switch (digitalPinToTimer(pin)) {
  8355. #if defined(TCCR0A)
  8356. case TIMER0A:
  8357. case TIMER0B:
  8358. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8359. // TCCR0B |= val;
  8360. break;
  8361. #endif
  8362. #if defined(TCCR1A)
  8363. case TIMER1A:
  8364. case TIMER1B:
  8365. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8366. // TCCR1B |= val;
  8367. break;
  8368. #endif
  8369. #if defined(TCCR2)
  8370. case TIMER2:
  8371. case TIMER2:
  8372. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8373. TCCR2 |= val;
  8374. break;
  8375. #endif
  8376. #if defined(TCCR2A)
  8377. case TIMER2A:
  8378. case TIMER2B:
  8379. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8380. TCCR2B |= val;
  8381. break;
  8382. #endif
  8383. #if defined(TCCR3A)
  8384. case TIMER3A:
  8385. case TIMER3B:
  8386. case TIMER3C:
  8387. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8388. TCCR3B |= val;
  8389. break;
  8390. #endif
  8391. #if defined(TCCR4A)
  8392. case TIMER4A:
  8393. case TIMER4B:
  8394. case TIMER4C:
  8395. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8396. TCCR4B |= val;
  8397. break;
  8398. #endif
  8399. #if defined(TCCR5A)
  8400. case TIMER5A:
  8401. case TIMER5B:
  8402. case TIMER5C:
  8403. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8404. TCCR5B |= val;
  8405. break;
  8406. #endif
  8407. }
  8408. }
  8409. #endif // FAST_PWM_FAN
  8410. float calculate_volumetric_multiplier(float diameter) {
  8411. if (!volumetric_enabled || diameter == 0) return 1.0;
  8412. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8413. }
  8414. void calculate_volumetric_multipliers() {
  8415. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8416. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8417. }
  8418. void enable_all_steppers() {
  8419. enable_x();
  8420. enable_y();
  8421. enable_z();
  8422. enable_e0();
  8423. enable_e1();
  8424. enable_e2();
  8425. enable_e3();
  8426. }
  8427. void disable_all_steppers() {
  8428. disable_x();
  8429. disable_y();
  8430. disable_z();
  8431. disable_e0();
  8432. disable_e1();
  8433. disable_e2();
  8434. disable_e3();
  8435. }
  8436. /**
  8437. * Manage several activities:
  8438. * - Check for Filament Runout
  8439. * - Keep the command buffer full
  8440. * - Check for maximum inactive time between commands
  8441. * - Check for maximum inactive time between stepper commands
  8442. * - Check if pin CHDK needs to go LOW
  8443. * - Check for KILL button held down
  8444. * - Check for HOME button held down
  8445. * - Check if cooling fan needs to be switched on
  8446. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8447. */
  8448. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8449. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8450. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8451. handle_filament_runout();
  8452. #endif
  8453. if (commands_in_queue < BUFSIZE) get_available_commands();
  8454. millis_t ms = millis();
  8455. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  8456. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8457. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8458. #if ENABLED(DISABLE_INACTIVE_X)
  8459. disable_x();
  8460. #endif
  8461. #if ENABLED(DISABLE_INACTIVE_Y)
  8462. disable_y();
  8463. #endif
  8464. #if ENABLED(DISABLE_INACTIVE_Z)
  8465. disable_z();
  8466. #endif
  8467. #if ENABLED(DISABLE_INACTIVE_E)
  8468. disable_e0();
  8469. disable_e1();
  8470. disable_e2();
  8471. disable_e3();
  8472. #endif
  8473. }
  8474. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8475. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  8476. chdkActive = false;
  8477. WRITE(CHDK, LOW);
  8478. }
  8479. #endif
  8480. #if HAS_KILL
  8481. // Check if the kill button was pressed and wait just in case it was an accidental
  8482. // key kill key press
  8483. // -------------------------------------------------------------------------------
  8484. static int killCount = 0; // make the inactivity button a bit less responsive
  8485. const int KILL_DELAY = 750;
  8486. if (!READ(KILL_PIN))
  8487. killCount++;
  8488. else if (killCount > 0)
  8489. killCount--;
  8490. // Exceeded threshold and we can confirm that it was not accidental
  8491. // KILL the machine
  8492. // ----------------------------------------------------------------
  8493. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  8494. #endif
  8495. #if HAS_HOME
  8496. // Check to see if we have to home, use poor man's debouncer
  8497. // ---------------------------------------------------------
  8498. static int homeDebounceCount = 0; // poor man's debouncing count
  8499. const int HOME_DEBOUNCE_DELAY = 2500;
  8500. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  8501. if (!homeDebounceCount) {
  8502. enqueue_and_echo_commands_P(PSTR("G28"));
  8503. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8504. }
  8505. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8506. homeDebounceCount++;
  8507. else
  8508. homeDebounceCount = 0;
  8509. }
  8510. #endif
  8511. #if HAS_CONTROLLERFAN
  8512. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8513. #endif
  8514. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8515. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8516. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8517. bool oldstatus;
  8518. #if ENABLED(SWITCHING_EXTRUDER)
  8519. oldstatus = E0_ENABLE_READ;
  8520. enable_e0();
  8521. #else // !SWITCHING_EXTRUDER
  8522. switch (active_extruder) {
  8523. case 0:
  8524. oldstatus = E0_ENABLE_READ;
  8525. enable_e0();
  8526. break;
  8527. #if E_STEPPERS > 1
  8528. case 1:
  8529. oldstatus = E1_ENABLE_READ;
  8530. enable_e1();
  8531. break;
  8532. #if E_STEPPERS > 2
  8533. case 2:
  8534. oldstatus = E2_ENABLE_READ;
  8535. enable_e2();
  8536. break;
  8537. #if E_STEPPERS > 3
  8538. case 3:
  8539. oldstatus = E3_ENABLE_READ;
  8540. enable_e3();
  8541. break;
  8542. #endif
  8543. #endif
  8544. #endif
  8545. }
  8546. #endif // !SWITCHING_EXTRUDER
  8547. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8548. #if IS_KINEMATIC
  8549. inverse_kinematics(current_position);
  8550. ADJUST_DELTA(current_position);
  8551. planner.buffer_line(
  8552. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8553. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8554. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8555. );
  8556. #else
  8557. planner.buffer_line(
  8558. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8559. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8560. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8561. );
  8562. #endif
  8563. stepper.synchronize();
  8564. planner.set_e_position_mm(current_position[E_AXIS]);
  8565. #if ENABLED(SWITCHING_EXTRUDER)
  8566. E0_ENABLE_WRITE(oldstatus);
  8567. #else
  8568. switch (active_extruder) {
  8569. case 0:
  8570. E0_ENABLE_WRITE(oldstatus);
  8571. break;
  8572. #if E_STEPPERS > 1
  8573. case 1:
  8574. E1_ENABLE_WRITE(oldstatus);
  8575. break;
  8576. #if E_STEPPERS > 2
  8577. case 2:
  8578. E2_ENABLE_WRITE(oldstatus);
  8579. break;
  8580. #if E_STEPPERS > 3
  8581. case 3:
  8582. E3_ENABLE_WRITE(oldstatus);
  8583. break;
  8584. #endif
  8585. #endif
  8586. #endif
  8587. }
  8588. #endif // !SWITCHING_EXTRUDER
  8589. }
  8590. #endif // EXTRUDER_RUNOUT_PREVENT
  8591. #if ENABLED(DUAL_X_CARRIAGE)
  8592. // handle delayed move timeout
  8593. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8594. // travel moves have been received so enact them
  8595. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8596. set_destination_to_current();
  8597. prepare_move_to_destination();
  8598. }
  8599. #endif
  8600. #if ENABLED(TEMP_STAT_LEDS)
  8601. handle_status_leds();
  8602. #endif
  8603. planner.check_axes_activity();
  8604. }
  8605. /**
  8606. * Standard idle routine keeps the machine alive
  8607. */
  8608. void idle(
  8609. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8610. bool no_stepper_sleep/*=false*/
  8611. #endif
  8612. ) {
  8613. lcd_update();
  8614. host_keepalive();
  8615. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8616. auto_report_temperatures();
  8617. #endif
  8618. manage_inactivity(
  8619. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8620. no_stepper_sleep
  8621. #endif
  8622. );
  8623. thermalManager.manage_heater();
  8624. #if ENABLED(PRINTCOUNTER)
  8625. print_job_timer.tick();
  8626. #endif
  8627. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8628. buzzer.tick();
  8629. #endif
  8630. }
  8631. /**
  8632. * Kill all activity and lock the machine.
  8633. * After this the machine will need to be reset.
  8634. */
  8635. void kill(const char* lcd_msg) {
  8636. SERIAL_ERROR_START;
  8637. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8638. #if ENABLED(ULTRA_LCD)
  8639. kill_screen(lcd_msg);
  8640. #else
  8641. UNUSED(lcd_msg);
  8642. #endif
  8643. delay(500); // Wait a short time
  8644. cli(); // Stop interrupts
  8645. thermalManager.disable_all_heaters();
  8646. disable_all_steppers();
  8647. #if HAS_POWER_SWITCH
  8648. SET_INPUT(PS_ON_PIN);
  8649. #endif
  8650. suicide();
  8651. while (1) {
  8652. #if ENABLED(USE_WATCHDOG)
  8653. watchdog_reset();
  8654. #endif
  8655. } // Wait for reset
  8656. }
  8657. /**
  8658. * Turn off heaters and stop the print in progress
  8659. * After a stop the machine may be resumed with M999
  8660. */
  8661. void stop() {
  8662. thermalManager.disable_all_heaters();
  8663. if (IsRunning()) {
  8664. Running = false;
  8665. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8666. SERIAL_ERROR_START;
  8667. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8668. LCD_MESSAGEPGM(MSG_STOPPED);
  8669. }
  8670. }
  8671. /**
  8672. * Marlin entry-point: Set up before the program loop
  8673. * - Set up the kill pin, filament runout, power hold
  8674. * - Start the serial port
  8675. * - Print startup messages and diagnostics
  8676. * - Get EEPROM or default settings
  8677. * - Initialize managers for:
  8678. * • temperature
  8679. * • planner
  8680. * • watchdog
  8681. * • stepper
  8682. * • photo pin
  8683. * • servos
  8684. * • LCD controller
  8685. * • Digipot I2C
  8686. * • Z probe sled
  8687. * • status LEDs
  8688. */
  8689. void setup() {
  8690. #ifdef DISABLE_JTAG
  8691. // Disable JTAG on AT90USB chips to free up pins for IO
  8692. MCUCR = 0x80;
  8693. MCUCR = 0x80;
  8694. #endif
  8695. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8696. setup_filrunoutpin();
  8697. #endif
  8698. setup_killpin();
  8699. setup_powerhold();
  8700. #if HAS_STEPPER_RESET
  8701. disableStepperDrivers();
  8702. #endif
  8703. MYSERIAL.begin(BAUDRATE);
  8704. SERIAL_PROTOCOLLNPGM("start");
  8705. SERIAL_ECHO_START;
  8706. // Check startup - does nothing if bootloader sets MCUSR to 0
  8707. byte mcu = MCUSR;
  8708. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8709. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8710. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8711. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8712. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8713. MCUSR = 0;
  8714. SERIAL_ECHOPGM(MSG_MARLIN);
  8715. SERIAL_CHAR(' ');
  8716. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8717. SERIAL_EOL;
  8718. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8719. SERIAL_ECHO_START;
  8720. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8721. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8722. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8723. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8724. #endif
  8725. SERIAL_ECHO_START;
  8726. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8727. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8728. // Send "ok" after commands by default
  8729. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8730. // Load data from EEPROM if available (or use defaults)
  8731. // This also updates variables in the planner, elsewhere
  8732. Config_RetrieveSettings();
  8733. // Initialize current position based on home_offset
  8734. memcpy(current_position, home_offset, sizeof(home_offset));
  8735. // Vital to init stepper/planner equivalent for current_position
  8736. SYNC_PLAN_POSITION_KINEMATIC();
  8737. thermalManager.init(); // Initialize temperature loop
  8738. #if ENABLED(USE_WATCHDOG)
  8739. watchdog_init();
  8740. #endif
  8741. stepper.init(); // Initialize stepper, this enables interrupts!
  8742. servo_init();
  8743. #if HAS_PHOTOGRAPH
  8744. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  8745. #endif
  8746. #if HAS_CASE_LIGHT
  8747. update_case_light();
  8748. #endif
  8749. #if HAS_BED_PROBE
  8750. endstops.enable_z_probe(false);
  8751. #endif
  8752. #if HAS_CONTROLLERFAN
  8753. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8754. #endif
  8755. #if HAS_STEPPER_RESET
  8756. enableStepperDrivers();
  8757. #endif
  8758. #if ENABLED(DIGIPOT_I2C)
  8759. digipot_i2c_init();
  8760. #endif
  8761. #if ENABLED(DAC_STEPPER_CURRENT)
  8762. dac_init();
  8763. #endif
  8764. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8765. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8766. #endif // Z_PROBE_SLED
  8767. setup_homepin();
  8768. #if PIN_EXISTS(STAT_LED_RED)
  8769. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8770. #endif
  8771. #if PIN_EXISTS(STAT_LED_BLUE)
  8772. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8773. #endif
  8774. #if ENABLED(RGB_LED)
  8775. pinMode(RGB_LED_R_PIN, OUTPUT);
  8776. pinMode(RGB_LED_G_PIN, OUTPUT);
  8777. pinMode(RGB_LED_B_PIN, OUTPUT);
  8778. #endif
  8779. lcd_init();
  8780. #if ENABLED(SHOW_BOOTSCREEN)
  8781. #if ENABLED(DOGLCD)
  8782. safe_delay(BOOTSCREEN_TIMEOUT);
  8783. #elif ENABLED(ULTRA_LCD)
  8784. bootscreen();
  8785. #if DISABLED(SDSUPPORT)
  8786. lcd_init();
  8787. #endif
  8788. #endif
  8789. #endif
  8790. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8791. // Initialize mixing to 100% color 1
  8792. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8793. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  8794. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8795. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8796. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8797. #endif
  8798. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8799. i2c.onReceive(i2c_on_receive);
  8800. i2c.onRequest(i2c_on_request);
  8801. #endif
  8802. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  8803. setup_endstop_interrupts();
  8804. #endif
  8805. }
  8806. /**
  8807. * The main Marlin program loop
  8808. *
  8809. * - Save or log commands to SD
  8810. * - Process available commands (if not saving)
  8811. * - Call heater manager
  8812. * - Call inactivity manager
  8813. * - Call endstop manager
  8814. * - Call LCD update
  8815. */
  8816. void loop() {
  8817. if (commands_in_queue < BUFSIZE) get_available_commands();
  8818. #if ENABLED(SDSUPPORT)
  8819. card.checkautostart(false);
  8820. #endif
  8821. if (commands_in_queue) {
  8822. #if ENABLED(SDSUPPORT)
  8823. if (card.saving) {
  8824. char* command = command_queue[cmd_queue_index_r];
  8825. if (strstr_P(command, PSTR("M29"))) {
  8826. // M29 closes the file
  8827. card.closefile();
  8828. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8829. ok_to_send();
  8830. }
  8831. else {
  8832. // Write the string from the read buffer to SD
  8833. card.write_command(command);
  8834. if (card.logging)
  8835. process_next_command(); // The card is saving because it's logging
  8836. else
  8837. ok_to_send();
  8838. }
  8839. }
  8840. else
  8841. process_next_command();
  8842. #else
  8843. process_next_command();
  8844. #endif // SDSUPPORT
  8845. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8846. if (commands_in_queue) {
  8847. --commands_in_queue;
  8848. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8849. }
  8850. }
  8851. endstops.report_state();
  8852. idle();
  8853. }