My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

temperature.cpp 60KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. #include "Marlin.h"
  26. #include "ultralcd.h"
  27. #include "temperature.h"
  28. #include "thermistortables.h"
  29. #include "language.h"
  30. #if ENABLED(BABYSTEPPING)
  31. #include "stepper.h"
  32. #endif
  33. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  34. #include "endstops.h"
  35. #endif
  36. #if ENABLED(USE_WATCHDOG)
  37. #include "watchdog.h"
  38. #endif
  39. #ifdef K1 // Defined in Configuration.h in the PID settings
  40. #define K2 (1.0-K1)
  41. #endif
  42. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  43. static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
  44. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  45. #else
  46. static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE);
  47. static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN);
  48. #endif
  49. Temperature thermalManager;
  50. // public:
  51. float Temperature::current_temperature[HOTENDS] = { 0.0 },
  52. Temperature::current_temperature_bed = 0.0;
  53. int Temperature::current_temperature_raw[HOTENDS] = { 0 },
  54. Temperature::target_temperature[HOTENDS] = { 0 },
  55. Temperature::current_temperature_bed_raw = 0,
  56. Temperature::target_temperature_bed = 0;
  57. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  58. float Temperature::redundant_temperature = 0.0;
  59. #endif
  60. uint8_t Temperature::soft_pwm_bed;
  61. #if ENABLED(FAN_SOFT_PWM)
  62. uint8_t Temperature::fanSpeedSoftPwm[FAN_COUNT];
  63. #endif
  64. #if ENABLED(PIDTEMP)
  65. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  66. float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp),
  67. Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)),
  68. Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT));
  69. #if ENABLED(PID_EXTRUSION_SCALING)
  70. float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc);
  71. #endif
  72. #else
  73. float Temperature::Kp = DEFAULT_Kp,
  74. Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
  75. Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
  76. #if ENABLED(PID_EXTRUSION_SCALING)
  77. float Temperature::Kc = DEFAULT_Kc;
  78. #endif
  79. #endif
  80. #endif
  81. #if ENABLED(PIDTEMPBED)
  82. float Temperature::bedKp = DEFAULT_bedKp,
  83. Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
  84. Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
  85. #endif
  86. #if ENABLED(BABYSTEPPING)
  87. volatile int Temperature::babystepsTodo[XYZ] = { 0 };
  88. #endif
  89. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  90. int Temperature::watch_target_temp[HOTENDS] = { 0 };
  91. millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
  92. #endif
  93. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  94. int Temperature::watch_target_bed_temp = 0;
  95. millis_t Temperature::watch_bed_next_ms = 0;
  96. #endif
  97. #if ENABLED(PREVENT_COLD_EXTRUSION)
  98. bool Temperature::allow_cold_extrude = false;
  99. float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  100. #endif
  101. // private:
  102. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  103. int Temperature::redundant_temperature_raw = 0;
  104. float Temperature::redundant_temperature = 0.0;
  105. #endif
  106. volatile bool Temperature::temp_meas_ready = false;
  107. #if ENABLED(PIDTEMP)
  108. float Temperature::temp_iState[HOTENDS] = { 0 },
  109. Temperature::temp_dState[HOTENDS] = { 0 },
  110. Temperature::pTerm[HOTENDS],
  111. Temperature::iTerm[HOTENDS],
  112. Temperature::dTerm[HOTENDS];
  113. #if ENABLED(PID_EXTRUSION_SCALING)
  114. float Temperature::cTerm[HOTENDS];
  115. long Temperature::last_e_position;
  116. long Temperature::lpq[LPQ_MAX_LEN];
  117. int Temperature::lpq_ptr = 0;
  118. #endif
  119. float Temperature::pid_error[HOTENDS];
  120. bool Temperature::pid_reset[HOTENDS];
  121. #endif
  122. #if ENABLED(PIDTEMPBED)
  123. float Temperature::temp_iState_bed = { 0 },
  124. Temperature::temp_dState_bed = { 0 },
  125. Temperature::pTerm_bed,
  126. Temperature::iTerm_bed,
  127. Temperature::dTerm_bed,
  128. Temperature::pid_error_bed;
  129. #else
  130. millis_t Temperature::next_bed_check_ms;
  131. #endif
  132. unsigned long Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
  133. unsigned long Temperature::raw_temp_bed_value = 0;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. int Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP),
  136. Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP),
  137. Temperature::minttemp[HOTENDS] = { 0 },
  138. Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
  139. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  140. int Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  141. #endif
  142. #ifdef MILLISECONDS_PREHEAT_TIME
  143. unsigned long Temperature::preheat_end_time[HOTENDS] = { 0 };
  144. #endif
  145. #ifdef BED_MINTEMP
  146. int Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  147. #endif
  148. #ifdef BED_MAXTEMP
  149. int Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  150. #endif
  151. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  152. int Temperature::meas_shift_index; // Index of a delayed sample in buffer
  153. #endif
  154. #if HAS_AUTO_FAN
  155. millis_t Temperature::next_auto_fan_check_ms = 0;
  156. #endif
  157. uint8_t Temperature::soft_pwm[HOTENDS];
  158. #if ENABLED(FAN_SOFT_PWM)
  159. uint8_t Temperature::soft_pwm_fan[FAN_COUNT];
  160. #endif
  161. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  162. int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  163. #endif
  164. #if HAS_PID_HEATING
  165. void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
  166. float input = 0.0;
  167. int cycles = 0;
  168. bool heating = true;
  169. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  170. long t_high = 0, t_low = 0;
  171. long bias, d;
  172. float Ku, Tu;
  173. float workKp = 0, workKi = 0, workKd = 0;
  174. float max = 0, min = 10000;
  175. #if HAS_AUTO_FAN
  176. next_auto_fan_check_ms = temp_ms + 2500UL;
  177. #endif
  178. if (hotend >=
  179. #if ENABLED(PIDTEMP)
  180. HOTENDS
  181. #else
  182. 0
  183. #endif
  184. || hotend <
  185. #if ENABLED(PIDTEMPBED)
  186. -1
  187. #else
  188. 0
  189. #endif
  190. ) {
  191. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  192. return;
  193. }
  194. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  195. disable_all_heaters(); // switch off all heaters.
  196. #if HAS_PID_FOR_BOTH
  197. if (hotend < 0)
  198. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  199. else
  200. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  201. #elif ENABLED(PIDTEMP)
  202. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  203. #else
  204. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  205. #endif
  206. wait_for_heatup = true;
  207. // PID Tuning loop
  208. while (wait_for_heatup) {
  209. millis_t ms = millis();
  210. if (temp_meas_ready) { // temp sample ready
  211. updateTemperaturesFromRawValues();
  212. input =
  213. #if HAS_PID_FOR_BOTH
  214. hotend < 0 ? current_temperature_bed : current_temperature[hotend]
  215. #elif ENABLED(PIDTEMP)
  216. current_temperature[hotend]
  217. #else
  218. current_temperature_bed
  219. #endif
  220. ;
  221. NOLESS(max, input);
  222. NOMORE(min, input);
  223. #if HAS_AUTO_FAN
  224. if (ELAPSED(ms, next_auto_fan_check_ms)) {
  225. checkExtruderAutoFans();
  226. next_auto_fan_check_ms = ms + 2500UL;
  227. }
  228. #endif
  229. if (heating && input > temp) {
  230. if (ELAPSED(ms, t2 + 5000UL)) {
  231. heating = false;
  232. #if HAS_PID_FOR_BOTH
  233. if (hotend < 0)
  234. soft_pwm_bed = (bias - d) >> 1;
  235. else
  236. soft_pwm[hotend] = (bias - d) >> 1;
  237. #elif ENABLED(PIDTEMP)
  238. soft_pwm[hotend] = (bias - d) >> 1;
  239. #elif ENABLED(PIDTEMPBED)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. #endif
  242. t1 = ms;
  243. t_high = t1 - t2;
  244. max = temp;
  245. }
  246. }
  247. if (!heating && input < temp) {
  248. if (ELAPSED(ms, t1 + 5000UL)) {
  249. heating = true;
  250. t2 = ms;
  251. t_low = t2 - t1;
  252. if (cycles > 0) {
  253. long max_pow =
  254. #if HAS_PID_FOR_BOTH
  255. hotend < 0 ? MAX_BED_POWER : PID_MAX
  256. #elif ENABLED(PIDTEMP)
  257. PID_MAX
  258. #else
  259. MAX_BED_POWER
  260. #endif
  261. ;
  262. bias += (d * (t_high - t_low)) / (t_low + t_high);
  263. bias = constrain(bias, 20, max_pow - 20);
  264. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  265. SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
  266. SERIAL_PROTOCOLPAIR(MSG_D, d);
  267. SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
  268. SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
  269. if (cycles > 2) {
  270. Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
  271. Tu = ((float)(t_low + t_high) * 0.001);
  272. SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
  273. SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
  274. workKp = 0.6 * Ku;
  275. workKi = 2 * workKp / Tu;
  276. workKd = workKp * Tu * 0.125;
  277. SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
  278. SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
  279. SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
  280. SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
  281. /**
  282. workKp = 0.33*Ku;
  283. workKi = workKp/Tu;
  284. workKd = workKp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" Some overshoot");
  286. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  287. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  288. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  289. workKp = 0.2*Ku;
  290. workKi = 2*workKp/Tu;
  291. workKd = workKp*Tu/3;
  292. SERIAL_PROTOCOLLNPGM(" No overshoot");
  293. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  294. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  295. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  296. */
  297. }
  298. }
  299. #if HAS_PID_FOR_BOTH
  300. if (hotend < 0)
  301. soft_pwm_bed = (bias + d) >> 1;
  302. else
  303. soft_pwm[hotend] = (bias + d) >> 1;
  304. #elif ENABLED(PIDTEMP)
  305. soft_pwm[hotend] = (bias + d) >> 1;
  306. #else
  307. soft_pwm_bed = (bias + d) >> 1;
  308. #endif
  309. cycles++;
  310. min = temp;
  311. }
  312. }
  313. }
  314. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  315. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  316. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  317. return;
  318. }
  319. // Every 2 seconds...
  320. if (ELAPSED(ms, temp_ms + 2000UL)) {
  321. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  322. print_heaterstates();
  323. SERIAL_EOL;
  324. #endif
  325. temp_ms = ms;
  326. } // every 2 seconds
  327. // Over 2 minutes?
  328. if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
  329. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  330. return;
  331. }
  332. if (cycles > ncycles) {
  333. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  334. #if HAS_PID_FOR_BOTH
  335. const char* estring = hotend < 0 ? "bed" : "";
  336. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL;
  337. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL;
  338. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL;
  339. #elif ENABLED(PIDTEMP)
  340. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL;
  341. SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL;
  342. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL;
  343. #else
  344. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL;
  345. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL;
  346. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL;
  347. #endif
  348. #define _SET_BED_PID() do { \
  349. bedKp = workKp; \
  350. bedKi = scalePID_i(workKi); \
  351. bedKd = scalePID_d(workKd); \
  352. updatePID(); } while(0)
  353. #define _SET_EXTRUDER_PID() do { \
  354. PID_PARAM(Kp, hotend) = workKp; \
  355. PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
  356. PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
  357. updatePID(); } while(0)
  358. // Use the result? (As with "M303 U1")
  359. if (set_result) {
  360. #if HAS_PID_FOR_BOTH
  361. if (hotend < 0)
  362. _SET_BED_PID();
  363. else
  364. _SET_EXTRUDER_PID();
  365. #elif ENABLED(PIDTEMP)
  366. _SET_EXTRUDER_PID();
  367. #else
  368. _SET_BED_PID();
  369. #endif
  370. }
  371. return;
  372. }
  373. lcd_update();
  374. }
  375. if (!wait_for_heatup) disable_all_heaters();
  376. }
  377. #endif // HAS_PID_HEATING
  378. /**
  379. * Class and Instance Methods
  380. */
  381. Temperature::Temperature() { }
  382. void Temperature::updatePID() {
  383. #if ENABLED(PIDTEMP)
  384. #if ENABLED(PID_EXTRUSION_SCALING)
  385. last_e_position = 0;
  386. #endif
  387. #endif
  388. }
  389. int Temperature::getHeaterPower(int heater) {
  390. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  391. }
  392. #if HAS_AUTO_FAN
  393. void Temperature::checkExtruderAutoFans() {
  394. const int8_t fanPin[] = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN };
  395. const int fanBit[] = {
  396. 0,
  397. AUTO_1_IS_0 ? 0 : 1,
  398. AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
  399. AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3
  400. };
  401. uint8_t fanState = 0;
  402. HOTEND_LOOP() {
  403. if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  404. SBI(fanState, fanBit[e]);
  405. }
  406. uint8_t fanDone = 0;
  407. for (uint8_t f = 0; f < COUNT(fanPin); f++) {
  408. int8_t pin = fanPin[f];
  409. if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
  410. uint8_t newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  411. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  412. digitalWrite(pin, newFanSpeed);
  413. analogWrite(pin, newFanSpeed);
  414. SBI(fanDone, fanBit[f]);
  415. }
  416. }
  417. }
  418. #endif // HAS_AUTO_FAN
  419. //
  420. // Temperature Error Handlers
  421. //
  422. void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
  423. static bool killed = false;
  424. if (IsRunning()) {
  425. SERIAL_ERROR_START;
  426. serialprintPGM(serial_msg);
  427. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  428. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  429. }
  430. #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
  431. if (!killed) {
  432. Running = false;
  433. killed = true;
  434. kill(lcd_msg);
  435. }
  436. else
  437. disable_all_heaters(); // paranoia
  438. #endif
  439. }
  440. void Temperature::max_temp_error(int8_t e) {
  441. #if HAS_TEMP_BED
  442. _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
  443. #else
  444. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  445. #if HOTENDS == 1
  446. UNUSED(e);
  447. #endif
  448. #endif
  449. }
  450. void Temperature::min_temp_error(int8_t e) {
  451. #if HAS_TEMP_BED
  452. _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
  453. #else
  454. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  455. #if HOTENDS == 1
  456. UNUSED(e);
  457. #endif
  458. #endif
  459. }
  460. float Temperature::get_pid_output(int e) {
  461. #if HOTENDS == 1
  462. UNUSED(e);
  463. #define _HOTEND_TEST true
  464. #else
  465. #define _HOTEND_TEST e == active_extruder
  466. #endif
  467. float pid_output;
  468. #if ENABLED(PIDTEMP)
  469. #if DISABLED(PID_OPENLOOP)
  470. pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
  471. dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
  472. temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
  473. if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
  474. pid_output = BANG_MAX;
  475. pid_reset[HOTEND_INDEX] = true;
  476. }
  477. else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
  478. pid_output = 0;
  479. pid_reset[HOTEND_INDEX] = true;
  480. }
  481. else {
  482. if (pid_reset[HOTEND_INDEX]) {
  483. temp_iState[HOTEND_INDEX] = 0.0;
  484. pid_reset[HOTEND_INDEX] = false;
  485. }
  486. pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
  487. temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
  488. iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
  489. pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
  490. #if ENABLED(PID_EXTRUSION_SCALING)
  491. cTerm[HOTEND_INDEX] = 0;
  492. if (_HOTEND_TEST) {
  493. long e_position = stepper.position(E_AXIS);
  494. if (e_position > last_e_position) {
  495. lpq[lpq_ptr] = e_position - last_e_position;
  496. last_e_position = e_position;
  497. }
  498. else {
  499. lpq[lpq_ptr] = 0;
  500. }
  501. if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
  502. cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
  503. pid_output += cTerm[HOTEND_INDEX];
  504. }
  505. #endif // PID_EXTRUSION_SCALING
  506. if (pid_output > PID_MAX) {
  507. if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  508. pid_output = PID_MAX;
  509. }
  510. else if (pid_output < 0) {
  511. if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  512. pid_output = 0;
  513. }
  514. }
  515. #else
  516. pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
  517. #endif //PID_OPENLOOP
  518. #if ENABLED(PID_DEBUG)
  519. SERIAL_ECHO_START;
  520. SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
  521. SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
  522. SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
  523. SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
  524. SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
  525. SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
  526. #if ENABLED(PID_EXTRUSION_SCALING)
  527. SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
  528. #endif
  529. SERIAL_EOL;
  530. #endif //PID_DEBUG
  531. #else /* PID off */
  532. pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
  533. #endif
  534. return pid_output;
  535. }
  536. #if ENABLED(PIDTEMPBED)
  537. float Temperature::get_pid_output_bed() {
  538. float pid_output;
  539. #if DISABLED(PID_OPENLOOP)
  540. pid_error_bed = target_temperature_bed - current_temperature_bed;
  541. pTerm_bed = bedKp * pid_error_bed;
  542. temp_iState_bed += pid_error_bed;
  543. iTerm_bed = bedKi * temp_iState_bed;
  544. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  545. temp_dState_bed = current_temperature_bed;
  546. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  547. if (pid_output > MAX_BED_POWER) {
  548. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  549. pid_output = MAX_BED_POWER;
  550. }
  551. else if (pid_output < 0) {
  552. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  553. pid_output = 0;
  554. }
  555. #else
  556. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  557. #endif // PID_OPENLOOP
  558. #if ENABLED(PID_BED_DEBUG)
  559. SERIAL_ECHO_START;
  560. SERIAL_ECHOPGM(" PID_BED_DEBUG ");
  561. SERIAL_ECHOPGM(": Input ");
  562. SERIAL_ECHO(current_temperature_bed);
  563. SERIAL_ECHOPGM(" Output ");
  564. SERIAL_ECHO(pid_output);
  565. SERIAL_ECHOPGM(" pTerm ");
  566. SERIAL_ECHO(pTerm_bed);
  567. SERIAL_ECHOPGM(" iTerm ");
  568. SERIAL_ECHO(iTerm_bed);
  569. SERIAL_ECHOPGM(" dTerm ");
  570. SERIAL_ECHOLN(dTerm_bed);
  571. #endif //PID_BED_DEBUG
  572. return pid_output;
  573. }
  574. #endif //PIDTEMPBED
  575. /**
  576. * Manage heating activities for extruder hot-ends and a heated bed
  577. * - Acquire updated temperature readings
  578. * - Also resets the watchdog timer
  579. * - Invoke thermal runaway protection
  580. * - Manage extruder auto-fan
  581. * - Apply filament width to the extrusion rate (may move)
  582. * - Update the heated bed PID output value
  583. */
  584. void Temperature::manage_heater() {
  585. if (!temp_meas_ready) return;
  586. updateTemperaturesFromRawValues(); // also resets the watchdog
  587. #if ENABLED(HEATER_0_USES_MAX6675)
  588. if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1)) max_temp_error(0);
  589. if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
  590. #endif
  591. #if (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0) || (ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0) || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
  592. millis_t ms = millis();
  593. #endif
  594. // Loop through all hotends
  595. HOTEND_LOOP() {
  596. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  597. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  598. #endif
  599. float pid_output = get_pid_output(e);
  600. // Check if temperature is within the correct range
  601. soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  602. // Check if the temperature is failing to increase
  603. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  604. // Is it time to check this extruder's heater?
  605. if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
  606. // Has it failed to increase enough?
  607. if (degHotend(e) < watch_target_temp[e]) {
  608. // Stop!
  609. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  610. }
  611. else {
  612. // Start again if the target is still far off
  613. start_watching_heater(e);
  614. }
  615. }
  616. #endif // THERMAL_PROTECTION_HOTENDS
  617. // Check if the temperature is failing to increase
  618. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  619. // Is it time to check the bed?
  620. if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
  621. // Has it failed to increase enough?
  622. if (degBed() < watch_target_bed_temp) {
  623. // Stop!
  624. _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  625. }
  626. else {
  627. // Start again if the target is still far off
  628. start_watching_bed();
  629. }
  630. }
  631. #endif // THERMAL_PROTECTION_HOTENDS
  632. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  633. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  634. _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
  635. }
  636. #endif
  637. } // HOTEND_LOOP
  638. #if HAS_AUTO_FAN
  639. if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
  640. checkExtruderAutoFans();
  641. next_auto_fan_check_ms = ms + 2500UL;
  642. }
  643. #endif
  644. // Control the extruder rate based on the width sensor
  645. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  646. if (filament_sensor) {
  647. meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
  648. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  649. // Get the delayed info and add 100 to reconstitute to a percent of
  650. // the nominal filament diameter then square it to get an area
  651. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  652. float vm = pow((measurement_delay[meas_shift_index] + 100.0) * 0.01, 2);
  653. NOLESS(vm, 0.01);
  654. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  655. }
  656. #endif //FILAMENT_WIDTH_SENSOR
  657. #if DISABLED(PIDTEMPBED)
  658. if (PENDING(ms, next_bed_check_ms)) return;
  659. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  660. #endif
  661. #if TEMP_SENSOR_BED != 0
  662. #if HAS_THERMALLY_PROTECTED_BED
  663. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  664. #endif
  665. #if ENABLED(PIDTEMPBED)
  666. float pid_output = get_pid_output_bed();
  667. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  668. #elif ENABLED(BED_LIMIT_SWITCHING)
  669. // Check if temperature is within the correct band
  670. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  671. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  672. soft_pwm_bed = 0;
  673. else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
  674. soft_pwm_bed = MAX_BED_POWER >> 1;
  675. }
  676. else {
  677. soft_pwm_bed = 0;
  678. WRITE_HEATER_BED(LOW);
  679. }
  680. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  681. // Check if temperature is within the correct range
  682. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  683. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  684. }
  685. else {
  686. soft_pwm_bed = 0;
  687. WRITE_HEATER_BED(LOW);
  688. }
  689. #endif
  690. #endif //TEMP_SENSOR_BED != 0
  691. }
  692. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  693. // Derived from RepRap FiveD extruder::getTemperature()
  694. // For hot end temperature measurement.
  695. float Temperature::analog2temp(int raw, uint8_t e) {
  696. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  697. if (e > HOTENDS)
  698. #else
  699. if (e >= HOTENDS)
  700. #endif
  701. {
  702. SERIAL_ERROR_START;
  703. SERIAL_ERROR((int)e);
  704. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  705. kill(PSTR(MSG_KILLED));
  706. return 0.0;
  707. }
  708. #if ENABLED(HEATER_0_USES_MAX6675)
  709. if (e == 0) return 0.25 * raw;
  710. #endif
  711. if (heater_ttbl_map[e] != NULL) {
  712. float celsius = 0;
  713. uint8_t i;
  714. short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
  715. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  716. if (PGM_RD_W((*tt)[i][0]) > raw) {
  717. celsius = PGM_RD_W((*tt)[i - 1][1]) +
  718. (raw - PGM_RD_W((*tt)[i - 1][0])) *
  719. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
  720. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
  721. break;
  722. }
  723. }
  724. // Overflow: Set to last value in the table
  725. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
  726. return celsius;
  727. }
  728. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  729. }
  730. // Derived from RepRap FiveD extruder::getTemperature()
  731. // For bed temperature measurement.
  732. float Temperature::analog2tempBed(int raw) {
  733. #if ENABLED(BED_USES_THERMISTOR)
  734. float celsius = 0;
  735. byte i;
  736. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  737. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  738. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  739. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  740. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  741. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  742. break;
  743. }
  744. }
  745. // Overflow: Set to last value in the table
  746. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  747. return celsius;
  748. #elif defined(BED_USES_AD595)
  749. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  750. #else
  751. UNUSED(raw);
  752. return 0;
  753. #endif
  754. }
  755. /**
  756. * Get the raw values into the actual temperatures.
  757. * The raw values are created in interrupt context,
  758. * and this function is called from normal context
  759. * as it would block the stepper routine.
  760. */
  761. void Temperature::updateTemperaturesFromRawValues() {
  762. #if ENABLED(HEATER_0_USES_MAX6675)
  763. current_temperature_raw[0] = read_max6675();
  764. #endif
  765. HOTEND_LOOP()
  766. current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
  767. current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
  768. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  769. redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
  770. #endif
  771. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  772. filament_width_meas = analog2widthFil();
  773. #endif
  774. #if ENABLED(USE_WATCHDOG)
  775. // Reset the watchdog after we know we have a temperature measurement.
  776. watchdog_reset();
  777. #endif
  778. CRITICAL_SECTION_START;
  779. temp_meas_ready = false;
  780. CRITICAL_SECTION_END;
  781. }
  782. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  783. // Convert raw Filament Width to millimeters
  784. float Temperature::analog2widthFil() {
  785. return current_raw_filwidth / 16383.0 * 5.0;
  786. //return current_raw_filwidth;
  787. }
  788. // Convert raw Filament Width to a ratio
  789. int Temperature::widthFil_to_size_ratio() {
  790. float temp = filament_width_meas;
  791. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  792. else NOMORE(temp, MEASURED_UPPER_LIMIT);
  793. return filament_width_nominal / temp * 100;
  794. }
  795. #endif
  796. /**
  797. * Initialize the temperature manager
  798. * The manager is implemented by periodic calls to manage_heater()
  799. */
  800. void Temperature::init() {
  801. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  802. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  803. MCUCR = _BV(JTD);
  804. MCUCR = _BV(JTD);
  805. #endif
  806. // Finish init of mult hotend arrays
  807. HOTEND_LOOP() maxttemp[e] = maxttemp[0];
  808. #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
  809. last_e_position = 0;
  810. #endif
  811. #if HAS_HEATER_0
  812. SET_OUTPUT(HEATER_0_PIN);
  813. #endif
  814. #if HAS_HEATER_1
  815. SET_OUTPUT(HEATER_1_PIN);
  816. #endif
  817. #if HAS_HEATER_2
  818. SET_OUTPUT(HEATER_2_PIN);
  819. #endif
  820. #if HAS_HEATER_3
  821. SET_OUTPUT(HEATER_3_PIN);
  822. #endif
  823. #if HAS_HEATER_BED
  824. SET_OUTPUT(HEATER_BED_PIN);
  825. #endif
  826. #if HAS_FAN0
  827. SET_OUTPUT(FAN_PIN);
  828. #if ENABLED(FAST_PWM_FAN)
  829. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  830. #endif
  831. #if ENABLED(FAN_SOFT_PWM)
  832. soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
  833. #endif
  834. #endif
  835. #if HAS_FAN1
  836. SET_OUTPUT(FAN1_PIN);
  837. #if ENABLED(FAST_PWM_FAN)
  838. setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  839. #endif
  840. #if ENABLED(FAN_SOFT_PWM)
  841. soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
  842. #endif
  843. #endif
  844. #if HAS_FAN2
  845. SET_OUTPUT(FAN2_PIN);
  846. #if ENABLED(FAST_PWM_FAN)
  847. setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  848. #endif
  849. #if ENABLED(FAN_SOFT_PWM)
  850. soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
  851. #endif
  852. #endif
  853. #if ENABLED(HEATER_0_USES_MAX6675)
  854. OUT_WRITE(SCK_PIN, LOW);
  855. OUT_WRITE(MOSI_PIN, HIGH);
  856. SET_INPUT_PULLUP(MISO_PIN);
  857. OUT_WRITE(SS_PIN, HIGH);
  858. OUT_WRITE(MAX6675_SS, HIGH);
  859. #endif //HEATER_0_USES_MAX6675
  860. #ifdef DIDR2
  861. #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
  862. #else
  863. #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
  864. #endif
  865. // Set analog inputs
  866. ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
  867. DIDR0 = 0;
  868. #ifdef DIDR2
  869. DIDR2 = 0;
  870. #endif
  871. #if HAS_TEMP_0
  872. ANALOG_SELECT(TEMP_0_PIN);
  873. #endif
  874. #if HAS_TEMP_1
  875. ANALOG_SELECT(TEMP_1_PIN);
  876. #endif
  877. #if HAS_TEMP_2
  878. ANALOG_SELECT(TEMP_2_PIN);
  879. #endif
  880. #if HAS_TEMP_3
  881. ANALOG_SELECT(TEMP_3_PIN);
  882. #endif
  883. #if HAS_TEMP_BED
  884. ANALOG_SELECT(TEMP_BED_PIN);
  885. #endif
  886. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  887. ANALOG_SELECT(FILWIDTH_PIN);
  888. #endif
  889. #if HAS_AUTO_FAN_0
  890. #if E0_AUTO_FAN_PIN == FAN1_PIN
  891. SET_OUTPUT(E0_AUTO_FAN_PIN);
  892. #if ENABLED(FAST_PWM_FAN)
  893. setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  894. #endif
  895. #else
  896. SET_OUTPUT(E0_AUTO_FAN_PIN);
  897. #endif
  898. #endif
  899. #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
  900. #if E1_AUTO_FAN_PIN == FAN1_PIN
  901. SET_OUTPUT(E1_AUTO_FAN_PIN);
  902. #if ENABLED(FAST_PWM_FAN)
  903. setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  904. #endif
  905. #else
  906. SET_OUTPUT(E1_AUTO_FAN_PIN);
  907. #endif
  908. #endif
  909. #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
  910. #if E2_AUTO_FAN_PIN == FAN1_PIN
  911. SET_OUTPUT(E2_AUTO_FAN_PIN);
  912. #if ENABLED(FAST_PWM_FAN)
  913. setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  914. #endif
  915. #else
  916. SET_OUTPUT(E2_AUTO_FAN_PIN);
  917. #endif
  918. #endif
  919. #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
  920. #if E3_AUTO_FAN_PIN == FAN1_PIN
  921. SET_OUTPUT(E3_AUTO_FAN_PIN);
  922. #if ENABLED(FAST_PWM_FAN)
  923. setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  924. #endif
  925. #else
  926. SET_OUTPUT(E3_AUTO_FAN_PIN);
  927. #endif
  928. #endif
  929. // Use timer0 for temperature measurement
  930. // Interleave temperature interrupt with millies interrupt
  931. OCR0B = 128;
  932. SBI(TIMSK0, OCIE0B);
  933. // Wait for temperature measurement to settle
  934. delay(250);
  935. #define TEMP_MIN_ROUTINE(NR) \
  936. minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
  937. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
  938. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  939. minttemp_raw[NR] += OVERSAMPLENR; \
  940. else \
  941. minttemp_raw[NR] -= OVERSAMPLENR; \
  942. }
  943. #define TEMP_MAX_ROUTINE(NR) \
  944. maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
  945. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
  946. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  947. maxttemp_raw[NR] -= OVERSAMPLENR; \
  948. else \
  949. maxttemp_raw[NR] += OVERSAMPLENR; \
  950. }
  951. #ifdef HEATER_0_MINTEMP
  952. TEMP_MIN_ROUTINE(0);
  953. #endif
  954. #ifdef HEATER_0_MAXTEMP
  955. TEMP_MAX_ROUTINE(0);
  956. #endif
  957. #if HOTENDS > 1
  958. #ifdef HEATER_1_MINTEMP
  959. TEMP_MIN_ROUTINE(1);
  960. #endif
  961. #ifdef HEATER_1_MAXTEMP
  962. TEMP_MAX_ROUTINE(1);
  963. #endif
  964. #if HOTENDS > 2
  965. #ifdef HEATER_2_MINTEMP
  966. TEMP_MIN_ROUTINE(2);
  967. #endif
  968. #ifdef HEATER_2_MAXTEMP
  969. TEMP_MAX_ROUTINE(2);
  970. #endif
  971. #if HOTENDS > 3
  972. #ifdef HEATER_3_MINTEMP
  973. TEMP_MIN_ROUTINE(3);
  974. #endif
  975. #ifdef HEATER_3_MAXTEMP
  976. TEMP_MAX_ROUTINE(3);
  977. #endif
  978. #endif // HOTENDS > 3
  979. #endif // HOTENDS > 2
  980. #endif // HOTENDS > 1
  981. #ifdef BED_MINTEMP
  982. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  983. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  984. bed_minttemp_raw += OVERSAMPLENR;
  985. #else
  986. bed_minttemp_raw -= OVERSAMPLENR;
  987. #endif
  988. }
  989. #endif //BED_MINTEMP
  990. #ifdef BED_MAXTEMP
  991. while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  992. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  993. bed_maxttemp_raw -= OVERSAMPLENR;
  994. #else
  995. bed_maxttemp_raw += OVERSAMPLENR;
  996. #endif
  997. }
  998. #endif //BED_MAXTEMP
  999. }
  1000. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  1001. /**
  1002. * Start Heating Sanity Check for hotends that are below
  1003. * their target temperature by a configurable margin.
  1004. * This is called when the temperature is set. (M104, M109)
  1005. */
  1006. void Temperature::start_watching_heater(uint8_t e) {
  1007. #if HOTENDS == 1
  1008. UNUSED(e);
  1009. #endif
  1010. if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  1011. watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
  1012. watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
  1013. }
  1014. else
  1015. watch_heater_next_ms[HOTEND_INDEX] = 0;
  1016. }
  1017. #endif
  1018. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  1019. /**
  1020. * Start Heating Sanity Check for hotends that are below
  1021. * their target temperature by a configurable margin.
  1022. * This is called when the temperature is set. (M140, M190)
  1023. */
  1024. void Temperature::start_watching_bed() {
  1025. if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
  1026. watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
  1027. watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
  1028. }
  1029. else
  1030. watch_bed_next_ms = 0;
  1031. }
  1032. #endif
  1033. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  1034. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1035. Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
  1036. millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
  1037. #endif
  1038. #if HAS_THERMALLY_PROTECTED_BED
  1039. Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
  1040. millis_t Temperature::thermal_runaway_bed_timer;
  1041. #endif
  1042. void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  1043. static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
  1044. /**
  1045. SERIAL_ECHO_START;
  1046. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  1047. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
  1048. SERIAL_ECHOPAIR(" ; State:", *state);
  1049. SERIAL_ECHOPAIR(" ; Timer:", *timer);
  1050. SERIAL_ECHOPAIR(" ; Temperature:", temperature);
  1051. SERIAL_ECHOPAIR(" ; Target Temp:", target_temperature);
  1052. SERIAL_EOL;
  1053. */
  1054. int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
  1055. // If the target temperature changes, restart
  1056. if (tr_target_temperature[heater_index] != target_temperature) {
  1057. tr_target_temperature[heater_index] = target_temperature;
  1058. *state = target_temperature > 0 ? TRFirstHeating : TRInactive;
  1059. }
  1060. switch (*state) {
  1061. // Inactive state waits for a target temperature to be set
  1062. case TRInactive: break;
  1063. // When first heating, wait for the temperature to be reached then go to Stable state
  1064. case TRFirstHeating:
  1065. if (temperature < tr_target_temperature[heater_index]) break;
  1066. *state = TRStable;
  1067. // While the temperature is stable watch for a bad temperature
  1068. case TRStable:
  1069. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc) {
  1070. *timer = millis() + period_seconds * 1000UL;
  1071. break;
  1072. }
  1073. else if (PENDING(millis(), *timer)) break;
  1074. *state = TRRunaway;
  1075. case TRRunaway:
  1076. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  1077. }
  1078. }
  1079. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  1080. void Temperature::disable_all_heaters() {
  1081. HOTEND_LOOP() setTargetHotend(0, e);
  1082. setTargetBed(0);
  1083. // If all heaters go down then for sure our print job has stopped
  1084. print_job_timer.stop();
  1085. #define DISABLE_HEATER(NR) { \
  1086. setTargetHotend(0, NR); \
  1087. soft_pwm[NR] = 0; \
  1088. WRITE_HEATER_ ##NR (LOW); \
  1089. }
  1090. #if HAS_TEMP_HOTEND
  1091. DISABLE_HEATER(0);
  1092. #endif
  1093. #if HOTENDS > 1 && HAS_TEMP_1
  1094. DISABLE_HEATER(1);
  1095. #endif
  1096. #if HOTENDS > 2 && HAS_TEMP_2
  1097. DISABLE_HEATER(2);
  1098. #endif
  1099. #if HOTENDS > 3 && HAS_TEMP_3
  1100. DISABLE_HEATER(3);
  1101. #endif
  1102. #if HAS_TEMP_BED
  1103. target_temperature_bed = 0;
  1104. soft_pwm_bed = 0;
  1105. #if HAS_HEATER_BED
  1106. WRITE_HEATER_BED(LOW);
  1107. #endif
  1108. #endif
  1109. }
  1110. #if ENABLED(HEATER_0_USES_MAX6675)
  1111. #define MAX6675_HEAT_INTERVAL 250u
  1112. #if ENABLED(MAX6675_IS_MAX31855)
  1113. uint32_t max6675_temp = 2000;
  1114. #define MAX6675_ERROR_MASK 7
  1115. #define MAX6675_DISCARD_BITS 18
  1116. #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
  1117. #else
  1118. uint16_t max6675_temp = 2000;
  1119. #define MAX6675_ERROR_MASK 4
  1120. #define MAX6675_DISCARD_BITS 3
  1121. #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
  1122. #endif
  1123. int Temperature::read_max6675() {
  1124. static millis_t next_max6675_ms = 0;
  1125. millis_t ms = millis();
  1126. if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
  1127. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  1128. CBI(
  1129. #ifdef PRR
  1130. PRR
  1131. #elif defined(PRR0)
  1132. PRR0
  1133. #endif
  1134. , PRSPI);
  1135. SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
  1136. WRITE(MAX6675_SS, 0); // enable TT_MAX6675
  1137. // ensure 100ns delay - a bit extra is fine
  1138. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1139. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1140. // Read a big-endian temperature value
  1141. max6675_temp = 0;
  1142. for (uint8_t i = sizeof(max6675_temp); i--;) {
  1143. SPDR = 0;
  1144. for (;!TEST(SPSR, SPIF););
  1145. max6675_temp |= SPDR;
  1146. if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
  1147. }
  1148. WRITE(MAX6675_SS, 1); // disable TT_MAX6675
  1149. if (max6675_temp & MAX6675_ERROR_MASK) {
  1150. SERIAL_ERROR_START;
  1151. SERIAL_ERRORPGM("Temp measurement error! ");
  1152. #if MAX6675_ERROR_MASK == 7
  1153. SERIAL_ERRORPGM("MAX31855 ");
  1154. if (max6675_temp & 1)
  1155. SERIAL_ERRORLNPGM("Open Circuit");
  1156. else if (max6675_temp & 2)
  1157. SERIAL_ERRORLNPGM("Short to GND");
  1158. else if (max6675_temp & 4)
  1159. SERIAL_ERRORLNPGM("Short to VCC");
  1160. #else
  1161. SERIAL_ERRORLNPGM("MAX6675");
  1162. #endif
  1163. max6675_temp = MAX6675_TMAX * 4; // thermocouple open
  1164. }
  1165. else
  1166. max6675_temp >>= MAX6675_DISCARD_BITS;
  1167. #if ENABLED(MAX6675_IS_MAX31855)
  1168. // Support negative temperature
  1169. if (max6675_temp & 0x00002000) max6675_temp |= 0xffffc000;
  1170. #endif
  1171. return (int)max6675_temp;
  1172. }
  1173. #endif //HEATER_0_USES_MAX6675
  1174. /**
  1175. * Get raw temperatures
  1176. */
  1177. void Temperature::set_current_temp_raw() {
  1178. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1179. current_temperature_raw[0] = raw_temp_value[0];
  1180. #endif
  1181. #if HAS_TEMP_1
  1182. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  1183. redundant_temperature_raw = raw_temp_value[1];
  1184. #else
  1185. current_temperature_raw[1] = raw_temp_value[1];
  1186. #endif
  1187. #if HAS_TEMP_2
  1188. current_temperature_raw[2] = raw_temp_value[2];
  1189. #if HAS_TEMP_3
  1190. current_temperature_raw[3] = raw_temp_value[3];
  1191. #endif
  1192. #endif
  1193. #endif
  1194. current_temperature_bed_raw = raw_temp_bed_value;
  1195. temp_meas_ready = true;
  1196. }
  1197. #if ENABLED(PINS_DEBUGGING)
  1198. /**
  1199. * monitors endstops & Z probe for changes
  1200. *
  1201. * If a change is detected then the LED is toggled and
  1202. * a message is sent out the serial port
  1203. *
  1204. * Yes, we could miss a rapid back & forth change but
  1205. * that won't matter because this is all manual.
  1206. *
  1207. */
  1208. void endstop_monitor() {
  1209. static uint16_t old_endstop_bits_local = 0;
  1210. static uint8_t local_LED_status = 0;
  1211. uint16_t current_endstop_bits_local = 0;
  1212. #if HAS_X_MIN
  1213. if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
  1214. #endif
  1215. #if HAS_X_MAX
  1216. if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
  1217. #endif
  1218. #if HAS_Y_MIN
  1219. if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
  1220. #endif
  1221. #if HAS_Y_MAX
  1222. if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
  1223. #endif
  1224. #if HAS_Z_MIN
  1225. if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
  1226. #endif
  1227. #if HAS_Z_MAX
  1228. if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
  1229. #endif
  1230. #if HAS_Z_MIN_PROBE_PIN
  1231. if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
  1232. #endif
  1233. #if HAS_Z2_MIN
  1234. if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
  1235. #endif
  1236. #if HAS_Z2_MAX
  1237. if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
  1238. #endif
  1239. uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
  1240. if (endstop_change) {
  1241. #if HAS_X_MIN
  1242. if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR("X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
  1243. #endif
  1244. #if HAS_X_MAX
  1245. if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
  1246. #endif
  1247. #if HAS_Y_MIN
  1248. if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
  1249. #endif
  1250. #if HAS_Y_MAX
  1251. if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
  1252. #endif
  1253. #if HAS_Z_MIN
  1254. if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
  1255. #endif
  1256. #if HAS_Z_MAX
  1257. if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
  1258. #endif
  1259. #if HAS_Z_MIN_PROBE_PIN
  1260. if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
  1261. #endif
  1262. #if HAS_Z2_MIN
  1263. if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
  1264. #endif
  1265. #if HAS_Z2_MAX
  1266. if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
  1267. #endif
  1268. SERIAL_PROTOCOLPGM("\n\n");
  1269. analogWrite(LED_PIN, local_LED_status);
  1270. local_LED_status ^= 255;
  1271. old_endstop_bits_local = current_endstop_bits_local;
  1272. }
  1273. }
  1274. #endif // PINS_DEBUGGING
  1275. /**
  1276. * Timer 0 is shared with millies so don't change the prescaler.
  1277. *
  1278. * This ISR uses the compare method so it runs at the base
  1279. * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
  1280. * in OCR0B above (128 or halfway between OVFs).
  1281. *
  1282. * - Manage PWM to all the heaters and fan
  1283. * - Prepare or Measure one of the raw ADC sensor values
  1284. * - Check new temperature values for MIN/MAX errors (kill on error)
  1285. * - Step the babysteps value for each axis towards 0
  1286. * - For PINS_DEBUGGING, monitor and report endstop pins
  1287. * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
  1288. */
  1289. ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
  1290. volatile bool Temperature::in_temp_isr = false;
  1291. void Temperature::isr() {
  1292. // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
  1293. // at the end of its run, potentially causing re-entry. This flag prevents it.
  1294. if (in_temp_isr) return;
  1295. in_temp_isr = true;
  1296. // Allow UART and stepper ISRs
  1297. CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
  1298. sei();
  1299. static uint8_t temp_count = 0;
  1300. static TempState temp_state = StartupDelay;
  1301. static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
  1302. // Static members for each heater
  1303. #if ENABLED(SLOW_PWM_HEATERS)
  1304. static uint8_t slow_pwm_count = 0;
  1305. #define ISR_STATICS(n) \
  1306. static uint8_t soft_pwm_ ## n; \
  1307. static uint8_t state_heater_ ## n = 0; \
  1308. static uint8_t state_timer_heater_ ## n = 0
  1309. #else
  1310. #define ISR_STATICS(n) static uint8_t soft_pwm_ ## n
  1311. #endif
  1312. // Statics per heater
  1313. ISR_STATICS(0);
  1314. #if HOTENDS > 1
  1315. ISR_STATICS(1);
  1316. #if HOTENDS > 2
  1317. ISR_STATICS(2);
  1318. #if HOTENDS > 3
  1319. ISR_STATICS(3);
  1320. #endif
  1321. #endif
  1322. #endif
  1323. #if HAS_HEATER_BED
  1324. ISR_STATICS(BED);
  1325. #endif
  1326. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1327. static unsigned long raw_filwidth_value = 0;
  1328. #endif
  1329. #if DISABLED(SLOW_PWM_HEATERS)
  1330. /**
  1331. * Standard PWM modulation
  1332. */
  1333. if (pwm_count == 0) {
  1334. soft_pwm_0 = soft_pwm[0];
  1335. WRITE_HEATER_0(soft_pwm_0 > 0 ? HIGH : LOW);
  1336. #if HOTENDS > 1
  1337. soft_pwm_1 = soft_pwm[1];
  1338. WRITE_HEATER_1(soft_pwm_1 > 0 ? HIGH : LOW);
  1339. #if HOTENDS > 2
  1340. soft_pwm_2 = soft_pwm[2];
  1341. WRITE_HEATER_2(soft_pwm_2 > 0 ? HIGH : LOW);
  1342. #if HOTENDS > 3
  1343. soft_pwm_3 = soft_pwm[3];
  1344. WRITE_HEATER_3(soft_pwm_3 > 0 ? HIGH : LOW);
  1345. #endif
  1346. #endif
  1347. #endif
  1348. #if HAS_HEATER_BED
  1349. soft_pwm_BED = soft_pwm_bed;
  1350. WRITE_HEATER_BED(soft_pwm_BED > 0 ? HIGH : LOW);
  1351. #endif
  1352. #if ENABLED(FAN_SOFT_PWM)
  1353. #if HAS_FAN0
  1354. soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
  1355. WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW);
  1356. #endif
  1357. #if HAS_FAN1
  1358. soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
  1359. WRITE_FAN1(soft_pwm_fan[1] > 0 ? HIGH : LOW);
  1360. #endif
  1361. #if HAS_FAN2
  1362. soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
  1363. WRITE_FAN2(soft_pwm_fan[2] > 0 ? HIGH : LOW);
  1364. #endif
  1365. #endif
  1366. }
  1367. if (soft_pwm_0 < pwm_count) WRITE_HEATER_0(0);
  1368. #if HOTENDS > 1
  1369. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1370. #if HOTENDS > 2
  1371. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1372. #if HOTENDS > 3
  1373. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1374. #endif
  1375. #endif
  1376. #endif
  1377. #if HAS_HEATER_BED
  1378. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1379. #endif
  1380. #if ENABLED(FAN_SOFT_PWM)
  1381. #if HAS_FAN0
  1382. if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
  1383. #endif
  1384. #if HAS_FAN1
  1385. if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
  1386. #endif
  1387. #if HAS_FAN2
  1388. if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
  1389. #endif
  1390. #endif
  1391. // SOFT_PWM_SCALE to frequency:
  1392. //
  1393. // 0: 16000000/64/256/128 = 7.6294 Hz
  1394. // 1: / 64 = 15.2588 Hz
  1395. // 2: / 32 = 30.5176 Hz
  1396. // 3: / 16 = 61.0352 Hz
  1397. // 4: / 8 = 122.0703 Hz
  1398. // 5: / 4 = 244.1406 Hz
  1399. pwm_count += _BV(SOFT_PWM_SCALE);
  1400. pwm_count &= 0x7F;
  1401. #else // SLOW_PWM_HEATERS
  1402. /**
  1403. * SLOW PWM HEATERS
  1404. *
  1405. * For relay-driven heaters
  1406. */
  1407. #ifndef MIN_STATE_TIME
  1408. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1409. #endif
  1410. // Macros for Slow PWM timer logic
  1411. #define _SLOW_PWM_ROUTINE(NR, src) \
  1412. soft_pwm_ ##NR = src; \
  1413. if (soft_pwm_ ##NR > 0) { \
  1414. if (state_timer_heater_ ##NR == 0) { \
  1415. if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1416. state_heater_ ##NR = 1; \
  1417. WRITE_HEATER_ ##NR(1); \
  1418. } \
  1419. } \
  1420. else { \
  1421. if (state_timer_heater_ ##NR == 0) { \
  1422. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1423. state_heater_ ##NR = 0; \
  1424. WRITE_HEATER_ ##NR(0); \
  1425. } \
  1426. }
  1427. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1428. #define PWM_OFF_ROUTINE(NR) \
  1429. if (soft_pwm_ ##NR < slow_pwm_count) { \
  1430. if (state_timer_heater_ ##NR == 0) { \
  1431. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1432. state_heater_ ##NR = 0; \
  1433. WRITE_HEATER_ ##NR (0); \
  1434. } \
  1435. }
  1436. if (slow_pwm_count == 0) {
  1437. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1438. #if HOTENDS > 1
  1439. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1440. #if HOTENDS > 2
  1441. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1442. #if HOTENDS > 3
  1443. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1444. #endif
  1445. #endif
  1446. #endif
  1447. #if HAS_HEATER_BED
  1448. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1449. #endif
  1450. } // slow_pwm_count == 0
  1451. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1452. #if HOTENDS > 1
  1453. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1454. #if HOTENDS > 2
  1455. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1456. #if HOTENDS > 3
  1457. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1458. #endif
  1459. #endif
  1460. #endif
  1461. #if HAS_HEATER_BED
  1462. PWM_OFF_ROUTINE(BED); // BED
  1463. #endif
  1464. #if ENABLED(FAN_SOFT_PWM)
  1465. if (pwm_count == 0) {
  1466. #if HAS_FAN0
  1467. soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
  1468. WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW);
  1469. #endif
  1470. #if HAS_FAN1
  1471. soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
  1472. WRITE_FAN1(soft_pwm_fan[1] > 0 ? HIGH : LOW);
  1473. #endif
  1474. #if HAS_FAN2
  1475. soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
  1476. WRITE_FAN2(soft_pwm_fan[2] > 0 ? HIGH : LOW);
  1477. #endif
  1478. }
  1479. #if HAS_FAN0
  1480. if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
  1481. #endif
  1482. #if HAS_FAN1
  1483. if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
  1484. #endif
  1485. #if HAS_FAN2
  1486. if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
  1487. #endif
  1488. #endif //FAN_SOFT_PWM
  1489. // SOFT_PWM_SCALE to frequency:
  1490. //
  1491. // 0: 16000000/64/256/128 = 7.6294 Hz
  1492. // 1: / 64 = 15.2588 Hz
  1493. // 2: / 32 = 30.5176 Hz
  1494. // 3: / 16 = 61.0352 Hz
  1495. // 4: / 8 = 122.0703 Hz
  1496. // 5: / 4 = 244.1406 Hz
  1497. pwm_count += _BV(SOFT_PWM_SCALE);
  1498. pwm_count &= 0x7F;
  1499. // increment slow_pwm_count only every 64 pwm_count (e.g., every 8s)
  1500. if ((pwm_count % 64) == 0) {
  1501. slow_pwm_count++;
  1502. slow_pwm_count &= 0x7f;
  1503. // EXTRUDER 0
  1504. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1505. #if HOTENDS > 1 // EXTRUDER 1
  1506. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1507. #if HOTENDS > 2 // EXTRUDER 2
  1508. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1509. #if HOTENDS > 3 // EXTRUDER 3
  1510. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1511. #endif
  1512. #endif
  1513. #endif
  1514. #if HAS_HEATER_BED
  1515. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1516. #endif
  1517. } // (pwm_count % 64) == 0
  1518. #endif // SLOW_PWM_HEATERS
  1519. #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
  1520. #ifdef MUX5
  1521. #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1522. #else
  1523. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1524. #endif
  1525. // Prepare or measure a sensor, each one every 12th frame
  1526. switch (temp_state) {
  1527. case PrepareTemp_0:
  1528. #if HAS_TEMP_0
  1529. START_ADC(TEMP_0_PIN);
  1530. #endif
  1531. lcd_buttons_update();
  1532. temp_state = MeasureTemp_0;
  1533. break;
  1534. case MeasureTemp_0:
  1535. #if HAS_TEMP_0
  1536. raw_temp_value[0] += ADC;
  1537. #endif
  1538. temp_state = PrepareTemp_BED;
  1539. break;
  1540. case PrepareTemp_BED:
  1541. #if HAS_TEMP_BED
  1542. START_ADC(TEMP_BED_PIN);
  1543. #endif
  1544. lcd_buttons_update();
  1545. temp_state = MeasureTemp_BED;
  1546. break;
  1547. case MeasureTemp_BED:
  1548. #if HAS_TEMP_BED
  1549. raw_temp_bed_value += ADC;
  1550. #endif
  1551. temp_state = PrepareTemp_1;
  1552. break;
  1553. case PrepareTemp_1:
  1554. #if HAS_TEMP_1
  1555. START_ADC(TEMP_1_PIN);
  1556. #endif
  1557. lcd_buttons_update();
  1558. temp_state = MeasureTemp_1;
  1559. break;
  1560. case MeasureTemp_1:
  1561. #if HAS_TEMP_1
  1562. raw_temp_value[1] += ADC;
  1563. #endif
  1564. temp_state = PrepareTemp_2;
  1565. break;
  1566. case PrepareTemp_2:
  1567. #if HAS_TEMP_2
  1568. START_ADC(TEMP_2_PIN);
  1569. #endif
  1570. lcd_buttons_update();
  1571. temp_state = MeasureTemp_2;
  1572. break;
  1573. case MeasureTemp_2:
  1574. #if HAS_TEMP_2
  1575. raw_temp_value[2] += ADC;
  1576. #endif
  1577. temp_state = PrepareTemp_3;
  1578. break;
  1579. case PrepareTemp_3:
  1580. #if HAS_TEMP_3
  1581. START_ADC(TEMP_3_PIN);
  1582. #endif
  1583. lcd_buttons_update();
  1584. temp_state = MeasureTemp_3;
  1585. break;
  1586. case MeasureTemp_3:
  1587. #if HAS_TEMP_3
  1588. raw_temp_value[3] += ADC;
  1589. #endif
  1590. temp_state = Prepare_FILWIDTH;
  1591. break;
  1592. case Prepare_FILWIDTH:
  1593. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1594. START_ADC(FILWIDTH_PIN);
  1595. #endif
  1596. lcd_buttons_update();
  1597. temp_state = Measure_FILWIDTH;
  1598. break;
  1599. case Measure_FILWIDTH:
  1600. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1601. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1602. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1603. raw_filwidth_value -= (raw_filwidth_value >> 7); //multiply raw_filwidth_value by 127/128
  1604. raw_filwidth_value += ((unsigned long)ADC << 7); //add new ADC reading
  1605. }
  1606. #endif
  1607. temp_state = PrepareTemp_0;
  1608. temp_count++;
  1609. break;
  1610. case StartupDelay:
  1611. temp_state = PrepareTemp_0;
  1612. break;
  1613. // default:
  1614. // SERIAL_ERROR_START;
  1615. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1616. // break;
  1617. } // switch(temp_state)
  1618. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1619. temp_count = 0;
  1620. // Update the raw values if they've been read. Else we could be updating them during reading.
  1621. if (!temp_meas_ready) set_current_temp_raw();
  1622. // Filament Sensor - can be read any time since IIR filtering is used
  1623. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1624. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1625. #endif
  1626. ZERO(raw_temp_value);
  1627. raw_temp_bed_value = 0;
  1628. int constexpr temp_dir[] = {
  1629. #if ENABLED(HEATER_0_USES_MAX6675)
  1630. 0
  1631. #elif HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1632. -1
  1633. #else
  1634. 1
  1635. #endif
  1636. #if HAS_TEMP_1 && HOTENDS > 1
  1637. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1638. , -1
  1639. #else
  1640. , 1
  1641. #endif
  1642. #endif
  1643. #if HAS_TEMP_2 && HOTENDS > 2
  1644. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1645. , -1
  1646. #else
  1647. , 1
  1648. #endif
  1649. #endif
  1650. #if HAS_TEMP_3 && HOTENDS > 3
  1651. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1652. , -1
  1653. #else
  1654. , 1
  1655. #endif
  1656. #endif
  1657. };
  1658. for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
  1659. const int tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
  1660. if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0.0f) max_temp_error(e);
  1661. if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0.0f) {
  1662. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1663. if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1664. #endif
  1665. min_temp_error(e);
  1666. }
  1667. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1668. else
  1669. consecutive_low_temperature_error[e] = 0;
  1670. #endif
  1671. }
  1672. #if HAS_TEMP_BED
  1673. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1674. #define GEBED <=
  1675. #else
  1676. #define GEBED >=
  1677. #endif
  1678. if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0.0f) max_temp_error(-1);
  1679. if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0.0f) min_temp_error(-1);
  1680. #endif
  1681. } // temp_count >= OVERSAMPLENR
  1682. #if ENABLED(BABYSTEPPING)
  1683. LOOP_XYZ(axis) {
  1684. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1685. if (curTodo > 0) {
  1686. stepper.babystep((AxisEnum)axis,/*fwd*/true);
  1687. babystepsTodo[axis]--; //fewer to do next time
  1688. }
  1689. else if (curTodo < 0) {
  1690. stepper.babystep((AxisEnum)axis,/*fwd*/false);
  1691. babystepsTodo[axis]++; //fewer to do next time
  1692. }
  1693. }
  1694. #endif //BABYSTEPPING
  1695. #if ENABLED(PINS_DEBUGGING)
  1696. extern bool endstop_monitor_flag;
  1697. // run the endstop monitor at 15Hz
  1698. static uint8_t endstop_monitor_count = 16; // offset this check from the others
  1699. if (endstop_monitor_flag) {
  1700. endstop_monitor_count += _BV(1); // 15 Hz
  1701. endstop_monitor_count &= 0x7F;
  1702. if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
  1703. }
  1704. #endif
  1705. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  1706. extern volatile uint8_t e_hit;
  1707. if (e_hit && ENDSTOPS_ENABLED) {
  1708. endstops.update(); // call endstop update routine
  1709. e_hit--;
  1710. }
  1711. #endif
  1712. cli();
  1713. in_temp_isr = false;
  1714. SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
  1715. }