123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723 |
- ////////////////////////////////////////////////////////////
- //ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
- //LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
- //Released as MIT license
- ////////////////////////////////////////////////////////////
-
- #include <Arduino.h>
- #include "L6470.h"
- #include <SPI.h>
-
- #define ENABLE_RESET_PIN 0
- #define K_VALUE 100
-
- L6470::L6470(int SSPin){
- _SSPin = SSPin;
- // Serial.begin(9600);
- }
-
- void L6470::init(int k_value){
- // This is the generic initialization function to set up the Arduino to
- // communicate with the dSPIN chip.
-
- // set up the input/output pins for the application.
- pinMode(SLAVE_SELECT_PIN, OUTPUT); // The SPI peripheral REQUIRES the hardware SS pin-
- // pin 10- to be an output. This is in here just
- // in case some future user makes something other
- // than pin 10 the SS pin.
-
- pinMode(_SSPin, OUTPUT);
- digitalWrite(_SSPin, HIGH);
- pinMode(MOSI, OUTPUT);
- pinMode(MISO, INPUT);
- pinMode(SCK, OUTPUT);
- pinMode(BUSYN, INPUT);
- #if (ENABLE_RESET_PIN == 1)
- pinMode(RESET, OUTPUT);
- // reset the dSPIN chip. This could also be accomplished by
- // calling the "L6470::ResetDev()" function after SPI is initialized.
- digitalWrite(RESET, HIGH);
- delay(10);
- digitalWrite(RESET, LOW);
- delay(10);
- digitalWrite(RESET, HIGH);
- delay(10);
- #endif
-
-
- // initialize SPI for the dSPIN chip's needs:
- // most significant bit first,
- // SPI clock not to exceed 5MHz,
- // SPI_MODE3 (clock idle high, latch data on rising edge of clock)
- SPI.begin();
- SPI.setBitOrder(MSBFIRST);
- SPI.setClockDivider(SPI_CLOCK_DIV16); // or 2, 8, 16, 32, 64
- SPI.setDataMode(SPI_MODE3);
-
- // First things first: let's check communications. The CONFIG register should
- // power up to 0x2E88, so we can use that to check the communications.
- if (GetParam(CONFIG) == 0x2E88){
- //Serial.println('good to go');
- }
- else{
- //Serial.println('Comm issue');
- }
-
- #if (ENABLE_RESET_PIN == 0)
- resetDev();
- #endif
- // First, let's set the step mode register:
- // - SYNC_EN controls whether the BUSY/SYNC pin reflects the step
- // frequency or the BUSY status of the chip. We want it to be the BUSY
- // status.
- // - STEP_SEL_x is the microstepping rate- we'll go full step.
- // - SYNC_SEL_x is the ratio of (micro)steps to toggles on the
- // BUSY/SYNC pin (when that pin is used for SYNC). Make it 1:1, despite
- // not using that pin.
- //SetParam(STEP_MODE, !SYNC_EN | STEP_SEL_1 | SYNC_SEL_1);
-
-
- SetParam(KVAL_RUN, k_value);
- SetParam(KVAL_ACC, k_value);
- SetParam(KVAL_DEC, k_value);
- SetParam(KVAL_HOLD, k_value);
-
- // Set up the CONFIG register as follows:
- // PWM frequency divisor = 1
- // PWM frequency multiplier = 2 (62.5kHz PWM frequency)
- // Slew rate is 290V/us
- // Do NOT shut down bridges on overcurrent
- // Disable motor voltage compensation
- // Hard stop on switch low
- // 16MHz internal oscillator, nothing on output
- SetParam(CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_SR_290V_us| CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ);
- // Configure the RUN KVAL. This defines the duty cycle of the PWM of the bridges
- // during running. 0xFF means that they are essentially NOT PWMed during run; this
- // MAY result in more power being dissipated than you actually need for the task.
- // Setting this value too low may result in failure to turn.
- // There are ACC, DEC, and HOLD KVAL registers as well; you may need to play with
- // those values to get acceptable performance for a given application.
- //SetParam(KVAL_RUN, 0xFF);
- // Calling GetStatus() clears the UVLO bit in the status register, which is set by
- // default on power-up. The driver may not run without that bit cleared by this
- // read operation.
- getStatus();
-
- hardStop(); //engage motors
- }
-
- boolean L6470::isBusy(){
- int status = getStatus();
- return !((status >> 1) & 0b1);
- }
-
- void L6470::setMicroSteps(int microSteps){
- byte stepVal = 0;
-
- for(stepVal = 0; stepVal < 8; stepVal++){
- if(microSteps == 1) break;
- microSteps = microSteps >> 1;
- }
-
- SetParam(STEP_MODE, !SYNC_EN | stepVal | SYNC_SEL_1);
- }
-
- void L6470::setThresholdSpeed(float thresholdSpeed){
- // Configure the FS_SPD register- this is the speed at which the driver ceases
- // microstepping and goes to full stepping. FSCalc() converts a value in steps/s
- // to a value suitable for this register; to disable full-step switching, you
- // can pass 0x3FF to this register.
-
- if(thresholdSpeed == 0.0){
- SetParam(FS_SPD, 0x3FF);
- }
- else{
- SetParam(FS_SPD, FSCalc(thresholdSpeed));
- }
- }
-
-
- void L6470::setCurrent(int current){}
-
-
-
- void L6470::setMaxSpeed(int speed){
- // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
- // second allowed. You'll want to mess around with your desired application to see
- // how far you can push it before the motor starts to slip. The ACTUAL parameter
- // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
- // steps/s into an appropriate value for this function. Note that for any move or
- // goto type function where no speed is specified, this value will be used.
- SetParam(MAX_SPEED, MaxSpdCalc(speed));
- }
-
-
- void L6470::setMinSpeed(int speed){
- // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
- // second allowed. You'll want to mess around with your desired application to see
- // how far you can push it before the motor starts to slip. The ACTUAL parameter
- // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
- // steps/s into an appropriate value for this function. Note that for any move or
- // goto type function where no speed is specified, this value will be used.
- SetParam(MIN_SPEED, MinSpdCalc(speed));
- }
-
-
-
-
- void L6470::setAcc(float acceleration){
- // Configure the acceleration rate, in steps/tick/tick. There is also a DEC register;
- // both of them have a function (AccCalc() and DecCalc() respectively) that convert
- // from steps/s/s into the appropriate value for the register. Writing ACC to 0xfff
- // sets the acceleration and deceleration to 'infinite' (or as near as the driver can
- // manage). If ACC is set to 0xfff, DEC is ignored. To get infinite deceleration
- // without infinite acceleration, only hard stop will work.
- unsigned long accelerationBYTES = AccCalc(acceleration);
- SetParam(ACC, accelerationBYTES);
- }
-
-
- void L6470::setDec(float deceleration){
- unsigned long decelerationBYTES = DecCalc(deceleration);
- SetParam(DEC, decelerationBYTES);
- }
-
-
- long L6470::getPos(){
- unsigned long position = GetParam(ABS_POS);
- return convert(position);
- }
-
- float L6470::getSpeed(){
- /*
- SPEED
- The SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28).
- In order to convert the SPEED value in step/s the following formula can be used:
- Equation 4
- where SPEED is the integer number stored into the register and tick is 250 ns.
- The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
- Note: The range effectively available to the user is limited by the MAX_SPEED parameter.
- */
-
- return (float) GetParam(SPEED);
- //return (float) speed * pow(8, -22);
- //return FSCalc(speed); NEEDS FIX
- }
-
-
- void L6470::setOverCurrent(unsigned int ma_current){
- // Configure the overcurrent detection threshold.
- byte OCValue = floor(ma_current / 375);
- if(OCValue > 0x0F)OCValue = 0x0F;
- SetParam(OCD_TH, OCValue);
- }
-
- void L6470::setStallCurrent(float ma_current){
- byte STHValue = (byte)floor(ma_current / 31.25);
- if(STHValue > 0x80)STHValue = 0x80;
- if(STHValue < 0)STHValue = 0;
- SetParam(STALL_TH, STHValue);
- }
-
- void L6470::SetLowSpeedOpt(boolean enable){
- // Enable or disable the low-speed optimization option. If enabling,
- // the other 12 bits of the register will be automatically zero.
- // When disabling, the value will have to be explicitly written by
- // the user with a SetParam() call. See the datasheet for further
- // information about low-speed optimization.
- Xfer(SET_PARAM | MIN_SPEED);
- if (enable) Param(0x1000, 13);
- else Param(0, 13);
- }
-
-
- void L6470::run(byte dir, float spd){
- // RUN sets the motor spinning in a direction (defined by the constants
- // FWD and REV). Maximum speed and minimum speed are defined
- // by the MAX_SPEED and MIN_SPEED registers; exceeding the FS_SPD value
- // will switch the device into full-step mode.
- // The SpdCalc() function is provided to convert steps/s values into
- // appropriate integer values for this function.
- unsigned long speedVal = SpdCalc(spd);
-
- Xfer(RUN | dir);
- if (speedVal > 0xFFFFF) speedVal = 0xFFFFF;
- Xfer((byte)(speedVal >> 16));
- Xfer((byte)(speedVal >> 8));
- Xfer((byte)(speedVal));
- }
-
-
- void L6470::Step_Clock(byte dir){
- // STEP_CLOCK puts the device in external step clocking mode. When active,
- // pin 25, STCK, becomes the step clock for the device, and steps it in
- // the direction (set by the FWD and REV constants) imposed by the call
- // of this function. Motion commands (RUN, MOVE, etc) will cause the device
- // to exit step clocking mode.
- Xfer(STEP_CLOCK | dir);
- }
-
- void L6470::move(long n_step){
- // MOVE will send the motor n_step steps (size based on step mode) in the
- // direction imposed by dir (FWD or REV constants may be used). The motor
- // will accelerate according the acceleration and deceleration curves, and
- // will run at MAX_SPEED. Stepping mode will adhere to FS_SPD value, as well.
-
- byte dir;
-
- if(n_step >= 0){
- dir = FWD;
- }
- else{
- dir = REV;
- }
-
- long n_stepABS = abs(n_step);
-
- Xfer(MOVE | dir); //set direction
- if (n_stepABS > 0x3FFFFF) n_step = 0x3FFFFF;
- Xfer((byte)(n_stepABS >> 16));
- Xfer((byte)(n_stepABS >> 8));
- Xfer((byte)(n_stepABS));
- }
-
- void L6470::goTo(long pos){
- // GOTO operates much like MOVE, except it produces absolute motion instead
- // of relative motion. The motor will be moved to the indicated position
- // in the shortest possible fashion.
-
- Xfer(GOTO);
- if (pos > 0x3FFFFF) pos = 0x3FFFFF;
- Xfer((byte)(pos >> 16));
- Xfer((byte)(pos >> 8));
- Xfer((byte)(pos));
- }
-
-
- void L6470::goTo_DIR(byte dir, long pos){
- // Same as GOTO, but with user constrained rotational direction.
-
- Xfer(GOTO_DIR);
- if (pos > 0x3FFFFF) pos = 0x3FFFFF;
- Xfer((byte)(pos >> 16));
- Xfer((byte)(pos >> 8));
- Xfer((byte)(pos));
- }
-
- void L6470::goUntil(byte act, byte dir, unsigned long spd){
- // GoUntil will set the motor running with direction dir (REV or
- // FWD) until a falling edge is detected on the SW pin. Depending
- // on bit SW_MODE in CONFIG, either a hard stop or a soft stop is
- // performed at the falling edge, and depending on the value of
- // act (either RESET or COPY) the value in the ABS_POS register is
- // either RESET to 0 or COPY-ed into the MARK register.
- Xfer(GO_UNTIL | act | dir);
- if (spd > 0x3FFFFF) spd = 0x3FFFFF;
- Xfer((byte)(spd >> 16));
- Xfer((byte)(spd >> 8));
- Xfer((byte)(spd));
- }
-
- void L6470::releaseSW(byte act, byte dir){
- // Similar in nature to GoUntil, ReleaseSW produces motion at the
- // higher of two speeds: the value in MIN_SPEED or 5 steps/s.
- // The motor continues to run at this speed until a rising edge
- // is detected on the switch input, then a hard stop is performed
- // and the ABS_POS register is either COPY-ed into MARK or RESET to
- // 0, depending on whether RESET or COPY was passed to the function
- // for act.
- Xfer(RELEASE_SW | act | dir);
- }
-
- void L6470::goHome(){
- // GoHome is equivalent to GoTo(0), but requires less time to send.
- // Note that no direction is provided; motion occurs through shortest
- // path. If a direction is required, use GoTo_DIR().
- Xfer(GO_HOME);
- }
-
- void L6470::goMark(){
- // GoMark is equivalent to GoTo(MARK), but requires less time to send.
- // Note that no direction is provided; motion occurs through shortest
- // path. If a direction is required, use GoTo_DIR().
- Xfer(GO_MARK);
- }
-
-
- void L6470::setMark(long value){
-
- Xfer(MARK);
- if (value > 0x3FFFFF) value = 0x3FFFFF;
- if (value < -0x3FFFFF) value = -0x3FFFFF;
-
-
- Xfer((byte)(value >> 16));
- Xfer((byte)(value >> 8));
- Xfer((byte)(value));
- }
-
-
- void L6470::setMark(){
- long value = getPos();
-
- Xfer(MARK);
- if (value > 0x3FFFFF) value = 0x3FFFFF;
- if (value < -0x3FFFFF) value = -0x3FFFFF;
-
-
- Xfer((byte)(value >> 16));
- Xfer((byte)(value >> 8));
- Xfer((byte)(value));
- }
-
- void L6470::setAsHome(){
- // Sets the ABS_POS register to 0, effectively declaring the current
- // position to be "HOME".
- Xfer(RESET_POS);
- }
-
- void L6470::resetDev(){
- // Reset device to power up conditions. Equivalent to toggling the STBY
- // pin or cycling power.
- Xfer(RESET_DEVICE);
- }
-
- void L6470::softStop(){
- // Bring the motor to a halt using the deceleration curve.
- Xfer(SOFT_STOP);
- }
-
- void L6470::hardStop(){
- // Stop the motor right away. No deceleration.
- Xfer(HARD_STOP);
- }
-
- void L6470::softFree(){
- // Decelerate the motor and disengage
- Xfer(SOFT_HIZ);
- }
-
- void L6470::free(){
- // disengage the motor immediately with no deceleration.
- Xfer(HARD_HIZ);
- }
-
- int L6470::getStatus(){
- // Fetch and return the 16-bit value in the STATUS register. Resets
- // any warning flags and exits any error states. Using GetParam()
- // to read STATUS does not clear these values.
- int temp = 0;
- Xfer(GET_STATUS);
- temp = Xfer(0)<<8;
- temp |= Xfer(0);
- return temp;
- }
-
- unsigned long L6470::AccCalc(float stepsPerSecPerSec){
- // The value in the ACC register is [(steps/s/s)*(tick^2)]/(2^-40) where tick is
- // 250ns (datasheet value)- 0x08A on boot.
- // Multiply desired steps/s/s by .137438 to get an appropriate value for this register.
- // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
- float temp = stepsPerSecPerSec * 0.137438;
- if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
- else return (unsigned long) long(temp);
- }
-
-
- unsigned long L6470::DecCalc(float stepsPerSecPerSec){
- // The calculation for DEC is the same as for ACC. Value is 0x08A on boot.
- // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
- float temp = stepsPerSecPerSec * 0.137438;
- if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
- else return (unsigned long) long(temp);
- }
-
- unsigned long L6470::MaxSpdCalc(float stepsPerSec){
- // The value in the MAX_SPD register is [(steps/s)*(tick)]/(2^-18) where tick is
- // 250ns (datasheet value)- 0x041 on boot.
- // Multiply desired steps/s by .065536 to get an appropriate value for this register
- // This is a 10-bit value, so we need to make sure it remains at or below 0x3FF
- float temp = stepsPerSec * .065536;
- if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF;
- else return (unsigned long) long(temp);
- }
-
- unsigned long L6470::MinSpdCalc(float stepsPerSec){
- // The value in the MIN_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
- // 250ns (datasheet value)- 0x000 on boot.
- // Multiply desired steps/s by 4.1943 to get an appropriate value for this register
- // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
- float temp = stepsPerSec * 4.1943;
- if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
- else return (unsigned long) long(temp);
- }
-
- unsigned long L6470::FSCalc(float stepsPerSec){
- // The value in the FS_SPD register is ([(steps/s)*(tick)]/(2^-18))-0.5 where tick is
- // 250ns (datasheet value)- 0x027 on boot.
- // Multiply desired steps/s by .065536 and subtract .5 to get an appropriate value for this register
- // This is a 10-bit value, so we need to make sure the value is at or below 0x3FF.
- float temp = (stepsPerSec * .065536)-.5;
- if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF;
- else return (unsigned long) long(temp);
- }
-
- unsigned long L6470::IntSpdCalc(float stepsPerSec){
- // The value in the INT_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
- // 250ns (datasheet value)- 0x408 on boot.
- // Multiply desired steps/s by 4.1943 to get an appropriate value for this register
- // This is a 14-bit value, so we need to make sure the value is at or below 0x3FFF.
- float temp = stepsPerSec * 4.1943;
- if( (unsigned long) long(temp) > 0x00003FFF) return 0x00003FFF;
- else return (unsigned long) long(temp);
- }
-
- unsigned long L6470::SpdCalc(float stepsPerSec){
- // When issuing RUN command, the 20-bit speed is [(steps/s)*(tick)]/(2^-28) where tick is
- // 250ns (datasheet value).
- // Multiply desired steps/s by 67.106 to get an appropriate value for this register
- // This is a 20-bit value, so we need to make sure the value is at or below 0xFFFFF.
-
- float temp = stepsPerSec * 67.106;
- if( (unsigned long) long(temp) > 0x000FFFFF) return 0x000FFFFF;
- else return (unsigned long)temp;
- }
-
- unsigned long L6470::Param(unsigned long value, byte bit_len){
- // Generalization of the subsections of the register read/write functionality.
- // We want the end user to just write the value without worrying about length,
- // so we pass a bit length parameter from the calling function.
- unsigned long ret_val=0; // We'll return this to generalize this function
- // for both read and write of registers.
- byte byte_len = bit_len/8; // How many BYTES do we have?
- if (bit_len%8 > 0) byte_len++; // Make sure not to lose any partial byte values.
- // Let's make sure our value has no spurious bits set, and if the value was too
- // high, max it out.
- unsigned long mask = 0xffffffff >> (32-bit_len);
- if (value > mask) value = mask;
- // The following three if statements handle the various possible byte length
- // transfers- it'll be no less than 1 but no more than 3 bytes of data.
- // L6470::Xfer() sends a byte out through SPI and returns a byte received
- // over SPI- when calling it, we typecast a shifted version of the masked
- // value, then we shift the received value back by the same amount and
- // store it until return time.
- if (byte_len == 3) {
- ret_val |= long(Xfer((byte)(value>>16))) << 16;
- //Serial.println(ret_val, HEX);
- }
- if (byte_len >= 2) {
- ret_val |= long(Xfer((byte)(value>>8))) << 8;
- //Serial.println(ret_val, HEX);
- }
- if (byte_len >= 1) {
- ret_val |= Xfer((byte)value);
- //Serial.println(ret_val, HEX);
- }
- // Return the received values. Mask off any unnecessary bits, just for
- // the sake of thoroughness- we don't EXPECT to see anything outside
- // the bit length range but better to be safe than sorry.
- return (ret_val & mask);
- }
-
- byte L6470::Xfer(byte data){
- // This simple function shifts a byte out over SPI and receives a byte over
- // SPI. Unusually for SPI devices, the dSPIN requires a toggling of the
- // CS (slaveSelect) pin after each byte sent. That makes this function
- // a bit more reasonable, because we can include more functionality in it.
- byte data_out;
- digitalWrite(_SSPin,LOW);
- // SPI.transfer() both shifts a byte out on the MOSI pin AND receives a
- // byte in on the MISO pin.
- data_out = SPI.transfer(data);
- digitalWrite(_SSPin,HIGH);
- return data_out;
- }
-
-
-
- void L6470::SetParam(byte param, unsigned long value){
- Xfer(SET_PARAM | param);
- ParamHandler(param, value);
- }
-
- unsigned long L6470::GetParam(byte param){
- // Realize the "get parameter" function, to read from the various registers in
- // the dSPIN chip.
- Xfer(GET_PARAM | param);
- return ParamHandler(param, 0);
- }
-
- long L6470::convert(unsigned long val){
- //convert 22bit 2s comp to signed long
- int MSB = val >> 21;
-
- val = val << 11;
- val = val >> 11;
-
- if(MSB == 1) val = val | 0b11111111111000000000000000000000;
- return val;
- }
-
- unsigned long L6470::ParamHandler(byte param, unsigned long value){
- // Much of the functionality between "get parameter" and "set parameter" is
- // very similar, so we deal with that by putting all of it in one function
- // here to save memory space and simplify the program.
- unsigned long ret_val = 0; // This is a temp for the value to return.
- // This switch structure handles the appropriate action for each register.
- // This is necessary since not all registers are of the same length, either
- // bit-wise or byte-wise, so we want to make sure we mask out any spurious
- // bits and do the right number of transfers. That is handled by the dSPIN_Param()
- // function, in most cases, but for 1-byte or smaller transfers, we call
- // Xfer() directly.
- switch (param)
- {
- // ABS_POS is the current absolute offset from home. It is a 22 bit number expressed
- // in two's complement. At power up, this value is 0. It cannot be written when
- // the motor is running, but at any other time, it can be updated to change the
- // interpreted position of the motor.
- case ABS_POS:
- ret_val = Param(value, 22);
- break;
- // EL_POS is the current electrical position in the step generation cycle. It can
- // be set when the motor is not in motion. Value is 0 on power up.
- case EL_POS:
- ret_val = Param(value, 9);
- break;
- // MARK is a second position other than 0 that the motor can be told to go to. As
- // with ABS_POS, it is 22-bit two's complement. Value is 0 on power up.
- case MARK:
- ret_val = Param(value, 22);
- break;
- // SPEED contains information about the current speed. It is read-only. It does
- // NOT provide direction information.
- case SPEED:
- ret_val = Param(0, 20);
- break;
- // ACC and DEC set the acceleration and deceleration rates. Set ACC to 0xFFF
- // to get infinite acceleration/decelaeration- there is no way to get infinite
- // deceleration w/o infinite acceleration (except the HARD STOP command).
- // Cannot be written while motor is running. Both default to 0x08A on power up.
- // AccCalc() and DecCalc() functions exist to convert steps/s/s values into
- // 12-bit values for these two registers.
- case ACC:
- ret_val = Param(value, 12);
- break;
- case DEC:
- ret_val = Param(value, 12);
- break;
- // MAX_SPEED is just what it says- any command which attempts to set the speed
- // of the motor above this value will simply cause the motor to turn at this
- // speed. Value is 0x041 on power up.
- // MaxSpdCalc() function exists to convert steps/s value into a 10-bit value
- // for this register.
- case MAX_SPEED:
- ret_val = Param(value, 10);
- break;
- // MIN_SPEED controls two things- the activation of the low-speed optimization
- // feature and the lowest speed the motor will be allowed to operate at. LSPD_OPT
- // is the 13th bit, and when it is set, the minimum allowed speed is automatically
- // set to zero. This value is 0 on startup.
- // MinSpdCalc() function exists to convert steps/s value into a 12-bit value for this
- // register. SetLowSpeedOpt() function exists to enable/disable the optimization feature.
- case MIN_SPEED:
- ret_val = Param(value, 12);
- break;
- // FS_SPD register contains a threshold value above which microstepping is disabled
- // and the dSPIN operates in full-step mode. Defaults to 0x027 on power up.
- // FSCalc() function exists to convert steps/s value into 10-bit integer for this
- // register.
- case FS_SPD:
- ret_val = Param(value, 10);
- break;
- // KVAL is the maximum voltage of the PWM outputs. These 8-bit values are ratiometric
- // representations: 255 for full output voltage, 128 for half, etc. Default is 0x29.
- // The implications of different KVAL settings is too complex to dig into here, but
- // it will usually work to max the value for RUN, ACC, and DEC. Maxing the value for
- // HOLD may result in excessive power dissipation when the motor is not running.
- case KVAL_HOLD:
- ret_val = Xfer((byte)value);
- break;
- case KVAL_RUN:
- ret_val = Xfer((byte)value);
- break;
- case KVAL_ACC:
- ret_val = Xfer((byte)value);
- break;
- case KVAL_DEC:
- ret_val = Xfer((byte)value);
- break;
- // INT_SPD, ST_SLP, FN_SLP_ACC and FN_SLP_DEC are all related to the back EMF
- // compensation functionality. Please see the datasheet for details of this
- // function- it is too complex to discuss here. Default values seem to work
- // well enough.
- case INT_SPD:
- ret_val = Param(value, 14);
- break;
- case ST_SLP:
- ret_val = Xfer((byte)value);
- break;
- case FN_SLP_ACC:
- ret_val = Xfer((byte)value);
- break;
- case FN_SLP_DEC:
- ret_val = Xfer((byte)value);
- break;
- // K_THERM is motor winding thermal drift compensation. Please see the datasheet
- // for full details on operation- the default value should be okay for most users.
- case K_THERM:
- ret_val = Xfer((byte)value & 0x0F);
- break;
- // ADC_OUT is a read-only register containing the result of the ADC measurements.
- // This is less useful than it sounds; see the datasheet for more information.
- case ADC_OUT:
- ret_val = Xfer(0);
- break;
- // Set the overcurrent threshold. Ranges from 375mA to 6A in steps of 375mA.
- // A set of defined constants is provided for the user's convenience. Default
- // value is 3.375A- 0x08. This is a 4-bit value.
- case OCD_TH:
- ret_val = Xfer((byte)value & 0x0F);
- break;
- // Stall current threshold. Defaults to 0x40, or 2.03A. Value is from 31.25mA to
- // 4A in 31.25mA steps. This is a 7-bit value.
- case STALL_TH:
- ret_val = Xfer((byte)value & 0x7F);
- break;
- // STEP_MODE controls the microstepping settings, as well as the generation of an
- // output signal from the dSPIN. Bits 2:0 control the number of microsteps per
- // step the part will generate. Bit 7 controls whether the BUSY/SYNC pin outputs
- // a BUSY signal or a step synchronization signal. Bits 6:4 control the frequency
- // of the output signal relative to the full-step frequency; see datasheet for
- // that relationship as it is too complex to reproduce here.
- // Most likely, only the microsteps per step value will be needed; there is a set
- // of constants provided for ease of use of these values.
- case STEP_MODE:
- ret_val = Xfer((byte)value);
- break;
- // ALARM_EN controls which alarms will cause the FLAG pin to fall. A set of constants
- // is provided to make this easy to interpret. By default, ALL alarms will trigger the
- // FLAG pin.
- case ALARM_EN:
- ret_val = Xfer((byte)value);
- break;
- // CONFIG contains some assorted configuration bits and fields. A fairly comprehensive
- // set of reasonably self-explanatory constants is provided, but users should refer
- // to the datasheet before modifying the contents of this register to be certain they
- // understand the implications of their modifications. Value on boot is 0x2E88; this
- // can be a useful way to verify proper start up and operation of the dSPIN chip.
- case CONFIG:
- ret_val = Param(value, 16);
- break;
- // STATUS contains read-only information about the current condition of the chip. A
- // comprehensive set of constants for masking and testing this register is provided, but
- // users should refer to the datasheet to ensure that they fully understand each one of
- // the bits in the register.
- case STATUS: // STATUS is a read-only register
- ret_val = Param(0, 16);
- break;
- default:
- ret_val = Xfer((byte)(value));
- break;
- }
- return ret_val;
- }
|