My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

stepper.cpp 39KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  65. bool abort_on_endstop_hit = false;
  66. #endif
  67. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  68. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  69. #endif
  70. static bool old_x_min_endstop = false,
  71. old_x_max_endstop = false,
  72. old_y_min_endstop = false,
  73. old_y_max_endstop = false,
  74. old_z_min_endstop = false,
  75. #ifndef Z_DUAL_ENDSTOPS
  76. old_z_max_endstop = false;
  77. #else
  78. old_z_max_endstop = false,
  79. old_z2_min_endstop = false,
  80. old_z2_max_endstop = false;
  81. #endif
  82. static bool check_endstops = true;
  83. volatile long count_position[NUM_AXIS] = { 0 };
  84. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  85. //===========================================================================
  86. //================================ functions ================================
  87. //===========================================================================
  88. #ifdef DUAL_X_CARRIAGE
  89. #define X_APPLY_DIR(v,ALWAYS) \
  90. if (extruder_duplication_enabled || ALWAYS) { \
  91. X_DIR_WRITE(v); \
  92. X2_DIR_WRITE(v); \
  93. } \
  94. else { \
  95. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  96. }
  97. #define X_APPLY_STEP(v,ALWAYS) \
  98. if (extruder_duplication_enabled || ALWAYS) { \
  99. X_STEP_WRITE(v); \
  100. X2_STEP_WRITE(v); \
  101. } \
  102. else { \
  103. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  104. }
  105. #else
  106. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  107. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  108. #endif
  109. #ifdef Y_DUAL_STEPPER_DRIVERS
  110. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  111. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  112. #else
  113. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  114. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  115. #endif
  116. #ifdef Z_DUAL_STEPPER_DRIVERS
  117. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  118. #ifdef Z_DUAL_ENDSTOPS
  119. #define Z_APPLY_STEP(v,Q) \
  120. if (performing_homing) { \
  121. if (Z_HOME_DIR > 0) {\
  122. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } else {\
  125. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  126. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  127. } \
  128. } else { \
  129. Z_STEP_WRITE(v); \
  130. Z2_STEP_WRITE(v); \
  131. }
  132. #else
  133. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
  134. #endif
  135. #else
  136. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  137. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  138. #endif
  139. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  140. // intRes = intIn1 * intIn2 >> 16
  141. // uses:
  142. // r26 to store 0
  143. // r27 to store the byte 1 of the 24 bit result
  144. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  145. asm volatile ( \
  146. "clr r26 \n\t" \
  147. "mul %A1, %B2 \n\t" \
  148. "movw %A0, r0 \n\t" \
  149. "mul %A1, %A2 \n\t" \
  150. "add %A0, r1 \n\t" \
  151. "adc %B0, r26 \n\t" \
  152. "lsr r0 \n\t" \
  153. "adc %A0, r26 \n\t" \
  154. "adc %B0, r26 \n\t" \
  155. "clr r1 \n\t" \
  156. : \
  157. "=&r" (intRes) \
  158. : \
  159. "d" (charIn1), \
  160. "d" (intIn2) \
  161. : \
  162. "r26" \
  163. )
  164. // intRes = longIn1 * longIn2 >> 24
  165. // uses:
  166. // r26 to store 0
  167. // r27 to store the byte 1 of the 48bit result
  168. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  169. asm volatile ( \
  170. "clr r26 \n\t" \
  171. "mul %A1, %B2 \n\t" \
  172. "mov r27, r1 \n\t" \
  173. "mul %B1, %C2 \n\t" \
  174. "movw %A0, r0 \n\t" \
  175. "mul %C1, %C2 \n\t" \
  176. "add %B0, r0 \n\t" \
  177. "mul %C1, %B2 \n\t" \
  178. "add %A0, r0 \n\t" \
  179. "adc %B0, r1 \n\t" \
  180. "mul %A1, %C2 \n\t" \
  181. "add r27, r0 \n\t" \
  182. "adc %A0, r1 \n\t" \
  183. "adc %B0, r26 \n\t" \
  184. "mul %B1, %B2 \n\t" \
  185. "add r27, r0 \n\t" \
  186. "adc %A0, r1 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "mul %C1, %A2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %B1, %A2 \n\t" \
  193. "add r27, r1 \n\t" \
  194. "adc %A0, r26 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "lsr r27 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "clr r1 \n\t" \
  200. : \
  201. "=&r" (intRes) \
  202. : \
  203. "d" (longIn1), \
  204. "d" (longIn2) \
  205. : \
  206. "r26" , "r27" \
  207. )
  208. // Some useful constants
  209. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  210. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  211. void endstops_hit_on_purpose() {
  212. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  213. }
  214. void checkHitEndstops() {
  215. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  216. SERIAL_ECHO_START;
  217. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  218. if (endstop_x_hit) {
  219. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  220. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  221. }
  222. if (endstop_y_hit) {
  223. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  224. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  225. }
  226. if (endstop_z_hit) {
  227. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  229. }
  230. SERIAL_EOL;
  231. endstops_hit_on_purpose();
  232. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  233. if (abort_on_endstop_hit) {
  234. card.sdprinting = false;
  235. card.closefile();
  236. quickStop();
  237. setTargetHotend0(0);
  238. setTargetHotend1(0);
  239. setTargetHotend2(0);
  240. setTargetHotend3(0);
  241. setTargetBed(0);
  242. }
  243. #endif
  244. }
  245. }
  246. void enable_endstops(bool check) { check_endstops = check; }
  247. // __________________________
  248. // /| |\ _________________ ^
  249. // / | | \ /| |\ |
  250. // / | | \ / | | \ s
  251. // / | | | | | \ p
  252. // / | | | | | \ e
  253. // +-----+------------------------+---+--+---------------+----+ e
  254. // | BLOCK 1 | BLOCK 2 | d
  255. //
  256. // time ----->
  257. //
  258. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  259. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  260. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  261. // The slope of acceleration is calculated with the leib ramp alghorithm.
  262. void st_wake_up() {
  263. // TCNT1 = 0;
  264. ENABLE_STEPPER_DRIVER_INTERRUPT();
  265. }
  266. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  267. unsigned short timer;
  268. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  269. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  270. step_rate = (step_rate >> 2) & 0x3fff;
  271. step_loops = 4;
  272. }
  273. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  274. step_rate = (step_rate >> 1) & 0x7fff;
  275. step_loops = 2;
  276. }
  277. else {
  278. step_loops = 1;
  279. }
  280. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  281. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  282. if (step_rate >= (8 * 256)) { // higher step rate
  283. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  284. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  285. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  286. MultiU16X8toH16(timer, tmp_step_rate, gain);
  287. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  288. }
  289. else { // lower step rates
  290. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  291. table_address += ((step_rate)>>1) & 0xfffc;
  292. timer = (unsigned short)pgm_read_word_near(table_address);
  293. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  294. }
  295. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  296. return timer;
  297. }
  298. // Initializes the trapezoid generator from the current block. Called whenever a new
  299. // block begins.
  300. FORCE_INLINE void trapezoid_generator_reset() {
  301. #ifdef ADVANCE
  302. advance = current_block->initial_advance;
  303. final_advance = current_block->final_advance;
  304. // Do E steps + advance steps
  305. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  306. old_advance = advance >>8;
  307. #endif
  308. deceleration_time = 0;
  309. // step_rate to timer interval
  310. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  311. // make a note of the number of step loops required at nominal speed
  312. step_loops_nominal = step_loops;
  313. acc_step_rate = current_block->initial_rate;
  314. acceleration_time = calc_timer(acc_step_rate);
  315. OCR1A = acceleration_time;
  316. // SERIAL_ECHO_START;
  317. // SERIAL_ECHOPGM("advance :");
  318. // SERIAL_ECHO(current_block->advance/256.0);
  319. // SERIAL_ECHOPGM("advance rate :");
  320. // SERIAL_ECHO(current_block->advance_rate/256.0);
  321. // SERIAL_ECHOPGM("initial advance :");
  322. // SERIAL_ECHO(current_block->initial_advance/256.0);
  323. // SERIAL_ECHOPGM("final advance :");
  324. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  325. }
  326. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  327. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  328. ISR(TIMER1_COMPA_vect) {
  329. if(cleaning_buffer_counter)
  330. {
  331. current_block = NULL;
  332. plan_discard_current_block();
  333. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  334. cleaning_buffer_counter--;
  335. OCR1A = 200;
  336. return;
  337. }
  338. // If there is no current block, attempt to pop one from the buffer
  339. if (!current_block) {
  340. // Anything in the buffer?
  341. current_block = plan_get_current_block();
  342. if (current_block) {
  343. current_block->busy = true;
  344. trapezoid_generator_reset();
  345. counter_x = -(current_block->step_event_count >> 1);
  346. counter_y = counter_z = counter_e = counter_x;
  347. step_events_completed = 0;
  348. #ifdef Z_LATE_ENABLE
  349. if (current_block->steps[Z_AXIS] > 0) {
  350. enable_z();
  351. OCR1A = 2000; //1ms wait
  352. return;
  353. }
  354. #endif
  355. // #ifdef ADVANCE
  356. // e_steps[current_block->active_extruder] = 0;
  357. // #endif
  358. }
  359. else {
  360. OCR1A = 2000; // 1kHz.
  361. }
  362. }
  363. if (current_block != NULL) {
  364. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  365. out_bits = current_block->direction_bits;
  366. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  367. if (TEST(out_bits, X_AXIS)) {
  368. X_APPLY_DIR(INVERT_X_DIR,0);
  369. count_direction[X_AXIS] = -1;
  370. }
  371. else {
  372. X_APPLY_DIR(!INVERT_X_DIR,0);
  373. count_direction[X_AXIS] = 1;
  374. }
  375. if (TEST(out_bits, Y_AXIS)) {
  376. Y_APPLY_DIR(INVERT_Y_DIR,0);
  377. count_direction[Y_AXIS] = -1;
  378. }
  379. else {
  380. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  381. count_direction[Y_AXIS] = 1;
  382. }
  383. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  384. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  385. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  386. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  387. endstop_## axis ##_hit = true; \
  388. step_events_completed = current_block->step_event_count; \
  389. } \
  390. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  391. // Check X and Y endstops
  392. if (check_endstops) {
  393. #ifdef COREXY
  394. // Head direction in -X axis for CoreXY bots.
  395. // If DeltaX == -DeltaY, the movement is only in Y axis
  396. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
  397. if (TEST(out_bits, X_HEAD))
  398. #else
  399. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  400. #endif
  401. { // -direction
  402. #ifdef DUAL_X_CARRIAGE
  403. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  404. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  405. #endif
  406. {
  407. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  408. UPDATE_ENDSTOP(x, X, min, MIN);
  409. #endif
  410. }
  411. }
  412. else { // +direction
  413. #ifdef DUAL_X_CARRIAGE
  414. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  415. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  416. #endif
  417. {
  418. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  419. UPDATE_ENDSTOP(x, X, max, MAX);
  420. #endif
  421. }
  422. }
  423. #ifdef COREXY
  424. // Head direction in -Y axis for CoreXY bots.
  425. // If DeltaX == DeltaY, the movement is only in X axis
  426. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
  427. if (TEST(out_bits, Y_HEAD))
  428. #else
  429. if (TEST(out_bits, Y_AXIS)) // -direction
  430. #endif
  431. { // -direction
  432. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  433. UPDATE_ENDSTOP(y, Y, min, MIN);
  434. #endif
  435. }
  436. else { // +direction
  437. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  438. UPDATE_ENDSTOP(y, Y, max, MAX);
  439. #endif
  440. }
  441. }
  442. if (TEST(out_bits, Z_AXIS)) { // -direction
  443. Z_APPLY_DIR(INVERT_Z_DIR,0);
  444. count_direction[Z_AXIS] = -1;
  445. if (check_endstops)
  446. {
  447. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  448. #ifndef Z_DUAL_ENDSTOPS
  449. UPDATE_ENDSTOP(z, Z, min, MIN);
  450. #else
  451. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  452. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
  453. bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
  454. #else
  455. bool z2_min_endstop=z_min_endstop;
  456. #endif
  457. if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
  458. {
  459. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  460. endstop_z_hit=true;
  461. if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
  462. {
  463. step_events_completed = current_block->step_event_count;
  464. }
  465. }
  466. old_z_min_endstop = z_min_endstop;
  467. old_z2_min_endstop = z2_min_endstop;
  468. #endif
  469. #endif
  470. }
  471. }
  472. else { // +direction
  473. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  474. count_direction[Z_AXIS] = 1;
  475. if (check_endstops) {
  476. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  477. #ifndef Z_DUAL_ENDSTOPS
  478. UPDATE_ENDSTOP(z, Z, max, MAX);
  479. #else
  480. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  481. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  482. bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
  483. #else
  484. bool z2_max_endstop=z_max_endstop;
  485. #endif
  486. if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
  487. {
  488. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  489. endstop_z_hit=true;
  490. // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
  491. // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
  492. if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
  493. {
  494. step_events_completed = current_block->step_event_count;
  495. }
  496. }
  497. old_z_max_endstop = z_max_endstop;
  498. old_z2_max_endstop = z2_max_endstop;
  499. #endif
  500. #endif
  501. }
  502. }
  503. #ifndef ADVANCE
  504. if (TEST(out_bits, E_AXIS)) { // -direction
  505. REV_E_DIR();
  506. count_direction[E_AXIS]=-1;
  507. }
  508. else { // +direction
  509. NORM_E_DIR();
  510. count_direction[E_AXIS]=1;
  511. }
  512. #endif //!ADVANCE
  513. // Take multiple steps per interrupt (For high speed moves)
  514. for (int8_t i=0; i < step_loops; i++) {
  515. #ifndef AT90USB
  516. MSerial.checkRx(); // Check for serial chars.
  517. #endif
  518. #ifdef ADVANCE
  519. counter_e += current_block->steps[E_AXIS];
  520. if (counter_e > 0) {
  521. counter_e -= current_block->step_event_count;
  522. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  523. }
  524. #endif //ADVANCE
  525. #ifdef CONFIG_STEPPERS_TOSHIBA
  526. /**
  527. * The Toshiba stepper controller require much longer pulses.
  528. * So we 'stage' decompose the pulses between high and low
  529. * instead of doing each in turn. The extra tests add enough
  530. * lag to allow it work with without needing NOPs
  531. */
  532. #define STEP_ADD(axis, AXIS) \
  533. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  534. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  535. STEP_ADD(x,X);
  536. STEP_ADD(y,Y);
  537. STEP_ADD(z,Z);
  538. #ifndef ADVANCE
  539. STEP_ADD(e,E);
  540. #endif
  541. #define STEP_IF_COUNTER(axis, AXIS) \
  542. if (counter_## axis > 0) { \
  543. counter_## axis -= current_block->step_event_count; \
  544. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  545. AXIS ##_STEP_WRITE(LOW); \
  546. }
  547. STEP_IF_COUNTER(x, X);
  548. STEP_IF_COUNTER(y, Y);
  549. STEP_IF_COUNTER(z, Z);
  550. #ifndef ADVANCE
  551. STEP_IF_COUNTER(e, E);
  552. #endif
  553. #else // !CONFIG_STEPPERS_TOSHIBA
  554. #define APPLY_MOVEMENT(axis, AXIS) \
  555. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  556. if (counter_## axis > 0) { \
  557. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  558. counter_## axis -= current_block->step_event_count; \
  559. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  560. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  561. }
  562. APPLY_MOVEMENT(x, X);
  563. APPLY_MOVEMENT(y, Y);
  564. APPLY_MOVEMENT(z, Z);
  565. #ifndef ADVANCE
  566. APPLY_MOVEMENT(e, E);
  567. #endif
  568. #endif // CONFIG_STEPPERS_TOSHIBA
  569. step_events_completed++;
  570. if (step_events_completed >= current_block->step_event_count) break;
  571. }
  572. // Calculare new timer value
  573. unsigned short timer;
  574. unsigned short step_rate;
  575. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  576. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  577. acc_step_rate += current_block->initial_rate;
  578. // upper limit
  579. if (acc_step_rate > current_block->nominal_rate)
  580. acc_step_rate = current_block->nominal_rate;
  581. // step_rate to timer interval
  582. timer = calc_timer(acc_step_rate);
  583. OCR1A = timer;
  584. acceleration_time += timer;
  585. #ifdef ADVANCE
  586. for(int8_t i=0; i < step_loops; i++) {
  587. advance += advance_rate;
  588. }
  589. //if (advance > current_block->advance) advance = current_block->advance;
  590. // Do E steps + advance steps
  591. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  592. old_advance = advance >>8;
  593. #endif
  594. }
  595. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  596. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  597. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  598. step_rate = current_block->final_rate;
  599. }
  600. else {
  601. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  602. }
  603. // lower limit
  604. if (step_rate < current_block->final_rate)
  605. step_rate = current_block->final_rate;
  606. // step_rate to timer interval
  607. timer = calc_timer(step_rate);
  608. OCR1A = timer;
  609. deceleration_time += timer;
  610. #ifdef ADVANCE
  611. for(int8_t i=0; i < step_loops; i++) {
  612. advance -= advance_rate;
  613. }
  614. if (advance < final_advance) advance = final_advance;
  615. // Do E steps + advance steps
  616. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  617. old_advance = advance >>8;
  618. #endif //ADVANCE
  619. }
  620. else {
  621. OCR1A = OCR1A_nominal;
  622. // ensure we're running at the correct step rate, even if we just came off an acceleration
  623. step_loops = step_loops_nominal;
  624. }
  625. // If current block is finished, reset pointer
  626. if (step_events_completed >= current_block->step_event_count) {
  627. current_block = NULL;
  628. plan_discard_current_block();
  629. }
  630. }
  631. }
  632. #ifdef ADVANCE
  633. unsigned char old_OCR0A;
  634. // Timer interrupt for E. e_steps is set in the main routine;
  635. // Timer 0 is shared with millies
  636. ISR(TIMER0_COMPA_vect)
  637. {
  638. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  639. OCR0A = old_OCR0A;
  640. // Set E direction (Depends on E direction + advance)
  641. for(unsigned char i=0; i<4;i++) {
  642. if (e_steps[0] != 0) {
  643. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  644. if (e_steps[0] < 0) {
  645. E0_DIR_WRITE(INVERT_E0_DIR);
  646. e_steps[0]++;
  647. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  648. }
  649. else if (e_steps[0] > 0) {
  650. E0_DIR_WRITE(!INVERT_E0_DIR);
  651. e_steps[0]--;
  652. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  653. }
  654. }
  655. #if EXTRUDERS > 1
  656. if (e_steps[1] != 0) {
  657. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  658. if (e_steps[1] < 0) {
  659. E1_DIR_WRITE(INVERT_E1_DIR);
  660. e_steps[1]++;
  661. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  662. }
  663. else if (e_steps[1] > 0) {
  664. E1_DIR_WRITE(!INVERT_E1_DIR);
  665. e_steps[1]--;
  666. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  667. }
  668. }
  669. #endif
  670. #if EXTRUDERS > 2
  671. if (e_steps[2] != 0) {
  672. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  673. if (e_steps[2] < 0) {
  674. E2_DIR_WRITE(INVERT_E2_DIR);
  675. e_steps[2]++;
  676. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  677. }
  678. else if (e_steps[2] > 0) {
  679. E2_DIR_WRITE(!INVERT_E2_DIR);
  680. e_steps[2]--;
  681. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  682. }
  683. }
  684. #endif
  685. #if EXTRUDERS > 3
  686. if (e_steps[3] != 0) {
  687. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  688. if (e_steps[3] < 0) {
  689. E3_DIR_WRITE(INVERT_E3_DIR);
  690. e_steps[3]++;
  691. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  692. }
  693. else if (e_steps[3] > 0) {
  694. E3_DIR_WRITE(!INVERT_E3_DIR);
  695. e_steps[3]--;
  696. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  697. }
  698. }
  699. #endif
  700. }
  701. }
  702. #endif // ADVANCE
  703. void st_init() {
  704. digipot_init(); //Initialize Digipot Motor Current
  705. microstep_init(); //Initialize Microstepping Pins
  706. // initialise TMC Steppers
  707. #ifdef HAVE_TMCDRIVER
  708. tmc_init();
  709. #endif
  710. // initialise L6470 Steppers
  711. #ifdef HAVE_L6470DRIVER
  712. L6470_init();
  713. #endif
  714. // Initialize Dir Pins
  715. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  716. X_DIR_INIT;
  717. #endif
  718. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  719. X2_DIR_INIT;
  720. #endif
  721. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  722. Y_DIR_INIT;
  723. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  724. Y2_DIR_INIT;
  725. #endif
  726. #endif
  727. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  728. Z_DIR_INIT;
  729. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  730. Z2_DIR_INIT;
  731. #endif
  732. #endif
  733. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  734. E0_DIR_INIT;
  735. #endif
  736. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  737. E1_DIR_INIT;
  738. #endif
  739. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  740. E2_DIR_INIT;
  741. #endif
  742. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  743. E3_DIR_INIT;
  744. #endif
  745. //Initialize Enable Pins - steppers default to disabled.
  746. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  747. X_ENABLE_INIT;
  748. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  749. #endif
  750. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  751. X2_ENABLE_INIT;
  752. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  753. #endif
  754. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  755. Y_ENABLE_INIT;
  756. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  757. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  758. Y2_ENABLE_INIT;
  759. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  760. #endif
  761. #endif
  762. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  763. Z_ENABLE_INIT;
  764. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  765. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  766. Z2_ENABLE_INIT;
  767. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  768. #endif
  769. #endif
  770. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  771. E0_ENABLE_INIT;
  772. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  773. #endif
  774. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  775. E1_ENABLE_INIT;
  776. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  777. #endif
  778. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  779. E2_ENABLE_INIT;
  780. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  781. #endif
  782. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  783. E3_ENABLE_INIT;
  784. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  785. #endif
  786. //endstops and pullups
  787. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  788. SET_INPUT(X_MIN_PIN);
  789. #ifdef ENDSTOPPULLUP_XMIN
  790. WRITE(X_MIN_PIN,HIGH);
  791. #endif
  792. #endif
  793. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  794. SET_INPUT(Y_MIN_PIN);
  795. #ifdef ENDSTOPPULLUP_YMIN
  796. WRITE(Y_MIN_PIN,HIGH);
  797. #endif
  798. #endif
  799. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  800. SET_INPUT(Z_MIN_PIN);
  801. #ifdef ENDSTOPPULLUP_ZMIN
  802. WRITE(Z_MIN_PIN,HIGH);
  803. #endif
  804. #endif
  805. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  806. SET_INPUT(X_MAX_PIN);
  807. #ifdef ENDSTOPPULLUP_XMAX
  808. WRITE(X_MAX_PIN,HIGH);
  809. #endif
  810. #endif
  811. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  812. SET_INPUT(Y_MAX_PIN);
  813. #ifdef ENDSTOPPULLUP_YMAX
  814. WRITE(Y_MAX_PIN,HIGH);
  815. #endif
  816. #endif
  817. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  818. SET_INPUT(Z_MAX_PIN);
  819. #ifdef ENDSTOPPULLUP_ZMAX
  820. WRITE(Z_MAX_PIN,HIGH);
  821. #endif
  822. #endif
  823. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  824. SET_INPUT(Z2_MAX_PIN);
  825. #ifdef ENDSTOPPULLUP_ZMAX
  826. WRITE(Z2_MAX_PIN,HIGH);
  827. #endif
  828. #endif
  829. #define AXIS_INIT(axis, AXIS, PIN) \
  830. AXIS ##_STEP_INIT; \
  831. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  832. disable_## axis()
  833. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  834. // Initialize Step Pins
  835. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  836. AXIS_INIT(x, X, X);
  837. #endif
  838. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  839. AXIS_INIT(x, X2, X);
  840. #endif
  841. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  842. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  843. Y2_STEP_INIT;
  844. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  845. #endif
  846. AXIS_INIT(y, Y, Y);
  847. #endif
  848. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  849. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  850. Z2_STEP_INIT;
  851. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  852. #endif
  853. AXIS_INIT(z, Z, Z);
  854. #endif
  855. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  856. E_AXIS_INIT(0);
  857. #endif
  858. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  859. E_AXIS_INIT(1);
  860. #endif
  861. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  862. E_AXIS_INIT(2);
  863. #endif
  864. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  865. E_AXIS_INIT(3);
  866. #endif
  867. // waveform generation = 0100 = CTC
  868. TCCR1B &= ~BIT(WGM13);
  869. TCCR1B |= BIT(WGM12);
  870. TCCR1A &= ~BIT(WGM11);
  871. TCCR1A &= ~BIT(WGM10);
  872. // output mode = 00 (disconnected)
  873. TCCR1A &= ~(3<<COM1A0);
  874. TCCR1A &= ~(3<<COM1B0);
  875. // Set the timer pre-scaler
  876. // Generally we use a divider of 8, resulting in a 2MHz timer
  877. // frequency on a 16MHz MCU. If you are going to change this, be
  878. // sure to regenerate speed_lookuptable.h with
  879. // create_speed_lookuptable.py
  880. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  881. OCR1A = 0x4000;
  882. TCNT1 = 0;
  883. ENABLE_STEPPER_DRIVER_INTERRUPT();
  884. #ifdef ADVANCE
  885. #if defined(TCCR0A) && defined(WGM01)
  886. TCCR0A &= ~BIT(WGM01);
  887. TCCR0A &= ~BIT(WGM00);
  888. #endif
  889. e_steps[0] = 0;
  890. e_steps[1] = 0;
  891. e_steps[2] = 0;
  892. e_steps[3] = 0;
  893. TIMSK0 |= BIT(OCIE0A);
  894. #endif //ADVANCE
  895. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  896. sei();
  897. }
  898. // Block until all buffered steps are executed
  899. void st_synchronize() {
  900. while (blocks_queued()) {
  901. manage_heater();
  902. manage_inactivity();
  903. lcd_update();
  904. }
  905. }
  906. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  907. CRITICAL_SECTION_START;
  908. count_position[X_AXIS] = x;
  909. count_position[Y_AXIS] = y;
  910. count_position[Z_AXIS] = z;
  911. count_position[E_AXIS] = e;
  912. CRITICAL_SECTION_END;
  913. }
  914. void st_set_e_position(const long &e) {
  915. CRITICAL_SECTION_START;
  916. count_position[E_AXIS] = e;
  917. CRITICAL_SECTION_END;
  918. }
  919. long st_get_position(uint8_t axis) {
  920. long count_pos;
  921. CRITICAL_SECTION_START;
  922. count_pos = count_position[axis];
  923. CRITICAL_SECTION_END;
  924. return count_pos;
  925. }
  926. #ifdef ENABLE_AUTO_BED_LEVELING
  927. float st_get_position_mm(uint8_t axis) {
  928. float steper_position_in_steps = st_get_position(axis);
  929. return steper_position_in_steps / axis_steps_per_unit[axis];
  930. }
  931. #endif // ENABLE_AUTO_BED_LEVELING
  932. void finishAndDisableSteppers() {
  933. st_synchronize();
  934. disable_x();
  935. disable_y();
  936. disable_z();
  937. disable_e0();
  938. disable_e1();
  939. disable_e2();
  940. disable_e3();
  941. }
  942. void quickStop() {
  943. cleaning_buffer_counter = 5000;
  944. DISABLE_STEPPER_DRIVER_INTERRUPT();
  945. while (blocks_queued()) plan_discard_current_block();
  946. current_block = NULL;
  947. ENABLE_STEPPER_DRIVER_INTERRUPT();
  948. }
  949. #ifdef BABYSTEPPING
  950. // MUST ONLY BE CALLED BY AN ISR,
  951. // No other ISR should ever interrupt this!
  952. void babystep(const uint8_t axis, const bool direction) {
  953. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  954. enable_## axis(); \
  955. uint8_t old_pin = AXIS ##_DIR_READ; \
  956. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  957. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  958. _delay_us(1U); \
  959. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  960. AXIS ##_APPLY_DIR(old_pin, true); \
  961. }
  962. switch(axis) {
  963. case X_AXIS:
  964. BABYSTEP_AXIS(x, X, false);
  965. break;
  966. case Y_AXIS:
  967. BABYSTEP_AXIS(y, Y, false);
  968. break;
  969. case Z_AXIS: {
  970. #ifndef DELTA
  971. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  972. #else // DELTA
  973. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  974. enable_x();
  975. enable_y();
  976. enable_z();
  977. uint8_t old_x_dir_pin = X_DIR_READ,
  978. old_y_dir_pin = Y_DIR_READ,
  979. old_z_dir_pin = Z_DIR_READ;
  980. //setup new step
  981. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  982. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  983. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  984. //perform step
  985. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  986. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  987. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  988. _delay_us(1U);
  989. X_STEP_WRITE(INVERT_X_STEP_PIN);
  990. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  991. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  992. //get old pin state back.
  993. X_DIR_WRITE(old_x_dir_pin);
  994. Y_DIR_WRITE(old_y_dir_pin);
  995. Z_DIR_WRITE(old_z_dir_pin);
  996. #endif
  997. } break;
  998. default: break;
  999. }
  1000. }
  1001. #endif //BABYSTEPPING
  1002. // From Arduino DigitalPotControl example
  1003. void digitalPotWrite(int address, int value) {
  1004. #if HAS_DIGIPOTSS
  1005. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1006. SPI.transfer(address); // send in the address and value via SPI:
  1007. SPI.transfer(value);
  1008. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1009. //delay(10);
  1010. #endif
  1011. }
  1012. // Initialize Digipot Motor Current
  1013. void digipot_init() {
  1014. #if HAS_DIGIPOTSS
  1015. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1016. SPI.begin();
  1017. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1018. for (int i = 0; i <= 4; i++) {
  1019. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1020. digipot_current(i,digipot_motor_current[i]);
  1021. }
  1022. #endif
  1023. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1024. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1025. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1026. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1027. digipot_current(0, motor_current_setting[0]);
  1028. digipot_current(1, motor_current_setting[1]);
  1029. digipot_current(2, motor_current_setting[2]);
  1030. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1031. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1032. #endif
  1033. }
  1034. void digipot_current(uint8_t driver, int current) {
  1035. #if HAS_DIGIPOTSS
  1036. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1037. digitalPotWrite(digipot_ch[driver], current);
  1038. #endif
  1039. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1040. switch(driver) {
  1041. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1042. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1043. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1044. }
  1045. #endif
  1046. }
  1047. void microstep_init() {
  1048. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1049. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1050. pinMode(E1_MS1_PIN,OUTPUT);
  1051. pinMode(E1_MS2_PIN,OUTPUT);
  1052. #endif
  1053. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1054. pinMode(X_MS1_PIN,OUTPUT);
  1055. pinMode(X_MS2_PIN,OUTPUT);
  1056. pinMode(Y_MS1_PIN,OUTPUT);
  1057. pinMode(Y_MS2_PIN,OUTPUT);
  1058. pinMode(Z_MS1_PIN,OUTPUT);
  1059. pinMode(Z_MS2_PIN,OUTPUT);
  1060. pinMode(E0_MS1_PIN,OUTPUT);
  1061. pinMode(E0_MS2_PIN,OUTPUT);
  1062. for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
  1063. #endif
  1064. }
  1065. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1066. if (ms1 >= 0) switch(driver) {
  1067. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1068. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1069. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1070. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1071. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1072. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1073. #endif
  1074. }
  1075. if (ms2 >= 0) switch(driver) {
  1076. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1077. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1078. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1079. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1080. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1081. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1082. #endif
  1083. }
  1084. }
  1085. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1086. switch(stepping_mode) {
  1087. case 1: microstep_ms(driver,MICROSTEP1); break;
  1088. case 2: microstep_ms(driver,MICROSTEP2); break;
  1089. case 4: microstep_ms(driver,MICROSTEP4); break;
  1090. case 8: microstep_ms(driver,MICROSTEP8); break;
  1091. case 16: microstep_ms(driver,MICROSTEP16); break;
  1092. }
  1093. }
  1094. void microstep_readings() {
  1095. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1096. SERIAL_PROTOCOLPGM("X: ");
  1097. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1098. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1099. SERIAL_PROTOCOLPGM("Y: ");
  1100. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1101. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1102. SERIAL_PROTOCOLPGM("Z: ");
  1103. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1104. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1105. SERIAL_PROTOCOLPGM("E0: ");
  1106. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1107. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1108. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1109. SERIAL_PROTOCOLPGM("E1: ");
  1110. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1111. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1112. #endif
  1113. }
  1114. #ifdef Z_DUAL_ENDSTOPS
  1115. void In_Homing_Process(bool state) { performing_homing = state; }
  1116. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1117. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1118. #endif