My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin.pde 32KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <EEPROM.h>
  23. #include "EEPROMwrite.h"
  24. #include "fastio.h"
  25. #include "Configuration.h"
  26. #include "pins.h"
  27. #include "Marlin.h"
  28. #include "ultralcd.h"
  29. #include "streaming.h"
  30. #include "planner.h"
  31. #include "stepper.h"
  32. #include "temperature.h"
  33. #include "motion_control.h"
  34. #include "cardreader.h"
  35. char version_string[] = "1.0.0 Alpha 1";
  36. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  37. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  38. //Implemented Codes
  39. //-------------------
  40. // G0 -> G1
  41. // G1 - Coordinated Movement X Y Z E
  42. // G2 - CW ARC
  43. // G3 - CCW ARC
  44. // G4 - Dwell S<seconds> or P<milliseconds>
  45. // G28 - Home all Axis
  46. // G90 - Use Absolute Coordinates
  47. // G91 - Use Relative Coordinates
  48. // G92 - Set current position to cordinates given
  49. //RepRap M Codes
  50. // M104 - Set extruder target temp
  51. // M105 - Read current temp
  52. // M106 - Fan on
  53. // M107 - Fan off
  54. // M109 - Wait for extruder current temp to reach target temp.
  55. // M114 - Display current position
  56. //Custom M Codes
  57. // M20 - List SD card
  58. // M21 - Init SD card
  59. // M22 - Release SD card
  60. // M23 - Select SD file (M23 filename.g)
  61. // M24 - Start/resume SD print
  62. // M25 - Pause SD print
  63. // M26 - Set SD position in bytes (M26 S12345)
  64. // M27 - Report SD print status
  65. // M28 - Start SD write (M28 filename.g)
  66. // M29 - Stop SD write
  67. // M30 - Output time since last M109 or SD card start to serial
  68. // M42 - Change pin status via gcode
  69. // M80 - Turn on Power Supply
  70. // M81 - Turn off Power Supply
  71. // M82 - Set E codes absolute (default)
  72. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  73. // M84 - Disable steppers until next move,
  74. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  75. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  76. // M92 - Set axis_steps_per_unit - same syntax as G92
  77. // M115 - Capabilities string
  78. // M140 - Set bed target temp
  79. // M190 - Wait for bed current temp to reach target temp.
  80. // M200 - Set filament diameter
  81. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  82. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  83. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  84. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  85. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  86. // M220 - set speed factor override percentage S:factor in percent
  87. // M301 - Set PID parameters P I and D
  88. // M500 - stores paramters in EEPROM
  89. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
  90. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  91. //Stepper Movement Variables
  92. //===========================================================================
  93. //=============================imported variables============================
  94. //===========================================================================
  95. extern float HeaterPower;
  96. //===========================================================================
  97. //=============================public variables=============================
  98. //===========================================================================
  99. CardReader card;
  100. float homing_feedrate[] = HOMING_FEEDRATE;
  101. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  102. volatile int feedmultiply=100; //100->1 200->2
  103. int saved_feedmultiply;
  104. volatile bool feedmultiplychanged=false;
  105. //===========================================================================
  106. //=============================private variables=============================
  107. //===========================================================================
  108. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  109. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  110. static float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  111. static float offset[3] = {0.0, 0.0, 0.0};
  112. static bool home_all_axis = true;
  113. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  114. static long gcode_N, gcode_LastN;
  115. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  116. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  117. static uint8_t fanpwm=0;
  118. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  119. static bool fromsd[BUFSIZE];
  120. static int bufindr = 0;
  121. static int bufindw = 0;
  122. static int buflen = 0;
  123. static int i = 0;
  124. static char serial_char;
  125. static int serial_count = 0;
  126. static boolean comment_mode = false;
  127. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  128. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  129. static float tt = 0, bt = 0;
  130. //Inactivity shutdown variables
  131. static unsigned long previous_millis_cmd = 0;
  132. static unsigned long max_inactive_time = 0;
  133. static unsigned long stepper_inactive_time = 0;
  134. static unsigned long starttime=0;
  135. static unsigned long stoptime=0;
  136. //===========================================================================
  137. //=============================ROUTINES=============================
  138. //===========================================================================
  139. //adds an command to the main command buffer
  140. //thats really done in a non-safe way.
  141. //needs overworking someday
  142. void enquecommand(const char *cmd)
  143. {
  144. if(buflen < BUFSIZE)
  145. {
  146. //this is dangerous if a mixing of serial and this happsens
  147. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  148. SERIAL_ECHOLN("enqueing \""<<cmdbuffer[bufindw]<<"\"");
  149. bufindw= (bufindw + 1)%BUFSIZE;
  150. buflen += 1;
  151. }
  152. }
  153. void setup()
  154. {
  155. Serial.begin(BAUDRATE);
  156. SERIAL_ECHOLN("Marlin "<<version_string);
  157. Serial.println("start");
  158. for(int i = 0; i < BUFSIZE; i++)
  159. {
  160. fromsd[i] = false;
  161. }
  162. RetrieveSettings(); // loads data from EEPROM if available
  163. for(int i=0; i < NUM_AXIS; i++)
  164. {
  165. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  166. }
  167. plan_init(); // Initialize planner;
  168. st_init(); // Initialize stepper;
  169. tp_init(); // Initialize temperature loop
  170. }
  171. void loop()
  172. {
  173. if(buflen<3)
  174. get_command();
  175. card.checkautostart(false);
  176. if(buflen)
  177. {
  178. #ifdef SDSUPPORT
  179. if(card.saving)
  180. {
  181. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  182. {
  183. card.write_command(cmdbuffer[bufindr]);
  184. Serial.println("ok");
  185. }
  186. else
  187. {
  188. card.closefile();
  189. Serial.println("Done saving file.");
  190. }
  191. }
  192. else
  193. {
  194. process_commands();
  195. }
  196. #else
  197. process_commands();
  198. #endif //SDSUPPORT
  199. buflen = (buflen-1);
  200. bufindr = (bufindr + 1)%BUFSIZE;
  201. }
  202. //check heater every n milliseconds
  203. manage_heater();
  204. manage_inactivity(1);
  205. LCD_STATUS;
  206. }
  207. inline void get_command()
  208. {
  209. while( Serial.available() > 0 && buflen < BUFSIZE) {
  210. serial_char = Serial.read();
  211. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  212. {
  213. if(!serial_count) return; //if empty line
  214. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  215. if(!comment_mode){
  216. fromsd[bufindw] = false;
  217. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  218. {
  219. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  220. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  221. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  222. Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
  223. Serial.println(gcode_LastN);
  224. //Serial.println(gcode_N);
  225. FlushSerialRequestResend();
  226. serial_count = 0;
  227. return;
  228. }
  229. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  230. {
  231. byte checksum = 0;
  232. byte count = 0;
  233. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  234. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  235. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  236. Serial.print("Error: checksum mismatch, Last Line:");
  237. Serial.println(gcode_LastN);
  238. FlushSerialRequestResend();
  239. serial_count = 0;
  240. return;
  241. }
  242. //if no errors, continue parsing
  243. }
  244. else
  245. {
  246. Serial.print("Error: No Checksum with line number, Last Line:");
  247. Serial.println(gcode_LastN);
  248. FlushSerialRequestResend();
  249. serial_count = 0;
  250. return;
  251. }
  252. gcode_LastN = gcode_N;
  253. //if no errors, continue parsing
  254. }
  255. else // if we don't receive 'N' but still see '*'
  256. {
  257. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  258. {
  259. Serial.print("Error: No Line Number with checksum, Last Line:");
  260. Serial.println(gcode_LastN);
  261. serial_count = 0;
  262. return;
  263. }
  264. }
  265. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  266. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  267. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  268. case 0:
  269. case 1:
  270. case 2:
  271. case 3:
  272. #ifdef SDSUPPORT
  273. if(card.saving)
  274. break;
  275. #endif //SDSUPPORT
  276. Serial.println("ok");
  277. break;
  278. default:
  279. break;
  280. }
  281. }
  282. bufindw = (bufindw + 1)%BUFSIZE;
  283. buflen += 1;
  284. }
  285. comment_mode = false; //for new command
  286. serial_count = 0; //clear buffer
  287. }
  288. else
  289. {
  290. if(serial_char == ';') comment_mode = true;
  291. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  292. }
  293. }
  294. #ifdef SDSUPPORT
  295. if(!card.sdprinting || serial_count!=0){
  296. return;
  297. }
  298. while( !card.eof() && buflen < BUFSIZE) {
  299. serial_char = card.get();
  300. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1))
  301. {
  302. if(card.eof()){
  303. card.sdprinting = false;
  304. Serial.println("echo: Done printing file");
  305. stoptime=millis();
  306. char time[30];
  307. unsigned long t=(stoptime-starttime)/1000;
  308. int sec,min;
  309. min=t/60;
  310. sec=t%60;
  311. sprintf(time,"echo: %i min, %i sec",min,sec);
  312. Serial.println(time);
  313. LCD_MESSAGE(time);
  314. card.checkautostart(true);
  315. }
  316. if(!serial_count)
  317. return; //if empty line
  318. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  319. if(!comment_mode){
  320. fromsd[bufindw] = true;
  321. buflen += 1;
  322. bufindw = (bufindw + 1)%BUFSIZE;
  323. }
  324. comment_mode = false; //for new command
  325. serial_count = 0; //clear buffer
  326. }
  327. else
  328. {
  329. if(serial_char == ';') comment_mode = true;
  330. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  331. }
  332. }
  333. #endif //SDSUPPORT
  334. }
  335. inline float code_value()
  336. {
  337. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  338. }
  339. inline long code_value_long()
  340. {
  341. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  342. }
  343. inline bool code_seen(char code_string[]) //Return True if the string was found
  344. {
  345. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  346. }
  347. inline bool code_seen(char code)
  348. {
  349. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  350. return (strchr_pointer != NULL); //Return True if a character was found
  351. }
  352. inline void process_commands()
  353. {
  354. unsigned long codenum; //throw away variable
  355. char *starpos = NULL;
  356. if(code_seen('G'))
  357. {
  358. switch((int)code_value())
  359. {
  360. case 0: // G0 -> G1
  361. case 1: // G1
  362. get_coordinates(); // For X Y Z E F
  363. prepare_move();
  364. previous_millis_cmd = millis();
  365. //ClearToSend();
  366. return;
  367. //break;
  368. case 2: // G2 - CW ARC
  369. get_arc_coordinates();
  370. prepare_arc_move(true);
  371. previous_millis_cmd = millis();
  372. return;
  373. case 3: // G3 - CCW ARC
  374. get_arc_coordinates();
  375. prepare_arc_move(false);
  376. previous_millis_cmd = millis();
  377. return;
  378. case 4: // G4 dwell
  379. codenum = 0;
  380. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  381. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  382. codenum += millis(); // keep track of when we started waiting
  383. while(millis() < codenum ){
  384. manage_heater();
  385. }
  386. break;
  387. case 28: //G28 Home all Axis one at a time
  388. saved_feedrate = feedrate;
  389. saved_feedmultiply = feedmultiply;
  390. feedmultiply = 100;
  391. for(int i=0; i < NUM_AXIS; i++) {
  392. destination[i] = current_position[i];
  393. }
  394. feedrate = 0.0;
  395. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  396. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  397. {
  398. if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
  399. // st_synchronize();
  400. current_position[X_AXIS] = 0;
  401. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  402. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
  403. feedrate = homing_feedrate[X_AXIS];
  404. prepare_move();
  405. // st_synchronize();
  406. current_position[X_AXIS] = 0;
  407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  408. destination[X_AXIS] = -5 * X_HOME_DIR;
  409. prepare_move();
  410. // st_synchronize();
  411. destination[X_AXIS] = 10 * X_HOME_DIR;
  412. feedrate = homing_feedrate[X_AXIS]/2 ;
  413. prepare_move();
  414. // st_synchronize();
  415. current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
  416. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  417. destination[X_AXIS] = current_position[X_AXIS];
  418. feedrate = 0.0;
  419. }
  420. }
  421. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  422. if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
  423. current_position[Y_AXIS] = 0;
  424. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  425. destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  426. feedrate = homing_feedrate[Y_AXIS];
  427. prepare_move();
  428. // st_synchronize();
  429. current_position[Y_AXIS] = 0;
  430. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  431. destination[Y_AXIS] = -5 * Y_HOME_DIR;
  432. prepare_move();
  433. // st_synchronize();
  434. destination[Y_AXIS] = 10 * Y_HOME_DIR;
  435. feedrate = homing_feedrate[Y_AXIS]/2;
  436. prepare_move();
  437. // st_synchronize();
  438. current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
  439. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  440. destination[Y_AXIS] = current_position[Y_AXIS];
  441. feedrate = 0.0;
  442. }
  443. }
  444. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  445. if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
  446. current_position[Z_AXIS] = 0;
  447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  448. destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
  449. feedrate = homing_feedrate[Z_AXIS];
  450. prepare_move();
  451. // st_synchronize();
  452. current_position[Z_AXIS] = 0;
  453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  454. destination[Z_AXIS] = -2 * Z_HOME_DIR;
  455. prepare_move();
  456. // st_synchronize();
  457. destination[Z_AXIS] = 3 * Z_HOME_DIR;
  458. feedrate = homing_feedrate[Z_AXIS]/2;
  459. prepare_move();
  460. // st_synchronize();
  461. current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
  462. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  463. destination[Z_AXIS] = current_position[Z_AXIS];
  464. feedrate = 0.0;
  465. }
  466. }
  467. feedrate = saved_feedrate;
  468. feedmultiply = saved_feedmultiply;
  469. previous_millis_cmd = millis();
  470. break;
  471. case 90: // G90
  472. relative_mode = false;
  473. break;
  474. case 91: // G91
  475. relative_mode = true;
  476. break;
  477. case 92: // G92
  478. if(!code_seen(axis_codes[E_AXIS]))
  479. st_synchronize();
  480. for(int i=0; i < NUM_AXIS; i++) {
  481. if(code_seen(axis_codes[i])) current_position[i] = code_value();
  482. }
  483. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  484. break;
  485. }
  486. }
  487. else if(code_seen('M'))
  488. {
  489. switch( (int)code_value() )
  490. {
  491. #ifdef SDSUPPORT
  492. case 20: // M20 - list SD card
  493. Serial.println("Begin file list");
  494. card.ls();
  495. Serial.println("End file list");
  496. break;
  497. case 21: // M21 - init SD card
  498. card.initsd();
  499. break;
  500. case 22: //M22 - release SD card
  501. card.release();
  502. break;
  503. case 23: //M23 - Select file
  504. starpos = (strchr(strchr_pointer + 4,'*'));
  505. if(starpos!=NULL)
  506. *(starpos-1)='\0';
  507. card.selectFile(strchr_pointer + 4);
  508. break;
  509. case 24: //M24 - Start SD print
  510. card.startFileprint();
  511. starttime=millis();
  512. break;
  513. case 25: //M25 - Pause SD print
  514. card.pauseSDPrint();
  515. break;
  516. case 26: //M26 - Set SD index
  517. if(card.cardOK && code_seen('S')){
  518. card.setIndex(code_value_long());
  519. }
  520. break;
  521. case 27: //M27 - Get SD status
  522. card.getStatus();
  523. break;
  524. case 28: //M28 - Start SD write
  525. starpos = (strchr(strchr_pointer + 4,'*'));
  526. if(starpos != NULL){
  527. char* npos = strchr(cmdbuffer[bufindr], 'N');
  528. strchr_pointer = strchr(npos,' ') + 1;
  529. *(starpos-1) = '\0';
  530. }
  531. card.startFilewrite(strchr_pointer+4);
  532. break;
  533. case 29: //M29 - Stop SD write
  534. //processed in write to file routine above
  535. //card,saving = false;
  536. break;
  537. #endif //SDSUPPORT
  538. case 30: //M30 take time since the start of the SD print or an M109 command
  539. {
  540. stoptime=millis();
  541. char time[30];
  542. unsigned long t=(stoptime-starttime)/1000;
  543. int sec,min;
  544. min=t/60;
  545. sec=t%60;
  546. sprintf(time,"echo: time needed %i min, %i sec",min,sec);
  547. Serial.println(time);
  548. LCD_MESSAGE(time);
  549. }
  550. break;
  551. case 42: //M42 -Change pin status via gcode
  552. if (code_seen('S'))
  553. {
  554. int pin_status = code_value();
  555. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  556. {
  557. int pin_number = code_value();
  558. for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
  559. {
  560. if (sensitive_pins[i] == pin_number)
  561. {
  562. pin_number = -1;
  563. break;
  564. }
  565. }
  566. if (pin_number > -1)
  567. {
  568. pinMode(pin_number, OUTPUT);
  569. digitalWrite(pin_number, pin_status);
  570. analogWrite(pin_number, pin_status);
  571. }
  572. }
  573. }
  574. break;
  575. case 104: // M104
  576. if (code_seen('S')) setTargetHotend0(code_value());
  577. setWatch();
  578. break;
  579. case 140: // M140 set bed temp
  580. if (code_seen('S')) setTargetBed(code_value());
  581. break;
  582. case 105: // M105
  583. #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
  584. tt = degHotend0();
  585. #endif
  586. #if TEMP_1_PIN > -1
  587. bt = degBed();
  588. #endif
  589. #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
  590. Serial.print("ok T:");
  591. Serial.print(tt);
  592. #if TEMP_1_PIN > -1
  593. #ifdef PIDTEMP
  594. Serial.print(" B:");
  595. #if TEMP_1_PIN > -1
  596. Serial.println(bt);
  597. #else
  598. Serial.println(HeaterPower);
  599. #endif
  600. #else //not PIDTEMP
  601. Serial.println();
  602. #endif //PIDTEMP
  603. #else
  604. Serial.println();
  605. #endif //TEMP_1_PIN
  606. #else
  607. Serial.println("echo: No thermistors - no temp");
  608. #endif
  609. return;
  610. break;
  611. case 109:
  612. {// M109 - Wait for extruder heater to reach target.
  613. LCD_MESSAGE("Heating...");
  614. if (code_seen('S')) setTargetHotend0(code_value());
  615. setWatch();
  616. codenum = millis();
  617. /* See if we are heating up or cooling down */
  618. bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
  619. #ifdef TEMP_RESIDENCY_TIME
  620. long residencyStart;
  621. residencyStart = -1;
  622. /* continue to loop until we have reached the target temp
  623. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  624. while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ||
  625. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  626. #else
  627. while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) {
  628. #endif //TEMP_RESIDENCY_TIME
  629. if( (millis() - codenum) > 1000 )
  630. { //Print Temp Reading every 1 second while heating up/cooling down
  631. Serial.print("T:");
  632. Serial.println( degHotend0() );
  633. codenum = millis();
  634. }
  635. manage_heater();
  636. LCD_STATUS;
  637. #ifdef TEMP_RESIDENCY_TIME
  638. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  639. or when current temp falls outside the hysteresis after target temp was reached */
  640. if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
  641. (residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
  642. (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) )
  643. {
  644. residencyStart = millis();
  645. }
  646. #endif //TEMP_RESIDENCY_TIME
  647. }
  648. LCD_MESSAGE("Heating done.");
  649. starttime=millis();
  650. }
  651. break;
  652. case 190: // M190 - Wait bed for heater to reach target.
  653. #if TEMP_1_PIN > -1
  654. if (code_seen('S')) setTargetBed(code_value());
  655. codenum = millis();
  656. while(isHeatingBed())
  657. {
  658. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  659. {
  660. float tt=degHotend0();
  661. Serial.print("T:");
  662. Serial.println( tt );
  663. Serial.print("ok T:");
  664. Serial.print( tt );
  665. Serial.print(" B:");
  666. Serial.println( degBed() );
  667. codenum = millis();
  668. }
  669. manage_heater();
  670. }
  671. #endif
  672. break;
  673. #if FAN_PIN > -1
  674. case 106: //M106 Fan On
  675. if (code_seen('S')){
  676. WRITE(FAN_PIN,HIGH);
  677. fanpwm=constrain(code_value(),0,255);
  678. analogWrite(FAN_PIN, fanpwm);
  679. }
  680. else {
  681. WRITE(FAN_PIN,HIGH);
  682. fanpwm=255;
  683. analogWrite(FAN_PIN, fanpwm);
  684. }
  685. break;
  686. case 107: //M107 Fan Off
  687. WRITE(FAN_PIN,LOW);
  688. analogWrite(FAN_PIN, 0);
  689. break;
  690. #endif //FAN_PIN
  691. #if (PS_ON_PIN > -1)
  692. case 80: // M80 - ATX Power On
  693. SET_OUTPUT(PS_ON_PIN); //GND
  694. break;
  695. case 81: // M81 - ATX Power Off
  696. SET_INPUT(PS_ON_PIN); //Floating
  697. break;
  698. #endif
  699. case 82:
  700. axis_relative_modes[3] = false;
  701. break;
  702. case 83:
  703. axis_relative_modes[3] = true;
  704. break;
  705. case 18: //compatibility
  706. case 84:
  707. if(code_seen('S')){
  708. stepper_inactive_time = code_value() * 1000;
  709. }
  710. else
  711. {
  712. st_synchronize();
  713. disable_x();
  714. disable_y();
  715. disable_z();
  716. disable_e();
  717. }
  718. break;
  719. case 85: // M85
  720. code_seen('S');
  721. max_inactive_time = code_value() * 1000;
  722. break;
  723. case 92: // M92
  724. for(int i=0; i < NUM_AXIS; i++)
  725. {
  726. if(code_seen(axis_codes[i]))
  727. axis_steps_per_unit[i] = code_value();
  728. }
  729. break;
  730. case 115: // M115
  731. Serial.println("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  732. break;
  733. case 114: // M114
  734. Serial.print("X:");
  735. Serial.print(current_position[X_AXIS]);
  736. Serial.print("Y:");
  737. Serial.print(current_position[Y_AXIS]);
  738. Serial.print("Z:");
  739. Serial.print(current_position[Z_AXIS]);
  740. Serial.print("E:");
  741. Serial.print(current_position[E_AXIS]);
  742. #ifdef DEBUG_STEPS
  743. Serial.print(" Count X:");
  744. Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
  745. Serial.print("Y:");
  746. Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
  747. Serial.print("Z:");
  748. Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
  749. #endif
  750. Serial.println("");
  751. break;
  752. case 119: // M119
  753. #if (X_MIN_PIN > -1)
  754. Serial.print("x_min:");
  755. Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
  756. #endif
  757. #if (X_MAX_PIN > -1)
  758. Serial.print("x_max:");
  759. Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
  760. #endif
  761. #if (Y_MIN_PIN > -1)
  762. Serial.print("y_min:");
  763. Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
  764. #endif
  765. #if (Y_MAX_PIN > -1)
  766. Serial.print("y_max:");
  767. Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
  768. #endif
  769. #if (Z_MIN_PIN > -1)
  770. Serial.print("z_min:");
  771. Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
  772. #endif
  773. #if (Z_MAX_PIN > -1)
  774. Serial.print("z_max:");
  775. Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
  776. #endif
  777. Serial.println("");
  778. break;
  779. //TODO: update for all axis, use for loop
  780. case 201: // M201
  781. for(int i=0; i < NUM_AXIS; i++)
  782. {
  783. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  784. }
  785. break;
  786. #if 0 // Not used for Sprinter/grbl gen6
  787. case 202: // M202
  788. for(int i=0; i < NUM_AXIS; i++) {
  789. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  790. }
  791. break;
  792. #endif
  793. case 203: // M203 max feedrate mm/sec
  794. for(int i=0; i < NUM_AXIS; i++) {
  795. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
  796. }
  797. break;
  798. case 204: // M204 acclereration S normal moves T filmanent only moves
  799. {
  800. if(code_seen('S')) acceleration = code_value() ;
  801. if(code_seen('T')) retract_acceleration = code_value() ;
  802. }
  803. break;
  804. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  805. {
  806. if(code_seen('S')) minimumfeedrate = code_value()*60 ;
  807. if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
  808. if(code_seen('B')) minsegmenttime = code_value() ;
  809. if(code_seen('X')) max_xy_jerk = code_value()*60 ;
  810. if(code_seen('Z')) max_z_jerk = code_value()*60 ;
  811. }
  812. break;
  813. case 220: // M220 S<factor in percent>- set speed factor override percentage
  814. {
  815. if(code_seen('S'))
  816. {
  817. feedmultiply = code_value() ;
  818. feedmultiplychanged=true;
  819. }
  820. }
  821. break;
  822. #ifdef PIDTEMP
  823. case 301: // M301
  824. if(code_seen('P')) Kp = code_value();
  825. if(code_seen('I')) Ki = code_value()*PID_dT;
  826. if(code_seen('D')) Kd = code_value()/PID_dT;
  827. break;
  828. #endif //PIDTEMP
  829. case 500: // Store settings in EEPROM
  830. {
  831. StoreSettings();
  832. }
  833. break;
  834. case 501: // Read settings from EEPROM
  835. {
  836. RetrieveSettings();
  837. }
  838. break;
  839. case 502: // Revert to default settings
  840. {
  841. RetrieveSettings(true);
  842. }
  843. break;
  844. }
  845. }
  846. else
  847. {
  848. Serial.print("echo: Unknown command:\"");
  849. Serial.print(cmdbuffer[bufindr]);
  850. Serial.println("\"");
  851. }
  852. ClearToSend();
  853. }
  854. void FlushSerialRequestResend()
  855. {
  856. //char cmdbuffer[bufindr][100]="Resend:";
  857. Serial.flush();
  858. Serial.print("Resend:");
  859. Serial.println(gcode_LastN + 1);
  860. ClearToSend();
  861. }
  862. void ClearToSend()
  863. {
  864. previous_millis_cmd = millis();
  865. #ifdef SDSUPPORT
  866. if(fromsd[bufindr])
  867. return;
  868. #endif //SDSUPPORT
  869. Serial.println("ok");
  870. }
  871. inline void get_coordinates()
  872. {
  873. for(int i=0; i < NUM_AXIS; i++) {
  874. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  875. else destination[i] = current_position[i]; //Are these else lines really needed?
  876. }
  877. if(code_seen('F')) {
  878. next_feedrate = code_value();
  879. if(next_feedrate > 0.0) feedrate = next_feedrate;
  880. }
  881. }
  882. inline void get_arc_coordinates()
  883. {
  884. get_coordinates();
  885. if(code_seen('I')) offset[0] = code_value();
  886. if(code_seen('J')) offset[1] = code_value();
  887. }
  888. void prepare_move()
  889. {
  890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
  891. for(int i=0; i < NUM_AXIS; i++) {
  892. current_position[i] = destination[i];
  893. }
  894. }
  895. void prepare_arc_move(char isclockwise) {
  896. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  897. // Trace the arc
  898. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
  899. // As far as the parser is concerned, the position is now == target. In reality the
  900. // motion control system might still be processing the action and the real tool position
  901. // in any intermediate location.
  902. for(int i=0; i < NUM_AXIS; i++) {
  903. current_position[i] = destination[i];
  904. }
  905. }
  906. void manage_inactivity(byte debug)
  907. {
  908. if( (millis()-previous_millis_cmd) > max_inactive_time )
  909. if(max_inactive_time)
  910. kill();
  911. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  912. if(stepper_inactive_time)
  913. {
  914. disable_x();
  915. disable_y();
  916. disable_z();
  917. disable_e();
  918. }
  919. check_axes_activity();
  920. }
  921. void kill()
  922. {
  923. disable_heater();
  924. disable_x();
  925. disable_y();
  926. disable_z();
  927. disable_e();
  928. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  929. SERIAL_ERRORLN("Printer halted. kill() called !!");
  930. while(1); // Wait for reset
  931. }