My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 41KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  65. bool abort_on_endstop_hit = false;
  66. #endif
  67. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  68. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  69. #endif
  70. static bool old_x_min_endstop = false,
  71. old_x_max_endstop = false,
  72. old_y_min_endstop = false,
  73. old_y_max_endstop = false,
  74. old_z_min_endstop = false,
  75. #ifndef Z_DUAL_ENDSTOPS
  76. old_z_max_endstop = false;
  77. #else
  78. old_z_max_endstop = false,
  79. old_z2_min_endstop = false,
  80. old_z2_max_endstop = false;
  81. #endif
  82. #ifdef Z_PROBE_AND_ENDSTOP
  83. static bool old_z_probe_endstop = false;
  84. #endif
  85. static bool check_endstops = true;
  86. volatile long count_position[NUM_AXIS] = { 0 };
  87. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  88. //===========================================================================
  89. //================================ functions ================================
  90. //===========================================================================
  91. #ifdef DUAL_X_CARRIAGE
  92. #define X_APPLY_DIR(v,ALWAYS) \
  93. if (extruder_duplication_enabled || ALWAYS) { \
  94. X_DIR_WRITE(v); \
  95. X2_DIR_WRITE(v); \
  96. } \
  97. else { \
  98. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  99. }
  100. #define X_APPLY_STEP(v,ALWAYS) \
  101. if (extruder_duplication_enabled || ALWAYS) { \
  102. X_STEP_WRITE(v); \
  103. X2_STEP_WRITE(v); \
  104. } \
  105. else { \
  106. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  107. }
  108. #else
  109. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  110. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  111. #endif
  112. #ifdef Y_DUAL_STEPPER_DRIVERS
  113. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  114. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  115. #else
  116. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  117. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  118. #endif
  119. #ifdef Z_DUAL_STEPPER_DRIVERS
  120. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  121. #ifdef Z_DUAL_ENDSTOPS
  122. #define Z_APPLY_STEP(v,Q) \
  123. if (performing_homing) { \
  124. if (Z_HOME_DIR > 0) {\
  125. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  126. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  127. } else {\
  128. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  129. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  130. } \
  131. } else { \
  132. Z_STEP_WRITE(v); \
  133. Z2_STEP_WRITE(v); \
  134. }
  135. #else
  136. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  137. #endif
  138. #else
  139. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  140. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  141. #endif
  142. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  143. // intRes = intIn1 * intIn2 >> 16
  144. // uses:
  145. // r26 to store 0
  146. // r27 to store the byte 1 of the 24 bit result
  147. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  148. asm volatile ( \
  149. "clr r26 \n\t" \
  150. "mul %A1, %B2 \n\t" \
  151. "movw %A0, r0 \n\t" \
  152. "mul %A1, %A2 \n\t" \
  153. "add %A0, r1 \n\t" \
  154. "adc %B0, r26 \n\t" \
  155. "lsr r0 \n\t" \
  156. "adc %A0, r26 \n\t" \
  157. "adc %B0, r26 \n\t" \
  158. "clr r1 \n\t" \
  159. : \
  160. "=&r" (intRes) \
  161. : \
  162. "d" (charIn1), \
  163. "d" (intIn2) \
  164. : \
  165. "r26" \
  166. )
  167. // intRes = longIn1 * longIn2 >> 24
  168. // uses:
  169. // r26 to store 0
  170. // r27 to store the byte 1 of the 48bit result
  171. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  172. asm volatile ( \
  173. "clr r26 \n\t" \
  174. "mul %A1, %B2 \n\t" \
  175. "mov r27, r1 \n\t" \
  176. "mul %B1, %C2 \n\t" \
  177. "movw %A0, r0 \n\t" \
  178. "mul %C1, %C2 \n\t" \
  179. "add %B0, r0 \n\t" \
  180. "mul %C1, %B2 \n\t" \
  181. "add %A0, r0 \n\t" \
  182. "adc %B0, r1 \n\t" \
  183. "mul %A1, %C2 \n\t" \
  184. "add r27, r0 \n\t" \
  185. "adc %A0, r1 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %B1, %B2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %C1, %A2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %A2 \n\t" \
  196. "add r27, r1 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "lsr r27 \n\t" \
  200. "adc %A0, r26 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "clr r1 \n\t" \
  203. : \
  204. "=&r" (intRes) \
  205. : \
  206. "d" (longIn1), \
  207. "d" (longIn2) \
  208. : \
  209. "r26" , "r27" \
  210. )
  211. // Some useful constants
  212. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  213. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  214. void endstops_hit_on_purpose() {
  215. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  216. }
  217. void checkHitEndstops() {
  218. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  219. SERIAL_ECHO_START;
  220. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  221. if (endstop_x_hit) {
  222. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  223. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  224. }
  225. if (endstop_y_hit) {
  226. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  227. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  228. }
  229. if (endstop_z_hit) {
  230. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  231. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  232. }
  233. SERIAL_EOL;
  234. endstops_hit_on_purpose();
  235. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  236. if (abort_on_endstop_hit) {
  237. card.sdprinting = false;
  238. card.closefile();
  239. quickStop();
  240. setTargetHotend0(0);
  241. setTargetHotend1(0);
  242. setTargetHotend2(0);
  243. setTargetHotend3(0);
  244. setTargetBed(0);
  245. }
  246. #endif
  247. }
  248. }
  249. void enable_endstops(bool check) { check_endstops = check; }
  250. // __________________________
  251. // /| |\ _________________ ^
  252. // / | | \ /| |\ |
  253. // / | | \ / | | \ s
  254. // / | | | | | \ p
  255. // / | | | | | \ e
  256. // +-----+------------------------+---+--+---------------+----+ e
  257. // | BLOCK 1 | BLOCK 2 | d
  258. //
  259. // time ----->
  260. //
  261. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  262. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  263. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  264. // The slope of acceleration is calculated with the leib ramp alghorithm.
  265. void st_wake_up() {
  266. // TCNT1 = 0;
  267. ENABLE_STEPPER_DRIVER_INTERRUPT();
  268. }
  269. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  270. unsigned short timer;
  271. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  272. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  273. step_rate = (step_rate >> 2) & 0x3fff;
  274. step_loops = 4;
  275. }
  276. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  277. step_rate = (step_rate >> 1) & 0x7fff;
  278. step_loops = 2;
  279. }
  280. else {
  281. step_loops = 1;
  282. }
  283. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  284. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  285. if (step_rate >= (8 * 256)) { // higher step rate
  286. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  287. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  288. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  289. MultiU16X8toH16(timer, tmp_step_rate, gain);
  290. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  291. }
  292. else { // lower step rates
  293. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  294. table_address += ((step_rate)>>1) & 0xfffc;
  295. timer = (unsigned short)pgm_read_word_near(table_address);
  296. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  297. }
  298. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  299. return timer;
  300. }
  301. // Initializes the trapezoid generator from the current block. Called whenever a new
  302. // block begins.
  303. FORCE_INLINE void trapezoid_generator_reset() {
  304. #ifdef ADVANCE
  305. advance = current_block->initial_advance;
  306. final_advance = current_block->final_advance;
  307. // Do E steps + advance steps
  308. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  309. old_advance = advance >>8;
  310. #endif
  311. deceleration_time = 0;
  312. // step_rate to timer interval
  313. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  314. // make a note of the number of step loops required at nominal speed
  315. step_loops_nominal = step_loops;
  316. acc_step_rate = current_block->initial_rate;
  317. acceleration_time = calc_timer(acc_step_rate);
  318. OCR1A = acceleration_time;
  319. // SERIAL_ECHO_START;
  320. // SERIAL_ECHOPGM("advance :");
  321. // SERIAL_ECHO(current_block->advance/256.0);
  322. // SERIAL_ECHOPGM("advance rate :");
  323. // SERIAL_ECHO(current_block->advance_rate/256.0);
  324. // SERIAL_ECHOPGM("initial advance :");
  325. // SERIAL_ECHO(current_block->initial_advance/256.0);
  326. // SERIAL_ECHOPGM("final advance :");
  327. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  328. }
  329. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  330. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  331. ISR(TIMER1_COMPA_vect) {
  332. if(cleaning_buffer_counter)
  333. {
  334. current_block = NULL;
  335. plan_discard_current_block();
  336. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  337. cleaning_buffer_counter--;
  338. OCR1A = 200;
  339. return;
  340. }
  341. // If there is no current block, attempt to pop one from the buffer
  342. if (!current_block) {
  343. // Anything in the buffer?
  344. current_block = plan_get_current_block();
  345. if (current_block) {
  346. current_block->busy = true;
  347. trapezoid_generator_reset();
  348. counter_x = -(current_block->step_event_count >> 1);
  349. counter_y = counter_z = counter_e = counter_x;
  350. step_events_completed = 0;
  351. #ifdef Z_LATE_ENABLE
  352. if (current_block->steps[Z_AXIS] > 0) {
  353. enable_z();
  354. OCR1A = 2000; //1ms wait
  355. return;
  356. }
  357. #endif
  358. // #ifdef ADVANCE
  359. // e_steps[current_block->active_extruder] = 0;
  360. // #endif
  361. }
  362. else {
  363. OCR1A = 2000; // 1kHz.
  364. }
  365. }
  366. if (current_block != NULL) {
  367. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  368. out_bits = current_block->direction_bits;
  369. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  370. if (TEST(out_bits, X_AXIS)) {
  371. X_APPLY_DIR(INVERT_X_DIR,0);
  372. count_direction[X_AXIS] = -1;
  373. }
  374. else {
  375. X_APPLY_DIR(!INVERT_X_DIR,0);
  376. count_direction[X_AXIS] = 1;
  377. }
  378. if (TEST(out_bits, Y_AXIS)) {
  379. Y_APPLY_DIR(INVERT_Y_DIR,0);
  380. count_direction[Y_AXIS] = -1;
  381. }
  382. else {
  383. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  384. count_direction[Y_AXIS] = 1;
  385. }
  386. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  387. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  388. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  389. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  390. endstop_## axis ##_hit = true; \
  391. step_events_completed = current_block->step_event_count; \
  392. } \
  393. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  394. // Check X and Y endstops
  395. if (check_endstops) {
  396. #ifdef COREXY
  397. // Head direction in -X axis for CoreXY bots.
  398. // If DeltaX == -DeltaY, the movement is only in Y axis
  399. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
  400. if (TEST(out_bits, X_HEAD))
  401. #else
  402. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  403. #endif
  404. { // -direction
  405. #ifdef DUAL_X_CARRIAGE
  406. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  407. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  408. #endif
  409. {
  410. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  411. UPDATE_ENDSTOP(x, X, min, MIN);
  412. #endif
  413. }
  414. }
  415. else { // +direction
  416. #ifdef DUAL_X_CARRIAGE
  417. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  418. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  419. #endif
  420. {
  421. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  422. UPDATE_ENDSTOP(x, X, max, MAX);
  423. #endif
  424. }
  425. }
  426. #ifdef COREXY
  427. // Head direction in -Y axis for CoreXY bots.
  428. // If DeltaX == DeltaY, the movement is only in X axis
  429. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
  430. if (TEST(out_bits, Y_HEAD))
  431. #else
  432. if (TEST(out_bits, Y_AXIS)) // -direction
  433. #endif
  434. { // -direction
  435. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  436. UPDATE_ENDSTOP(y, Y, min, MIN);
  437. #endif
  438. }
  439. else { // +direction
  440. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  441. UPDATE_ENDSTOP(y, Y, max, MAX);
  442. #endif
  443. }
  444. }
  445. if (TEST(out_bits, Z_AXIS)) { // -direction
  446. Z_APPLY_DIR(INVERT_Z_DIR,0);
  447. count_direction[Z_AXIS] = -1;
  448. if (check_endstops)
  449. {
  450. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  451. #ifndef Z_DUAL_ENDSTOPS
  452. UPDATE_ENDSTOP(z, Z, min, MIN);
  453. #else
  454. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  455. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
  456. bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
  457. #else
  458. bool z2_min_endstop=z_min_endstop;
  459. #endif
  460. if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
  461. {
  462. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  463. endstop_z_hit=true;
  464. if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
  465. {
  466. step_events_completed = current_block->step_event_count;
  467. }
  468. }
  469. old_z_min_endstop = z_min_endstop;
  470. old_z2_min_endstop = z2_min_endstop;
  471. #endif
  472. #endif
  473. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  474. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  475. bool z_probe_endstop(READ(Z_PROBE_PIN) != Z_MIN_ENDSTOP_INVERTING);
  476. if(z_probe_endstop && old_z_probe_endstop)
  477. {
  478. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  479. endstop_z_hit=true;
  480. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  481. if (!(performing_homing)) //if not performing home
  482. {
  483. step_events_completed = current_block->step_event_count;
  484. }
  485. }
  486. old_z_probe_endstop = z_probe_endstop;
  487. old_z2_probe_endstop = z2_probe_endstop;
  488. #endif
  489. }
  490. }
  491. else { // +direction
  492. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  493. count_direction[Z_AXIS] = 1;
  494. if (check_endstops) {
  495. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  496. #ifndef Z_DUAL_ENDSTOPS
  497. UPDATE_ENDSTOP(z, Z, max, MAX);
  498. #else
  499. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  500. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  501. bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
  502. #else
  503. bool z2_max_endstop=z_max_endstop;
  504. #endif
  505. if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
  506. {
  507. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  508. endstop_z_hit=true;
  509. // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
  510. // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
  511. if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
  512. {
  513. step_events_completed = current_block->step_event_count;
  514. }
  515. }
  516. old_z_max_endstop = z_max_endstop;
  517. old_z2_max_endstop = z2_max_endstop;
  518. #endif
  519. #endif
  520. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  521. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  522. bool z_probe_endstop(READ(Z_PROBE_PIN) != Z_MAX_ENDSTOP_INVERTING);
  523. if(z_probe_endstop && old_z_probe_endstop)
  524. {
  525. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  526. endstop_z_hit=true;
  527. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  528. if (!(performing_homing)) //if not performing home
  529. {
  530. step_events_completed = current_block->step_event_count;
  531. }
  532. }
  533. old_z_probe_endstop = z_probe_endstop;
  534. old_z2_probe_endstop = z2_probe_endstop;
  535. #endif
  536. }
  537. }
  538. #ifndef ADVANCE
  539. if (TEST(out_bits, E_AXIS)) { // -direction
  540. REV_E_DIR();
  541. count_direction[E_AXIS]=-1;
  542. }
  543. else { // +direction
  544. NORM_E_DIR();
  545. count_direction[E_AXIS]=1;
  546. }
  547. #endif //!ADVANCE
  548. // Take multiple steps per interrupt (For high speed moves)
  549. for (int8_t i=0; i < step_loops; i++) {
  550. #ifndef AT90USB
  551. MSerial.checkRx(); // Check for serial chars.
  552. #endif
  553. #ifdef ADVANCE
  554. counter_e += current_block->steps[E_AXIS];
  555. if (counter_e > 0) {
  556. counter_e -= current_block->step_event_count;
  557. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  558. }
  559. #endif //ADVANCE
  560. #ifdef CONFIG_STEPPERS_TOSHIBA
  561. /**
  562. * The Toshiba stepper controller require much longer pulses.
  563. * So we 'stage' decompose the pulses between high and low
  564. * instead of doing each in turn. The extra tests add enough
  565. * lag to allow it work with without needing NOPs
  566. */
  567. #define STEP_ADD(axis, AXIS) \
  568. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  569. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  570. STEP_ADD(x,X);
  571. STEP_ADD(y,Y);
  572. STEP_ADD(z,Z);
  573. #ifndef ADVANCE
  574. STEP_ADD(e,E);
  575. #endif
  576. #define STEP_IF_COUNTER(axis, AXIS) \
  577. if (counter_## axis > 0) { \
  578. counter_## axis -= current_block->step_event_count; \
  579. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  580. AXIS ##_STEP_WRITE(LOW); \
  581. }
  582. STEP_IF_COUNTER(x, X);
  583. STEP_IF_COUNTER(y, Y);
  584. STEP_IF_COUNTER(z, Z);
  585. #ifndef ADVANCE
  586. STEP_IF_COUNTER(e, E);
  587. #endif
  588. #else // !CONFIG_STEPPERS_TOSHIBA
  589. #define APPLY_MOVEMENT(axis, AXIS) \
  590. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  591. if (counter_## axis > 0) { \
  592. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  593. counter_## axis -= current_block->step_event_count; \
  594. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  595. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  596. }
  597. APPLY_MOVEMENT(x, X);
  598. APPLY_MOVEMENT(y, Y);
  599. APPLY_MOVEMENT(z, Z);
  600. #ifndef ADVANCE
  601. APPLY_MOVEMENT(e, E);
  602. #endif
  603. #endif // CONFIG_STEPPERS_TOSHIBA
  604. step_events_completed++;
  605. if (step_events_completed >= current_block->step_event_count) break;
  606. }
  607. // Calculate new timer value
  608. unsigned short timer;
  609. unsigned short step_rate;
  610. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  611. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  612. acc_step_rate += current_block->initial_rate;
  613. // upper limit
  614. if (acc_step_rate > current_block->nominal_rate)
  615. acc_step_rate = current_block->nominal_rate;
  616. // step_rate to timer interval
  617. timer = calc_timer(acc_step_rate);
  618. OCR1A = timer;
  619. acceleration_time += timer;
  620. #ifdef ADVANCE
  621. for(int8_t i=0; i < step_loops; i++) {
  622. advance += advance_rate;
  623. }
  624. //if (advance > current_block->advance) advance = current_block->advance;
  625. // Do E steps + advance steps
  626. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  627. old_advance = advance >>8;
  628. #endif
  629. }
  630. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  631. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  632. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  633. step_rate = current_block->final_rate;
  634. }
  635. else {
  636. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  637. }
  638. // lower limit
  639. if (step_rate < current_block->final_rate)
  640. step_rate = current_block->final_rate;
  641. // step_rate to timer interval
  642. timer = calc_timer(step_rate);
  643. OCR1A = timer;
  644. deceleration_time += timer;
  645. #ifdef ADVANCE
  646. for(int8_t i=0; i < step_loops; i++) {
  647. advance -= advance_rate;
  648. }
  649. if (advance < final_advance) advance = final_advance;
  650. // Do E steps + advance steps
  651. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  652. old_advance = advance >>8;
  653. #endif //ADVANCE
  654. }
  655. else {
  656. OCR1A = OCR1A_nominal;
  657. // ensure we're running at the correct step rate, even if we just came off an acceleration
  658. step_loops = step_loops_nominal;
  659. }
  660. // If current block is finished, reset pointer
  661. if (step_events_completed >= current_block->step_event_count) {
  662. current_block = NULL;
  663. plan_discard_current_block();
  664. }
  665. }
  666. }
  667. #ifdef ADVANCE
  668. unsigned char old_OCR0A;
  669. // Timer interrupt for E. e_steps is set in the main routine;
  670. // Timer 0 is shared with millies
  671. ISR(TIMER0_COMPA_vect)
  672. {
  673. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  674. OCR0A = old_OCR0A;
  675. // Set E direction (Depends on E direction + advance)
  676. for(unsigned char i=0; i<4;i++) {
  677. if (e_steps[0] != 0) {
  678. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  679. if (e_steps[0] < 0) {
  680. E0_DIR_WRITE(INVERT_E0_DIR);
  681. e_steps[0]++;
  682. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  683. }
  684. else if (e_steps[0] > 0) {
  685. E0_DIR_WRITE(!INVERT_E0_DIR);
  686. e_steps[0]--;
  687. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  688. }
  689. }
  690. #if EXTRUDERS > 1
  691. if (e_steps[1] != 0) {
  692. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  693. if (e_steps[1] < 0) {
  694. E1_DIR_WRITE(INVERT_E1_DIR);
  695. e_steps[1]++;
  696. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  697. }
  698. else if (e_steps[1] > 0) {
  699. E1_DIR_WRITE(!INVERT_E1_DIR);
  700. e_steps[1]--;
  701. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  702. }
  703. }
  704. #endif
  705. #if EXTRUDERS > 2
  706. if (e_steps[2] != 0) {
  707. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  708. if (e_steps[2] < 0) {
  709. E2_DIR_WRITE(INVERT_E2_DIR);
  710. e_steps[2]++;
  711. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  712. }
  713. else if (e_steps[2] > 0) {
  714. E2_DIR_WRITE(!INVERT_E2_DIR);
  715. e_steps[2]--;
  716. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  717. }
  718. }
  719. #endif
  720. #if EXTRUDERS > 3
  721. if (e_steps[3] != 0) {
  722. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  723. if (e_steps[3] < 0) {
  724. E3_DIR_WRITE(INVERT_E3_DIR);
  725. e_steps[3]++;
  726. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  727. }
  728. else if (e_steps[3] > 0) {
  729. E3_DIR_WRITE(!INVERT_E3_DIR);
  730. e_steps[3]--;
  731. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  732. }
  733. }
  734. #endif
  735. }
  736. }
  737. #endif // ADVANCE
  738. void st_init() {
  739. digipot_init(); //Initialize Digipot Motor Current
  740. microstep_init(); //Initialize Microstepping Pins
  741. // initialise TMC Steppers
  742. #ifdef HAVE_TMCDRIVER
  743. tmc_init();
  744. #endif
  745. // initialise L6470 Steppers
  746. #ifdef HAVE_L6470DRIVER
  747. L6470_init();
  748. #endif
  749. // Initialize Dir Pins
  750. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  751. X_DIR_INIT;
  752. #endif
  753. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  754. X2_DIR_INIT;
  755. #endif
  756. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  757. Y_DIR_INIT;
  758. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  759. Y2_DIR_INIT;
  760. #endif
  761. #endif
  762. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  763. Z_DIR_INIT;
  764. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  765. Z2_DIR_INIT;
  766. #endif
  767. #endif
  768. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  769. E0_DIR_INIT;
  770. #endif
  771. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  772. E1_DIR_INIT;
  773. #endif
  774. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  775. E2_DIR_INIT;
  776. #endif
  777. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  778. E3_DIR_INIT;
  779. #endif
  780. //Initialize Enable Pins - steppers default to disabled.
  781. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  782. X_ENABLE_INIT;
  783. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  784. #endif
  785. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  786. X2_ENABLE_INIT;
  787. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  788. #endif
  789. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  790. Y_ENABLE_INIT;
  791. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  792. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  793. Y2_ENABLE_INIT;
  794. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  795. #endif
  796. #endif
  797. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  798. Z_ENABLE_INIT;
  799. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  800. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  801. Z2_ENABLE_INIT;
  802. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  803. #endif
  804. #endif
  805. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  806. E0_ENABLE_INIT;
  807. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  808. #endif
  809. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  810. E1_ENABLE_INIT;
  811. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  812. #endif
  813. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  814. E2_ENABLE_INIT;
  815. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  816. #endif
  817. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  818. E3_ENABLE_INIT;
  819. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  820. #endif
  821. //endstops and pullups
  822. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  823. SET_INPUT(X_MIN_PIN);
  824. #ifdef ENDSTOPPULLUP_XMIN
  825. WRITE(X_MIN_PIN,HIGH);
  826. #endif
  827. #endif
  828. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  829. SET_INPUT(Y_MIN_PIN);
  830. #ifdef ENDSTOPPULLUP_YMIN
  831. WRITE(Y_MIN_PIN,HIGH);
  832. #endif
  833. #endif
  834. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  835. SET_INPUT(Z_MIN_PIN);
  836. #ifdef ENDSTOPPULLUP_ZMIN
  837. WRITE(Z_MIN_PIN,HIGH);
  838. #endif
  839. #endif
  840. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  841. SET_INPUT(X_MAX_PIN);
  842. #ifdef ENDSTOPPULLUP_XMAX
  843. WRITE(X_MAX_PIN,HIGH);
  844. #endif
  845. #endif
  846. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  847. SET_INPUT(Y_MAX_PIN);
  848. #ifdef ENDSTOPPULLUP_YMAX
  849. WRITE(Y_MAX_PIN,HIGH);
  850. #endif
  851. #endif
  852. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  853. SET_INPUT(Z_MAX_PIN);
  854. #ifdef ENDSTOPPULLUP_ZMAX
  855. WRITE(Z_MAX_PIN,HIGH);
  856. #endif
  857. #endif
  858. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  859. SET_INPUT(Z2_MAX_PIN);
  860. #ifdef ENDSTOPPULLUP_ZMAX
  861. WRITE(Z2_MAX_PIN,HIGH);
  862. #endif
  863. #endif
  864. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0
  865. SET_INPUT(Z_PROBE_PIN);
  866. #ifdef ENDSTOPPULLUP_ZPROBE
  867. WRITE(Z_PROBE_PIN,HIGH);
  868. #endif
  869. #endif
  870. #define AXIS_INIT(axis, AXIS, PIN) \
  871. AXIS ##_STEP_INIT; \
  872. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  873. disable_## axis()
  874. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  875. // Initialize Step Pins
  876. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  877. AXIS_INIT(x, X, X);
  878. #endif
  879. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  880. AXIS_INIT(x, X2, X);
  881. #endif
  882. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  883. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  884. Y2_STEP_INIT;
  885. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  886. #endif
  887. AXIS_INIT(y, Y, Y);
  888. #endif
  889. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  890. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  891. Z2_STEP_INIT;
  892. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  893. #endif
  894. AXIS_INIT(z, Z, Z);
  895. #endif
  896. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  897. E_AXIS_INIT(0);
  898. #endif
  899. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  900. E_AXIS_INIT(1);
  901. #endif
  902. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  903. E_AXIS_INIT(2);
  904. #endif
  905. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  906. E_AXIS_INIT(3);
  907. #endif
  908. // waveform generation = 0100 = CTC
  909. TCCR1B &= ~BIT(WGM13);
  910. TCCR1B |= BIT(WGM12);
  911. TCCR1A &= ~BIT(WGM11);
  912. TCCR1A &= ~BIT(WGM10);
  913. // output mode = 00 (disconnected)
  914. TCCR1A &= ~(3<<COM1A0);
  915. TCCR1A &= ~(3<<COM1B0);
  916. // Set the timer pre-scaler
  917. // Generally we use a divider of 8, resulting in a 2MHz timer
  918. // frequency on a 16MHz MCU. If you are going to change this, be
  919. // sure to regenerate speed_lookuptable.h with
  920. // create_speed_lookuptable.py
  921. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  922. OCR1A = 0x4000;
  923. TCNT1 = 0;
  924. ENABLE_STEPPER_DRIVER_INTERRUPT();
  925. #ifdef ADVANCE
  926. #if defined(TCCR0A) && defined(WGM01)
  927. TCCR0A &= ~BIT(WGM01);
  928. TCCR0A &= ~BIT(WGM00);
  929. #endif
  930. e_steps[0] = 0;
  931. e_steps[1] = 0;
  932. e_steps[2] = 0;
  933. e_steps[3] = 0;
  934. TIMSK0 |= BIT(OCIE0A);
  935. #endif //ADVANCE
  936. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  937. sei();
  938. }
  939. // Block until all buffered steps are executed
  940. void st_synchronize() {
  941. while (blocks_queued()) {
  942. manage_heater();
  943. manage_inactivity();
  944. lcd_update();
  945. }
  946. }
  947. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  948. CRITICAL_SECTION_START;
  949. count_position[X_AXIS] = x;
  950. count_position[Y_AXIS] = y;
  951. count_position[Z_AXIS] = z;
  952. count_position[E_AXIS] = e;
  953. CRITICAL_SECTION_END;
  954. }
  955. void st_set_e_position(const long &e) {
  956. CRITICAL_SECTION_START;
  957. count_position[E_AXIS] = e;
  958. CRITICAL_SECTION_END;
  959. }
  960. long st_get_position(uint8_t axis) {
  961. long count_pos;
  962. CRITICAL_SECTION_START;
  963. count_pos = count_position[axis];
  964. CRITICAL_SECTION_END;
  965. return count_pos;
  966. }
  967. #ifdef ENABLE_AUTO_BED_LEVELING
  968. float st_get_position_mm(uint8_t axis) {
  969. float steper_position_in_steps = st_get_position(axis);
  970. return steper_position_in_steps / axis_steps_per_unit[axis];
  971. }
  972. #endif // ENABLE_AUTO_BED_LEVELING
  973. void finishAndDisableSteppers() {
  974. st_synchronize();
  975. disable_x();
  976. disable_y();
  977. disable_z();
  978. disable_e0();
  979. disable_e1();
  980. disable_e2();
  981. disable_e3();
  982. }
  983. void quickStop() {
  984. cleaning_buffer_counter = 5000;
  985. DISABLE_STEPPER_DRIVER_INTERRUPT();
  986. while (blocks_queued()) plan_discard_current_block();
  987. current_block = NULL;
  988. ENABLE_STEPPER_DRIVER_INTERRUPT();
  989. }
  990. #ifdef BABYSTEPPING
  991. // MUST ONLY BE CALLED BY AN ISR,
  992. // No other ISR should ever interrupt this!
  993. void babystep(const uint8_t axis, const bool direction) {
  994. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  995. enable_## axis(); \
  996. uint8_t old_pin = AXIS ##_DIR_READ; \
  997. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  998. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  999. _delay_us(1U); \
  1000. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  1001. AXIS ##_APPLY_DIR(old_pin, true); \
  1002. }
  1003. switch(axis) {
  1004. case X_AXIS:
  1005. BABYSTEP_AXIS(x, X, false);
  1006. break;
  1007. case Y_AXIS:
  1008. BABYSTEP_AXIS(y, Y, false);
  1009. break;
  1010. case Z_AXIS: {
  1011. #ifndef DELTA
  1012. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1013. #else // DELTA
  1014. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1015. enable_x();
  1016. enable_y();
  1017. enable_z();
  1018. uint8_t old_x_dir_pin = X_DIR_READ,
  1019. old_y_dir_pin = Y_DIR_READ,
  1020. old_z_dir_pin = Z_DIR_READ;
  1021. //setup new step
  1022. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1023. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1024. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1025. //perform step
  1026. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1027. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1028. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1029. _delay_us(1U);
  1030. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1031. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1032. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1033. //get old pin state back.
  1034. X_DIR_WRITE(old_x_dir_pin);
  1035. Y_DIR_WRITE(old_y_dir_pin);
  1036. Z_DIR_WRITE(old_z_dir_pin);
  1037. #endif
  1038. } break;
  1039. default: break;
  1040. }
  1041. }
  1042. #endif //BABYSTEPPING
  1043. // From Arduino DigitalPotControl example
  1044. void digitalPotWrite(int address, int value) {
  1045. #if HAS_DIGIPOTSS
  1046. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1047. SPI.transfer(address); // send in the address and value via SPI:
  1048. SPI.transfer(value);
  1049. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1050. //delay(10);
  1051. #endif
  1052. }
  1053. // Initialize Digipot Motor Current
  1054. void digipot_init() {
  1055. #if HAS_DIGIPOTSS
  1056. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1057. SPI.begin();
  1058. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1059. for (int i = 0; i <= 4; i++) {
  1060. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1061. digipot_current(i,digipot_motor_current[i]);
  1062. }
  1063. #endif
  1064. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1065. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1066. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1067. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1068. digipot_current(0, motor_current_setting[0]);
  1069. digipot_current(1, motor_current_setting[1]);
  1070. digipot_current(2, motor_current_setting[2]);
  1071. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1072. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1073. #endif
  1074. }
  1075. void digipot_current(uint8_t driver, int current) {
  1076. #if HAS_DIGIPOTSS
  1077. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1078. digitalPotWrite(digipot_ch[driver], current);
  1079. #endif
  1080. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1081. switch(driver) {
  1082. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1083. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1084. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1085. }
  1086. #endif
  1087. }
  1088. void microstep_init() {
  1089. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1090. pinMode(E1_MS1_PIN,OUTPUT);
  1091. pinMode(E1_MS2_PIN,OUTPUT);
  1092. #endif
  1093. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1094. pinMode(X_MS1_PIN,OUTPUT);
  1095. pinMode(X_MS2_PIN,OUTPUT);
  1096. pinMode(Y_MS1_PIN,OUTPUT);
  1097. pinMode(Y_MS2_PIN,OUTPUT);
  1098. pinMode(Z_MS1_PIN,OUTPUT);
  1099. pinMode(Z_MS2_PIN,OUTPUT);
  1100. pinMode(E0_MS1_PIN,OUTPUT);
  1101. pinMode(E0_MS2_PIN,OUTPUT);
  1102. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1103. for (int i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1104. microstep_mode(i, microstep_modes[i]);
  1105. #endif
  1106. }
  1107. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1108. if (ms1 >= 0) switch(driver) {
  1109. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1110. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1111. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1112. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1113. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1114. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1115. #endif
  1116. }
  1117. if (ms2 >= 0) switch(driver) {
  1118. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1119. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1120. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1121. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1122. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1123. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1124. #endif
  1125. }
  1126. }
  1127. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1128. switch(stepping_mode) {
  1129. case 1: microstep_ms(driver,MICROSTEP1); break;
  1130. case 2: microstep_ms(driver,MICROSTEP2); break;
  1131. case 4: microstep_ms(driver,MICROSTEP4); break;
  1132. case 8: microstep_ms(driver,MICROSTEP8); break;
  1133. case 16: microstep_ms(driver,MICROSTEP16); break;
  1134. }
  1135. }
  1136. void microstep_readings() {
  1137. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1138. SERIAL_PROTOCOLPGM("X: ");
  1139. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1140. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1141. SERIAL_PROTOCOLPGM("Y: ");
  1142. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1143. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1144. SERIAL_PROTOCOLPGM("Z: ");
  1145. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1146. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1147. SERIAL_PROTOCOLPGM("E0: ");
  1148. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1149. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1150. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1151. SERIAL_PROTOCOLPGM("E1: ");
  1152. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1153. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1154. #endif
  1155. }
  1156. #ifdef Z_DUAL_ENDSTOPS
  1157. void In_Homing_Process(bool state) { performing_homing = state; }
  1158. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1159. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1160. #endif