My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G26_Mesh_Validation_Tool.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  27. #include "ubl.h"
  28. #include "Marlin.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "ultralcd.h"
  33. #define EXTRUSION_MULTIPLIER 1.0
  34. #define RETRACTION_MULTIPLIER 1.0
  35. #define NOZZLE 0.4
  36. #define FILAMENT 1.75
  37. #define LAYER_HEIGHT 0.2
  38. #define PRIME_LENGTH 10.0
  39. #define BED_TEMP 60.0
  40. #define HOTEND_TEMP 205.0
  41. #define OOZE_AMOUNT 0.3
  42. #define SIZE_OF_INTERSECTION_CIRCLES 5
  43. #define SIZE_OF_CROSSHAIRS 3
  44. #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
  45. #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
  46. #endif
  47. /**
  48. * G26 Mesh Validation Tool
  49. *
  50. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  51. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  52. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  53. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  54. * the intersections of those lines (respectively).
  55. *
  56. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  57. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  58. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  59. * focus on a particular area of the Mesh where attention is needed.
  60. *
  61. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  62. *
  63. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  64. * as the base for any distance comparison.
  65. *
  66. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  67. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  68. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  69. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  70. * it is on.
  71. *
  72. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  73. *
  74. * F # Filament Used to specify the diameter of the filament being used. If not specified
  75. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  76. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  77. * of filament that is being extruded during the printing of the various lines on the bed.
  78. *
  79. * K Keep-On Keep the heaters turned on at the end of the command.
  80. *
  81. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  82. *
  83. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  84. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  85. *
  86. * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  87. * 'n' can be used instead if your host program does not appreciate you using 'N'.
  88. *
  89. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  90. * is over kill, but using this parameter will let you get the very first 'cicle' perfect
  91. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  92. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  93. *
  94. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  95. * given, no prime action will take place. If the parameter specifies an amount, that much
  96. * will be purged before continuing. If no amount is specified the command will start
  97. * purging filament until the user provides an LCD Click and then it will continue with
  98. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  99. * pliers while holding the LCD Click wheel in a depressed state.
  100. *
  101. * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  102. * undrawn cicle is still done. But the distance to the location for each circle has a
  103. * random number of the size specified added to it. Specifying R50 will give an interesting
  104. * deviation from the normal behaviour on a 10 x 10 Mesh.
  105. *
  106. * X # X coordinate Specify the starting location of the drawing activity.
  107. *
  108. * Y # Y coordinate Specify the starting location of the drawing activity.
  109. */
  110. // External references
  111. extern float feedrate;
  112. extern Planner planner;
  113. #if ENABLED(ULTRA_LCD)
  114. extern char lcd_status_message[];
  115. #endif
  116. extern float destination[XYZE];
  117. void set_destination_to_current();
  118. void set_current_to_destination();
  119. float code_value_float();
  120. float code_value_linear_units();
  121. float code_value_axis_units(const AxisEnum axis);
  122. bool code_value_bool();
  123. bool code_has_value();
  124. void lcd_init();
  125. void lcd_setstatuspgm(const char* const message, const uint8_t level);
  126. bool prepare_move_to_destination_cartesian();
  127. void line_to_destination();
  128. void line_to_destination(float);
  129. void sync_plan_position_e();
  130. void chirp_at_user();
  131. // Private functions
  132. void un_retract_filament(float where[XYZE]);
  133. void retract_filament(float where[XYZE]);
  134. void look_for_lines_to_connect();
  135. bool parse_G26_parameters();
  136. void move_to(const float&, const float&, const float&, const float&) ;
  137. void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
  138. bool turn_on_heaters();
  139. bool prime_nozzle();
  140. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
  141. float g26_e_axis_feedrate = 0.020,
  142. random_deviation = 0.0,
  143. layer_height = LAYER_HEIGHT;
  144. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  145. // retracts/recovers won't result in a bad state.
  146. float valid_trig_angle(float);
  147. mesh_index_pair find_closest_circle_to_print(const float&, const float&);
  148. static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
  149. retraction_multiplier = RETRACTION_MULTIPLIER,
  150. nozzle = NOZZLE,
  151. filament_diameter = FILAMENT,
  152. prime_length = PRIME_LENGTH,
  153. x_pos, y_pos,
  154. ooze_amount = OOZE_AMOUNT;
  155. static int16_t bed_temp = BED_TEMP,
  156. hotend_temp = HOTEND_TEMP;
  157. static int8_t prime_flag = 0;
  158. static bool keep_heaters_on = false;
  159. /**
  160. * G26: Mesh Validation Pattern generation.
  161. *
  162. * Used to interactively edit UBL's Mesh by placing the
  163. * nozzle in a problem area and doing a G29 P4 R command.
  164. */
  165. void gcode_G26() {
  166. SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
  167. float tmp, start_angle, end_angle;
  168. int i, xi, yi;
  169. mesh_index_pair location;
  170. // Don't allow Mesh Validation without homing first,
  171. // or if the parameter parsing did not go OK, abort
  172. if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
  173. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  174. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  175. stepper.synchronize();
  176. set_current_to_destination();
  177. }
  178. if (turn_on_heaters()) goto LEAVE;
  179. current_position[E_AXIS] = 0.0;
  180. sync_plan_position_e();
  181. if (prime_flag && prime_nozzle()) goto LEAVE;
  182. /**
  183. * Bed is preheated
  184. *
  185. * Nozzle is at temperature
  186. *
  187. * Filament is primed!
  188. *
  189. * It's "Show Time" !!!
  190. */
  191. ZERO(circle_flags);
  192. ZERO(horizontal_mesh_line_flags);
  193. ZERO(vertical_mesh_line_flags);
  194. // Move nozzle to the specified height for the first layer
  195. set_destination_to_current();
  196. destination[Z_AXIS] = layer_height;
  197. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
  198. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
  199. ubl.has_control_of_lcd_panel = true;
  200. //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
  201. /**
  202. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  203. * the CPU load and make the arc drawing faster and more smooth
  204. */
  205. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  206. for (i = 0; i <= 360 / 30; i++) {
  207. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  208. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  209. }
  210. do {
  211. if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
  212. #if ENABLED(ULTRA_LCD)
  213. lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
  214. lcd_quick_feedback();
  215. #endif
  216. while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
  217. idle(); // Encoder Wheel if that is why we are leaving
  218. lcd_reset_alert_level();
  219. lcd_setstatuspgm(PSTR(""));
  220. }
  221. while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
  222. idle(); // Encoder Wheel if that is why we are leaving
  223. lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
  224. }
  225. goto LEAVE;
  226. }
  227. location = continue_with_closest
  228. ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
  229. : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
  230. if (location.x_index >= 0 && location.y_index >= 0) {
  231. const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  232. circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  233. // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
  234. #ifdef DELTA
  235. if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
  236. SERIAL_ERROR_START;
  237. SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
  238. goto LEAVE;
  239. }
  240. #endif
  241. // TODO: Change this to use `position_is_reachable`
  242. if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) {
  243. SERIAL_ERROR_START;
  244. SERIAL_ERRORLNPGM("Attempt to print off the bed.");
  245. goto LEAVE;
  246. }
  247. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  248. yi = location.y_index;
  249. if (ubl.g26_debug_flag) {
  250. SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
  251. SERIAL_ECHOPAIR(", yi=", yi);
  252. SERIAL_CHAR(')');
  253. SERIAL_EOL;
  254. }
  255. start_angle = 0.0; // assume it is going to be a full circle
  256. end_angle = 360.0;
  257. if (xi == 0) { // Check for bottom edge
  258. start_angle = -90.0;
  259. end_angle = 90.0;
  260. if (yi == 0) // it is an edge, check for the two left corners
  261. start_angle = 0.0;
  262. else if (yi == GRID_MAX_POINTS_Y - 1)
  263. end_angle = 0.0;
  264. }
  265. else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
  266. start_angle = 90.0;
  267. end_angle = 270.0;
  268. if (yi == 0) // it is an edge, check for the two right corners
  269. end_angle = 180.0;
  270. else if (yi == GRID_MAX_POINTS_Y - 1)
  271. start_angle = 180.0;
  272. }
  273. else if (yi == 0) {
  274. start_angle = 0.0; // only do the top side of the cirlce
  275. end_angle = 180.0;
  276. }
  277. else if (yi == GRID_MAX_POINTS_Y - 1) {
  278. start_angle = 180.0; // only do the bottom side of the cirlce
  279. end_angle = 360.0;
  280. }
  281. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  282. int tmp_div_30 = tmp / 30.0;
  283. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  284. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  285. float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
  286. y = circle_y + sin_table[tmp_div_30],
  287. xe = circle_x + cos_table[tmp_div_30 + 1],
  288. ye = circle_y + sin_table[tmp_div_30 + 1];
  289. #ifdef DELTA
  290. if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
  291. continue; // the 'circle' is on the bed. If
  292. #else // not, we need to skip
  293. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  294. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  295. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  296. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  297. #endif
  298. //if (ubl.g26_debug_flag) {
  299. // char ccc, *cptr, seg_msg[50], seg_num[10];
  300. // strcpy(seg_msg, " segment: ");
  301. // strcpy(seg_num, " \n");
  302. // cptr = (char*) "01234567890ABCDEF????????";
  303. // ccc = cptr[tmp_div_30];
  304. // seg_num[1] = ccc;
  305. // strcat(seg_msg, seg_num);
  306. // debug_current_and_destination(seg_msg);
  307. //}
  308. print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
  309. }
  310. //debug_current_and_destination(PSTR("Looking for lines to connect."));
  311. look_for_lines_to_connect();
  312. //debug_current_and_destination(PSTR("Done with line connect."));
  313. }
  314. //debug_current_and_destination(PSTR("Done with current circle."));
  315. } while (location.x_index >= 0 && location.y_index >= 0);
  316. LEAVE:
  317. lcd_reset_alert_level();
  318. lcd_setstatuspgm(PSTR("Leaving G26"));
  319. retract_filament(destination);
  320. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  321. //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  322. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
  323. //debug_current_and_destination(PSTR("done doing Z-Raise."));
  324. destination[X_AXIS] = x_pos; // Move back to the starting position
  325. destination[Y_AXIS] = y_pos;
  326. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  327. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
  328. //debug_current_and_destination(PSTR("done doing X/Y move."));
  329. ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  330. if (!keep_heaters_on) {
  331. #if HAS_TEMP_BED
  332. thermalManager.setTargetBed(0);
  333. #endif
  334. thermalManager.setTargetHotend(0, 0);
  335. }
  336. }
  337. float valid_trig_angle(float d) {
  338. while (d > 360.0) d -= 360.0;
  339. while (d < 0.0) d += 360.0;
  340. return d;
  341. }
  342. mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
  343. float closest = 99999.99;
  344. mesh_index_pair return_val;
  345. return_val.x_index = return_val.y_index = -1;
  346. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  347. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  348. if (!is_bit_set(circle_flags, i, j)) {
  349. const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
  350. my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  351. // Get the distance to this intersection
  352. float f = HYPOT(X - mx, Y - my);
  353. // It is possible that we are being called with the values
  354. // to let us find the closest circle to the start position.
  355. // But if this is not the case, add a small weighting to the
  356. // distance calculation to help it choose a better place to continue.
  357. f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
  358. // Add in the specified amount of Random Noise to our search
  359. if (random_deviation > 1.0)
  360. f += random(0.0, random_deviation);
  361. if (f < closest) {
  362. closest = f; // We found a closer location that is still
  363. return_val.x_index = i; // un-printed --- save the data for it
  364. return_val.y_index = j;
  365. return_val.distance = closest;
  366. }
  367. }
  368. }
  369. }
  370. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  371. return return_val;
  372. }
  373. void look_for_lines_to_connect() {
  374. float sx, sy, ex, ey;
  375. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  376. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  377. if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
  378. // This is already a half circle because we are at the edge of the bed.
  379. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  380. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  381. //
  382. // We found two circles that need a horizontal line to connect them
  383. // Print it!
  384. //
  385. sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
  386. ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
  387. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
  388. sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
  389. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  390. if (ubl.g26_debug_flag) {
  391. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  392. SERIAL_ECHOPAIR(", sy=", sy);
  393. SERIAL_ECHOPAIR(") -> (ex=", ex);
  394. SERIAL_ECHOPAIR(", ey=", ey);
  395. SERIAL_CHAR(')');
  396. SERIAL_EOL;
  397. //debug_current_and_destination(PSTR("Connecting horizontal line."));
  398. }
  399. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  400. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  401. }
  402. }
  403. if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
  404. // This is already a half circle because we are at the edge of the bed.
  405. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  406. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  407. //
  408. // We found two circles that need a vertical line to connect them
  409. // Print it!
  410. //
  411. sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
  412. ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
  413. sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
  414. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  415. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  416. if (ubl.g26_debug_flag) {
  417. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  418. SERIAL_ECHOPAIR(", sy=", sy);
  419. SERIAL_ECHOPAIR(") -> (ex=", ex);
  420. SERIAL_ECHOPAIR(", ey=", ey);
  421. SERIAL_CHAR(')');
  422. SERIAL_EOL;
  423. debug_current_and_destination(PSTR("Connecting vertical line."));
  424. }
  425. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  426. bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  427. }
  428. }
  429. }
  430. }
  431. }
  432. }
  433. }
  434. void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  435. float feed_value;
  436. static float last_z = -999.99;
  437. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  438. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
  439. if (z != last_z) {
  440. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
  441. last_z = z;
  442. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  443. destination[X_AXIS] = current_position[X_AXIS];
  444. destination[Y_AXIS] = current_position[Y_AXIS];
  445. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  446. destination[E_AXIS] = current_position[E_AXIS];
  447. ubl_line_to_destination(feed_value, 0);
  448. stepper.synchronize();
  449. set_destination_to_current();
  450. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
  451. }
  452. // Check if X or Y is involved in the movement.
  453. // Yes: a 'normal' movement. No: a retract() or un_retract()
  454. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  455. if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  456. destination[X_AXIS] = x;
  457. destination[Y_AXIS] = y;
  458. destination[E_AXIS] += e_delta;
  459. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
  460. ubl_line_to_destination(feed_value, 0);
  461. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
  462. stepper.synchronize();
  463. set_destination_to_current();
  464. }
  465. void retract_filament(float where[XYZE]) {
  466. if (!g26_retracted) { // Only retract if we are not already retracted!
  467. g26_retracted = true;
  468. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
  469. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
  470. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
  471. }
  472. }
  473. void un_retract_filament(float where[XYZE]) {
  474. if (g26_retracted) { // Only un-retract if we are retracted.
  475. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
  476. g26_retracted = false;
  477. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
  478. }
  479. }
  480. /**
  481. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  482. * to the other. But there are really three sets of coordinates involved. The first coordinate
  483. * is the present location of the nozzle. We don't necessarily want to print from this location.
  484. * We first need to move the nozzle to the start of line segment where we want to print. Once
  485. * there, we can use the two coordinates supplied to draw the line.
  486. *
  487. * Note: Although we assume the first set of coordinates is the start of the line and the second
  488. * set of coordinates is the end of the line, it does not always work out that way. This function
  489. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  490. * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
  491. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  492. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  493. * cases where the optimization comes into play.
  494. */
  495. void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
  496. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  497. dy_s = current_position[Y_AXIS] - sy,
  498. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  499. // to save computation time
  500. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  501. dy_e = current_position[Y_AXIS] - ey,
  502. dist_end = HYPOT2(dx_e, dy_e),
  503. line_length = HYPOT(ex - sx, ey - sy);
  504. // If the end point of the line is closer to the nozzle, flip the direction,
  505. // moving from the end to the start. On very small lines the optimization isn't worth it.
  506. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
  507. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
  508. return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  509. }
  510. // Decide whether to retract.
  511. if (dist_start > 2.0) {
  512. retract_filament(destination);
  513. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
  514. }
  515. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
  516. const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
  517. un_retract_filament(destination);
  518. //if (ubl.g26_debug_flag) {
  519. // SERIAL_ECHOLNPGM(" doing printing move.");
  520. // debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
  521. //}
  522. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  523. }
  524. /**
  525. * This function used to be inline code in G26. But there are so many
  526. * parameters it made sense to turn them into static globals and get
  527. * this code out of sight of the main routine.
  528. */
  529. bool parse_G26_parameters() {
  530. extrusion_multiplier = EXTRUSION_MULTIPLIER;
  531. retraction_multiplier = RETRACTION_MULTIPLIER;
  532. nozzle = NOZZLE;
  533. filament_diameter = FILAMENT;
  534. layer_height = LAYER_HEIGHT;
  535. prime_length = PRIME_LENGTH;
  536. bed_temp = BED_TEMP;
  537. hotend_temp = HOTEND_TEMP;
  538. ooze_amount = OOZE_AMOUNT;
  539. prime_flag = 0;
  540. keep_heaters_on = false;
  541. if (code_seen('B')) {
  542. bed_temp = code_value_temp_abs();
  543. if (!WITHIN(bed_temp, 15, 140)) {
  544. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  545. return UBL_ERR;
  546. }
  547. }
  548. if (code_seen('C')) continue_with_closest++;
  549. if (code_seen('L')) {
  550. layer_height = code_value_linear_units();
  551. if (!WITHIN(layer_height, 0.0, 2.0)) {
  552. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  553. return UBL_ERR;
  554. }
  555. }
  556. if (code_seen('Q')) {
  557. if (code_has_value()) {
  558. retraction_multiplier = code_value_float();
  559. if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
  560. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  561. return UBL_ERR;
  562. }
  563. }
  564. else {
  565. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  566. return UBL_ERR;
  567. }
  568. }
  569. if (code_seen('N') || code_seen('n')) {
  570. nozzle = code_value_float();
  571. if (!WITHIN(nozzle, 0.1, 1.0)) {
  572. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  573. return UBL_ERR;
  574. }
  575. }
  576. if (code_seen('K')) keep_heaters_on++;
  577. if (code_seen('O') && code_has_value())
  578. ooze_amount = code_value_linear_units();
  579. if (code_seen('P')) {
  580. if (!code_has_value())
  581. prime_flag = -1;
  582. else {
  583. prime_flag++;
  584. prime_length = code_value_linear_units();
  585. if (!WITHIN(prime_length, 0.0, 25.0)) {
  586. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  587. return UBL_ERR;
  588. }
  589. }
  590. }
  591. if (code_seen('F')) {
  592. filament_diameter = code_value_linear_units();
  593. if (!WITHIN(filament_diameter, 1.0, 4.0)) {
  594. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  595. return UBL_ERR;
  596. }
  597. }
  598. extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
  599. // scale up or down the length needed to get the
  600. // same volume of filament
  601. extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
  602. if (code_seen('H')) {
  603. hotend_temp = code_value_temp_abs();
  604. if (!WITHIN(hotend_temp, 165, 280)) {
  605. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  606. return UBL_ERR;
  607. }
  608. }
  609. if (code_seen('R')) {
  610. randomSeed(millis());
  611. random_deviation = code_has_value() ? code_value_float() : 50.0;
  612. }
  613. x_pos = current_position[X_AXIS];
  614. y_pos = current_position[Y_AXIS];
  615. if (code_seen('X')) {
  616. x_pos = code_value_axis_units(X_AXIS);
  617. if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
  618. SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
  619. return UBL_ERR;
  620. }
  621. }
  622. else
  623. if (code_seen('Y')) {
  624. y_pos = code_value_axis_units(Y_AXIS);
  625. if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
  626. SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
  627. return UBL_ERR;
  628. }
  629. }
  630. /**
  631. * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
  632. * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
  633. * alter the system's status. We wait until we know everything is correct before altering the state
  634. * of the system.
  635. */
  636. ubl.state.active = !code_seen('D');
  637. return UBL_OK;
  638. }
  639. bool exit_from_g26() {
  640. //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
  641. lcd_reset_alert_level();
  642. lcd_setstatuspgm(PSTR("Leaving G26"));
  643. while (ubl_lcd_clicked()) idle();
  644. return UBL_ERR;
  645. }
  646. /**
  647. * Turn on the bed and nozzle heat and
  648. * wait for them to get up to temperature.
  649. */
  650. bool turn_on_heaters() {
  651. millis_t next;
  652. #if HAS_TEMP_BED
  653. #if ENABLED(ULTRA_LCD)
  654. if (bed_temp > 25) {
  655. lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
  656. lcd_quick_feedback();
  657. #endif
  658. ubl.has_control_of_lcd_panel = true;
  659. thermalManager.setTargetBed(bed_temp);
  660. next = millis() + 5000UL;
  661. while (abs(thermalManager.degBed() - bed_temp) > 3) {
  662. if (ubl_lcd_clicked()) return exit_from_g26();
  663. if (PENDING(millis(), next)) {
  664. next = millis() + 5000UL;
  665. print_heaterstates();
  666. }
  667. idle();
  668. }
  669. #if ENABLED(ULTRA_LCD)
  670. }
  671. lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
  672. lcd_quick_feedback();
  673. #endif
  674. #endif
  675. // Start heating the nozzle and wait for it to reach temperature.
  676. thermalManager.setTargetHotend(hotend_temp, 0);
  677. while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
  678. if (ubl_lcd_clicked()) return exit_from_g26();
  679. if (PENDING(millis(), next)) {
  680. next = millis() + 5000UL;
  681. print_heaterstates();
  682. }
  683. idle();
  684. }
  685. #if ENABLED(ULTRA_LCD)
  686. lcd_reset_alert_level();
  687. lcd_setstatuspgm(PSTR(""));
  688. lcd_quick_feedback();
  689. #endif
  690. return UBL_OK;
  691. }
  692. /**
  693. * Prime the nozzle if needed. Return true on error.
  694. */
  695. bool prime_nozzle() {
  696. float Total_Prime = 0.0;
  697. if (prime_flag == -1) { // The user wants to control how much filament gets purged
  698. ubl.has_control_of_lcd_panel = true;
  699. lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
  700. chirp_at_user();
  701. set_destination_to_current();
  702. un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  703. while (!ubl_lcd_clicked()) {
  704. chirp_at_user();
  705. destination[E_AXIS] += 0.25;
  706. #ifdef PREVENT_LENGTHY_EXTRUDE
  707. Total_Prime += 0.25;
  708. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  709. #endif
  710. ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
  711. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  712. // but because the planner has a buffer, we won't be able
  713. // to stop as quickly. So we put up with the less smooth
  714. // action to give the user a more responsive 'Stop'.
  715. set_destination_to_current();
  716. idle();
  717. }
  718. while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
  719. #if ENABLED(ULTRA_LCD)
  720. strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
  721. // So... We cheat to get a message up.
  722. lcd_setstatuspgm(PSTR("Done Priming"), 99);
  723. lcd_quick_feedback();
  724. #endif
  725. ubl.has_control_of_lcd_panel = false;
  726. }
  727. else {
  728. #if ENABLED(ULTRA_LCD)
  729. lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
  730. lcd_quick_feedback();
  731. #endif
  732. set_destination_to_current();
  733. destination[E_AXIS] += prime_length;
  734. ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
  735. stepper.synchronize();
  736. set_destination_to_current();
  737. retract_filament(destination);
  738. }
  739. return UBL_OK;
  740. }
  741. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING