My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 229KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  31. #include "vector_3.h"
  32. #if ENABLED(AUTO_BED_LEVELING_GRID)
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // AUTO_BED_LEVELING_FEATURE
  36. #if ENABLED(MESH_BED_LEVELING)
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "configuration_store.h"
  45. #include "language.h"
  46. #include "pins_arduino.h"
  47. #include "math.h"
  48. #include "buzzer.h"
  49. #if ENABLED(USE_WATCHDOG)
  50. #include "watchdog.h"
  51. #endif
  52. #if ENABLED(BLINKM)
  53. #include "blinkm.h"
  54. #include "Wire.h"
  55. #endif
  56. #if HAS_SERVOS
  57. #include "servo.h"
  58. #endif
  59. #if HAS_DIGIPOTSS
  60. #include <SPI.h>
  61. #endif
  62. /**
  63. * Look here for descriptions of G-codes:
  64. * - http://linuxcnc.org/handbook/gcode/g-code.html
  65. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  66. *
  67. * Help us document these G-codes online:
  68. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  69. * - http://reprap.org/wiki/G-code
  70. *
  71. * -----------------
  72. * Implemented Codes
  73. * -----------------
  74. *
  75. * "G" Codes
  76. *
  77. * G0 -> G1
  78. * G1 - Coordinated Movement X Y Z E
  79. * G2 - CW ARC
  80. * G3 - CCW ARC
  81. * G4 - Dwell S<seconds> or P<milliseconds>
  82. * G10 - retract filament according to settings of M207
  83. * G11 - retract recover filament according to settings of M208
  84. * G28 - Home one or more axes
  85. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  86. * G30 - Single Z probe, probes bed at current XY location.
  87. * G31 - Dock sled (Z_PROBE_SLED only)
  88. * G32 - Undock sled (Z_PROBE_SLED only)
  89. * G90 - Use Absolute Coordinates
  90. * G91 - Use Relative Coordinates
  91. * G92 - Set current position to coordinates given
  92. *
  93. * "M" Codes
  94. *
  95. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  96. * M1 - Same as M0
  97. * M17 - Enable/Power all stepper motors
  98. * M18 - Disable all stepper motors; same as M84
  99. * M20 - List SD card
  100. * M21 - Init SD card
  101. * M22 - Release SD card
  102. * M23 - Select SD file (M23 filename.g)
  103. * M24 - Start/resume SD print
  104. * M25 - Pause SD print
  105. * M26 - Set SD position in bytes (M26 S12345)
  106. * M27 - Report SD print status
  107. * M28 - Start SD write (M28 filename.g)
  108. * M29 - Stop SD write
  109. * M30 - Delete file from SD (M30 filename.g)
  110. * M31 - Output time since last M109 or SD card start to serial
  111. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  112. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  113. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  114. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  115. * M33 - Get the longname version of a path
  116. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  117. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  118. * M80 - Turn on Power Supply
  119. * M81 - Turn off Power Supply
  120. * M82 - Set E codes absolute (default)
  121. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  122. * M84 - Disable steppers until next move,
  123. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  124. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  125. * M92 - Set axis_steps_per_unit - same syntax as G92
  126. * M104 - Set extruder target temp
  127. * M105 - Read current temp
  128. * M106 - Fan on
  129. * M107 - Fan off
  130. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  131. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  132. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  133. * M110 - Set the current line number
  134. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  135. * M112 - Emergency stop
  136. * M114 - Output current position to serial port
  137. * M115 - Capabilities string
  138. * M117 - Display a message on the controller screen
  139. * M119 - Output Endstop status to serial port
  140. * M120 - Enable endstop detection
  141. * M121 - Disable endstop detection
  142. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  143. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  144. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  145. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  146. * M140 - Set bed target temp
  147. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  148. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  149. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  150. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  151. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  152. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  153. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  154. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  155. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  156. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  157. * M206 - Set additional homing offset
  158. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  159. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  160. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  161. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  162. * M220 - Set speed factor override percentage: S<factor in percent>
  163. * M221 - Set extrude factor override percentage: S<factor in percent>
  164. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  165. * M240 - Trigger a camera to take a photograph
  166. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  167. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  168. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  169. * M301 - Set PID parameters P I and D
  170. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  171. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  172. * M304 - Set bed PID parameters P I and D
  173. * M380 - Activate solenoid on active extruder
  174. * M381 - Disable all solenoids
  175. * M400 - Finish all moves
  176. * M401 - Lower Z probe if present
  177. * M402 - Raise Z probe if present
  178. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  179. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  180. * M406 - Turn off Filament Sensor extrusion control
  181. * M407 - Display measured filament diameter
  182. * M410 - Quickstop. Abort all the planned moves
  183. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  184. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  185. * M428 - Set the home_offset logically based on the current_position
  186. * M500 - Store parameters in EEPROM
  187. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  188. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  189. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  190. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  191. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  192. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  193. * M666 - Set delta endstop adjustment
  194. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  195. * M907 - Set digital trimpot motor current using axis codes.
  196. * M908 - Control digital trimpot directly.
  197. * M350 - Set microstepping mode.
  198. * M351 - Toggle MS1 MS2 pins directly.
  199. *
  200. * ************ SCARA Specific - This can change to suit future G-code regulations
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  207. * ************* SCARA End ***************
  208. *
  209. * ************ Custom codes - This can change to suit future G-code regulations
  210. * M100 - Watch Free Memory (For Debugging Only)
  211. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  212. * M928 - Start SD logging (M928 filename.g) - ended by M29
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  218. *
  219. */
  220. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  221. void gcode_M100();
  222. #endif
  223. #if ENABLED(SDSUPPORT)
  224. CardReader card;
  225. #endif
  226. bool Running = true;
  227. uint8_t marlin_debug_flags = DEBUG_INFO | DEBUG_ERRORS;
  228. static float feedrate = 1500.0, saved_feedrate;
  229. float current_position[NUM_AXIS] = { 0.0 };
  230. static float destination[NUM_AXIS] = { 0.0 };
  231. bool axis_known_position[3] = { false };
  232. bool axis_homed[3] = { false };
  233. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  234. static char* current_command, *current_command_args;
  235. static int cmd_queue_index_r = 0;
  236. static int cmd_queue_index_w = 0;
  237. static int commands_in_queue = 0;
  238. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  239. const float homing_feedrate[] = HOMING_FEEDRATE;
  240. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  241. int feedrate_multiplier = 100; //100->1 200->2
  242. int saved_feedrate_multiplier;
  243. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  244. bool volumetric_enabled = false;
  245. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  246. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  247. float home_offset[3] = { 0 };
  248. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  249. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  250. uint8_t active_extruder = 0;
  251. int fanSpeed = 0;
  252. bool cancel_heatup = false;
  253. const char errormagic[] PROGMEM = "Error:";
  254. const char echomagic[] PROGMEM = "echo:";
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  257. static char serial_char;
  258. static int serial_count = 0;
  259. static boolean comment_mode = false;
  260. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  261. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  262. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  263. // Inactivity shutdown
  264. millis_t previous_cmd_ms = 0;
  265. static millis_t max_inactive_time = 0;
  266. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  267. millis_t print_job_start_ms = 0; ///< Print job start time
  268. millis_t print_job_stop_ms = 0; ///< Print job stop time
  269. static uint8_t target_extruder;
  270. bool target_direction;
  271. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  272. int xy_travel_speed = XY_TRAVEL_SPEED;
  273. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  274. #endif
  275. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  276. float z_endstop_adj = 0;
  277. #endif
  278. // Extruder offsets
  279. #if EXTRUDERS > 1
  280. #ifndef EXTRUDER_OFFSET_X
  281. #define EXTRUDER_OFFSET_X { 0 }
  282. #endif
  283. #ifndef EXTRUDER_OFFSET_Y
  284. #define EXTRUDER_OFFSET_Y { 0 }
  285. #endif
  286. float extruder_offset[][EXTRUDERS] = {
  287. EXTRUDER_OFFSET_X,
  288. EXTRUDER_OFFSET_Y
  289. #if ENABLED(DUAL_X_CARRIAGE)
  290. , { 0 } // supports offsets in XYZ plane
  291. #endif
  292. };
  293. #endif
  294. #if HAS_SERVO_ENDSTOPS
  295. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  296. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  297. #endif
  298. #if ENABLED(BARICUDA)
  299. int ValvePressure = 0;
  300. int EtoPPressure = 0;
  301. #endif
  302. #if ENABLED(FWRETRACT)
  303. bool autoretract_enabled = false;
  304. bool retracted[EXTRUDERS] = { false };
  305. bool retracted_swap[EXTRUDERS] = { false };
  306. float retract_length = RETRACT_LENGTH;
  307. float retract_length_swap = RETRACT_LENGTH_SWAP;
  308. float retract_feedrate = RETRACT_FEEDRATE;
  309. float retract_zlift = RETRACT_ZLIFT;
  310. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  311. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  312. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  313. #endif // FWRETRACT
  314. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  315. bool powersupply =
  316. #if ENABLED(PS_DEFAULT_OFF)
  317. false
  318. #else
  319. true
  320. #endif
  321. ;
  322. #endif
  323. #if ENABLED(DELTA)
  324. #define TOWER_1 X_AXIS
  325. #define TOWER_2 Y_AXIS
  326. #define TOWER_3 Z_AXIS
  327. float delta[3] = { 0 };
  328. #define SIN_60 0.8660254037844386
  329. #define COS_60 0.5
  330. float endstop_adj[3] = { 0 };
  331. // these are the default values, can be overriden with M665
  332. float delta_radius = DELTA_RADIUS;
  333. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  334. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  335. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  336. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  337. float delta_tower3_x = 0; // back middle tower
  338. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  339. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  340. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  341. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  342. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  343. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  344. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  345. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  346. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  347. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  348. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  349. int delta_grid_spacing[2] = { 0, 0 };
  350. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  351. #endif
  352. #else
  353. static bool home_all_axis = true;
  354. #endif
  355. #if ENABLED(SCARA)
  356. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  357. static float delta[3] = { 0 };
  358. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  359. #endif
  360. #if ENABLED(FILAMENT_SENSOR)
  361. //Variables for Filament Sensor input
  362. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  363. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  364. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  365. signed char measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  366. int delay_index1 = 0; //index into ring buffer
  367. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  368. float delay_dist = 0; //delay distance counter
  369. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  370. #endif
  371. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  372. static bool filrunoutEnqueued = false;
  373. #endif
  374. #if ENABLED(SDSUPPORT)
  375. static bool fromsd[BUFSIZE];
  376. #endif
  377. #if HAS_SERVOS
  378. Servo servo[NUM_SERVOS];
  379. #endif
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  385. int lpq_len = 20;
  386. #endif
  387. //===========================================================================
  388. //================================ Functions ================================
  389. //===========================================================================
  390. void process_next_command();
  391. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  392. bool setTargetedHotend(int code);
  393. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  399. float extrude_min_temp = EXTRUDE_MINTEMP;
  400. #endif
  401. #if ENABLED(SDSUPPORT)
  402. #include "SdFatUtil.h"
  403. int freeMemory() { return SdFatUtil::FreeRam(); }
  404. #else
  405. extern "C" {
  406. extern unsigned int __bss_end;
  407. extern unsigned int __heap_start;
  408. extern void* __brkval;
  409. int freeMemory() {
  410. int free_memory;
  411. if ((int)__brkval == 0)
  412. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  413. else
  414. free_memory = ((int)&free_memory) - ((int)__brkval);
  415. return free_memory;
  416. }
  417. }
  418. #endif //!SDSUPPORT
  419. /**
  420. * Inject the next command from the command queue, when possible
  421. * Return false only if no command was pending
  422. */
  423. static bool drain_queued_commands_P() {
  424. if (!queued_commands_P) return false;
  425. // Get the next 30 chars from the sequence of gcodes to run
  426. char cmd[30];
  427. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  428. cmd[sizeof(cmd) - 1] = '\0';
  429. // Look for the end of line, or the end of sequence
  430. size_t i = 0;
  431. char c;
  432. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  433. cmd[i] = '\0';
  434. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  435. if (c)
  436. queued_commands_P += i + 1; // move to next command
  437. else
  438. queued_commands_P = NULL; // will have no more commands in the sequence
  439. }
  440. return true;
  441. }
  442. /**
  443. * Record one or many commands to run from program memory.
  444. * Aborts the current queue, if any.
  445. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  446. */
  447. void enqueuecommands_P(const char* pgcode) {
  448. queued_commands_P = pgcode;
  449. drain_queued_commands_P(); // first command executed asap (when possible)
  450. }
  451. /**
  452. * Copy a command directly into the main command buffer, from RAM.
  453. *
  454. * This is done in a non-safe way and needs a rework someday.
  455. * Returns false if it doesn't add any command
  456. */
  457. bool enqueuecommand(const char* cmd) {
  458. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  459. // This is dangerous if a mixing of serial and this happens
  460. char* command = command_queue[cmd_queue_index_w];
  461. strcpy(command, cmd);
  462. SERIAL_ECHO_START;
  463. SERIAL_ECHOPGM(MSG_Enqueueing);
  464. SERIAL_ECHO(command);
  465. SERIAL_ECHOLNPGM("\"");
  466. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  467. commands_in_queue++;
  468. return true;
  469. }
  470. void setup_killpin() {
  471. #if HAS_KILL
  472. SET_INPUT(KILL_PIN);
  473. WRITE(KILL_PIN, HIGH);
  474. #endif
  475. }
  476. void setup_filrunoutpin() {
  477. #if HAS_FILRUNOUT
  478. pinMode(FILRUNOUT_PIN, INPUT);
  479. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  480. WRITE(FILRUNOUT_PIN, HIGH);
  481. #endif
  482. #endif
  483. }
  484. // Set home pin
  485. void setup_homepin(void) {
  486. #if HAS_HOME
  487. SET_INPUT(HOME_PIN);
  488. WRITE(HOME_PIN, HIGH);
  489. #endif
  490. }
  491. void setup_photpin() {
  492. #if HAS_PHOTOGRAPH
  493. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold() {
  497. #if HAS_SUICIDE
  498. OUT_WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if HAS_POWER_SWITCH
  501. #if ENABLED(PS_DEFAULT_OFF)
  502. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  503. #else
  504. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  505. #endif
  506. #endif
  507. }
  508. void suicide() {
  509. #if HAS_SUICIDE
  510. OUT_WRITE(SUICIDE_PIN, LOW);
  511. #endif
  512. }
  513. void servo_init() {
  514. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  515. servo[0].attach(SERVO0_PIN);
  516. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  517. #endif
  518. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  519. servo[1].attach(SERVO1_PIN);
  520. servo[1].detach();
  521. #endif
  522. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  523. servo[2].attach(SERVO2_PIN);
  524. servo[2].detach();
  525. #endif
  526. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  527. servo[3].attach(SERVO3_PIN);
  528. servo[3].detach();
  529. #endif
  530. // Set position of Servo Endstops that are defined
  531. #if HAS_SERVO_ENDSTOPS
  532. for (int i = 0; i < 3; i++)
  533. if (servo_endstop_id[i] >= 0)
  534. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  535. #endif
  536. }
  537. /**
  538. * Stepper Reset (RigidBoard, et.al.)
  539. */
  540. #if HAS_STEPPER_RESET
  541. void disableStepperDrivers() {
  542. pinMode(STEPPER_RESET_PIN, OUTPUT);
  543. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  544. }
  545. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  546. #endif
  547. /**
  548. * Marlin entry-point: Set up before the program loop
  549. * - Set up the kill pin, filament runout, power hold
  550. * - Start the serial port
  551. * - Print startup messages and diagnostics
  552. * - Get EEPROM or default settings
  553. * - Initialize managers for:
  554. * • temperature
  555. * • planner
  556. * • watchdog
  557. * • stepper
  558. * • photo pin
  559. * • servos
  560. * • LCD controller
  561. * • Digipot I2C
  562. * • Z probe sled
  563. * • status LEDs
  564. */
  565. void setup() {
  566. #ifdef DISABLE_JTAG
  567. // Disable JTAG on AT90USB chips to free up pins for IO
  568. MCUCR = 0x80;
  569. MCUCR = 0x80;
  570. #endif
  571. setup_killpin();
  572. setup_filrunoutpin();
  573. setup_powerhold();
  574. #if HAS_STEPPER_RESET
  575. disableStepperDrivers();
  576. #endif
  577. MYSERIAL.begin(BAUDRATE);
  578. SERIAL_PROTOCOLLNPGM("start");
  579. SERIAL_ECHO_START;
  580. // Check startup - does nothing if bootloader sets MCUSR to 0
  581. byte mcu = MCUSR;
  582. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  583. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  584. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  585. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  586. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  587. MCUSR = 0;
  588. SERIAL_ECHOPGM(MSG_MARLIN);
  589. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  590. #ifdef STRING_DISTRIBUTION_DATE
  591. #ifdef STRING_CONFIG_H_AUTHOR
  592. SERIAL_ECHO_START;
  593. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  594. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  595. SERIAL_ECHOPGM(MSG_AUTHOR);
  596. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  597. SERIAL_ECHOPGM("Compiled: ");
  598. SERIAL_ECHOLNPGM(__DATE__);
  599. #endif // STRING_CONFIG_H_AUTHOR
  600. #endif // STRING_DISTRIBUTION_DATE
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  603. SERIAL_ECHO(freeMemory());
  604. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  605. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  606. #if ENABLED(SDSUPPORT)
  607. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  608. #endif
  609. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  610. Config_RetrieveSettings();
  611. lcd_init();
  612. tp_init(); // Initialize temperature loop
  613. plan_init(); // Initialize planner;
  614. #if ENABLED(USE_WATCHDOG)
  615. watchdog_init();
  616. #endif
  617. st_init(); // Initialize stepper, this enables interrupts!
  618. setup_photpin();
  619. servo_init();
  620. #if HAS_CONTROLLERFAN
  621. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  622. #endif
  623. #if HAS_STEPPER_RESET
  624. enableStepperDrivers();
  625. #endif
  626. #if ENABLED(DIGIPOT_I2C)
  627. digipot_i2c_init();
  628. #endif
  629. #if ENABLED(Z_PROBE_SLED)
  630. pinMode(SLED_PIN, OUTPUT);
  631. digitalWrite(SLED_PIN, LOW); // turn it off
  632. #endif // Z_PROBE_SLED
  633. setup_homepin();
  634. #ifdef STAT_LED_RED
  635. pinMode(STAT_LED_RED, OUTPUT);
  636. digitalWrite(STAT_LED_RED, LOW); // turn it off
  637. #endif
  638. #ifdef STAT_LED_BLUE
  639. pinMode(STAT_LED_BLUE, OUTPUT);
  640. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  641. #endif
  642. }
  643. /**
  644. * The main Marlin program loop
  645. *
  646. * - Save or log commands to SD
  647. * - Process available commands (if not saving)
  648. * - Call heater manager
  649. * - Call inactivity manager
  650. * - Call endstop manager
  651. * - Call LCD update
  652. */
  653. void loop() {
  654. if (commands_in_queue < BUFSIZE - 1) get_command();
  655. #if ENABLED(SDSUPPORT)
  656. card.checkautostart(false);
  657. #endif
  658. if (commands_in_queue) {
  659. #if ENABLED(SDSUPPORT)
  660. if (card.saving) {
  661. char* command = command_queue[cmd_queue_index_r];
  662. if (strstr_P(command, PSTR("M29"))) {
  663. // M29 closes the file
  664. card.closefile();
  665. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  666. }
  667. else {
  668. // Write the string from the read buffer to SD
  669. card.write_command(command);
  670. if (card.logging)
  671. process_next_command(); // The card is saving because it's logging
  672. else
  673. SERIAL_PROTOCOLLNPGM(MSG_OK);
  674. }
  675. }
  676. else
  677. process_next_command();
  678. #else
  679. process_next_command();
  680. #endif // SDSUPPORT
  681. commands_in_queue--;
  682. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  683. }
  684. checkHitEndstops();
  685. idle();
  686. }
  687. void gcode_line_error(const char* err, bool doFlush = true) {
  688. SERIAL_ERROR_START;
  689. serialprintPGM(err);
  690. SERIAL_ERRORLN(gcode_LastN);
  691. //Serial.println(gcode_N);
  692. if (doFlush) FlushSerialRequestResend();
  693. serial_count = 0;
  694. }
  695. /**
  696. * Add to the circular command queue the next command from:
  697. * - The command-injection queue (queued_commands_P)
  698. * - The active serial input (usually USB)
  699. * - The SD card file being actively printed
  700. */
  701. void get_command() {
  702. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  703. #if ENABLED(NO_TIMEOUTS)
  704. static millis_t last_command_time = 0;
  705. millis_t ms = millis();
  706. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  707. SERIAL_ECHOLNPGM(MSG_WAIT);
  708. last_command_time = ms;
  709. }
  710. #endif
  711. //
  712. // Loop while serial characters are incoming and the queue is not full
  713. //
  714. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  715. #if ENABLED(NO_TIMEOUTS)
  716. last_command_time = ms;
  717. #endif
  718. serial_char = MYSERIAL.read();
  719. //
  720. // If the character ends the line, or the line is full...
  721. //
  722. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE - 1) {
  723. // end of line == end of comment
  724. comment_mode = false;
  725. if (!serial_count) return; // empty lines just exit
  726. char* command = command_queue[cmd_queue_index_w];
  727. command[serial_count] = 0; // terminate string
  728. // this item in the queue is not from sd
  729. #if ENABLED(SDSUPPORT)
  730. fromsd[cmd_queue_index_w] = false;
  731. #endif
  732. while (*command == ' ') command++; // skip any leading spaces
  733. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  734. char* apos = strchr(command, '*');
  735. if (npos) {
  736. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  737. if (M110) {
  738. char* n2pos = strchr(command + 4, 'N');
  739. if (n2pos) npos = n2pos;
  740. }
  741. gcode_N = strtol(npos + 1, NULL, 10);
  742. if (gcode_N != gcode_LastN + 1 && !M110) {
  743. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  744. return;
  745. }
  746. if (apos) {
  747. byte checksum = 0, count = 0;
  748. while (command[count] != '*') checksum ^= command[count++];
  749. if (strtol(apos + 1, NULL, 10) != checksum) {
  750. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  751. return;
  752. }
  753. // if no errors, continue parsing
  754. }
  755. else if (npos == command) {
  756. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  757. return;
  758. }
  759. gcode_LastN = gcode_N;
  760. // if no errors, continue parsing
  761. }
  762. else if (apos) { // No '*' without 'N'
  763. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  764. return;
  765. }
  766. // Movement commands alert when stopped
  767. if (IsStopped()) {
  768. char* gpos = strchr(command, 'G');
  769. if (gpos) {
  770. int codenum = strtol(gpos + 1, NULL, 10);
  771. switch (codenum) {
  772. case 0:
  773. case 1:
  774. case 2:
  775. case 3:
  776. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  777. LCD_MESSAGEPGM(MSG_STOPPED);
  778. break;
  779. }
  780. }
  781. }
  782. // If command was e-stop process now
  783. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  784. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  785. commands_in_queue += 1;
  786. serial_count = 0; //clear buffer
  787. }
  788. else if (serial_char == '\\') { // Handle escapes
  789. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  790. // if we have one more character, copy it over
  791. serial_char = MYSERIAL.read();
  792. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  793. }
  794. // otherwise do nothing
  795. }
  796. else { // its not a newline, carriage return or escape char
  797. if (serial_char == ';') comment_mode = true;
  798. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  799. }
  800. }
  801. #if ENABLED(SDSUPPORT)
  802. if (!card.sdprinting || serial_count) return;
  803. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  804. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  805. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  806. static bool stop_buffering = false;
  807. if (commands_in_queue == 0) stop_buffering = false;
  808. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  809. int16_t n = card.get();
  810. serial_char = (char)n;
  811. if (serial_char == '\n' || serial_char == '\r' ||
  812. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  813. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  814. ) {
  815. if (card.eof()) {
  816. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  817. print_job_stop_ms = millis();
  818. char time[30];
  819. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  820. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  821. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  822. SERIAL_ECHO_START;
  823. SERIAL_ECHOLN(time);
  824. lcd_setstatus(time, true);
  825. card.printingHasFinished();
  826. card.checkautostart(true);
  827. }
  828. if (serial_char == '#') stop_buffering = true;
  829. if (!serial_count) {
  830. comment_mode = false; //for new command
  831. return; //if empty line
  832. }
  833. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  834. // if (!comment_mode) {
  835. fromsd[cmd_queue_index_w] = true;
  836. commands_in_queue += 1;
  837. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  838. // }
  839. comment_mode = false; //for new command
  840. serial_count = 0; //clear buffer
  841. }
  842. else {
  843. if (serial_char == ';') comment_mode = true;
  844. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  845. }
  846. }
  847. #endif // SDSUPPORT
  848. }
  849. bool code_has_value() {
  850. int i = 1;
  851. char c = seen_pointer[i];
  852. while (c == ' ') c = seen_pointer[++i];
  853. if (c == '-' || c == '+') c = seen_pointer[++i];
  854. if (c == '.') c = seen_pointer[++i];
  855. return (c >= '0' && c <= '9');
  856. }
  857. float code_value() {
  858. float ret;
  859. char* e = strchr(seen_pointer, 'E');
  860. if (e) {
  861. *e = 0;
  862. ret = strtod(seen_pointer + 1, NULL);
  863. *e = 'E';
  864. }
  865. else
  866. ret = strtod(seen_pointer + 1, NULL);
  867. return ret;
  868. }
  869. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  870. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  871. bool code_seen(char code) {
  872. seen_pointer = strchr(current_command_args, code);
  873. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  874. }
  875. #define DEFINE_PGM_READ_ANY(type, reader) \
  876. static inline type pgm_read_any(const type *p) \
  877. { return pgm_read_##reader##_near(p); }
  878. DEFINE_PGM_READ_ANY(float, float);
  879. DEFINE_PGM_READ_ANY(signed char, byte);
  880. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  881. static const PROGMEM type array##_P[3] = \
  882. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  883. static inline type array(int axis) \
  884. { return pgm_read_any(&array##_P[axis]); }
  885. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  886. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  887. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  888. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  889. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  890. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  891. #if ENABLED(DUAL_X_CARRIAGE)
  892. #define DXC_FULL_CONTROL_MODE 0
  893. #define DXC_AUTO_PARK_MODE 1
  894. #define DXC_DUPLICATION_MODE 2
  895. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  896. static float x_home_pos(int extruder) {
  897. if (extruder == 0)
  898. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  899. else
  900. // In dual carriage mode the extruder offset provides an override of the
  901. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  902. // This allow soft recalibration of the second extruder offset position without firmware reflash
  903. // (through the M218 command).
  904. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  905. }
  906. static int x_home_dir(int extruder) {
  907. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  908. }
  909. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  910. static bool active_extruder_parked = false; // used in mode 1 & 2
  911. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  912. static millis_t delayed_move_time = 0; // used in mode 1
  913. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  914. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  915. bool extruder_duplication_enabled = false; // used in mode 2
  916. #endif //DUAL_X_CARRIAGE
  917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  918. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  919. SERIAL_ECHO(prefix);
  920. SERIAL_ECHOPAIR(": (", x);
  921. SERIAL_ECHOPAIR(", ", y);
  922. SERIAL_ECHOPAIR(", ", z);
  923. SERIAL_ECHOLNPGM(")");
  924. }
  925. void print_xyz(const char* prefix, const float xyz[]) {
  926. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  927. }
  928. #endif
  929. static void set_axis_is_at_home(AxisEnum axis) {
  930. #if ENABLED(DUAL_X_CARRIAGE)
  931. if (axis == X_AXIS) {
  932. if (active_extruder != 0) {
  933. current_position[X_AXIS] = x_home_pos(active_extruder);
  934. min_pos[X_AXIS] = X2_MIN_POS;
  935. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  936. return;
  937. }
  938. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  939. float xoff = home_offset[X_AXIS];
  940. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  941. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  942. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  943. return;
  944. }
  945. }
  946. #endif
  947. #if ENABLED(SCARA)
  948. if (axis == X_AXIS || axis == Y_AXIS) {
  949. float homeposition[3];
  950. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  951. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  952. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  953. // Works out real Homeposition angles using inverse kinematics,
  954. // and calculates homing offset using forward kinematics
  955. calculate_delta(homeposition);
  956. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  957. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  958. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  959. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  960. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  961. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  962. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  963. calculate_SCARA_forward_Transform(delta);
  964. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  965. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  966. current_position[axis] = delta[axis];
  967. // SCARA home positions are based on configuration since the actual limits are determined by the
  968. // inverse kinematic transform.
  969. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  970. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  971. }
  972. else
  973. #endif
  974. {
  975. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  976. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  977. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  978. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  979. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  980. #endif
  981. #if ENABLED(DEBUG_LEVELING_FEATURE)
  982. if (marlin_debug_flags & DEBUG_LEVELING) {
  983. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  984. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  985. print_xyz(") > current_position", current_position);
  986. }
  987. #endif
  988. }
  989. }
  990. /**
  991. * Some planner shorthand inline functions
  992. */
  993. inline void set_homing_bump_feedrate(AxisEnum axis) {
  994. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  995. int hbd = homing_bump_divisor[axis];
  996. if (hbd < 1) {
  997. hbd = 10;
  998. SERIAL_ECHO_START;
  999. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1000. }
  1001. feedrate = homing_feedrate[axis] / hbd;
  1002. }
  1003. inline void line_to_current_position() {
  1004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1005. }
  1006. inline void line_to_z(float zPosition) {
  1007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1008. }
  1009. inline void line_to_destination(float mm_m) {
  1010. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1011. }
  1012. inline void line_to_destination() {
  1013. line_to_destination(feedrate);
  1014. }
  1015. inline void sync_plan_position() {
  1016. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1017. }
  1018. #if ENABLED(DELTA) || ENABLED(SCARA)
  1019. inline void sync_plan_position_delta() {
  1020. calculate_delta(current_position);
  1021. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1022. }
  1023. #endif
  1024. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1025. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1026. static void setup_for_endstop_move() {
  1027. saved_feedrate = feedrate;
  1028. saved_feedrate_multiplier = feedrate_multiplier;
  1029. feedrate_multiplier = 100;
  1030. refresh_cmd_timeout();
  1031. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1032. if (marlin_debug_flags & DEBUG_LEVELING) {
  1033. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1034. }
  1035. #endif
  1036. enable_endstops(true);
  1037. }
  1038. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1039. #if ENABLED(DELTA)
  1040. /**
  1041. * Calculate delta, start a line, and set current_position to destination
  1042. */
  1043. void prepare_move_raw() {
  1044. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1045. if (marlin_debug_flags & DEBUG_LEVELING) {
  1046. print_xyz("prepare_move_raw > destination", destination);
  1047. }
  1048. #endif
  1049. refresh_cmd_timeout();
  1050. calculate_delta(destination);
  1051. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1052. set_current_to_destination();
  1053. }
  1054. #endif
  1055. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1056. #if DISABLED(DELTA)
  1057. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1058. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1059. planeNormal.debug("planeNormal");
  1060. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1061. //bedLevel.debug("bedLevel");
  1062. //plan_bed_level_matrix.debug("bed level before");
  1063. //vector_3 uncorrected_position = plan_get_position_mm();
  1064. //uncorrected_position.debug("position before");
  1065. vector_3 corrected_position = plan_get_position();
  1066. //corrected_position.debug("position after");
  1067. current_position[X_AXIS] = corrected_position.x;
  1068. current_position[Y_AXIS] = corrected_position.y;
  1069. current_position[Z_AXIS] = corrected_position.z;
  1070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1071. if (marlin_debug_flags & DEBUG_LEVELING) {
  1072. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1073. }
  1074. #endif
  1075. sync_plan_position();
  1076. }
  1077. #endif // !DELTA
  1078. #else // !AUTO_BED_LEVELING_GRID
  1079. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1080. plan_bed_level_matrix.set_to_identity();
  1081. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1082. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1083. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1084. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1085. if (planeNormal.z < 0) {
  1086. planeNormal.x = -planeNormal.x;
  1087. planeNormal.y = -planeNormal.y;
  1088. planeNormal.z = -planeNormal.z;
  1089. }
  1090. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1091. vector_3 corrected_position = plan_get_position();
  1092. current_position[X_AXIS] = corrected_position.x;
  1093. current_position[Y_AXIS] = corrected_position.y;
  1094. current_position[Z_AXIS] = corrected_position.z;
  1095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1096. if (marlin_debug_flags & DEBUG_LEVELING) {
  1097. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1098. }
  1099. #endif
  1100. sync_plan_position();
  1101. }
  1102. #endif // !AUTO_BED_LEVELING_GRID
  1103. static void run_z_probe() {
  1104. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1105. #if ENABLED(DELTA)
  1106. float start_z = current_position[Z_AXIS];
  1107. long start_steps = st_get_position(Z_AXIS);
  1108. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1109. if (marlin_debug_flags & DEBUG_LEVELING) {
  1110. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1111. }
  1112. #endif
  1113. // move down slowly until you find the bed
  1114. feedrate = homing_feedrate[Z_AXIS] / 4;
  1115. destination[Z_AXIS] = -10;
  1116. prepare_move_raw(); // this will also set_current_to_destination
  1117. st_synchronize();
  1118. endstops_hit_on_purpose(); // clear endstop hit flags
  1119. // we have to let the planner know where we are right now as it is not where we said to go.
  1120. long stop_steps = st_get_position(Z_AXIS);
  1121. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1122. current_position[Z_AXIS] = mm;
  1123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1124. if (marlin_debug_flags & DEBUG_LEVELING) {
  1125. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1126. }
  1127. #endif
  1128. sync_plan_position_delta();
  1129. #else // !DELTA
  1130. plan_bed_level_matrix.set_to_identity();
  1131. feedrate = homing_feedrate[Z_AXIS];
  1132. // Move down until the Z probe (or endstop?) is triggered
  1133. float zPosition = -(Z_MAX_LENGTH + 10);
  1134. line_to_z(zPosition);
  1135. st_synchronize();
  1136. // Tell the planner where we ended up - Get this from the stepper handler
  1137. zPosition = st_get_axis_position_mm(Z_AXIS);
  1138. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1139. // move up the retract distance
  1140. zPosition += home_bump_mm(Z_AXIS);
  1141. line_to_z(zPosition);
  1142. st_synchronize();
  1143. endstops_hit_on_purpose(); // clear endstop hit flags
  1144. // move back down slowly to find bed
  1145. set_homing_bump_feedrate(Z_AXIS);
  1146. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1147. line_to_z(zPosition);
  1148. st_synchronize();
  1149. endstops_hit_on_purpose(); // clear endstop hit flags
  1150. // Get the current stepper position after bumping an endstop
  1151. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1152. sync_plan_position();
  1153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1154. if (marlin_debug_flags & DEBUG_LEVELING) {
  1155. print_xyz("run_z_probe > current_position", current_position);
  1156. }
  1157. #endif
  1158. #endif // !DELTA
  1159. }
  1160. /**
  1161. * Plan a move to (X, Y, Z) and set the current_position
  1162. * The final current_position may not be the one that was requested
  1163. */
  1164. static void do_blocking_move_to(float x, float y, float z) {
  1165. float oldFeedRate = feedrate;
  1166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1167. if (marlin_debug_flags & DEBUG_LEVELING) {
  1168. print_xyz("do_blocking_move_to", x, y, z);
  1169. }
  1170. #endif
  1171. #if ENABLED(DELTA)
  1172. feedrate = XY_TRAVEL_SPEED;
  1173. destination[X_AXIS] = x;
  1174. destination[Y_AXIS] = y;
  1175. destination[Z_AXIS] = z;
  1176. prepare_move_raw(); // this will also set_current_to_destination
  1177. st_synchronize();
  1178. #else
  1179. feedrate = homing_feedrate[Z_AXIS];
  1180. current_position[Z_AXIS] = z;
  1181. line_to_current_position();
  1182. st_synchronize();
  1183. feedrate = xy_travel_speed;
  1184. current_position[X_AXIS] = x;
  1185. current_position[Y_AXIS] = y;
  1186. line_to_current_position();
  1187. st_synchronize();
  1188. #endif
  1189. feedrate = oldFeedRate;
  1190. }
  1191. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1192. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1193. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1194. inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
  1195. static void clean_up_after_endstop_move() {
  1196. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  1197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1198. if (marlin_debug_flags & DEBUG_LEVELING) {
  1199. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > enable_endstops(false)");
  1200. }
  1201. #endif
  1202. enable_endstops(false);
  1203. #endif
  1204. feedrate = saved_feedrate;
  1205. feedrate_multiplier = saved_feedrate_multiplier;
  1206. refresh_cmd_timeout();
  1207. }
  1208. static void deploy_z_probe() {
  1209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1210. if (marlin_debug_flags & DEBUG_LEVELING) {
  1211. print_xyz("deploy_z_probe > current_position", current_position);
  1212. }
  1213. #endif
  1214. #if HAS_SERVO_ENDSTOPS
  1215. // Engage Z Servo endstop if enabled
  1216. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1217. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1218. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1219. // If endstop is already false, the Z probe is deployed
  1220. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1221. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1222. if (z_probe_endstop)
  1223. #else
  1224. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1225. if (z_min_endstop)
  1226. #endif
  1227. {
  1228. // Move to the start position to initiate deployment
  1229. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1230. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1231. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1232. prepare_move_raw(); // this will also set_current_to_destination
  1233. // Move to engage deployment
  1234. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1235. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1236. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1237. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1238. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1239. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1240. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1241. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1242. prepare_move_raw();
  1243. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1244. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1245. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1246. // Move to trigger deployment
  1247. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1248. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1249. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1250. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1251. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1252. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1253. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1254. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1255. prepare_move_raw();
  1256. #endif
  1257. }
  1258. // Partially Home X,Y for safety
  1259. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1260. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1261. prepare_move_raw(); // this will also set_current_to_destination
  1262. st_synchronize();
  1263. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1264. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1265. if (z_probe_endstop)
  1266. #else
  1267. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1268. if (z_min_endstop)
  1269. #endif
  1270. {
  1271. if (IsRunning()) {
  1272. SERIAL_ERROR_START;
  1273. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1274. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1275. }
  1276. Stop();
  1277. }
  1278. #endif // Z_PROBE_ALLEN_KEY
  1279. }
  1280. static void stow_z_probe(bool doRaise = true) {
  1281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1282. if (marlin_debug_flags & DEBUG_LEVELING) {
  1283. print_xyz("stow_z_probe > current_position", current_position);
  1284. }
  1285. #endif
  1286. #if HAS_SERVO_ENDSTOPS
  1287. // Retract Z Servo endstop if enabled
  1288. if (servo_endstop_id[Z_AXIS] >= 0) {
  1289. #if Z_RAISE_AFTER_PROBING > 0
  1290. if (doRaise) {
  1291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1292. if (marlin_debug_flags & DEBUG_LEVELING) {
  1293. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1294. SERIAL_EOL;
  1295. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1296. SERIAL_EOL;
  1297. }
  1298. #endif
  1299. raise_z_after_probing(); // this also updates current_position
  1300. st_synchronize();
  1301. }
  1302. #endif
  1303. // Change the Z servo angle
  1304. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1305. }
  1306. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1307. // Move up for safety
  1308. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1309. #if Z_RAISE_AFTER_PROBING > 0
  1310. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1311. prepare_move_raw(); // this will also set_current_to_destination
  1312. #endif
  1313. // Move to the start position to initiate retraction
  1314. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1315. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1316. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1317. prepare_move_raw();
  1318. // Move the nozzle down to push the Z probe into retracted position
  1319. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1320. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1321. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1322. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1323. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1324. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1325. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1326. prepare_move_raw();
  1327. // Move up for safety
  1328. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1329. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1330. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1331. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1332. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1333. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1334. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1335. prepare_move_raw();
  1336. // Home XY for safety
  1337. feedrate = homing_feedrate[X_AXIS] / 2;
  1338. destination[X_AXIS] = 0;
  1339. destination[Y_AXIS] = 0;
  1340. prepare_move_raw(); // this will also set_current_to_destination
  1341. st_synchronize();
  1342. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1343. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1344. if (!z_probe_endstop)
  1345. #else
  1346. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1347. if (!z_min_endstop)
  1348. #endif
  1349. {
  1350. if (IsRunning()) {
  1351. SERIAL_ERROR_START;
  1352. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1353. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1354. }
  1355. Stop();
  1356. }
  1357. #endif // Z_PROBE_ALLEN_KEY
  1358. }
  1359. enum ProbeAction {
  1360. ProbeStay = 0,
  1361. ProbeDeploy = _BV(0),
  1362. ProbeStow = _BV(1),
  1363. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1364. };
  1365. // Probe bed height at position (x,y), returns the measured z value
  1366. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1368. if (marlin_debug_flags & DEBUG_LEVELING) {
  1369. SERIAL_ECHOLNPGM("probe_pt >>>");
  1370. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1371. SERIAL_EOL;
  1372. print_xyz("> current_position", current_position);
  1373. }
  1374. #endif
  1375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1376. if (marlin_debug_flags & DEBUG_LEVELING) {
  1377. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1378. SERIAL_EOL;
  1379. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1380. SERIAL_EOL;
  1381. }
  1382. #endif
  1383. // Move Z up to the z_before height, then move the Z probe to the given XY
  1384. do_blocking_move_to_z(z_before); // this also updates current_position
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (marlin_debug_flags & DEBUG_LEVELING) {
  1387. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - X_PROBE_OFFSET_FROM_EXTRUDER);
  1388. SERIAL_ECHOPAIR(", ", y - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1389. SERIAL_EOL;
  1390. }
  1391. #endif
  1392. do_blocking_move_to_xy(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER); // this also updates current_position
  1393. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1394. if (probe_action & ProbeDeploy) {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (marlin_debug_flags & DEBUG_LEVELING) {
  1397. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1398. }
  1399. #endif
  1400. deploy_z_probe();
  1401. }
  1402. #endif
  1403. run_z_probe();
  1404. float measured_z = current_position[Z_AXIS];
  1405. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1406. if (probe_action & ProbeStow) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (marlin_debug_flags & DEBUG_LEVELING) {
  1409. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1410. }
  1411. #endif
  1412. stow_z_probe();
  1413. }
  1414. #endif
  1415. if (verbose_level > 2) {
  1416. SERIAL_PROTOCOLPGM("Bed X: ");
  1417. SERIAL_PROTOCOL_F(x, 3);
  1418. SERIAL_PROTOCOLPGM(" Y: ");
  1419. SERIAL_PROTOCOL_F(y, 3);
  1420. SERIAL_PROTOCOLPGM(" Z: ");
  1421. SERIAL_PROTOCOL_F(measured_z, 3);
  1422. SERIAL_EOL;
  1423. }
  1424. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1425. if (marlin_debug_flags & DEBUG_LEVELING) {
  1426. SERIAL_ECHOLNPGM("<<< probe_pt");
  1427. }
  1428. #endif
  1429. return measured_z;
  1430. }
  1431. #if ENABLED(DELTA)
  1432. /**
  1433. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1434. */
  1435. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1436. if (bed_level[x][y] != 0.0) {
  1437. return; // Don't overwrite good values.
  1438. }
  1439. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1440. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1441. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1442. float median = c; // Median is robust (ignores outliers).
  1443. if (a < b) {
  1444. if (b < c) median = b;
  1445. if (c < a) median = a;
  1446. }
  1447. else { // b <= a
  1448. if (c < b) median = b;
  1449. if (a < c) median = a;
  1450. }
  1451. bed_level[x][y] = median;
  1452. }
  1453. // Fill in the unprobed points (corners of circular print surface)
  1454. // using linear extrapolation, away from the center.
  1455. static void extrapolate_unprobed_bed_level() {
  1456. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1457. for (int y = 0; y <= half; y++) {
  1458. for (int x = 0; x <= half; x++) {
  1459. if (x + y < 3) continue;
  1460. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1461. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1462. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1463. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1464. }
  1465. }
  1466. }
  1467. // Print calibration results for plotting or manual frame adjustment.
  1468. static void print_bed_level() {
  1469. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1470. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1471. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1472. SERIAL_PROTOCOLCHAR(' ');
  1473. }
  1474. SERIAL_EOL;
  1475. }
  1476. }
  1477. // Reset calibration results to zero.
  1478. void reset_bed_level() {
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (marlin_debug_flags & DEBUG_LEVELING) {
  1481. SERIAL_ECHOLNPGM("reset_bed_level");
  1482. }
  1483. #endif
  1484. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1485. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1486. bed_level[x][y] = 0.0;
  1487. }
  1488. }
  1489. }
  1490. #endif // DELTA
  1491. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1492. void raise_z_for_servo() {
  1493. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1494. // The zprobe_zoffset is negative any switch below the nozzle, so
  1495. // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1496. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1497. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1498. }
  1499. #endif
  1500. #endif // AUTO_BED_LEVELING_FEATURE
  1501. #if ENABLED(Z_PROBE_SLED)
  1502. #ifndef SLED_DOCKING_OFFSET
  1503. #define SLED_DOCKING_OFFSET 0
  1504. #endif
  1505. /**
  1506. * Method to dock/undock a sled designed by Charles Bell.
  1507. *
  1508. * dock[in] If true, move to MAX_X and engage the electromagnet
  1509. * offset[in] The additional distance to move to adjust docking location
  1510. */
  1511. static void dock_sled(bool dock, int offset = 0) {
  1512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1513. if (marlin_debug_flags & DEBUG_LEVELING) {
  1514. SERIAL_ECHOPAIR("dock_sled", dock);
  1515. SERIAL_EOL;
  1516. }
  1517. #endif
  1518. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1519. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1520. SERIAL_ECHO_START;
  1521. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1522. return;
  1523. }
  1524. float oldXpos = current_position[X_AXIS]; // save x position
  1525. if (dock) {
  1526. #if Z_RAISE_AFTER_PROBING > 0
  1527. raise_z_after_probing(); // raise Z
  1528. #endif
  1529. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1530. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1531. }
  1532. else {
  1533. float z_loc = current_position[Z_AXIS];
  1534. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1535. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1536. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1537. }
  1538. do_blocking_move_to_x(oldXpos); // return to position before docking
  1539. }
  1540. #endif // Z_PROBE_SLED
  1541. /**
  1542. * Home an individual axis
  1543. */
  1544. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1545. static void homeaxis(AxisEnum axis) {
  1546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1547. if (marlin_debug_flags & DEBUG_LEVELING) {
  1548. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1549. SERIAL_CHAR(')');
  1550. SERIAL_EOL;
  1551. }
  1552. #endif
  1553. #define HOMEAXIS_DO(LETTER) \
  1554. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1555. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1556. int axis_home_dir =
  1557. #if ENABLED(DUAL_X_CARRIAGE)
  1558. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1559. #endif
  1560. home_dir(axis);
  1561. // Set the axis position as setup for the move
  1562. current_position[axis] = 0;
  1563. sync_plan_position();
  1564. #if ENABLED(Z_PROBE_SLED)
  1565. // Get Probe
  1566. if (axis == Z_AXIS) {
  1567. if (axis_home_dir < 0) dock_sled(false);
  1568. }
  1569. #endif
  1570. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1571. // Deploy a Z probe if there is one, and homing towards the bed
  1572. if (axis == Z_AXIS) {
  1573. if (axis_home_dir < 0) deploy_z_probe();
  1574. }
  1575. #endif
  1576. #if HAS_SERVO_ENDSTOPS
  1577. // Engage Servo endstop if enabled
  1578. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0)
  1579. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1580. #endif
  1581. // Set a flag for Z motor locking
  1582. #if ENABLED(Z_DUAL_ENDSTOPS)
  1583. if (axis == Z_AXIS) In_Homing_Process(true);
  1584. #endif
  1585. // Move towards the endstop until an endstop is triggered
  1586. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1587. feedrate = homing_feedrate[axis];
  1588. line_to_destination();
  1589. st_synchronize();
  1590. // Set the axis position as setup for the move
  1591. current_position[axis] = 0;
  1592. sync_plan_position();
  1593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1594. if (marlin_debug_flags & DEBUG_LEVELING) {
  1595. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1596. }
  1597. #endif
  1598. enable_endstops(false); // Disable endstops while moving away
  1599. // Move away from the endstop by the axis HOME_BUMP_MM
  1600. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1601. line_to_destination();
  1602. st_synchronize();
  1603. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1604. if (marlin_debug_flags & DEBUG_LEVELING) {
  1605. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1606. }
  1607. #endif
  1608. enable_endstops(true); // Enable endstops for next homing move
  1609. // Slow down the feedrate for the next move
  1610. set_homing_bump_feedrate(axis);
  1611. // Move slowly towards the endstop until triggered
  1612. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1613. line_to_destination();
  1614. st_synchronize();
  1615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1616. if (marlin_debug_flags & DEBUG_LEVELING) {
  1617. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1618. }
  1619. #endif
  1620. #if ENABLED(Z_DUAL_ENDSTOPS)
  1621. if (axis == Z_AXIS) {
  1622. float adj = fabs(z_endstop_adj);
  1623. bool lockZ1;
  1624. if (axis_home_dir > 0) {
  1625. adj = -adj;
  1626. lockZ1 = (z_endstop_adj > 0);
  1627. }
  1628. else
  1629. lockZ1 = (z_endstop_adj < 0);
  1630. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1631. sync_plan_position();
  1632. // Move to the adjusted endstop height
  1633. feedrate = homing_feedrate[axis];
  1634. destination[Z_AXIS] = adj;
  1635. line_to_destination();
  1636. st_synchronize();
  1637. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1638. In_Homing_Process(false);
  1639. } // Z_AXIS
  1640. #endif
  1641. #if ENABLED(DELTA)
  1642. // retrace by the amount specified in endstop_adj
  1643. if (endstop_adj[axis] * axis_home_dir < 0) {
  1644. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1645. if (marlin_debug_flags & DEBUG_LEVELING) {
  1646. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1647. }
  1648. #endif
  1649. enable_endstops(false); // Disable endstops while moving away
  1650. sync_plan_position();
  1651. destination[axis] = endstop_adj[axis];
  1652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1653. if (marlin_debug_flags & DEBUG_LEVELING) {
  1654. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1655. print_xyz(" > destination", destination);
  1656. }
  1657. #endif
  1658. line_to_destination();
  1659. st_synchronize();
  1660. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1661. if (marlin_debug_flags & DEBUG_LEVELING) {
  1662. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1663. }
  1664. #endif
  1665. enable_endstops(true); // Enable endstops for next homing move
  1666. }
  1667. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1668. else {
  1669. if (marlin_debug_flags & DEBUG_LEVELING) {
  1670. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1671. SERIAL_EOL;
  1672. }
  1673. }
  1674. #endif
  1675. #endif
  1676. // Set the axis position to its home position (plus home offsets)
  1677. set_axis_is_at_home(axis);
  1678. sync_plan_position();
  1679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1680. if (marlin_debug_flags & DEBUG_LEVELING) {
  1681. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1682. }
  1683. #endif
  1684. destination[axis] = current_position[axis];
  1685. feedrate = 0.0;
  1686. endstops_hit_on_purpose(); // clear endstop hit flags
  1687. axis_known_position[axis] = true;
  1688. axis_homed[axis] = true;
  1689. #if ENABLED(Z_PROBE_SLED)
  1690. // bring Z probe back
  1691. if (axis == Z_AXIS) {
  1692. if (axis_home_dir < 0) dock_sled(true);
  1693. }
  1694. #endif
  1695. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1696. // Deploy a Z probe if there is one, and homing towards the bed
  1697. if (axis == Z_AXIS) {
  1698. if (axis_home_dir < 0) {
  1699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1700. if (marlin_debug_flags & DEBUG_LEVELING) {
  1701. SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
  1702. }
  1703. #endif
  1704. stow_z_probe();
  1705. }
  1706. }
  1707. else
  1708. #endif
  1709. {
  1710. #if HAS_SERVO_ENDSTOPS
  1711. // Retract Servo endstop if enabled
  1712. if (servo_endstop_id[axis] >= 0) {
  1713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1714. if (marlin_debug_flags & DEBUG_LEVELING) {
  1715. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1716. }
  1717. #endif
  1718. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1719. }
  1720. #endif
  1721. }
  1722. }
  1723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1724. if (marlin_debug_flags & DEBUG_LEVELING) {
  1725. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1726. SERIAL_CHAR(')');
  1727. SERIAL_EOL;
  1728. }
  1729. #endif
  1730. }
  1731. #if ENABLED(FWRETRACT)
  1732. void retract(bool retracting, bool swapping = false) {
  1733. if (retracting == retracted[active_extruder]) return;
  1734. float oldFeedrate = feedrate;
  1735. set_destination_to_current();
  1736. if (retracting) {
  1737. feedrate = retract_feedrate * 60;
  1738. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1739. plan_set_e_position(current_position[E_AXIS]);
  1740. prepare_move();
  1741. if (retract_zlift > 0.01) {
  1742. current_position[Z_AXIS] -= retract_zlift;
  1743. #if ENABLED(DELTA)
  1744. sync_plan_position_delta();
  1745. #else
  1746. sync_plan_position();
  1747. #endif
  1748. prepare_move();
  1749. }
  1750. }
  1751. else {
  1752. if (retract_zlift > 0.01) {
  1753. current_position[Z_AXIS] += retract_zlift;
  1754. #if ENABLED(DELTA)
  1755. sync_plan_position_delta();
  1756. #else
  1757. sync_plan_position();
  1758. #endif
  1759. //prepare_move();
  1760. }
  1761. feedrate = retract_recover_feedrate * 60;
  1762. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1763. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1764. plan_set_e_position(current_position[E_AXIS]);
  1765. prepare_move();
  1766. }
  1767. feedrate = oldFeedrate;
  1768. retracted[active_extruder] = retracting;
  1769. } // retract()
  1770. #endif // FWRETRACT
  1771. /**
  1772. *
  1773. * G-Code Handler functions
  1774. *
  1775. */
  1776. /**
  1777. * Set XYZE destination and feedrate from the current GCode command
  1778. *
  1779. * - Set destination from included axis codes
  1780. * - Set to current for missing axis codes
  1781. * - Set the feedrate, if included
  1782. */
  1783. void gcode_get_destination() {
  1784. for (int i = 0; i < NUM_AXIS; i++) {
  1785. if (code_seen(axis_codes[i]))
  1786. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1787. else
  1788. destination[i] = current_position[i];
  1789. }
  1790. if (code_seen('F')) {
  1791. float next_feedrate = code_value();
  1792. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1793. }
  1794. }
  1795. void unknown_command_error() {
  1796. SERIAL_ECHO_START;
  1797. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1798. SERIAL_ECHO(current_command);
  1799. SERIAL_ECHOPGM("\"\n");
  1800. }
  1801. /**
  1802. * G0, G1: Coordinated movement of X Y Z E axes
  1803. */
  1804. inline void gcode_G0_G1() {
  1805. if (IsRunning()) {
  1806. gcode_get_destination(); // For X Y Z E F
  1807. #if ENABLED(FWRETRACT)
  1808. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1809. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1810. // Is this move an attempt to retract or recover?
  1811. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1812. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1813. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1814. retract(!retracted[active_extruder]);
  1815. return;
  1816. }
  1817. }
  1818. #endif //FWRETRACT
  1819. prepare_move();
  1820. }
  1821. }
  1822. /**
  1823. * G2: Clockwise Arc
  1824. * G3: Counterclockwise Arc
  1825. */
  1826. inline void gcode_G2_G3(bool clockwise) {
  1827. if (IsRunning()) {
  1828. #if ENABLED(SF_ARC_FIX)
  1829. bool relative_mode_backup = relative_mode;
  1830. relative_mode = true;
  1831. #endif
  1832. gcode_get_destination();
  1833. #if ENABLED(SF_ARC_FIX)
  1834. relative_mode = relative_mode_backup;
  1835. #endif
  1836. // Center of arc as offset from current_position
  1837. float arc_offset[2] = {
  1838. code_seen('I') ? code_value() : 0,
  1839. code_seen('J') ? code_value() : 0
  1840. };
  1841. // Send an arc to the planner
  1842. plan_arc(destination, arc_offset, clockwise);
  1843. refresh_cmd_timeout();
  1844. }
  1845. }
  1846. /**
  1847. * G4: Dwell S<seconds> or P<milliseconds>
  1848. */
  1849. inline void gcode_G4() {
  1850. millis_t codenum = 0;
  1851. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1852. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1853. st_synchronize();
  1854. refresh_cmd_timeout();
  1855. codenum += previous_cmd_ms; // keep track of when we started waiting
  1856. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1857. while (millis() < codenum) idle();
  1858. }
  1859. #if ENABLED(FWRETRACT)
  1860. /**
  1861. * G10 - Retract filament according to settings of M207
  1862. * G11 - Recover filament according to settings of M208
  1863. */
  1864. inline void gcode_G10_G11(bool doRetract=false) {
  1865. #if EXTRUDERS > 1
  1866. if (doRetract) {
  1867. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1868. }
  1869. #endif
  1870. retract(doRetract
  1871. #if EXTRUDERS > 1
  1872. , retracted_swap[active_extruder]
  1873. #endif
  1874. );
  1875. }
  1876. #endif //FWRETRACT
  1877. /**
  1878. * G28: Home all axes according to settings
  1879. *
  1880. * Parameters
  1881. *
  1882. * None Home to all axes with no parameters.
  1883. * With QUICK_HOME enabled XY will home together, then Z.
  1884. *
  1885. * Cartesian parameters
  1886. *
  1887. * X Home to the X endstop
  1888. * Y Home to the Y endstop
  1889. * Z Home to the Z endstop
  1890. *
  1891. */
  1892. inline void gcode_G28() {
  1893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1894. if (marlin_debug_flags & DEBUG_LEVELING) {
  1895. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  1896. }
  1897. #endif
  1898. // Wait for planner moves to finish!
  1899. st_synchronize();
  1900. // For auto bed leveling, clear the level matrix
  1901. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1902. plan_bed_level_matrix.set_to_identity();
  1903. #if ENABLED(DELTA)
  1904. reset_bed_level();
  1905. #endif
  1906. #endif
  1907. // For manual bed leveling deactivate the matrix temporarily
  1908. #if ENABLED(MESH_BED_LEVELING)
  1909. uint8_t mbl_was_active = mbl.active;
  1910. mbl.active = 0;
  1911. #endif
  1912. setup_for_endstop_move();
  1913. set_destination_to_current();
  1914. feedrate = 0.0;
  1915. #if ENABLED(DELTA)
  1916. // A delta can only safely home all axis at the same time
  1917. // all axis have to home at the same time
  1918. // Pretend the current position is 0,0,0
  1919. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1920. sync_plan_position();
  1921. // Move all carriages up together until the first endstop is hit.
  1922. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1923. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1924. line_to_destination();
  1925. st_synchronize();
  1926. endstops_hit_on_purpose(); // clear endstop hit flags
  1927. // Destination reached
  1928. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1929. // take care of back off and rehome now we are all at the top
  1930. HOMEAXIS(X);
  1931. HOMEAXIS(Y);
  1932. HOMEAXIS(Z);
  1933. sync_plan_position_delta();
  1934. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1935. if (marlin_debug_flags & DEBUG_LEVELING) {
  1936. print_xyz("(DELTA) > current_position", current_position);
  1937. }
  1938. #endif
  1939. #else // NOT DELTA
  1940. bool homeX = code_seen(axis_codes[X_AXIS]),
  1941. homeY = code_seen(axis_codes[Y_AXIS]),
  1942. homeZ = code_seen(axis_codes[Z_AXIS]);
  1943. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1944. if (home_all_axis || homeZ) {
  1945. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1946. HOMEAXIS(Z);
  1947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1948. if (marlin_debug_flags & DEBUG_LEVELING) {
  1949. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  1950. }
  1951. #endif
  1952. #elif defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1953. // Raise Z before homing any other axes
  1954. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1955. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1957. if (marlin_debug_flags & DEBUG_LEVELING) {
  1958. SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
  1959. SERIAL_EOL;
  1960. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  1961. }
  1962. #endif
  1963. feedrate = max_feedrate[Z_AXIS] * 60;
  1964. line_to_destination();
  1965. st_synchronize();
  1966. #endif
  1967. } // home_all_axis || homeZ
  1968. #if ENABLED(QUICK_HOME)
  1969. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1970. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1971. #if ENABLED(DUAL_X_CARRIAGE)
  1972. int x_axis_home_dir = x_home_dir(active_extruder);
  1973. extruder_duplication_enabled = false;
  1974. #else
  1975. int x_axis_home_dir = home_dir(X_AXIS);
  1976. #endif
  1977. sync_plan_position();
  1978. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1979. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  1980. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1981. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1982. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1983. line_to_destination();
  1984. st_synchronize();
  1985. set_axis_is_at_home(X_AXIS);
  1986. set_axis_is_at_home(Y_AXIS);
  1987. sync_plan_position();
  1988. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1989. if (marlin_debug_flags & DEBUG_LEVELING) {
  1990. print_xyz("> QUICK_HOME > current_position 1", current_position);
  1991. }
  1992. #endif
  1993. destination[X_AXIS] = current_position[X_AXIS];
  1994. destination[Y_AXIS] = current_position[Y_AXIS];
  1995. line_to_destination();
  1996. feedrate = 0.0;
  1997. st_synchronize();
  1998. endstops_hit_on_purpose(); // clear endstop hit flags
  1999. current_position[X_AXIS] = destination[X_AXIS];
  2000. current_position[Y_AXIS] = destination[Y_AXIS];
  2001. #if DISABLED(SCARA)
  2002. current_position[Z_AXIS] = destination[Z_AXIS];
  2003. #endif
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (marlin_debug_flags & DEBUG_LEVELING) {
  2006. print_xyz("> QUICK_HOME > current_position 2", current_position);
  2007. }
  2008. #endif
  2009. }
  2010. #endif // QUICK_HOME
  2011. #if ENABLED(HOME_Y_BEFORE_X)
  2012. // Home Y
  2013. if (home_all_axis || homeY) HOMEAXIS(Y);
  2014. #endif
  2015. // Home X
  2016. if (home_all_axis || homeX) {
  2017. #if ENABLED(DUAL_X_CARRIAGE)
  2018. int tmp_extruder = active_extruder;
  2019. extruder_duplication_enabled = false;
  2020. active_extruder = !active_extruder;
  2021. HOMEAXIS(X);
  2022. inactive_extruder_x_pos = current_position[X_AXIS];
  2023. active_extruder = tmp_extruder;
  2024. HOMEAXIS(X);
  2025. // reset state used by the different modes
  2026. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2027. delayed_move_time = 0;
  2028. active_extruder_parked = true;
  2029. #else
  2030. HOMEAXIS(X);
  2031. #endif
  2032. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2033. if (marlin_debug_flags & DEBUG_LEVELING) {
  2034. print_xyz("> homeX", current_position);
  2035. }
  2036. #endif
  2037. }
  2038. #if DISABLED(HOME_Y_BEFORE_X)
  2039. // Home Y
  2040. if (home_all_axis || homeY) {
  2041. HOMEAXIS(Y);
  2042. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2043. if (marlin_debug_flags & DEBUG_LEVELING) {
  2044. print_xyz("> homeY", current_position);
  2045. }
  2046. #endif
  2047. }
  2048. #endif
  2049. // Home Z last if homing towards the bed
  2050. #if Z_HOME_DIR < 0
  2051. if (home_all_axis || homeZ) {
  2052. #if ENABLED(Z_SAFE_HOMING)
  2053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2054. if (marlin_debug_flags & DEBUG_LEVELING) {
  2055. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2056. }
  2057. #endif
  2058. if (home_all_axis) {
  2059. current_position[Z_AXIS] = 0;
  2060. sync_plan_position();
  2061. //
  2062. // Set the Z probe (or just the nozzle) destination to the safe homing point
  2063. //
  2064. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  2065. // then this may not work as expected.
  2066. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2067. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2068. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  2069. feedrate = XY_TRAVEL_SPEED;
  2070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2071. if (marlin_debug_flags & DEBUG_LEVELING) {
  2072. SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
  2073. SERIAL_EOL;
  2074. print_xyz("> home_all_axis > current_position", current_position);
  2075. print_xyz("> home_all_axis > destination", destination);
  2076. }
  2077. #endif
  2078. // This could potentially move X, Y, Z all together
  2079. line_to_destination();
  2080. st_synchronize();
  2081. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  2082. current_position[X_AXIS] = destination[X_AXIS];
  2083. current_position[Y_AXIS] = destination[Y_AXIS];
  2084. // Home the Z axis
  2085. HOMEAXIS(Z);
  2086. }
  2087. else if (homeZ) { // Don't need to Home Z twice
  2088. // Let's see if X and Y are homed
  2089. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  2090. // Make sure the Z probe is within the physical limits
  2091. // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
  2092. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2093. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  2094. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  2095. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  2096. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  2097. // Set the plan current position to X, Y, 0
  2098. current_position[Z_AXIS] = 0;
  2099. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  2100. // Set Z destination away from bed and raise the axis
  2101. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  2102. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  2103. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2105. if (marlin_debug_flags & DEBUG_LEVELING) {
  2106. SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
  2107. SERIAL_EOL;
  2108. print_xyz("> homeZ > current_position", current_position);
  2109. print_xyz("> homeZ > destination", destination);
  2110. }
  2111. #endif
  2112. line_to_destination();
  2113. st_synchronize();
  2114. // Home the Z axis
  2115. HOMEAXIS(Z);
  2116. }
  2117. else {
  2118. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2119. SERIAL_ECHO_START;
  2120. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2121. }
  2122. }
  2123. else {
  2124. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2125. SERIAL_ECHO_START;
  2126. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2127. }
  2128. } // !home_all_axes && homeZ
  2129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2130. if (marlin_debug_flags & DEBUG_LEVELING) {
  2131. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2132. }
  2133. #endif
  2134. #else // !Z_SAFE_HOMING
  2135. HOMEAXIS(Z);
  2136. #endif // !Z_SAFE_HOMING
  2137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2138. if (marlin_debug_flags & DEBUG_LEVELING) {
  2139. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2140. }
  2141. #endif
  2142. } // home_all_axis || homeZ
  2143. #endif // Z_HOME_DIR < 0
  2144. sync_plan_position();
  2145. #endif // else DELTA
  2146. #if ENABLED(SCARA)
  2147. sync_plan_position_delta();
  2148. #endif
  2149. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2151. if (marlin_debug_flags & DEBUG_LEVELING) {
  2152. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2153. }
  2154. #endif
  2155. enable_endstops(false);
  2156. #endif
  2157. // For manual leveling move back to 0,0
  2158. #if ENABLED(MESH_BED_LEVELING)
  2159. if (mbl_was_active) {
  2160. current_position[X_AXIS] = mbl.get_x(0);
  2161. current_position[Y_AXIS] = mbl.get_y(0);
  2162. set_destination_to_current();
  2163. feedrate = homing_feedrate[X_AXIS];
  2164. line_to_destination();
  2165. st_synchronize();
  2166. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2167. sync_plan_position();
  2168. mbl.active = 1;
  2169. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2170. if (marlin_debug_flags & DEBUG_LEVELING) {
  2171. print_xyz("mbl_was_active > current_position", current_position);
  2172. }
  2173. #endif
  2174. }
  2175. #endif
  2176. feedrate = saved_feedrate;
  2177. feedrate_multiplier = saved_feedrate_multiplier;
  2178. refresh_cmd_timeout();
  2179. endstops_hit_on_purpose(); // clear endstop hit flags
  2180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2181. if (marlin_debug_flags & DEBUG_LEVELING) {
  2182. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2183. }
  2184. #endif
  2185. }
  2186. #if ENABLED(MESH_BED_LEVELING)
  2187. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  2188. /**
  2189. * G29: Mesh-based Z probe, probes a grid and produces a
  2190. * mesh to compensate for variable bed height
  2191. *
  2192. * Parameters With MESH_BED_LEVELING:
  2193. *
  2194. * S0 Produce a mesh report
  2195. * S1 Start probing mesh points
  2196. * S2 Probe the next mesh point
  2197. * S3 Xn Yn Zn.nn Manually modify a single point
  2198. *
  2199. * The S0 report the points as below
  2200. *
  2201. * +----> X-axis
  2202. * |
  2203. * |
  2204. * v Y-axis
  2205. *
  2206. */
  2207. inline void gcode_G29() {
  2208. static int probe_point = -1;
  2209. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2210. if (state < 0 || state > 3) {
  2211. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  2212. return;
  2213. }
  2214. int ix, iy;
  2215. float z;
  2216. switch (state) {
  2217. case MeshReport:
  2218. if (mbl.active) {
  2219. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2220. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2221. SERIAL_PROTOCOLCHAR(',');
  2222. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2223. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2224. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2225. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2226. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2227. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2228. SERIAL_PROTOCOLPGM(" ");
  2229. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2230. }
  2231. SERIAL_EOL;
  2232. }
  2233. }
  2234. else
  2235. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2236. break;
  2237. case MeshStart:
  2238. mbl.reset();
  2239. probe_point = 0;
  2240. enqueuecommands_P(PSTR("G28\nG29 S2"));
  2241. break;
  2242. case MeshNext:
  2243. if (probe_point < 0) {
  2244. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2245. return;
  2246. }
  2247. if (probe_point == 0) {
  2248. // Set Z to a positive value before recording the first Z.
  2249. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2250. sync_plan_position();
  2251. }
  2252. else {
  2253. // For others, save the Z of the previous point, then raise Z again.
  2254. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  2255. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  2256. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2257. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2258. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2260. st_synchronize();
  2261. }
  2262. // Is there another point to sample? Move there.
  2263. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  2264. ix = probe_point % MESH_NUM_X_POINTS;
  2265. iy = probe_point / MESH_NUM_X_POINTS;
  2266. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2267. current_position[X_AXIS] = mbl.get_x(ix);
  2268. current_position[Y_AXIS] = mbl.get_y(iy);
  2269. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2270. st_synchronize();
  2271. probe_point++;
  2272. }
  2273. else {
  2274. // After recording the last point, activate the mbl and home
  2275. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2276. probe_point = -1;
  2277. mbl.active = 1;
  2278. enqueuecommands_P(PSTR("G28"));
  2279. }
  2280. break;
  2281. case MeshSet:
  2282. if (code_seen('X')) {
  2283. ix = code_value_long() - 1;
  2284. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2285. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2286. return;
  2287. }
  2288. }
  2289. else {
  2290. SERIAL_PROTOCOLPGM("X not entered.\n");
  2291. return;
  2292. }
  2293. if (code_seen('Y')) {
  2294. iy = code_value_long() - 1;
  2295. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2296. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2297. return;
  2298. }
  2299. }
  2300. else {
  2301. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2302. return;
  2303. }
  2304. if (code_seen('Z')) {
  2305. z = code_value();
  2306. }
  2307. else {
  2308. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2309. return;
  2310. }
  2311. mbl.z_values[iy][ix] = z;
  2312. } // switch(state)
  2313. }
  2314. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2315. void out_of_range_error(const char* p_edge) {
  2316. SERIAL_PROTOCOLPGM("?Probe ");
  2317. serialprintPGM(p_edge);
  2318. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2319. }
  2320. /**
  2321. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2322. * Will fail if the printer has not been homed with G28.
  2323. *
  2324. * Enhanced G29 Auto Bed Leveling Probe Routine
  2325. *
  2326. * Parameters With AUTO_BED_LEVELING_GRID:
  2327. *
  2328. * P Set the size of the grid that will be probed (P x P points).
  2329. * Not supported by non-linear delta printer bed leveling.
  2330. * Example: "G29 P4"
  2331. *
  2332. * S Set the XY travel speed between probe points (in mm/min)
  2333. *
  2334. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2335. * or clean the rotation Matrix. Useful to check the topology
  2336. * after a first run of G29.
  2337. *
  2338. * V Set the verbose level (0-4). Example: "G29 V3"
  2339. *
  2340. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2341. * This is useful for manual bed leveling and finding flaws in the bed (to
  2342. * assist with part placement).
  2343. * Not supported by non-linear delta printer bed leveling.
  2344. *
  2345. * F Set the Front limit of the probing grid
  2346. * B Set the Back limit of the probing grid
  2347. * L Set the Left limit of the probing grid
  2348. * R Set the Right limit of the probing grid
  2349. *
  2350. * Global Parameters:
  2351. *
  2352. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2353. * Include "E" to engage/disengage the Z probe for each sample.
  2354. * There's no extra effect if you have a fixed Z probe.
  2355. * Usage: "G29 E" or "G29 e"
  2356. *
  2357. */
  2358. inline void gcode_G29() {
  2359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2360. if (marlin_debug_flags & DEBUG_LEVELING) {
  2361. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2362. }
  2363. #endif
  2364. // Don't allow auto-leveling without homing first
  2365. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2366. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2367. SERIAL_ECHO_START;
  2368. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2369. return;
  2370. }
  2371. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2372. if (verbose_level < 0 || verbose_level > 4) {
  2373. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2374. return;
  2375. }
  2376. bool dryrun = code_seen('D'),
  2377. deploy_probe_for_each_reading = code_seen('E');
  2378. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2379. #if DISABLED(DELTA)
  2380. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2381. #endif
  2382. if (verbose_level > 0) {
  2383. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2384. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2385. }
  2386. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2387. #if DISABLED(DELTA)
  2388. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2389. if (auto_bed_leveling_grid_points < 2) {
  2390. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2391. return;
  2392. }
  2393. #endif
  2394. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2395. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2396. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2397. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2398. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2399. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2400. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2401. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2402. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2403. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2404. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2405. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2406. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2407. if (left_out || right_out || front_out || back_out) {
  2408. if (left_out) {
  2409. out_of_range_error(PSTR("(L)eft"));
  2410. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2411. }
  2412. if (right_out) {
  2413. out_of_range_error(PSTR("(R)ight"));
  2414. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2415. }
  2416. if (front_out) {
  2417. out_of_range_error(PSTR("(F)ront"));
  2418. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2419. }
  2420. if (back_out) {
  2421. out_of_range_error(PSTR("(B)ack"));
  2422. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2423. }
  2424. return;
  2425. }
  2426. #endif // AUTO_BED_LEVELING_GRID
  2427. #if ENABLED(Z_PROBE_SLED)
  2428. dock_sled(false); // engage (un-dock) the Z probe
  2429. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2430. deploy_z_probe();
  2431. #endif
  2432. st_synchronize();
  2433. if (!dryrun) {
  2434. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2435. plan_bed_level_matrix.set_to_identity();
  2436. #if ENABLED(DELTA)
  2437. reset_bed_level();
  2438. #else //!DELTA
  2439. //vector_3 corrected_position = plan_get_position_mm();
  2440. //corrected_position.debug("position before G29");
  2441. vector_3 uncorrected_position = plan_get_position();
  2442. //uncorrected_position.debug("position during G29");
  2443. current_position[X_AXIS] = uncorrected_position.x;
  2444. current_position[Y_AXIS] = uncorrected_position.y;
  2445. current_position[Z_AXIS] = uncorrected_position.z;
  2446. sync_plan_position();
  2447. #endif // !DELTA
  2448. }
  2449. setup_for_endstop_move();
  2450. feedrate = homing_feedrate[Z_AXIS];
  2451. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2452. // probe at the points of a lattice grid
  2453. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2454. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2455. #if ENABLED(DELTA)
  2456. delta_grid_spacing[0] = xGridSpacing;
  2457. delta_grid_spacing[1] = yGridSpacing;
  2458. float z_offset = zprobe_zoffset;
  2459. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2460. #else // !DELTA
  2461. // solve the plane equation ax + by + d = z
  2462. // A is the matrix with rows [x y 1] for all the probed points
  2463. // B is the vector of the Z positions
  2464. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2465. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2466. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2467. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2468. eqnBVector[abl2], // "B" vector of Z points
  2469. mean = 0.0;
  2470. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2471. #endif // !DELTA
  2472. int probePointCounter = 0;
  2473. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2474. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2475. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2476. int xStart, xStop, xInc;
  2477. if (zig) {
  2478. xStart = 0;
  2479. xStop = auto_bed_leveling_grid_points;
  2480. xInc = 1;
  2481. }
  2482. else {
  2483. xStart = auto_bed_leveling_grid_points - 1;
  2484. xStop = -1;
  2485. xInc = -1;
  2486. }
  2487. zig = !zig;
  2488. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2489. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2490. // raise extruder
  2491. float measured_z,
  2492. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2493. if (probePointCounter) {
  2494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2495. if (marlin_debug_flags & DEBUG_LEVELING) {
  2496. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2497. SERIAL_EOL;
  2498. }
  2499. #endif
  2500. }
  2501. else {
  2502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2503. if (marlin_debug_flags & DEBUG_LEVELING) {
  2504. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2505. SERIAL_EOL;
  2506. }
  2507. #endif
  2508. }
  2509. #if ENABLED(DELTA)
  2510. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2511. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2512. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2513. #endif //DELTA
  2514. ProbeAction act;
  2515. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2516. act = ProbeDeployAndStow;
  2517. else if (yCount == 0 && xCount == xStart)
  2518. act = ProbeDeploy;
  2519. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2520. act = ProbeStow;
  2521. else
  2522. act = ProbeStay;
  2523. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2524. #if DISABLED(DELTA)
  2525. mean += measured_z;
  2526. eqnBVector[probePointCounter] = measured_z;
  2527. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2528. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2529. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2530. indexIntoAB[xCount][yCount] = probePointCounter;
  2531. #else
  2532. bed_level[xCount][yCount] = measured_z + z_offset;
  2533. #endif
  2534. probePointCounter++;
  2535. idle();
  2536. } //xProbe
  2537. } //yProbe
  2538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2539. if (marlin_debug_flags & DEBUG_LEVELING) {
  2540. print_xyz("> probing complete > current_position", current_position);
  2541. }
  2542. #endif
  2543. clean_up_after_endstop_move();
  2544. #if ENABLED(DELTA)
  2545. if (!dryrun) extrapolate_unprobed_bed_level();
  2546. print_bed_level();
  2547. #else // !DELTA
  2548. // solve lsq problem
  2549. double plane_equation_coefficients[3];
  2550. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2551. mean /= abl2;
  2552. if (verbose_level) {
  2553. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2554. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2555. SERIAL_PROTOCOLPGM(" b: ");
  2556. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2557. SERIAL_PROTOCOLPGM(" d: ");
  2558. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2559. SERIAL_EOL;
  2560. if (verbose_level > 2) {
  2561. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2562. SERIAL_PROTOCOL_F(mean, 8);
  2563. SERIAL_EOL;
  2564. }
  2565. }
  2566. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2567. // Show the Topography map if enabled
  2568. if (do_topography_map) {
  2569. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2570. SERIAL_PROTOCOLPGM("+-----------+\n");
  2571. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2572. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2573. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2574. SERIAL_PROTOCOLPGM("+-----------+\n");
  2575. float min_diff = 999;
  2576. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2577. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2578. int ind = indexIntoAB[xx][yy];
  2579. float diff = eqnBVector[ind] - mean;
  2580. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2581. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2582. z_tmp = 0;
  2583. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2584. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2585. if (diff >= 0.0)
  2586. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2587. else
  2588. SERIAL_PROTOCOLCHAR(' ');
  2589. SERIAL_PROTOCOL_F(diff, 5);
  2590. } // xx
  2591. SERIAL_EOL;
  2592. } // yy
  2593. SERIAL_EOL;
  2594. if (verbose_level > 3) {
  2595. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2596. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2597. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2598. int ind = indexIntoAB[xx][yy];
  2599. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2600. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2601. z_tmp = 0;
  2602. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2603. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2604. if (diff >= 0.0)
  2605. SERIAL_PROTOCOLPGM(" +");
  2606. // Include + for column alignment
  2607. else
  2608. SERIAL_PROTOCOLCHAR(' ');
  2609. SERIAL_PROTOCOL_F(diff, 5);
  2610. } // xx
  2611. SERIAL_EOL;
  2612. } // yy
  2613. SERIAL_EOL;
  2614. }
  2615. } //do_topography_map
  2616. #endif //!DELTA
  2617. #else // !AUTO_BED_LEVELING_GRID
  2618. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2619. if (marlin_debug_flags & DEBUG_LEVELING) {
  2620. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2621. }
  2622. #endif
  2623. // Actions for each probe
  2624. ProbeAction p1, p2, p3;
  2625. if (deploy_probe_for_each_reading)
  2626. p1 = p2 = p3 = ProbeDeployAndStow;
  2627. else
  2628. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2629. // Probe at 3 arbitrary points
  2630. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2631. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2632. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2633. clean_up_after_endstop_move();
  2634. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2635. #endif // !AUTO_BED_LEVELING_GRID
  2636. #if ENABLED(DELTA)
  2637. // Allen Key Probe for Delta
  2638. #if ENABLED(Z_PROBE_ALLEN_KEY)
  2639. stow_z_probe();
  2640. #elif Z_RAISE_AFTER_PROBING > 0
  2641. raise_z_after_probing();
  2642. #endif
  2643. #else // !DELTA
  2644. if (verbose_level > 0)
  2645. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2646. if (!dryrun) {
  2647. // Correct the Z height difference from Z probe position and nozzle tip position.
  2648. // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
  2649. // When the bed is uneven, this height must be corrected.
  2650. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2651. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2652. z_tmp = current_position[Z_AXIS],
  2653. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2655. if (marlin_debug_flags & DEBUG_LEVELING) {
  2656. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2657. SERIAL_EOL;
  2658. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2659. SERIAL_EOL;
  2660. }
  2661. #endif
  2662. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
  2663. // Get the current Z position and send it to the planner.
  2664. //
  2665. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2666. //
  2667. // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
  2668. //
  2669. // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
  2670. //
  2671. // >> Should home_offset[Z_AXIS] be included?
  2672. //
  2673. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2674. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2675. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2676. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2677. // added here, it could be seen as a compensating factor for the Z probe.
  2678. //
  2679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2680. if (marlin_debug_flags & DEBUG_LEVELING) {
  2681. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2682. SERIAL_EOL;
  2683. }
  2684. #endif
  2685. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2686. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2687. + Z_RAISE_AFTER_PROBING
  2688. #endif
  2689. ;
  2690. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2691. sync_plan_position();
  2692. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2693. if (marlin_debug_flags & DEBUG_LEVELING) {
  2694. print_xyz("> corrected Z in G29", current_position);
  2695. }
  2696. #endif
  2697. }
  2698. // Sled assembly for Cartesian bots
  2699. #if ENABLED(Z_PROBE_SLED)
  2700. dock_sled(true); // dock the sled
  2701. #elif Z_RAISE_AFTER_PROBING > 0
  2702. // Raise Z axis for non-delta and non servo based probes
  2703. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2704. raise_z_after_probing();
  2705. #endif
  2706. #endif
  2707. #endif // !DELTA
  2708. #ifdef Z_PROBE_END_SCRIPT
  2709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2710. if (marlin_debug_flags & DEBUG_LEVELING) {
  2711. SERIAL_ECHO("Z Probe End Script: ");
  2712. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2713. }
  2714. #endif
  2715. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2716. st_synchronize();
  2717. #endif
  2718. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2719. if (marlin_debug_flags & DEBUG_LEVELING) {
  2720. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2721. }
  2722. #endif
  2723. }
  2724. #if DISABLED(Z_PROBE_SLED)
  2725. /**
  2726. * G30: Do a single Z probe at the current XY
  2727. */
  2728. inline void gcode_G30() {
  2729. #if HAS_SERVO_ENDSTOPS
  2730. raise_z_for_servo();
  2731. #endif
  2732. deploy_z_probe(); // Engage Z Servo endstop if available
  2733. st_synchronize();
  2734. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2735. setup_for_endstop_move();
  2736. feedrate = homing_feedrate[Z_AXIS];
  2737. run_z_probe();
  2738. SERIAL_PROTOCOLPGM("Bed X: ");
  2739. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2740. SERIAL_PROTOCOLPGM(" Y: ");
  2741. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2742. SERIAL_PROTOCOLPGM(" Z: ");
  2743. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2744. SERIAL_EOL;
  2745. clean_up_after_endstop_move();
  2746. #if HAS_SERVO_ENDSTOPS
  2747. raise_z_for_servo();
  2748. #endif
  2749. stow_z_probe(false); // Retract Z Servo endstop if available
  2750. }
  2751. #endif //!Z_PROBE_SLED
  2752. #endif //AUTO_BED_LEVELING_FEATURE
  2753. /**
  2754. * G92: Set current position to given X Y Z E
  2755. */
  2756. inline void gcode_G92() {
  2757. if (!code_seen(axis_codes[E_AXIS]))
  2758. st_synchronize();
  2759. bool didXYZ = false;
  2760. for (int i = 0; i < NUM_AXIS; i++) {
  2761. if (code_seen(axis_codes[i])) {
  2762. float v = current_position[i] = code_value();
  2763. if (i == E_AXIS)
  2764. plan_set_e_position(v);
  2765. else
  2766. didXYZ = true;
  2767. }
  2768. }
  2769. if (didXYZ) {
  2770. #if ENABLED(DELTA) || ENABLED(SCARA)
  2771. sync_plan_position_delta();
  2772. #else
  2773. sync_plan_position();
  2774. #endif
  2775. }
  2776. }
  2777. #if ENABLED(ULTIPANEL)
  2778. /**
  2779. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2780. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2781. */
  2782. inline void gcode_M0_M1() {
  2783. char* args = current_command_args;
  2784. millis_t codenum = 0;
  2785. bool hasP = false, hasS = false;
  2786. if (code_seen('P')) {
  2787. codenum = code_value_short(); // milliseconds to wait
  2788. hasP = codenum > 0;
  2789. }
  2790. if (code_seen('S')) {
  2791. codenum = code_value() * 1000; // seconds to wait
  2792. hasS = codenum > 0;
  2793. }
  2794. if (!hasP && !hasS && *args != '\0')
  2795. lcd_setstatus(args, true);
  2796. else {
  2797. LCD_MESSAGEPGM(MSG_USERWAIT);
  2798. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2799. dontExpireStatus();
  2800. #endif
  2801. }
  2802. lcd_ignore_click();
  2803. st_synchronize();
  2804. refresh_cmd_timeout();
  2805. if (codenum > 0) {
  2806. codenum += previous_cmd_ms; // wait until this time for a click
  2807. while (millis() < codenum && !lcd_clicked()) idle();
  2808. lcd_ignore_click(false);
  2809. }
  2810. else {
  2811. if (!lcd_detected()) return;
  2812. while (!lcd_clicked()) idle();
  2813. }
  2814. if (IS_SD_PRINTING)
  2815. LCD_MESSAGEPGM(MSG_RESUMING);
  2816. else
  2817. LCD_MESSAGEPGM(WELCOME_MSG);
  2818. }
  2819. #endif // ULTIPANEL
  2820. /**
  2821. * M17: Enable power on all stepper motors
  2822. */
  2823. inline void gcode_M17() {
  2824. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2825. enable_all_steppers();
  2826. }
  2827. #if ENABLED(SDSUPPORT)
  2828. /**
  2829. * M20: List SD card to serial output
  2830. */
  2831. inline void gcode_M20() {
  2832. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2833. card.ls();
  2834. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2835. }
  2836. /**
  2837. * M21: Init SD Card
  2838. */
  2839. inline void gcode_M21() {
  2840. card.initsd();
  2841. }
  2842. /**
  2843. * M22: Release SD Card
  2844. */
  2845. inline void gcode_M22() {
  2846. card.release();
  2847. }
  2848. /**
  2849. * M23: Select a file
  2850. */
  2851. inline void gcode_M23() {
  2852. card.openFile(current_command_args, true);
  2853. }
  2854. /**
  2855. * M24: Start SD Print
  2856. */
  2857. inline void gcode_M24() {
  2858. card.startFileprint();
  2859. print_job_start_ms = millis();
  2860. }
  2861. /**
  2862. * M25: Pause SD Print
  2863. */
  2864. inline void gcode_M25() {
  2865. card.pauseSDPrint();
  2866. }
  2867. /**
  2868. * M26: Set SD Card file index
  2869. */
  2870. inline void gcode_M26() {
  2871. if (card.cardOK && code_seen('S'))
  2872. card.setIndex(code_value_short());
  2873. }
  2874. /**
  2875. * M27: Get SD Card status
  2876. */
  2877. inline void gcode_M27() {
  2878. card.getStatus();
  2879. }
  2880. /**
  2881. * M28: Start SD Write
  2882. */
  2883. inline void gcode_M28() {
  2884. card.openFile(current_command_args, false);
  2885. }
  2886. /**
  2887. * M29: Stop SD Write
  2888. * Processed in write to file routine above
  2889. */
  2890. inline void gcode_M29() {
  2891. // card.saving = false;
  2892. }
  2893. /**
  2894. * M30 <filename>: Delete SD Card file
  2895. */
  2896. inline void gcode_M30() {
  2897. if (card.cardOK) {
  2898. card.closefile();
  2899. card.removeFile(current_command_args);
  2900. }
  2901. }
  2902. #endif //SDSUPPORT
  2903. /**
  2904. * M31: Get the time since the start of SD Print (or last M109)
  2905. */
  2906. inline void gcode_M31() {
  2907. print_job_stop_ms = millis();
  2908. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2909. int min = t / 60, sec = t % 60;
  2910. char time[30];
  2911. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2912. SERIAL_ECHO_START;
  2913. SERIAL_ECHOLN(time);
  2914. lcd_setstatus(time);
  2915. autotempShutdown();
  2916. }
  2917. #if ENABLED(SDSUPPORT)
  2918. /**
  2919. * M32: Select file and start SD Print
  2920. */
  2921. inline void gcode_M32() {
  2922. if (card.sdprinting)
  2923. st_synchronize();
  2924. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2925. if (!namestartpos)
  2926. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2927. else
  2928. namestartpos++; //to skip the '!'
  2929. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2930. if (card.cardOK) {
  2931. card.openFile(namestartpos, true, !call_procedure);
  2932. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2933. card.setIndex(code_value_short());
  2934. card.startFileprint();
  2935. if (!call_procedure)
  2936. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2937. }
  2938. }
  2939. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  2940. /**
  2941. * M33: Get the long full path of a file or folder
  2942. *
  2943. * Parameters:
  2944. * <dospath> Case-insensitive DOS-style path to a file or folder
  2945. *
  2946. * Example:
  2947. * M33 miscel~1/armchair/armcha~1.gco
  2948. *
  2949. * Output:
  2950. * /Miscellaneous/Armchair/Armchair.gcode
  2951. */
  2952. inline void gcode_M33() {
  2953. card.printLongPath(current_command_args);
  2954. }
  2955. #endif
  2956. /**
  2957. * M928: Start SD Write
  2958. */
  2959. inline void gcode_M928() {
  2960. card.openLogFile(current_command_args);
  2961. }
  2962. #endif // SDSUPPORT
  2963. /**
  2964. * M42: Change pin status via GCode
  2965. */
  2966. inline void gcode_M42() {
  2967. if (code_seen('S')) {
  2968. int pin_status = code_value_short(),
  2969. pin_number = LED_PIN;
  2970. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2971. pin_number = code_value_short();
  2972. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2973. if (sensitive_pins[i] == pin_number) {
  2974. pin_number = -1;
  2975. break;
  2976. }
  2977. }
  2978. #if HAS_FAN
  2979. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2980. #endif
  2981. if (pin_number > -1) {
  2982. pinMode(pin_number, OUTPUT);
  2983. digitalWrite(pin_number, pin_status);
  2984. analogWrite(pin_number, pin_status);
  2985. }
  2986. } // code_seen('S')
  2987. }
  2988. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  2989. // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
  2990. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  2991. #if !HAS_Z_PROBE
  2992. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  2993. #endif
  2994. #elif !HAS_Z_MIN
  2995. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  2996. #endif
  2997. /**
  2998. * M48: Z probe repeatability measurement function.
  2999. *
  3000. * Usage:
  3001. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3002. * P = Number of sampled points (4-50, default 10)
  3003. * X = Sample X position
  3004. * Y = Sample Y position
  3005. * V = Verbose level (0-4, default=1)
  3006. * E = Engage Z probe for each reading
  3007. * L = Number of legs of movement before probe
  3008. *
  3009. * This function assumes the bed has been homed. Specifically, that a G28 command
  3010. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3011. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3012. * regenerated.
  3013. */
  3014. inline void gcode_M48() {
  3015. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3016. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  3017. if (code_seen('V')) {
  3018. verbose_level = code_value_short();
  3019. if (verbose_level < 0 || verbose_level > 4) {
  3020. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3021. return;
  3022. }
  3023. }
  3024. if (verbose_level > 0)
  3025. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3026. if (code_seen('P')) {
  3027. n_samples = code_value_short();
  3028. if (n_samples < 4 || n_samples > 50) {
  3029. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3030. return;
  3031. }
  3032. }
  3033. double X_current = st_get_axis_position_mm(X_AXIS),
  3034. Y_current = st_get_axis_position_mm(Y_AXIS),
  3035. Z_current = st_get_axis_position_mm(Z_AXIS),
  3036. E_current = st_get_axis_position_mm(E_AXIS),
  3037. X_probe_location = X_current, Y_probe_location = Y_current,
  3038. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3039. bool deploy_probe_for_each_reading = code_seen('E');
  3040. if (code_seen('X')) {
  3041. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3042. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  3043. out_of_range_error(PSTR("X"));
  3044. return;
  3045. }
  3046. }
  3047. if (code_seen('Y')) {
  3048. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3049. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  3050. out_of_range_error(PSTR("Y"));
  3051. return;
  3052. }
  3053. }
  3054. if (code_seen('L')) {
  3055. n_legs = code_value_short();
  3056. if (n_legs == 1) n_legs = 2;
  3057. if (n_legs < 0 || n_legs > 15) {
  3058. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3059. return;
  3060. }
  3061. }
  3062. //
  3063. // Do all the preliminary setup work. First raise the Z probe.
  3064. //
  3065. st_synchronize();
  3066. plan_bed_level_matrix.set_to_identity();
  3067. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  3068. st_synchronize();
  3069. //
  3070. // Now get everything to the specified probe point So we can safely do a probe to
  3071. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3072. // use that as a starting point for each probe.
  3073. //
  3074. if (verbose_level > 2)
  3075. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3076. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  3077. E_current,
  3078. homing_feedrate[X_AXIS] / 60,
  3079. active_extruder);
  3080. st_synchronize();
  3081. current_position[X_AXIS] = X_current = st_get_axis_position_mm(X_AXIS);
  3082. current_position[Y_AXIS] = Y_current = st_get_axis_position_mm(Y_AXIS);
  3083. current_position[Z_AXIS] = Z_current = st_get_axis_position_mm(Z_AXIS);
  3084. current_position[E_AXIS] = E_current = st_get_axis_position_mm(E_AXIS);
  3085. //
  3086. // OK, do the initial probe to get us close to the bed.
  3087. // Then retrace the right amount and use that in subsequent probes
  3088. //
  3089. deploy_z_probe();
  3090. setup_for_endstop_move();
  3091. run_z_probe();
  3092. Z_current = current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  3093. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3094. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  3095. E_current,
  3096. homing_feedrate[X_AXIS] / 60,
  3097. active_extruder);
  3098. st_synchronize();
  3099. Z_current = current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  3100. if (deploy_probe_for_each_reading) stow_z_probe();
  3101. for (uint8_t n = 0; n < n_samples; n++) {
  3102. // Make sure we are at the probe location
  3103. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  3104. if (n_legs) {
  3105. millis_t ms = millis();
  3106. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  3107. theta = RADIANS(ms % 360L);
  3108. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  3109. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3110. //SERIAL_ECHOPAIR(" theta: ",theta);
  3111. //SERIAL_ECHOPAIR(" direction: ",dir);
  3112. //SERIAL_EOL;
  3113. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3114. ms = millis();
  3115. theta += RADIANS(dir * (ms % 20L));
  3116. radius += (ms % 10L) - 5L;
  3117. if (radius < 0.0) radius = -radius;
  3118. X_current = X_probe_location + cos(theta) * radius;
  3119. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3120. Y_current = Y_probe_location + sin(theta) * radius;
  3121. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3122. if (verbose_level > 3) {
  3123. SERIAL_ECHOPAIR("x: ", X_current);
  3124. SERIAL_ECHOPAIR("y: ", Y_current);
  3125. SERIAL_EOL;
  3126. }
  3127. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  3128. } // n_legs loop
  3129. // Go back to the probe location
  3130. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  3131. } // n_legs
  3132. if (deploy_probe_for_each_reading) {
  3133. deploy_z_probe();
  3134. delay(1000);
  3135. }
  3136. setup_for_endstop_move();
  3137. run_z_probe();
  3138. sample_set[n] = current_position[Z_AXIS];
  3139. //
  3140. // Get the current mean for the data points we have so far
  3141. //
  3142. sum = 0.0;
  3143. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3144. mean = sum / (n + 1);
  3145. //
  3146. // Now, use that mean to calculate the standard deviation for the
  3147. // data points we have so far
  3148. //
  3149. sum = 0.0;
  3150. for (uint8_t j = 0; j <= n; j++) {
  3151. float ss = sample_set[j] - mean;
  3152. sum += ss * ss;
  3153. }
  3154. sigma = sqrt(sum / (n + 1));
  3155. if (verbose_level > 1) {
  3156. SERIAL_PROTOCOL(n + 1);
  3157. SERIAL_PROTOCOLPGM(" of ");
  3158. SERIAL_PROTOCOL((int)n_samples);
  3159. SERIAL_PROTOCOLPGM(" z: ");
  3160. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3161. if (verbose_level > 2) {
  3162. SERIAL_PROTOCOLPGM(" mean: ");
  3163. SERIAL_PROTOCOL_F(mean, 6);
  3164. SERIAL_PROTOCOLPGM(" sigma: ");
  3165. SERIAL_PROTOCOL_F(sigma, 6);
  3166. }
  3167. }
  3168. if (verbose_level > 0) SERIAL_EOL;
  3169. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3170. st_synchronize();
  3171. // Stow between
  3172. if (deploy_probe_for_each_reading) {
  3173. stow_z_probe();
  3174. delay(1000);
  3175. }
  3176. }
  3177. // Stow after
  3178. if (!deploy_probe_for_each_reading) {
  3179. stow_z_probe();
  3180. delay(1000);
  3181. }
  3182. clean_up_after_endstop_move();
  3183. if (verbose_level > 0) {
  3184. SERIAL_PROTOCOLPGM("Mean: ");
  3185. SERIAL_PROTOCOL_F(mean, 6);
  3186. SERIAL_EOL;
  3187. }
  3188. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3189. SERIAL_PROTOCOL_F(sigma, 6);
  3190. SERIAL_EOL; SERIAL_EOL;
  3191. }
  3192. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3193. /**
  3194. * M104: Set hot end temperature
  3195. */
  3196. inline void gcode_M104() {
  3197. if (setTargetedHotend(104)) return;
  3198. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3199. if (code_seen('S')) {
  3200. float temp = code_value();
  3201. setTargetHotend(temp, target_extruder);
  3202. #if ENABLED(DUAL_X_CARRIAGE)
  3203. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3204. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3205. #endif
  3206. }
  3207. }
  3208. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3209. void print_heaterstates() {
  3210. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3211. SERIAL_PROTOCOLPGM(" T:");
  3212. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3213. SERIAL_PROTOCOLPGM(" /");
  3214. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3215. #endif
  3216. #if HAS_TEMP_BED
  3217. SERIAL_PROTOCOLPGM(" B:");
  3218. SERIAL_PROTOCOL_F(degBed(), 1);
  3219. SERIAL_PROTOCOLPGM(" /");
  3220. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3221. #endif
  3222. #if EXTRUDERS > 1
  3223. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3224. SERIAL_PROTOCOLPGM(" T");
  3225. SERIAL_PROTOCOL(e);
  3226. SERIAL_PROTOCOLCHAR(':');
  3227. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3228. SERIAL_PROTOCOLPGM(" /");
  3229. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3230. }
  3231. #endif
  3232. #if HAS_TEMP_BED
  3233. SERIAL_PROTOCOLPGM(" B@:");
  3234. #ifdef BED_WATTS
  3235. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1)) / 127);
  3236. SERIAL_PROTOCOLCHAR('W');
  3237. #else
  3238. SERIAL_PROTOCOL(getHeaterPower(-1));
  3239. #endif
  3240. #endif
  3241. SERIAL_PROTOCOLPGM(" @:");
  3242. #ifdef EXTRUDER_WATTS
  3243. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder)) / 127);
  3244. SERIAL_PROTOCOLCHAR('W');
  3245. #else
  3246. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3247. #endif
  3248. #if EXTRUDERS > 1
  3249. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3250. SERIAL_PROTOCOLPGM(" @");
  3251. SERIAL_PROTOCOL(e);
  3252. SERIAL_PROTOCOLCHAR(':');
  3253. #ifdef EXTRUDER_WATTS
  3254. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(e)) / 127);
  3255. SERIAL_PROTOCOLCHAR('W');
  3256. #else
  3257. SERIAL_PROTOCOL(getHeaterPower(e));
  3258. #endif
  3259. }
  3260. #endif
  3261. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3262. #if HAS_TEMP_BED
  3263. SERIAL_PROTOCOLPGM(" ADC B:");
  3264. SERIAL_PROTOCOL_F(degBed(), 1);
  3265. SERIAL_PROTOCOLPGM("C->");
  3266. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3267. #endif
  3268. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3269. SERIAL_PROTOCOLPGM(" T");
  3270. SERIAL_PROTOCOL(cur_extruder);
  3271. SERIAL_PROTOCOLCHAR(':');
  3272. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3273. SERIAL_PROTOCOLPGM("C->");
  3274. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3275. }
  3276. #endif
  3277. }
  3278. #endif
  3279. /**
  3280. * M105: Read hot end and bed temperature
  3281. */
  3282. inline void gcode_M105() {
  3283. if (setTargetedHotend(105)) return;
  3284. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3285. SERIAL_PROTOCOLPGM(MSG_OK);
  3286. print_heaterstates();
  3287. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3288. SERIAL_ERROR_START;
  3289. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3290. #endif
  3291. SERIAL_EOL;
  3292. }
  3293. #if HAS_FAN
  3294. /**
  3295. * M106: Set Fan Speed
  3296. */
  3297. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  3298. /**
  3299. * M107: Fan Off
  3300. */
  3301. inline void gcode_M107() { fanSpeed = 0; }
  3302. #endif // HAS_FAN
  3303. /**
  3304. * M109: Wait for extruder(s) to reach temperature
  3305. */
  3306. inline void gcode_M109() {
  3307. bool no_wait_for_cooling = true;
  3308. if (setTargetedHotend(109)) return;
  3309. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3310. LCD_MESSAGEPGM(MSG_HEATING);
  3311. no_wait_for_cooling = code_seen('S');
  3312. if (no_wait_for_cooling || code_seen('R')) {
  3313. float temp = code_value();
  3314. setTargetHotend(temp, target_extruder);
  3315. #if ENABLED(DUAL_X_CARRIAGE)
  3316. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3317. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3318. #endif
  3319. }
  3320. #if ENABLED(AUTOTEMP)
  3321. autotemp_enabled = code_seen('F');
  3322. if (autotemp_enabled) autotemp_factor = code_value();
  3323. if (code_seen('S')) autotemp_min = code_value();
  3324. if (code_seen('B')) autotemp_max = code_value();
  3325. #endif
  3326. millis_t temp_ms = millis();
  3327. /* See if we are heating up or cooling down */
  3328. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  3329. cancel_heatup = false;
  3330. #ifdef TEMP_RESIDENCY_TIME
  3331. long residency_start_ms = -1;
  3332. /* continue to loop until we have reached the target temp
  3333. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3334. while ((!cancel_heatup) && ((residency_start_ms == -1) ||
  3335. (residency_start_ms >= 0 && (((unsigned int)(millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))))
  3336. #else
  3337. while (target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder) && (no_wait_for_cooling == false)))
  3338. #endif //TEMP_RESIDENCY_TIME
  3339. { // while loop
  3340. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  3341. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3342. print_heaterstates();
  3343. #endif
  3344. #ifdef TEMP_RESIDENCY_TIME
  3345. SERIAL_PROTOCOLPGM(" W:");
  3346. if (residency_start_ms > -1) {
  3347. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  3348. SERIAL_PROTOCOLLN(temp_ms);
  3349. }
  3350. else {
  3351. SERIAL_PROTOCOLLNPGM("?");
  3352. }
  3353. #else
  3354. SERIAL_EOL;
  3355. #endif
  3356. temp_ms = millis();
  3357. }
  3358. idle();
  3359. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3360. #ifdef TEMP_RESIDENCY_TIME
  3361. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3362. // or when current temp falls outside the hysteresis after target temp was reached
  3363. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder) - TEMP_WINDOW))) ||
  3364. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder) + TEMP_WINDOW))) ||
  3365. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  3366. {
  3367. residency_start_ms = millis();
  3368. }
  3369. #endif //TEMP_RESIDENCY_TIME
  3370. }
  3371. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3372. print_job_start_ms = previous_cmd_ms;
  3373. }
  3374. #if HAS_TEMP_BED
  3375. /**
  3376. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3377. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3378. */
  3379. inline void gcode_M190() {
  3380. bool no_wait_for_cooling = true;
  3381. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3382. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3383. no_wait_for_cooling = code_seen('S');
  3384. if (no_wait_for_cooling || code_seen('R'))
  3385. setTargetBed(code_value());
  3386. millis_t temp_ms = millis();
  3387. cancel_heatup = false;
  3388. target_direction = isHeatingBed(); // true if heating, false if cooling
  3389. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  3390. millis_t ms = millis();
  3391. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3392. temp_ms = ms;
  3393. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3394. print_heaterstates();
  3395. SERIAL_EOL;
  3396. #endif
  3397. }
  3398. idle();
  3399. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3400. }
  3401. LCD_MESSAGEPGM(MSG_BED_DONE);
  3402. }
  3403. #endif // HAS_TEMP_BED
  3404. /**
  3405. * M111: Set the debug level
  3406. */
  3407. inline void gcode_M111() {
  3408. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO | DEBUG_COMMUNICATION;
  3409. if (marlin_debug_flags & DEBUG_ECHO) {
  3410. SERIAL_ECHO_START;
  3411. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3412. }
  3413. // FOR MOMENT NOT ACTIVE
  3414. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3415. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3416. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3417. SERIAL_ECHO_START;
  3418. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3419. disable_all_heaters();
  3420. }
  3421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3422. if (marlin_debug_flags & DEBUG_LEVELING) {
  3423. SERIAL_ECHO_START;
  3424. SERIAL_ECHOLNPGM(MSG_DEBUG_LEVELING);
  3425. }
  3426. #endif
  3427. }
  3428. /**
  3429. * M112: Emergency Stop
  3430. */
  3431. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3432. #if ENABLED(BARICUDA)
  3433. #if HAS_HEATER_1
  3434. /**
  3435. * M126: Heater 1 valve open
  3436. */
  3437. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3438. /**
  3439. * M127: Heater 1 valve close
  3440. */
  3441. inline void gcode_M127() { ValvePressure = 0; }
  3442. #endif
  3443. #if HAS_HEATER_2
  3444. /**
  3445. * M128: Heater 2 valve open
  3446. */
  3447. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3448. /**
  3449. * M129: Heater 2 valve close
  3450. */
  3451. inline void gcode_M129() { EtoPPressure = 0; }
  3452. #endif
  3453. #endif //BARICUDA
  3454. /**
  3455. * M140: Set bed temperature
  3456. */
  3457. inline void gcode_M140() {
  3458. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3459. if (code_seen('S')) setTargetBed(code_value());
  3460. }
  3461. #if ENABLED(ULTIPANEL)
  3462. /**
  3463. * M145: Set the heatup state for a material in the LCD menu
  3464. * S<material> (0=PLA, 1=ABS)
  3465. * H<hotend temp>
  3466. * B<bed temp>
  3467. * F<fan speed>
  3468. */
  3469. inline void gcode_M145() {
  3470. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3471. if (material < 0 || material > 1) {
  3472. SERIAL_ERROR_START;
  3473. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3474. }
  3475. else {
  3476. int v;
  3477. switch (material) {
  3478. case 0:
  3479. if (code_seen('H')) {
  3480. v = code_value_short();
  3481. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3482. }
  3483. if (code_seen('F')) {
  3484. v = code_value_short();
  3485. plaPreheatFanSpeed = constrain(v, 0, 255);
  3486. }
  3487. #if TEMP_SENSOR_BED != 0
  3488. if (code_seen('B')) {
  3489. v = code_value_short();
  3490. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3491. }
  3492. #endif
  3493. break;
  3494. case 1:
  3495. if (code_seen('H')) {
  3496. v = code_value_short();
  3497. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3498. }
  3499. if (code_seen('F')) {
  3500. v = code_value_short();
  3501. absPreheatFanSpeed = constrain(v, 0, 255);
  3502. }
  3503. #if TEMP_SENSOR_BED != 0
  3504. if (code_seen('B')) {
  3505. v = code_value_short();
  3506. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3507. }
  3508. #endif
  3509. break;
  3510. }
  3511. }
  3512. }
  3513. #endif
  3514. #if HAS_POWER_SWITCH
  3515. /**
  3516. * M80: Turn on Power Supply
  3517. */
  3518. inline void gcode_M80() {
  3519. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3520. // If you have a switch on suicide pin, this is useful
  3521. // if you want to start another print with suicide feature after
  3522. // a print without suicide...
  3523. #if HAS_SUICIDE
  3524. OUT_WRITE(SUICIDE_PIN, HIGH);
  3525. #endif
  3526. #if ENABLED(ULTIPANEL)
  3527. powersupply = true;
  3528. LCD_MESSAGEPGM(WELCOME_MSG);
  3529. lcd_update();
  3530. #endif
  3531. }
  3532. #endif // HAS_POWER_SWITCH
  3533. /**
  3534. * M81: Turn off Power, including Power Supply, if there is one.
  3535. *
  3536. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3537. */
  3538. inline void gcode_M81() {
  3539. disable_all_heaters();
  3540. finishAndDisableSteppers();
  3541. fanSpeed = 0;
  3542. delay(1000); // Wait 1 second before switching off
  3543. #if HAS_SUICIDE
  3544. st_synchronize();
  3545. suicide();
  3546. #elif HAS_POWER_SWITCH
  3547. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3548. #endif
  3549. #if ENABLED(ULTIPANEL)
  3550. #if HAS_POWER_SWITCH
  3551. powersupply = false;
  3552. #endif
  3553. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3554. lcd_update();
  3555. #endif
  3556. }
  3557. /**
  3558. * M82: Set E codes absolute (default)
  3559. */
  3560. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3561. /**
  3562. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3563. */
  3564. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3565. /**
  3566. * M18, M84: Disable all stepper motors
  3567. */
  3568. inline void gcode_M18_M84() {
  3569. if (code_seen('S')) {
  3570. stepper_inactive_time = code_value() * 1000;
  3571. }
  3572. else {
  3573. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3574. if (all_axis) {
  3575. finishAndDisableSteppers();
  3576. }
  3577. else {
  3578. st_synchronize();
  3579. if (code_seen('X')) disable_x();
  3580. if (code_seen('Y')) disable_y();
  3581. if (code_seen('Z')) disable_z();
  3582. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3583. if (code_seen('E')) {
  3584. disable_e0();
  3585. disable_e1();
  3586. disable_e2();
  3587. disable_e3();
  3588. }
  3589. #endif
  3590. }
  3591. }
  3592. }
  3593. /**
  3594. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3595. */
  3596. inline void gcode_M85() {
  3597. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3598. }
  3599. /**
  3600. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3601. * (Follows the same syntax as G92)
  3602. */
  3603. inline void gcode_M92() {
  3604. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3605. if (code_seen(axis_codes[i])) {
  3606. if (i == E_AXIS) {
  3607. float value = code_value();
  3608. if (value < 20.0) {
  3609. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3610. max_e_jerk *= factor;
  3611. max_feedrate[i] *= factor;
  3612. axis_steps_per_sqr_second[i] *= factor;
  3613. }
  3614. axis_steps_per_unit[i] = value;
  3615. }
  3616. else {
  3617. axis_steps_per_unit[i] = code_value();
  3618. }
  3619. }
  3620. }
  3621. }
  3622. /**
  3623. * M114: Output current position to serial port
  3624. */
  3625. inline void gcode_M114() {
  3626. SERIAL_PROTOCOLPGM("X:");
  3627. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3628. SERIAL_PROTOCOLPGM(" Y:");
  3629. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3630. SERIAL_PROTOCOLPGM(" Z:");
  3631. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3632. SERIAL_PROTOCOLPGM(" E:");
  3633. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3634. CRITICAL_SECTION_START;
  3635. extern volatile long count_position[NUM_AXIS];
  3636. long xpos = count_position[X_AXIS],
  3637. ypos = count_position[Y_AXIS],
  3638. zpos = count_position[Z_AXIS];
  3639. CRITICAL_SECTION_END;
  3640. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3641. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3642. #else
  3643. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3644. #endif
  3645. SERIAL_PROTOCOL(xpos);
  3646. #if ENABLED(COREXY)
  3647. SERIAL_PROTOCOLPGM(" B:");
  3648. #else
  3649. SERIAL_PROTOCOLPGM(" Y:");
  3650. #endif
  3651. SERIAL_PROTOCOL(ypos);
  3652. #if ENABLED(COREXZ)
  3653. SERIAL_PROTOCOLPGM(" C:");
  3654. #else
  3655. SERIAL_PROTOCOLPGM(" Z:");
  3656. #endif
  3657. SERIAL_PROTOCOL(zpos);
  3658. SERIAL_EOL;
  3659. #if ENABLED(SCARA)
  3660. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3661. SERIAL_PROTOCOL(delta[X_AXIS]);
  3662. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3663. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3664. SERIAL_EOL;
  3665. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3666. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3667. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3668. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3669. SERIAL_EOL;
  3670. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3671. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3672. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3673. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3674. SERIAL_EOL; SERIAL_EOL;
  3675. #endif
  3676. }
  3677. /**
  3678. * M115: Capabilities string
  3679. */
  3680. inline void gcode_M115() {
  3681. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3682. }
  3683. /**
  3684. * M117: Set LCD Status Message
  3685. */
  3686. inline void gcode_M117() {
  3687. lcd_setstatus(current_command_args);
  3688. }
  3689. /**
  3690. * M119: Output endstop states to serial output
  3691. */
  3692. inline void gcode_M119() {
  3693. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3694. #if HAS_X_MIN
  3695. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3696. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3697. #endif
  3698. #if HAS_X_MAX
  3699. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3700. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3701. #endif
  3702. #if HAS_Y_MIN
  3703. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3704. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3705. #endif
  3706. #if HAS_Y_MAX
  3707. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3708. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3709. #endif
  3710. #if HAS_Z_MIN
  3711. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3712. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3713. #endif
  3714. #if HAS_Z_MAX
  3715. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3716. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3717. #endif
  3718. #if HAS_Z2_MAX
  3719. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3720. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3721. #endif
  3722. #if HAS_Z_PROBE
  3723. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3724. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3725. #endif
  3726. }
  3727. /**
  3728. * M120: Enable endstops
  3729. */
  3730. inline void gcode_M120() { enable_endstops(true); }
  3731. /**
  3732. * M121: Disable endstops
  3733. */
  3734. inline void gcode_M121() { enable_endstops(false); }
  3735. #if ENABLED(BLINKM)
  3736. /**
  3737. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3738. */
  3739. inline void gcode_M150() {
  3740. SendColors(
  3741. code_seen('R') ? (byte)code_value_short() : 0,
  3742. code_seen('U') ? (byte)code_value_short() : 0,
  3743. code_seen('B') ? (byte)code_value_short() : 0
  3744. );
  3745. }
  3746. #endif // BLINKM
  3747. /**
  3748. * M200: Set filament diameter and set E axis units to cubic millimeters
  3749. *
  3750. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3751. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3752. */
  3753. inline void gcode_M200() {
  3754. if (setTargetedHotend(200)) return;
  3755. if (code_seen('D')) {
  3756. float diameter = code_value();
  3757. // setting any extruder filament size disables volumetric on the assumption that
  3758. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3759. // for all extruders
  3760. volumetric_enabled = (diameter != 0.0);
  3761. if (volumetric_enabled) {
  3762. filament_size[target_extruder] = diameter;
  3763. // make sure all extruders have some sane value for the filament size
  3764. for (int i = 0; i < EXTRUDERS; i++)
  3765. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3766. }
  3767. }
  3768. else {
  3769. //reserved for setting filament diameter via UFID or filament measuring device
  3770. return;
  3771. }
  3772. calculate_volumetric_multipliers();
  3773. }
  3774. /**
  3775. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3776. */
  3777. inline void gcode_M201() {
  3778. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3779. if (code_seen(axis_codes[i])) {
  3780. max_acceleration_units_per_sq_second[i] = code_value();
  3781. }
  3782. }
  3783. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3784. reset_acceleration_rates();
  3785. }
  3786. #if 0 // Not used for Sprinter/grbl gen6
  3787. inline void gcode_M202() {
  3788. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3789. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3790. }
  3791. }
  3792. #endif
  3793. /**
  3794. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3795. */
  3796. inline void gcode_M203() {
  3797. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3798. if (code_seen(axis_codes[i])) {
  3799. max_feedrate[i] = code_value();
  3800. }
  3801. }
  3802. }
  3803. /**
  3804. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3805. *
  3806. * P = Printing moves
  3807. * R = Retract only (no X, Y, Z) moves
  3808. * T = Travel (non printing) moves
  3809. *
  3810. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3811. */
  3812. inline void gcode_M204() {
  3813. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3814. travel_acceleration = acceleration = code_value();
  3815. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3816. SERIAL_EOL;
  3817. }
  3818. if (code_seen('P')) {
  3819. acceleration = code_value();
  3820. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  3821. SERIAL_EOL;
  3822. }
  3823. if (code_seen('R')) {
  3824. retract_acceleration = code_value();
  3825. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  3826. SERIAL_EOL;
  3827. }
  3828. if (code_seen('T')) {
  3829. travel_acceleration = code_value();
  3830. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  3831. SERIAL_EOL;
  3832. }
  3833. }
  3834. /**
  3835. * M205: Set Advanced Settings
  3836. *
  3837. * S = Min Feed Rate (mm/s)
  3838. * T = Min Travel Feed Rate (mm/s)
  3839. * B = Min Segment Time (µs)
  3840. * X = Max XY Jerk (mm/s/s)
  3841. * Z = Max Z Jerk (mm/s/s)
  3842. * E = Max E Jerk (mm/s/s)
  3843. */
  3844. inline void gcode_M205() {
  3845. if (code_seen('S')) minimumfeedrate = code_value();
  3846. if (code_seen('T')) mintravelfeedrate = code_value();
  3847. if (code_seen('B')) minsegmenttime = code_value();
  3848. if (code_seen('X')) max_xy_jerk = code_value();
  3849. if (code_seen('Z')) max_z_jerk = code_value();
  3850. if (code_seen('E')) max_e_jerk = code_value();
  3851. }
  3852. /**
  3853. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3854. */
  3855. inline void gcode_M206() {
  3856. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3857. if (code_seen(axis_codes[i])) {
  3858. home_offset[i] = code_value();
  3859. }
  3860. }
  3861. #if ENABLED(SCARA)
  3862. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3863. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3864. #endif
  3865. }
  3866. #if ENABLED(DELTA)
  3867. /**
  3868. * M665: Set delta configurations
  3869. *
  3870. * L = diagonal rod
  3871. * R = delta radius
  3872. * S = segments per second
  3873. * A = Alpha (Tower 1) diagonal rod trim
  3874. * B = Beta (Tower 2) diagonal rod trim
  3875. * C = Gamma (Tower 3) diagonal rod trim
  3876. */
  3877. inline void gcode_M665() {
  3878. if (code_seen('L')) delta_diagonal_rod = code_value();
  3879. if (code_seen('R')) delta_radius = code_value();
  3880. if (code_seen('S')) delta_segments_per_second = code_value();
  3881. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  3882. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  3883. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  3884. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3885. }
  3886. /**
  3887. * M666: Set delta endstop adjustment
  3888. */
  3889. inline void gcode_M666() {
  3890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3891. if (marlin_debug_flags & DEBUG_LEVELING) {
  3892. SERIAL_ECHOLNPGM(">>> gcode_M666");
  3893. }
  3894. #endif
  3895. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3896. if (code_seen(axis_codes[i])) {
  3897. endstop_adj[i] = code_value();
  3898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3899. if (marlin_debug_flags & DEBUG_LEVELING) {
  3900. SERIAL_ECHOPGM("endstop_adj[");
  3901. SERIAL_ECHO(axis_codes[i]);
  3902. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  3903. SERIAL_EOL;
  3904. }
  3905. #endif
  3906. }
  3907. }
  3908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3909. if (marlin_debug_flags & DEBUG_LEVELING) {
  3910. SERIAL_ECHOLNPGM("<<< gcode_M666");
  3911. }
  3912. #endif
  3913. }
  3914. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  3915. /**
  3916. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3917. */
  3918. inline void gcode_M666() {
  3919. if (code_seen('Z')) z_endstop_adj = code_value();
  3920. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3921. SERIAL_EOL;
  3922. }
  3923. #endif // !DELTA && Z_DUAL_ENDSTOPS
  3924. #if ENABLED(FWRETRACT)
  3925. /**
  3926. * M207: Set firmware retraction values
  3927. *
  3928. * S[+mm] retract_length
  3929. * W[+mm] retract_length_swap (multi-extruder)
  3930. * F[mm/min] retract_feedrate
  3931. * Z[mm] retract_zlift
  3932. */
  3933. inline void gcode_M207() {
  3934. if (code_seen('S')) retract_length = code_value();
  3935. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3936. if (code_seen('Z')) retract_zlift = code_value();
  3937. #if EXTRUDERS > 1
  3938. if (code_seen('W')) retract_length_swap = code_value();
  3939. #endif
  3940. }
  3941. /**
  3942. * M208: Set firmware un-retraction values
  3943. *
  3944. * S[+mm] retract_recover_length (in addition to M207 S*)
  3945. * W[+mm] retract_recover_length_swap (multi-extruder)
  3946. * F[mm/min] retract_recover_feedrate
  3947. */
  3948. inline void gcode_M208() {
  3949. if (code_seen('S')) retract_recover_length = code_value();
  3950. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3951. #if EXTRUDERS > 1
  3952. if (code_seen('W')) retract_recover_length_swap = code_value();
  3953. #endif
  3954. }
  3955. /**
  3956. * M209: Enable automatic retract (M209 S1)
  3957. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3958. */
  3959. inline void gcode_M209() {
  3960. if (code_seen('S')) {
  3961. int t = code_value_short();
  3962. switch (t) {
  3963. case 0:
  3964. autoretract_enabled = false;
  3965. break;
  3966. case 1:
  3967. autoretract_enabled = true;
  3968. break;
  3969. default:
  3970. unknown_command_error();
  3971. return;
  3972. }
  3973. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  3974. }
  3975. }
  3976. #endif // FWRETRACT
  3977. #if EXTRUDERS > 1
  3978. /**
  3979. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3980. */
  3981. inline void gcode_M218() {
  3982. if (setTargetedHotend(218)) return;
  3983. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3984. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3985. #if ENABLED(DUAL_X_CARRIAGE)
  3986. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3987. #endif
  3988. SERIAL_ECHO_START;
  3989. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3990. for (int e = 0; e < EXTRUDERS; e++) {
  3991. SERIAL_CHAR(' ');
  3992. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3993. SERIAL_CHAR(',');
  3994. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3995. #if ENABLED(DUAL_X_CARRIAGE)
  3996. SERIAL_CHAR(',');
  3997. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3998. #endif
  3999. }
  4000. SERIAL_EOL;
  4001. }
  4002. #endif // EXTRUDERS > 1
  4003. /**
  4004. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4005. */
  4006. inline void gcode_M220() {
  4007. if (code_seen('S')) feedrate_multiplier = code_value();
  4008. }
  4009. /**
  4010. * M221: Set extrusion percentage (M221 T0 S95)
  4011. */
  4012. inline void gcode_M221() {
  4013. if (code_seen('S')) {
  4014. int sval = code_value();
  4015. if (setTargetedHotend(221)) return;
  4016. extruder_multiplier[target_extruder] = sval;
  4017. }
  4018. }
  4019. /**
  4020. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4021. */
  4022. inline void gcode_M226() {
  4023. if (code_seen('P')) {
  4024. int pin_number = code_value();
  4025. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4026. if (pin_state >= -1 && pin_state <= 1) {
  4027. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4028. if (sensitive_pins[i] == pin_number) {
  4029. pin_number = -1;
  4030. break;
  4031. }
  4032. }
  4033. if (pin_number > -1) {
  4034. int target = LOW;
  4035. st_synchronize();
  4036. pinMode(pin_number, INPUT);
  4037. switch (pin_state) {
  4038. case 1:
  4039. target = HIGH;
  4040. break;
  4041. case 0:
  4042. target = LOW;
  4043. break;
  4044. case -1:
  4045. target = !digitalRead(pin_number);
  4046. break;
  4047. }
  4048. while (digitalRead(pin_number) != target) idle();
  4049. } // pin_number > -1
  4050. } // pin_state -1 0 1
  4051. } // code_seen('P')
  4052. }
  4053. #if HAS_SERVOS
  4054. /**
  4055. * M280: Get or set servo position. P<index> S<angle>
  4056. */
  4057. inline void gcode_M280() {
  4058. int servo_index = code_seen('P') ? code_value_short() : -1;
  4059. int servo_position = 0;
  4060. if (code_seen('S')) {
  4061. servo_position = code_value_short();
  4062. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4063. servo[servo_index].move(servo_position);
  4064. else {
  4065. SERIAL_ERROR_START;
  4066. SERIAL_ERROR("Servo ");
  4067. SERIAL_ERROR(servo_index);
  4068. SERIAL_ERRORLN(" out of range");
  4069. }
  4070. }
  4071. else if (servo_index >= 0) {
  4072. SERIAL_ECHO_START;
  4073. SERIAL_ECHO(" Servo ");
  4074. SERIAL_ECHO(servo_index);
  4075. SERIAL_ECHO(": ");
  4076. SERIAL_ECHOLN(servo[servo_index].read());
  4077. }
  4078. }
  4079. #endif // HAS_SERVOS
  4080. #if HAS_BUZZER
  4081. /**
  4082. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4083. */
  4084. inline void gcode_M300() {
  4085. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4086. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4087. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4088. buzz(beepP, beepS);
  4089. }
  4090. #endif // HAS_BUZZER
  4091. #if ENABLED(PIDTEMP)
  4092. /**
  4093. * M301: Set PID parameters P I D (and optionally C, L)
  4094. *
  4095. * P[float] Kp term
  4096. * I[float] Ki term (unscaled)
  4097. * D[float] Kd term (unscaled)
  4098. *
  4099. * With PID_ADD_EXTRUSION_RATE:
  4100. *
  4101. * C[float] Kc term
  4102. * L[float] LPQ length
  4103. */
  4104. inline void gcode_M301() {
  4105. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4106. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4107. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4108. if (e < EXTRUDERS) { // catch bad input value
  4109. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4110. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4111. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4112. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4113. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4114. if (code_seen('L')) lpq_len = code_value();
  4115. NOMORE(lpq_len, LPQ_MAX_LEN);
  4116. #endif
  4117. updatePID();
  4118. SERIAL_ECHO_START;
  4119. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4120. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4121. SERIAL_ECHO(e);
  4122. #endif // PID_PARAMS_PER_EXTRUDER
  4123. SERIAL_ECHO(" p:");
  4124. SERIAL_ECHO(PID_PARAM(Kp, e));
  4125. SERIAL_ECHO(" i:");
  4126. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4127. SERIAL_ECHO(" d:");
  4128. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4129. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4130. SERIAL_ECHO(" c:");
  4131. //Kc does not have scaling applied above, or in resetting defaults
  4132. SERIAL_ECHO(PID_PARAM(Kc, e));
  4133. #endif
  4134. SERIAL_EOL;
  4135. }
  4136. else {
  4137. SERIAL_ERROR_START;
  4138. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4139. }
  4140. }
  4141. #endif // PIDTEMP
  4142. #if ENABLED(PIDTEMPBED)
  4143. inline void gcode_M304() {
  4144. if (code_seen('P')) bedKp = code_value();
  4145. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4146. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4147. updatePID();
  4148. SERIAL_ECHO_START;
  4149. SERIAL_ECHO(" p:");
  4150. SERIAL_ECHO(bedKp);
  4151. SERIAL_ECHO(" i:");
  4152. SERIAL_ECHO(unscalePID_i(bedKi));
  4153. SERIAL_ECHO(" d:");
  4154. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4155. }
  4156. #endif // PIDTEMPBED
  4157. #if defined(CHDK) || HAS_PHOTOGRAPH
  4158. /**
  4159. * M240: Trigger a camera by emulating a Canon RC-1
  4160. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4161. */
  4162. inline void gcode_M240() {
  4163. #ifdef CHDK
  4164. OUT_WRITE(CHDK, HIGH);
  4165. chdkHigh = millis();
  4166. chdkActive = true;
  4167. #elif HAS_PHOTOGRAPH
  4168. const uint8_t NUM_PULSES = 16;
  4169. const float PULSE_LENGTH = 0.01524;
  4170. for (int i = 0; i < NUM_PULSES; i++) {
  4171. WRITE(PHOTOGRAPH_PIN, HIGH);
  4172. _delay_ms(PULSE_LENGTH);
  4173. WRITE(PHOTOGRAPH_PIN, LOW);
  4174. _delay_ms(PULSE_LENGTH);
  4175. }
  4176. delay(7.33);
  4177. for (int i = 0; i < NUM_PULSES; i++) {
  4178. WRITE(PHOTOGRAPH_PIN, HIGH);
  4179. _delay_ms(PULSE_LENGTH);
  4180. WRITE(PHOTOGRAPH_PIN, LOW);
  4181. _delay_ms(PULSE_LENGTH);
  4182. }
  4183. #endif // !CHDK && HAS_PHOTOGRAPH
  4184. }
  4185. #endif // CHDK || PHOTOGRAPH_PIN
  4186. #if ENABLED(HAS_LCD_CONTRAST)
  4187. /**
  4188. * M250: Read and optionally set the LCD contrast
  4189. */
  4190. inline void gcode_M250() {
  4191. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4192. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4193. SERIAL_PROTOCOL(lcd_contrast);
  4194. SERIAL_EOL;
  4195. }
  4196. #endif // HAS_LCD_CONTRAST
  4197. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4198. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4199. /**
  4200. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4201. */
  4202. inline void gcode_M302() {
  4203. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4204. }
  4205. #endif // PREVENT_DANGEROUS_EXTRUDE
  4206. /**
  4207. * M303: PID relay autotune
  4208. * S<temperature> sets the target temperature. (default target temperature = 150C)
  4209. * E<extruder> (-1 for the bed)
  4210. * C<cycles>
  4211. */
  4212. inline void gcode_M303() {
  4213. int e = code_seen('E') ? code_value_short() : 0;
  4214. int c = code_seen('C') ? code_value_short() : 5;
  4215. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4216. if (e >=0 && e < EXTRUDERS)
  4217. target_extruder = e;
  4218. PID_autotune(temp, e, c);
  4219. }
  4220. #if ENABLED(SCARA)
  4221. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4222. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4223. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4224. if (IsRunning()) {
  4225. //gcode_get_destination(); // For X Y Z E F
  4226. delta[X_AXIS] = delta_x;
  4227. delta[Y_AXIS] = delta_y;
  4228. calculate_SCARA_forward_Transform(delta);
  4229. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4230. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4231. prepare_move();
  4232. //ok_to_send();
  4233. return true;
  4234. }
  4235. return false;
  4236. }
  4237. /**
  4238. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4239. */
  4240. inline bool gcode_M360() {
  4241. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4242. return SCARA_move_to_cal(0, 120);
  4243. }
  4244. /**
  4245. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4246. */
  4247. inline bool gcode_M361() {
  4248. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4249. return SCARA_move_to_cal(90, 130);
  4250. }
  4251. /**
  4252. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4253. */
  4254. inline bool gcode_M362() {
  4255. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4256. return SCARA_move_to_cal(60, 180);
  4257. }
  4258. /**
  4259. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4260. */
  4261. inline bool gcode_M363() {
  4262. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4263. return SCARA_move_to_cal(50, 90);
  4264. }
  4265. /**
  4266. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4267. */
  4268. inline bool gcode_M364() {
  4269. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4270. return SCARA_move_to_cal(45, 135);
  4271. }
  4272. /**
  4273. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4274. */
  4275. inline void gcode_M365() {
  4276. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4277. if (code_seen(axis_codes[i])) {
  4278. axis_scaling[i] = code_value();
  4279. }
  4280. }
  4281. }
  4282. #endif // SCARA
  4283. #if ENABLED(EXT_SOLENOID)
  4284. void enable_solenoid(uint8_t num) {
  4285. switch (num) {
  4286. case 0:
  4287. OUT_WRITE(SOL0_PIN, HIGH);
  4288. break;
  4289. #if HAS_SOLENOID_1
  4290. case 1:
  4291. OUT_WRITE(SOL1_PIN, HIGH);
  4292. break;
  4293. #endif
  4294. #if HAS_SOLENOID_2
  4295. case 2:
  4296. OUT_WRITE(SOL2_PIN, HIGH);
  4297. break;
  4298. #endif
  4299. #if HAS_SOLENOID_3
  4300. case 3:
  4301. OUT_WRITE(SOL3_PIN, HIGH);
  4302. break;
  4303. #endif
  4304. default:
  4305. SERIAL_ECHO_START;
  4306. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4307. break;
  4308. }
  4309. }
  4310. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4311. void disable_all_solenoids() {
  4312. OUT_WRITE(SOL0_PIN, LOW);
  4313. OUT_WRITE(SOL1_PIN, LOW);
  4314. OUT_WRITE(SOL2_PIN, LOW);
  4315. OUT_WRITE(SOL3_PIN, LOW);
  4316. }
  4317. /**
  4318. * M380: Enable solenoid on the active extruder
  4319. */
  4320. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4321. /**
  4322. * M381: Disable all solenoids
  4323. */
  4324. inline void gcode_M381() { disable_all_solenoids(); }
  4325. #endif // EXT_SOLENOID
  4326. /**
  4327. * M400: Finish all moves
  4328. */
  4329. inline void gcode_M400() { st_synchronize(); }
  4330. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4331. /**
  4332. * M401: Engage Z Servo endstop if available
  4333. */
  4334. inline void gcode_M401() {
  4335. #if HAS_SERVO_ENDSTOPS
  4336. raise_z_for_servo();
  4337. #endif
  4338. deploy_z_probe();
  4339. }
  4340. /**
  4341. * M402: Retract Z Servo endstop if enabled
  4342. */
  4343. inline void gcode_M402() {
  4344. #if HAS_SERVO_ENDSTOPS
  4345. raise_z_for_servo();
  4346. #endif
  4347. stow_z_probe(false);
  4348. }
  4349. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4350. #if ENABLED(FILAMENT_SENSOR)
  4351. /**
  4352. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4353. */
  4354. inline void gcode_M404() {
  4355. #if HAS_FILWIDTH
  4356. if (code_seen('W')) {
  4357. filament_width_nominal = code_value();
  4358. }
  4359. else {
  4360. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4361. SERIAL_PROTOCOLLN(filament_width_nominal);
  4362. }
  4363. #endif
  4364. }
  4365. /**
  4366. * M405: Turn on filament sensor for control
  4367. */
  4368. inline void gcode_M405() {
  4369. if (code_seen('D')) meas_delay_cm = code_value();
  4370. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4371. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4372. int temp_ratio = widthFil_to_size_ratio();
  4373. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4374. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4375. delay_index1 = delay_index2 = 0;
  4376. }
  4377. filament_sensor = true;
  4378. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4379. //SERIAL_PROTOCOL(filament_width_meas);
  4380. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4381. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4382. }
  4383. /**
  4384. * M406: Turn off filament sensor for control
  4385. */
  4386. inline void gcode_M406() { filament_sensor = false; }
  4387. /**
  4388. * M407: Get measured filament diameter on serial output
  4389. */
  4390. inline void gcode_M407() {
  4391. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4392. SERIAL_PROTOCOLLN(filament_width_meas);
  4393. }
  4394. #endif // FILAMENT_SENSOR
  4395. /**
  4396. * M410: Quickstop - Abort all planned moves
  4397. *
  4398. * This will stop the carriages mid-move, so most likely they
  4399. * will be out of sync with the stepper position after this.
  4400. */
  4401. inline void gcode_M410() { quickStop(); }
  4402. #if ENABLED(MESH_BED_LEVELING)
  4403. /**
  4404. * M420: Enable/Disable Mesh Bed Leveling
  4405. */
  4406. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4407. /**
  4408. * M421: Set a single Mesh Bed Leveling Z coordinate
  4409. */
  4410. inline void gcode_M421() {
  4411. float x, y, z;
  4412. bool err = false, hasX, hasY, hasZ;
  4413. if ((hasX = code_seen('X'))) x = code_value();
  4414. if ((hasY = code_seen('Y'))) y = code_value();
  4415. if ((hasZ = code_seen('Z'))) z = code_value();
  4416. if (!hasX || !hasY || !hasZ) {
  4417. SERIAL_ERROR_START;
  4418. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4419. err = true;
  4420. }
  4421. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4422. SERIAL_ERROR_START;
  4423. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4424. err = true;
  4425. }
  4426. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4427. }
  4428. #endif
  4429. /**
  4430. * M428: Set home_offset based on the distance between the
  4431. * current_position and the nearest "reference point."
  4432. * If an axis is past center its endstop position
  4433. * is the reference-point. Otherwise it uses 0. This allows
  4434. * the Z offset to be set near the bed when using a max endstop.
  4435. *
  4436. * M428 can't be used more than 2cm away from 0 or an endstop.
  4437. *
  4438. * Use M206 to set these values directly.
  4439. */
  4440. inline void gcode_M428() {
  4441. bool err = false;
  4442. float new_offs[3], new_pos[3];
  4443. memcpy(new_pos, current_position, sizeof(new_pos));
  4444. memcpy(new_offs, home_offset, sizeof(new_offs));
  4445. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4446. if (axis_known_position[i]) {
  4447. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4448. diff = new_pos[i] - base;
  4449. if (diff > -20 && diff < 20) {
  4450. new_offs[i] -= diff;
  4451. new_pos[i] = base;
  4452. }
  4453. else {
  4454. SERIAL_ERROR_START;
  4455. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4456. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4457. #if HAS_BUZZER
  4458. enqueuecommands_P(PSTR("M300 S40 P200"));
  4459. #endif
  4460. err = true;
  4461. break;
  4462. }
  4463. }
  4464. }
  4465. if (!err) {
  4466. memcpy(current_position, new_pos, sizeof(new_pos));
  4467. memcpy(home_offset, new_offs, sizeof(new_offs));
  4468. sync_plan_position();
  4469. LCD_ALERTMESSAGEPGM("Offset applied.");
  4470. #if HAS_BUZZER
  4471. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4472. #endif
  4473. }
  4474. }
  4475. /**
  4476. * M500: Store settings in EEPROM
  4477. */
  4478. inline void gcode_M500() {
  4479. Config_StoreSettings();
  4480. }
  4481. /**
  4482. * M501: Read settings from EEPROM
  4483. */
  4484. inline void gcode_M501() {
  4485. Config_RetrieveSettings();
  4486. }
  4487. /**
  4488. * M502: Revert to default settings
  4489. */
  4490. inline void gcode_M502() {
  4491. Config_ResetDefault();
  4492. }
  4493. /**
  4494. * M503: print settings currently in memory
  4495. */
  4496. inline void gcode_M503() {
  4497. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4498. }
  4499. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4500. /**
  4501. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4502. */
  4503. inline void gcode_M540() {
  4504. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4505. }
  4506. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4507. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4508. inline void gcode_SET_Z_PROBE_OFFSET() {
  4509. SERIAL_ECHO_START;
  4510. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4511. SERIAL_CHAR(' ');
  4512. if (code_seen('Z')) {
  4513. float value = code_value();
  4514. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4515. zprobe_zoffset = value;
  4516. SERIAL_ECHO(zprobe_zoffset);
  4517. }
  4518. else {
  4519. SERIAL_ECHOPGM(MSG_Z_MIN);
  4520. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4521. SERIAL_ECHOPGM(MSG_Z_MAX);
  4522. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4523. }
  4524. }
  4525. else {
  4526. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4527. }
  4528. SERIAL_EOL;
  4529. }
  4530. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4531. #if ENABLED(FILAMENTCHANGEENABLE)
  4532. /**
  4533. * M600: Pause for filament change
  4534. *
  4535. * E[distance] - Retract the filament this far (negative value)
  4536. * Z[distance] - Move the Z axis by this distance
  4537. * X[position] - Move to this X position, with Y
  4538. * Y[position] - Move to this Y position, with X
  4539. * L[distance] - Retract distance for removal (manual reload)
  4540. *
  4541. * Default values are used for omitted arguments.
  4542. *
  4543. */
  4544. inline void gcode_M600() {
  4545. if (degHotend(active_extruder) < extrude_min_temp) {
  4546. SERIAL_ERROR_START;
  4547. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4548. return;
  4549. }
  4550. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4551. for (int i = 0; i < NUM_AXIS; i++)
  4552. lastpos[i] = destination[i] = current_position[i];
  4553. #if ENABLED(DELTA)
  4554. #define RUNPLAN calculate_delta(destination); \
  4555. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4556. #else
  4557. #define RUNPLAN line_to_destination();
  4558. #endif
  4559. //retract by E
  4560. if (code_seen('E')) destination[E_AXIS] += code_value();
  4561. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4562. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4563. #endif
  4564. RUNPLAN;
  4565. //lift Z
  4566. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4567. #ifdef FILAMENTCHANGE_ZADD
  4568. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4569. #endif
  4570. RUNPLAN;
  4571. //move xy
  4572. if (code_seen('X')) destination[X_AXIS] = code_value();
  4573. #ifdef FILAMENTCHANGE_XPOS
  4574. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4575. #endif
  4576. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4577. #ifdef FILAMENTCHANGE_YPOS
  4578. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4579. #endif
  4580. RUNPLAN;
  4581. if (code_seen('L')) destination[E_AXIS] += code_value();
  4582. #ifdef FILAMENTCHANGE_FINALRETRACT
  4583. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4584. #endif
  4585. RUNPLAN;
  4586. //finish moves
  4587. st_synchronize();
  4588. //disable extruder steppers so filament can be removed
  4589. disable_e0();
  4590. disable_e1();
  4591. disable_e2();
  4592. disable_e3();
  4593. delay(100);
  4594. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4595. millis_t next_tick = 0;
  4596. while (!lcd_clicked()) {
  4597. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4598. millis_t ms = millis();
  4599. if (ms >= next_tick) {
  4600. lcd_quick_feedback();
  4601. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4602. }
  4603. manage_heater();
  4604. manage_inactivity(true);
  4605. lcd_update();
  4606. #else
  4607. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4608. destination[E_AXIS] = current_position[E_AXIS];
  4609. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4610. st_synchronize();
  4611. #endif
  4612. } // while(!lcd_clicked)
  4613. lcd_quick_feedback(); // click sound feedback
  4614. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4615. current_position[E_AXIS] = 0;
  4616. st_synchronize();
  4617. #endif
  4618. //return to normal
  4619. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4620. #ifdef FILAMENTCHANGE_FINALRETRACT
  4621. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4622. #endif
  4623. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4624. plan_set_e_position(current_position[E_AXIS]);
  4625. RUNPLAN; //should do nothing
  4626. lcd_reset_alert_level();
  4627. #if ENABLED(DELTA)
  4628. // Move XYZ to starting position, then E
  4629. calculate_delta(lastpos);
  4630. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4631. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4632. #else
  4633. // Move XY to starting position, then Z, then E
  4634. destination[X_AXIS] = lastpos[X_AXIS];
  4635. destination[Y_AXIS] = lastpos[Y_AXIS];
  4636. line_to_destination();
  4637. destination[Z_AXIS] = lastpos[Z_AXIS];
  4638. line_to_destination();
  4639. destination[E_AXIS] = lastpos[E_AXIS];
  4640. line_to_destination();
  4641. #endif
  4642. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4643. filrunoutEnqueued = false;
  4644. #endif
  4645. }
  4646. #endif // FILAMENTCHANGEENABLE
  4647. #if ENABLED(DUAL_X_CARRIAGE)
  4648. /**
  4649. * M605: Set dual x-carriage movement mode
  4650. *
  4651. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4652. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4653. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4654. * millimeters x-offset and an optional differential hotend temperature of
  4655. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4656. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4657. *
  4658. * Note: the X axis should be homed after changing dual x-carriage mode.
  4659. */
  4660. inline void gcode_M605() {
  4661. st_synchronize();
  4662. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4663. switch (dual_x_carriage_mode) {
  4664. case DXC_DUPLICATION_MODE:
  4665. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4666. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4667. SERIAL_ECHO_START;
  4668. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4669. SERIAL_CHAR(' ');
  4670. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4671. SERIAL_CHAR(',');
  4672. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4673. SERIAL_CHAR(' ');
  4674. SERIAL_ECHO(duplicate_extruder_x_offset);
  4675. SERIAL_CHAR(',');
  4676. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4677. break;
  4678. case DXC_FULL_CONTROL_MODE:
  4679. case DXC_AUTO_PARK_MODE:
  4680. break;
  4681. default:
  4682. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4683. break;
  4684. }
  4685. active_extruder_parked = false;
  4686. extruder_duplication_enabled = false;
  4687. delayed_move_time = 0;
  4688. }
  4689. #endif // DUAL_X_CARRIAGE
  4690. /**
  4691. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4692. */
  4693. inline void gcode_M907() {
  4694. #if HAS_DIGIPOTSS
  4695. for (int i = 0; i < NUM_AXIS; i++)
  4696. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4697. if (code_seen('B')) digipot_current(4, code_value());
  4698. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4699. #endif
  4700. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4701. if (code_seen('X')) digipot_current(0, code_value());
  4702. #endif
  4703. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4704. if (code_seen('Z')) digipot_current(1, code_value());
  4705. #endif
  4706. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4707. if (code_seen('E')) digipot_current(2, code_value());
  4708. #endif
  4709. #if ENABLED(DIGIPOT_I2C)
  4710. // this one uses actual amps in floating point
  4711. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4712. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4713. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4714. #endif
  4715. }
  4716. #if HAS_DIGIPOTSS
  4717. /**
  4718. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4719. */
  4720. inline void gcode_M908() {
  4721. digitalPotWrite(
  4722. code_seen('P') ? code_value() : 0,
  4723. code_seen('S') ? code_value() : 0
  4724. );
  4725. }
  4726. #endif // HAS_DIGIPOTSS
  4727. #if HAS_MICROSTEPS
  4728. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4729. inline void gcode_M350() {
  4730. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  4731. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  4732. if (code_seen('B')) microstep_mode(4, code_value());
  4733. microstep_readings();
  4734. }
  4735. /**
  4736. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4737. * S# determines MS1 or MS2, X# sets the pin high/low.
  4738. */
  4739. inline void gcode_M351() {
  4740. if (code_seen('S')) switch (code_value_short()) {
  4741. case 1:
  4742. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4743. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4744. break;
  4745. case 2:
  4746. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4747. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4748. break;
  4749. }
  4750. microstep_readings();
  4751. }
  4752. #endif // HAS_MICROSTEPS
  4753. /**
  4754. * M999: Restart after being stopped
  4755. */
  4756. inline void gcode_M999() {
  4757. Running = true;
  4758. lcd_reset_alert_level();
  4759. // gcode_LastN = Stopped_gcode_LastN;
  4760. FlushSerialRequestResend();
  4761. }
  4762. /**
  4763. * T0-T3: Switch tool, usually switching extruders
  4764. *
  4765. * F[mm/min] Set the movement feedrate
  4766. */
  4767. inline void gcode_T(uint8_t tmp_extruder) {
  4768. if (tmp_extruder >= EXTRUDERS) {
  4769. SERIAL_ECHO_START;
  4770. SERIAL_CHAR('T');
  4771. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  4772. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4773. }
  4774. else {
  4775. target_extruder = tmp_extruder;
  4776. #if EXTRUDERS > 1
  4777. bool make_move = false;
  4778. #endif
  4779. if (code_seen('F')) {
  4780. #if EXTRUDERS > 1
  4781. make_move = true;
  4782. #endif
  4783. float next_feedrate = code_value();
  4784. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4785. }
  4786. #if EXTRUDERS > 1
  4787. if (tmp_extruder != active_extruder) {
  4788. // Save current position to return to after applying extruder offset
  4789. set_destination_to_current();
  4790. #if ENABLED(DUAL_X_CARRIAGE)
  4791. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4792. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4793. // Park old head: 1) raise 2) move to park position 3) lower
  4794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4795. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4796. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4797. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4798. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4799. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4800. st_synchronize();
  4801. }
  4802. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4803. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  4804. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  4805. active_extruder = tmp_extruder;
  4806. // This function resets the max/min values - the current position may be overwritten below.
  4807. set_axis_is_at_home(X_AXIS);
  4808. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4809. current_position[X_AXIS] = inactive_extruder_x_pos;
  4810. inactive_extruder_x_pos = destination[X_AXIS];
  4811. }
  4812. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4813. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4814. if (active_extruder == 0 || active_extruder_parked)
  4815. current_position[X_AXIS] = inactive_extruder_x_pos;
  4816. else
  4817. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4818. inactive_extruder_x_pos = destination[X_AXIS];
  4819. extruder_duplication_enabled = false;
  4820. }
  4821. else {
  4822. // record raised toolhead position for use by unpark
  4823. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4824. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4825. active_extruder_parked = true;
  4826. delayed_move_time = 0;
  4827. }
  4828. #else // !DUAL_X_CARRIAGE
  4829. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  4830. // Offset extruder, make sure to apply the bed level rotation matrix
  4831. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  4832. extruder_offset[Y_AXIS][tmp_extruder],
  4833. extruder_offset[Z_AXIS][tmp_extruder]),
  4834. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  4835. extruder_offset[Y_AXIS][active_extruder],
  4836. extruder_offset[Z_AXIS][active_extruder]),
  4837. offset_vec = tmp_offset_vec - act_offset_vec;
  4838. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  4839. current_position[X_AXIS] += offset_vec.x;
  4840. current_position[Y_AXIS] += offset_vec.y;
  4841. current_position[Z_AXIS] += offset_vec.z;
  4842. #else // !AUTO_BED_LEVELING_FEATURE
  4843. // Offset extruder (only by XY)
  4844. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4845. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4846. #endif // !AUTO_BED_LEVELING_FEATURE
  4847. // Set the new active extruder and position
  4848. active_extruder = tmp_extruder;
  4849. #endif // !DUAL_X_CARRIAGE
  4850. #if ENABLED(DELTA)
  4851. sync_plan_position_delta();
  4852. #else
  4853. sync_plan_position();
  4854. #endif
  4855. // Move to the old position if 'F' was in the parameters
  4856. if (make_move && IsRunning()) prepare_move();
  4857. }
  4858. #if ENABLED(EXT_SOLENOID)
  4859. st_synchronize();
  4860. disable_all_solenoids();
  4861. enable_solenoid_on_active_extruder();
  4862. #endif // EXT_SOLENOID
  4863. #endif // EXTRUDERS > 1
  4864. SERIAL_ECHO_START;
  4865. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4866. SERIAL_PROTOCOLLN((int)active_extruder);
  4867. }
  4868. }
  4869. /**
  4870. * Process a single command and dispatch it to its handler
  4871. * This is called from the main loop()
  4872. */
  4873. void process_next_command() {
  4874. current_command = command_queue[cmd_queue_index_r];
  4875. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4876. SERIAL_ECHO_START;
  4877. SERIAL_ECHOLN(current_command);
  4878. }
  4879. // Sanitize the current command:
  4880. // - Skip leading spaces
  4881. // - Bypass N[-0-9][0-9]*[ ]*
  4882. // - Overwrite * with nul to mark the end
  4883. while (*current_command == ' ') ++current_command;
  4884. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4885. current_command += 2; // skip N[-0-9]
  4886. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4887. while (*current_command == ' ') ++current_command; // skip [ ]*
  4888. }
  4889. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  4890. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4891. // Get the command code, which must be G, M, or T
  4892. char command_code = *current_command;
  4893. // Skip the letter-code and spaces to get the numeric part
  4894. current_command_args = current_command + 1;
  4895. while (*current_command_args == ' ') ++current_command_args;
  4896. // The code must have a numeric value
  4897. bool code_is_good = (*current_command_args >= '0' && *current_command_args <= '9');
  4898. int codenum; // define ahead of goto
  4899. // Bail early if there's no code
  4900. if (!code_is_good) goto ExitUnknownCommand;
  4901. // Args pointer optimizes code_seen, especially those taking XYZEF
  4902. // This wastes a little cpu on commands that expect no arguments.
  4903. while (*current_command_args == ' ' || (*current_command_args >= '0' && *current_command_args <= '9')) ++current_command_args;
  4904. // Interpret the code int
  4905. seen_pointer = current_command;
  4906. codenum = code_value_short();
  4907. // Handle a known G, M, or T
  4908. switch (command_code) {
  4909. case 'G': switch (codenum) {
  4910. // G0, G1
  4911. case 0:
  4912. case 1:
  4913. gcode_G0_G1();
  4914. break;
  4915. // G2, G3
  4916. #if DISABLED(SCARA)
  4917. case 2: // G2 - CW ARC
  4918. case 3: // G3 - CCW ARC
  4919. gcode_G2_G3(codenum == 2);
  4920. break;
  4921. #endif
  4922. // G4 Dwell
  4923. case 4:
  4924. gcode_G4();
  4925. break;
  4926. #if ENABLED(FWRETRACT)
  4927. case 10: // G10: retract
  4928. case 11: // G11: retract_recover
  4929. gcode_G10_G11(codenum == 10);
  4930. break;
  4931. #endif //FWRETRACT
  4932. case 28: // G28: Home all axes, one at a time
  4933. gcode_G28();
  4934. break;
  4935. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  4936. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  4937. gcode_G29();
  4938. break;
  4939. #endif
  4940. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  4941. #if DISABLED(Z_PROBE_SLED)
  4942. case 30: // G30 Single Z probe
  4943. gcode_G30();
  4944. break;
  4945. #else // Z_PROBE_SLED
  4946. case 31: // G31: dock the sled
  4947. case 32: // G32: undock the sled
  4948. dock_sled(codenum == 31);
  4949. break;
  4950. #endif // Z_PROBE_SLED
  4951. #endif // AUTO_BED_LEVELING_FEATURE
  4952. case 90: // G90
  4953. relative_mode = false;
  4954. break;
  4955. case 91: // G91
  4956. relative_mode = true;
  4957. break;
  4958. case 92: // G92
  4959. gcode_G92();
  4960. break;
  4961. }
  4962. break;
  4963. case 'M': switch (codenum) {
  4964. #if ENABLED(ULTIPANEL)
  4965. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4966. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4967. gcode_M0_M1();
  4968. break;
  4969. #endif // ULTIPANEL
  4970. case 17:
  4971. gcode_M17();
  4972. break;
  4973. #if ENABLED(SDSUPPORT)
  4974. case 20: // M20 - list SD card
  4975. gcode_M20(); break;
  4976. case 21: // M21 - init SD card
  4977. gcode_M21(); break;
  4978. case 22: //M22 - release SD card
  4979. gcode_M22(); break;
  4980. case 23: //M23 - Select file
  4981. gcode_M23(); break;
  4982. case 24: //M24 - Start SD print
  4983. gcode_M24(); break;
  4984. case 25: //M25 - Pause SD print
  4985. gcode_M25(); break;
  4986. case 26: //M26 - Set SD index
  4987. gcode_M26(); break;
  4988. case 27: //M27 - Get SD status
  4989. gcode_M27(); break;
  4990. case 28: //M28 - Start SD write
  4991. gcode_M28(); break;
  4992. case 29: //M29 - Stop SD write
  4993. gcode_M29(); break;
  4994. case 30: //M30 <filename> Delete File
  4995. gcode_M30(); break;
  4996. case 32: //M32 - Select file and start SD print
  4997. gcode_M32(); break;
  4998. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4999. case 33: //M33 - Get the long full path to a file or folder
  5000. gcode_M33(); break;
  5001. #endif // LONG_FILENAME_HOST_SUPPORT
  5002. case 928: //M928 - Start SD write
  5003. gcode_M928(); break;
  5004. #endif //SDSUPPORT
  5005. case 31: //M31 take time since the start of the SD print or an M109 command
  5006. gcode_M31();
  5007. break;
  5008. case 42: //M42 -Change pin status via gcode
  5009. gcode_M42();
  5010. break;
  5011. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5012. case 48: // M48 Z probe repeatability
  5013. gcode_M48();
  5014. break;
  5015. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5016. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5017. case 100:
  5018. gcode_M100();
  5019. break;
  5020. #endif
  5021. case 104: // M104
  5022. gcode_M104();
  5023. break;
  5024. case 111: // M111: Set debug level
  5025. gcode_M111();
  5026. break;
  5027. case 112: // M112: Emergency Stop
  5028. gcode_M112();
  5029. break;
  5030. case 140: // M140: Set bed temp
  5031. gcode_M140();
  5032. break;
  5033. case 105: // M105: Read current temperature
  5034. gcode_M105();
  5035. return; // "ok" already printed
  5036. case 109: // M109: Wait for temperature
  5037. gcode_M109();
  5038. break;
  5039. #if HAS_TEMP_BED
  5040. case 190: // M190: Wait for bed heater to reach target
  5041. gcode_M190();
  5042. break;
  5043. #endif // HAS_TEMP_BED
  5044. #if HAS_FAN
  5045. case 106: // M106: Fan On
  5046. gcode_M106();
  5047. break;
  5048. case 107: // M107: Fan Off
  5049. gcode_M107();
  5050. break;
  5051. #endif // HAS_FAN
  5052. #if ENABLED(BARICUDA)
  5053. // PWM for HEATER_1_PIN
  5054. #if HAS_HEATER_1
  5055. case 126: // M126: valve open
  5056. gcode_M126();
  5057. break;
  5058. case 127: // M127: valve closed
  5059. gcode_M127();
  5060. break;
  5061. #endif // HAS_HEATER_1
  5062. // PWM for HEATER_2_PIN
  5063. #if HAS_HEATER_2
  5064. case 128: // M128: valve open
  5065. gcode_M128();
  5066. break;
  5067. case 129: // M129: valve closed
  5068. gcode_M129();
  5069. break;
  5070. #endif // HAS_HEATER_2
  5071. #endif // BARICUDA
  5072. #if HAS_POWER_SWITCH
  5073. case 80: // M80: Turn on Power Supply
  5074. gcode_M80();
  5075. break;
  5076. #endif // HAS_POWER_SWITCH
  5077. case 81: // M81: Turn off Power, including Power Supply, if possible
  5078. gcode_M81();
  5079. break;
  5080. case 82:
  5081. gcode_M82();
  5082. break;
  5083. case 83:
  5084. gcode_M83();
  5085. break;
  5086. case 18: // (for compatibility)
  5087. case 84: // M84
  5088. gcode_M18_M84();
  5089. break;
  5090. case 85: // M85
  5091. gcode_M85();
  5092. break;
  5093. case 92: // M92: Set the steps-per-unit for one or more axes
  5094. gcode_M92();
  5095. break;
  5096. case 115: // M115: Report capabilities
  5097. gcode_M115();
  5098. break;
  5099. case 117: // M117: Set LCD message text, if possible
  5100. gcode_M117();
  5101. break;
  5102. case 114: // M114: Report current position
  5103. gcode_M114();
  5104. break;
  5105. case 120: // M120: Enable endstops
  5106. gcode_M120();
  5107. break;
  5108. case 121: // M121: Disable endstops
  5109. gcode_M121();
  5110. break;
  5111. case 119: // M119: Report endstop states
  5112. gcode_M119();
  5113. break;
  5114. #if ENABLED(ULTIPANEL)
  5115. case 145: // M145: Set material heatup parameters
  5116. gcode_M145();
  5117. break;
  5118. #endif
  5119. #if ENABLED(BLINKM)
  5120. case 150: // M150
  5121. gcode_M150();
  5122. break;
  5123. #endif //BLINKM
  5124. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5125. gcode_M200();
  5126. break;
  5127. case 201: // M201
  5128. gcode_M201();
  5129. break;
  5130. #if 0 // Not used for Sprinter/grbl gen6
  5131. case 202: // M202
  5132. gcode_M202();
  5133. break;
  5134. #endif
  5135. case 203: // M203 max feedrate mm/sec
  5136. gcode_M203();
  5137. break;
  5138. case 204: // M204 acclereration S normal moves T filmanent only moves
  5139. gcode_M204();
  5140. break;
  5141. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5142. gcode_M205();
  5143. break;
  5144. case 206: // M206 additional homing offset
  5145. gcode_M206();
  5146. break;
  5147. #if ENABLED(DELTA)
  5148. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5149. gcode_M665();
  5150. break;
  5151. #endif
  5152. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5153. case 666: // M666 set delta / dual endstop adjustment
  5154. gcode_M666();
  5155. break;
  5156. #endif
  5157. #if ENABLED(FWRETRACT)
  5158. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5159. gcode_M207();
  5160. break;
  5161. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5162. gcode_M208();
  5163. break;
  5164. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5165. gcode_M209();
  5166. break;
  5167. #endif // FWRETRACT
  5168. #if EXTRUDERS > 1
  5169. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5170. gcode_M218();
  5171. break;
  5172. #endif
  5173. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5174. gcode_M220();
  5175. break;
  5176. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5177. gcode_M221();
  5178. break;
  5179. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5180. gcode_M226();
  5181. break;
  5182. #if HAS_SERVOS
  5183. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5184. gcode_M280();
  5185. break;
  5186. #endif // HAS_SERVOS
  5187. #if HAS_BUZZER
  5188. case 300: // M300 - Play beep tone
  5189. gcode_M300();
  5190. break;
  5191. #endif // HAS_BUZZER
  5192. #if ENABLED(PIDTEMP)
  5193. case 301: // M301
  5194. gcode_M301();
  5195. break;
  5196. #endif // PIDTEMP
  5197. #if ENABLED(PIDTEMPBED)
  5198. case 304: // M304
  5199. gcode_M304();
  5200. break;
  5201. #endif // PIDTEMPBED
  5202. #if defined(CHDK) || HAS_PHOTOGRAPH
  5203. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5204. gcode_M240();
  5205. break;
  5206. #endif // CHDK || PHOTOGRAPH_PIN
  5207. #if ENABLED(HAS_LCD_CONTRAST)
  5208. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5209. gcode_M250();
  5210. break;
  5211. #endif // HAS_LCD_CONTRAST
  5212. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5213. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5214. gcode_M302();
  5215. break;
  5216. #endif // PREVENT_DANGEROUS_EXTRUDE
  5217. case 303: // M303 PID autotune
  5218. gcode_M303();
  5219. break;
  5220. #if ENABLED(SCARA)
  5221. case 360: // M360 SCARA Theta pos1
  5222. if (gcode_M360()) return;
  5223. break;
  5224. case 361: // M361 SCARA Theta pos2
  5225. if (gcode_M361()) return;
  5226. break;
  5227. case 362: // M362 SCARA Psi pos1
  5228. if (gcode_M362()) return;
  5229. break;
  5230. case 363: // M363 SCARA Psi pos2
  5231. if (gcode_M363()) return;
  5232. break;
  5233. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5234. if (gcode_M364()) return;
  5235. break;
  5236. case 365: // M365 Set SCARA scaling for X Y Z
  5237. gcode_M365();
  5238. break;
  5239. #endif // SCARA
  5240. case 400: // M400 finish all moves
  5241. gcode_M400();
  5242. break;
  5243. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5244. case 401:
  5245. gcode_M401();
  5246. break;
  5247. case 402:
  5248. gcode_M402();
  5249. break;
  5250. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5251. #if ENABLED(FILAMENT_SENSOR)
  5252. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5253. gcode_M404();
  5254. break;
  5255. case 405: //M405 Turn on filament sensor for control
  5256. gcode_M405();
  5257. break;
  5258. case 406: //M406 Turn off filament sensor for control
  5259. gcode_M406();
  5260. break;
  5261. case 407: //M407 Display measured filament diameter
  5262. gcode_M407();
  5263. break;
  5264. #endif // FILAMENT_SENSOR
  5265. case 410: // M410 quickstop - Abort all the planned moves.
  5266. gcode_M410();
  5267. break;
  5268. #if ENABLED(MESH_BED_LEVELING)
  5269. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5270. gcode_M420();
  5271. break;
  5272. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5273. gcode_M421();
  5274. break;
  5275. #endif
  5276. case 428: // M428 Apply current_position to home_offset
  5277. gcode_M428();
  5278. break;
  5279. case 500: // M500 Store settings in EEPROM
  5280. gcode_M500();
  5281. break;
  5282. case 501: // M501 Read settings from EEPROM
  5283. gcode_M501();
  5284. break;
  5285. case 502: // M502 Revert to default settings
  5286. gcode_M502();
  5287. break;
  5288. case 503: // M503 print settings currently in memory
  5289. gcode_M503();
  5290. break;
  5291. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5292. case 540:
  5293. gcode_M540();
  5294. break;
  5295. #endif
  5296. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5297. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5298. gcode_SET_Z_PROBE_OFFSET();
  5299. break;
  5300. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5301. #if ENABLED(FILAMENTCHANGEENABLE)
  5302. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5303. gcode_M600();
  5304. break;
  5305. #endif // FILAMENTCHANGEENABLE
  5306. #if ENABLED(DUAL_X_CARRIAGE)
  5307. case 605:
  5308. gcode_M605();
  5309. break;
  5310. #endif // DUAL_X_CARRIAGE
  5311. case 907: // M907 Set digital trimpot motor current using axis codes.
  5312. gcode_M907();
  5313. break;
  5314. #if HAS_DIGIPOTSS
  5315. case 908: // M908 Control digital trimpot directly.
  5316. gcode_M908();
  5317. break;
  5318. #endif // HAS_DIGIPOTSS
  5319. #if HAS_MICROSTEPS
  5320. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5321. gcode_M350();
  5322. break;
  5323. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5324. gcode_M351();
  5325. break;
  5326. #endif // HAS_MICROSTEPS
  5327. case 999: // M999: Restart after being Stopped
  5328. gcode_M999();
  5329. break;
  5330. }
  5331. break;
  5332. case 'T':
  5333. gcode_T(codenum);
  5334. break;
  5335. default: code_is_good = false;
  5336. }
  5337. ExitUnknownCommand:
  5338. // Still unknown command? Throw an error
  5339. if (!code_is_good) unknown_command_error();
  5340. ok_to_send();
  5341. }
  5342. void FlushSerialRequestResend() {
  5343. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5344. MYSERIAL.flush();
  5345. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5346. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5347. ok_to_send();
  5348. }
  5349. void ok_to_send() {
  5350. refresh_cmd_timeout();
  5351. #if ENABLED(SDSUPPORT)
  5352. if (fromsd[cmd_queue_index_r]) return;
  5353. #endif
  5354. SERIAL_PROTOCOLPGM(MSG_OK);
  5355. #if ENABLED(ADVANCED_OK)
  5356. char* p = command_queue[cmd_queue_index_r];
  5357. if (*p == 'N') {
  5358. SERIAL_PROTOCOL(' ');
  5359. SERIAL_ECHO(*p++);
  5360. while ((*p >= '0' && *p <= '9') || *p == '-')
  5361. SERIAL_ECHO(*p++);
  5362. }
  5363. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5364. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5365. #endif
  5366. SERIAL_EOL;
  5367. }
  5368. void clamp_to_software_endstops(float target[3]) {
  5369. if (min_software_endstops) {
  5370. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5371. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5372. float negative_z_offset = 0;
  5373. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5374. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5375. if (home_offset[Z_AXIS] < 0) {
  5376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5377. if (marlin_debug_flags & DEBUG_LEVELING) {
  5378. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5379. SERIAL_EOL;
  5380. }
  5381. #endif
  5382. negative_z_offset += home_offset[Z_AXIS];
  5383. }
  5384. #endif
  5385. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5386. }
  5387. if (max_software_endstops) {
  5388. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5389. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5390. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5391. }
  5392. }
  5393. #if ENABLED(DELTA)
  5394. void recalc_delta_settings(float radius, float diagonal_rod) {
  5395. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5396. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5397. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5398. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5399. delta_tower3_x = 0.0; // back middle tower
  5400. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5401. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5402. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5403. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5404. }
  5405. void calculate_delta(float cartesian[3]) {
  5406. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5407. - sq(delta_tower1_x - cartesian[X_AXIS])
  5408. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5409. ) + cartesian[Z_AXIS];
  5410. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5411. - sq(delta_tower2_x - cartesian[X_AXIS])
  5412. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5413. ) + cartesian[Z_AXIS];
  5414. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5415. - sq(delta_tower3_x - cartesian[X_AXIS])
  5416. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5417. ) + cartesian[Z_AXIS];
  5418. /*
  5419. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5420. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5421. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5422. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5423. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5424. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5425. */
  5426. }
  5427. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5428. // Adjust print surface height by linear interpolation over the bed_level array.
  5429. void adjust_delta(float cartesian[3]) {
  5430. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5431. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5432. float h1 = 0.001 - half, h2 = half - 0.001,
  5433. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5434. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5435. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5436. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5437. z1 = bed_level[floor_x + half][floor_y + half],
  5438. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5439. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5440. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5441. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5442. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5443. offset = (1 - ratio_x) * left + ratio_x * right;
  5444. delta[X_AXIS] += offset;
  5445. delta[Y_AXIS] += offset;
  5446. delta[Z_AXIS] += offset;
  5447. /*
  5448. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5449. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5450. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5451. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5452. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5453. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5454. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5455. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5456. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5457. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5458. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5459. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5460. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5461. */
  5462. }
  5463. #endif // AUTO_BED_LEVELING_FEATURE
  5464. #endif // DELTA
  5465. #if ENABLED(MESH_BED_LEVELING)
  5466. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5467. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5468. if (!mbl.active) {
  5469. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5470. set_current_to_destination();
  5471. return;
  5472. }
  5473. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5474. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5475. int ix = mbl.select_x_index(x);
  5476. int iy = mbl.select_y_index(y);
  5477. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5478. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5479. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5480. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5481. if (pix == ix && piy == iy) {
  5482. // Start and end on same mesh square
  5483. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5484. set_current_to_destination();
  5485. return;
  5486. }
  5487. float nx, ny, ne, normalized_dist;
  5488. if (ix > pix && TEST(x_splits, ix)) {
  5489. nx = mbl.get_x(ix);
  5490. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5491. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5492. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5493. CBI(x_splits, ix);
  5494. }
  5495. else if (ix < pix && TEST(x_splits, pix)) {
  5496. nx = mbl.get_x(pix);
  5497. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5498. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5499. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5500. CBI(x_splits, pix);
  5501. }
  5502. else if (iy > piy && TEST(y_splits, iy)) {
  5503. ny = mbl.get_y(iy);
  5504. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5505. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5506. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5507. CBI(y_splits, iy);
  5508. }
  5509. else if (iy < piy && TEST(y_splits, piy)) {
  5510. ny = mbl.get_y(piy);
  5511. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5512. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5513. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5514. CBI(y_splits, piy);
  5515. }
  5516. else {
  5517. // Already split on a border
  5518. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5519. set_current_to_destination();
  5520. return;
  5521. }
  5522. // Do the split and look for more borders
  5523. destination[X_AXIS] = nx;
  5524. destination[Y_AXIS] = ny;
  5525. destination[E_AXIS] = ne;
  5526. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5527. destination[X_AXIS] = x;
  5528. destination[Y_AXIS] = y;
  5529. destination[E_AXIS] = e;
  5530. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5531. }
  5532. #endif // MESH_BED_LEVELING
  5533. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5534. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5535. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5536. float de = dest_e - curr_e;
  5537. if (de) {
  5538. if (degHotend(active_extruder) < extrude_min_temp) {
  5539. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5540. SERIAL_ECHO_START;
  5541. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5542. }
  5543. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5544. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5545. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5546. SERIAL_ECHO_START;
  5547. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5548. }
  5549. #endif
  5550. }
  5551. }
  5552. #endif // PREVENT_DANGEROUS_EXTRUDE
  5553. #if ENABLED(DELTA) || ENABLED(SCARA)
  5554. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5555. float difference[NUM_AXIS];
  5556. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5557. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5558. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5559. if (cartesian_mm < 0.000001) return false;
  5560. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5561. int steps = max(1, int(delta_segments_per_second * seconds));
  5562. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5563. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5564. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5565. for (int s = 1; s <= steps; s++) {
  5566. float fraction = float(s) / float(steps);
  5567. for (int8_t i = 0; i < NUM_AXIS; i++)
  5568. target[i] = current_position[i] + difference[i] * fraction;
  5569. calculate_delta(target);
  5570. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5571. adjust_delta(target);
  5572. #endif
  5573. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5574. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5575. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5576. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5577. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5578. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5579. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5580. }
  5581. return true;
  5582. }
  5583. #endif // DELTA || SCARA
  5584. #if ENABLED(SCARA)
  5585. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5586. #endif
  5587. #if ENABLED(DUAL_X_CARRIAGE)
  5588. inline bool prepare_move_dual_x_carriage() {
  5589. if (active_extruder_parked) {
  5590. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5591. // move duplicate extruder into correct duplication position.
  5592. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5593. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5594. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5595. sync_plan_position();
  5596. st_synchronize();
  5597. extruder_duplication_enabled = true;
  5598. active_extruder_parked = false;
  5599. }
  5600. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5601. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5602. // This is a travel move (with no extrusion)
  5603. // Skip it, but keep track of the current position
  5604. // (so it can be used as the start of the next non-travel move)
  5605. if (delayed_move_time != 0xFFFFFFFFUL) {
  5606. set_current_to_destination();
  5607. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5608. delayed_move_time = millis();
  5609. return false;
  5610. }
  5611. }
  5612. delayed_move_time = 0;
  5613. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5614. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5617. active_extruder_parked = false;
  5618. }
  5619. }
  5620. return true;
  5621. }
  5622. #endif // DUAL_X_CARRIAGE
  5623. #if DISABLED(DELTA) && DISABLED(SCARA)
  5624. inline bool prepare_move_cartesian() {
  5625. // Do not use feedrate_multiplier for E or Z only moves
  5626. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5627. line_to_destination();
  5628. }
  5629. else {
  5630. #if ENABLED(MESH_BED_LEVELING)
  5631. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5632. return false;
  5633. #else
  5634. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5635. #endif
  5636. }
  5637. return true;
  5638. }
  5639. #endif // !DELTA && !SCARA
  5640. /**
  5641. * Prepare a single move and get ready for the next one
  5642. *
  5643. * (This may call plan_buffer_line several times to put
  5644. * smaller moves into the planner for DELTA or SCARA.)
  5645. */
  5646. void prepare_move() {
  5647. clamp_to_software_endstops(destination);
  5648. refresh_cmd_timeout();
  5649. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5650. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5651. #endif
  5652. #if ENABLED(SCARA)
  5653. if (!prepare_move_scara(destination)) return;
  5654. #elif ENABLED(DELTA)
  5655. if (!prepare_move_delta(destination)) return;
  5656. #endif
  5657. #if ENABLED(DUAL_X_CARRIAGE)
  5658. if (!prepare_move_dual_x_carriage()) return;
  5659. #endif
  5660. #if DISABLED(DELTA) && DISABLED(SCARA)
  5661. if (!prepare_move_cartesian()) return;
  5662. #endif
  5663. set_current_to_destination();
  5664. }
  5665. /**
  5666. * Plan an arc in 2 dimensions
  5667. *
  5668. * The arc is approximated by generating many small linear segments.
  5669. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5670. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5671. * larger segments will tend to be more efficient. Your slicer should have
  5672. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5673. */
  5674. void plan_arc(
  5675. float target[NUM_AXIS], // Destination position
  5676. float* offset, // Center of rotation relative to current_position
  5677. uint8_t clockwise // Clockwise?
  5678. ) {
  5679. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5680. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5681. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5682. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5683. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5684. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5685. r_axis1 = -offset[Y_AXIS],
  5686. rt_axis0 = target[X_AXIS] - center_axis0,
  5687. rt_axis1 = target[Y_AXIS] - center_axis1;
  5688. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5689. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  5690. if (angular_travel < 0) angular_travel += RADIANS(360);
  5691. if (clockwise) angular_travel -= RADIANS(360);
  5692. // Make a circle if the angular rotation is 0
  5693. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5694. angular_travel += RADIANS(360);
  5695. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  5696. if (mm_of_travel < 0.001) return;
  5697. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  5698. if (segments == 0) segments = 1;
  5699. float theta_per_segment = angular_travel / segments;
  5700. float linear_per_segment = linear_travel / segments;
  5701. float extruder_per_segment = extruder_travel / segments;
  5702. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5703. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5704. r_T = [cos(phi) -sin(phi);
  5705. sin(phi) cos(phi] * r ;
  5706. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5707. defined from the circle center to the initial position. Each line segment is formed by successive
  5708. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5709. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5710. all double numbers are single precision on the Arduino. (True double precision will not have
  5711. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5712. tool precision in some cases. Therefore, arc path correction is implemented.
  5713. Small angle approximation may be used to reduce computation overhead further. This approximation
  5714. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5715. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5716. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5717. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5718. issue for CNC machines with the single precision Arduino calculations.
  5719. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5720. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5721. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5722. This is important when there are successive arc motions.
  5723. */
  5724. // Vector rotation matrix values
  5725. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  5726. float sin_T = theta_per_segment;
  5727. float arc_target[NUM_AXIS];
  5728. float sin_Ti;
  5729. float cos_Ti;
  5730. float r_axisi;
  5731. uint16_t i;
  5732. int8_t count = 0;
  5733. // Initialize the linear axis
  5734. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5735. // Initialize the extruder axis
  5736. arc_target[E_AXIS] = current_position[E_AXIS];
  5737. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  5738. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5739. if (count < N_ARC_CORRECTION) {
  5740. // Apply vector rotation matrix to previous r_axis0 / 1
  5741. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  5742. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  5743. r_axis1 = r_axisi;
  5744. count++;
  5745. }
  5746. else {
  5747. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5748. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5749. cos_Ti = cos(i * theta_per_segment);
  5750. sin_Ti = sin(i * theta_per_segment);
  5751. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  5752. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  5753. count = 0;
  5754. }
  5755. // Update arc_target location
  5756. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5757. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5758. arc_target[Z_AXIS] += linear_per_segment;
  5759. arc_target[E_AXIS] += extruder_per_segment;
  5760. clamp_to_software_endstops(arc_target);
  5761. #if ENABLED(DELTA) || ENABLED(SCARA)
  5762. calculate_delta(arc_target);
  5763. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5764. adjust_delta(arc_target);
  5765. #endif
  5766. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5767. #else
  5768. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5769. #endif
  5770. }
  5771. // Ensure last segment arrives at target location.
  5772. #if ENABLED(DELTA) || ENABLED(SCARA)
  5773. calculate_delta(target);
  5774. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5775. adjust_delta(target);
  5776. #endif
  5777. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5778. #else
  5779. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5780. #endif
  5781. // As far as the parser is concerned, the position is now == target. In reality the
  5782. // motion control system might still be processing the action and the real tool position
  5783. // in any intermediate location.
  5784. set_current_to_destination();
  5785. }
  5786. #if HAS_CONTROLLERFAN
  5787. void controllerFan() {
  5788. static millis_t lastMotor = 0; // Last time a motor was turned on
  5789. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5790. millis_t ms = millis();
  5791. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5792. lastMotorCheck = ms;
  5793. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5794. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5795. #if EXTRUDERS > 1
  5796. || E1_ENABLE_READ == E_ENABLE_ON
  5797. #if HAS_X2_ENABLE
  5798. || X2_ENABLE_READ == X_ENABLE_ON
  5799. #endif
  5800. #if EXTRUDERS > 2
  5801. || E2_ENABLE_READ == E_ENABLE_ON
  5802. #if EXTRUDERS > 3
  5803. || E3_ENABLE_READ == E_ENABLE_ON
  5804. #endif
  5805. #endif
  5806. #endif
  5807. ) {
  5808. lastMotor = ms; //... set time to NOW so the fan will turn on
  5809. }
  5810. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5811. // allows digital or PWM fan output to be used (see M42 handling)
  5812. digitalWrite(CONTROLLERFAN_PIN, speed);
  5813. analogWrite(CONTROLLERFAN_PIN, speed);
  5814. }
  5815. }
  5816. #endif // HAS_CONTROLLERFAN
  5817. #if ENABLED(SCARA)
  5818. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5819. // Perform forward kinematics, and place results in delta[3]
  5820. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5821. float x_sin, x_cos, y_sin, y_cos;
  5822. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5823. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5824. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  5825. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  5826. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  5827. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  5828. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5829. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5830. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5831. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5832. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5833. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5834. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5835. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5836. }
  5837. void calculate_delta(float cartesian[3]) {
  5838. //reverse kinematics.
  5839. // Perform reversed kinematics, and place results in delta[3]
  5840. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5841. float SCARA_pos[2];
  5842. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5843. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5844. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5845. #if (Linkage_1 == Linkage_2)
  5846. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  5847. #else
  5848. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  5849. #endif
  5850. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  5851. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5852. SCARA_K2 = Linkage_2 * SCARA_S2;
  5853. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  5854. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  5855. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5856. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5857. delta[Z_AXIS] = cartesian[Z_AXIS];
  5858. /*
  5859. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5860. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5861. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5862. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5863. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5864. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5865. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5866. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5867. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5868. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5869. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5870. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5871. SERIAL_EOL;
  5872. */
  5873. }
  5874. #endif // SCARA
  5875. #if ENABLED(TEMP_STAT_LEDS)
  5876. static bool red_led = false;
  5877. static millis_t next_status_led_update_ms = 0;
  5878. void handle_status_leds(void) {
  5879. float max_temp = 0.0;
  5880. if (millis() > next_status_led_update_ms) {
  5881. next_status_led_update_ms += 500; // Update every 0.5s
  5882. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5883. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5884. #if HAS_TEMP_BED
  5885. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5886. #endif
  5887. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5888. if (new_led != red_led) {
  5889. red_led = new_led;
  5890. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5891. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5892. }
  5893. }
  5894. }
  5895. #endif
  5896. void enable_all_steppers() {
  5897. enable_x();
  5898. enable_y();
  5899. enable_z();
  5900. enable_e0();
  5901. enable_e1();
  5902. enable_e2();
  5903. enable_e3();
  5904. }
  5905. void disable_all_steppers() {
  5906. disable_x();
  5907. disable_y();
  5908. disable_z();
  5909. disable_e0();
  5910. disable_e1();
  5911. disable_e2();
  5912. disable_e3();
  5913. }
  5914. /**
  5915. * Standard idle routine keeps the machine alive
  5916. */
  5917. void idle() {
  5918. manage_heater();
  5919. manage_inactivity();
  5920. lcd_update();
  5921. }
  5922. /**
  5923. * Manage several activities:
  5924. * - Check for Filament Runout
  5925. * - Keep the command buffer full
  5926. * - Check for maximum inactive time between commands
  5927. * - Check for maximum inactive time between stepper commands
  5928. * - Check if pin CHDK needs to go LOW
  5929. * - Check for KILL button held down
  5930. * - Check for HOME button held down
  5931. * - Check if cooling fan needs to be switched on
  5932. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5933. */
  5934. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5935. #if HAS_FILRUNOUT
  5936. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5937. filrunout();
  5938. #endif
  5939. if (commands_in_queue < BUFSIZE - 1) get_command();
  5940. millis_t ms = millis();
  5941. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5942. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5943. && !ignore_stepper_queue && !blocks_queued()) {
  5944. #if DISABLE_INACTIVE_X == true
  5945. disable_x();
  5946. #endif
  5947. #if DISABLE_INACTIVE_Y == true
  5948. disable_y();
  5949. #endif
  5950. #if DISABLE_INACTIVE_Z == true
  5951. disable_z();
  5952. #endif
  5953. #if DISABLE_INACTIVE_E == true
  5954. disable_e0();
  5955. disable_e1();
  5956. disable_e2();
  5957. disable_e3();
  5958. #endif
  5959. }
  5960. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5961. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5962. chdkActive = false;
  5963. WRITE(CHDK, LOW);
  5964. }
  5965. #endif
  5966. #if HAS_KILL
  5967. // Check if the kill button was pressed and wait just in case it was an accidental
  5968. // key kill key press
  5969. // -------------------------------------------------------------------------------
  5970. static int killCount = 0; // make the inactivity button a bit less responsive
  5971. const int KILL_DELAY = 750;
  5972. if (!READ(KILL_PIN))
  5973. killCount++;
  5974. else if (killCount > 0)
  5975. killCount--;
  5976. // Exceeded threshold and we can confirm that it was not accidental
  5977. // KILL the machine
  5978. // ----------------------------------------------------------------
  5979. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5980. #endif
  5981. #if HAS_HOME
  5982. // Check to see if we have to home, use poor man's debouncer
  5983. // ---------------------------------------------------------
  5984. static int homeDebounceCount = 0; // poor man's debouncing count
  5985. const int HOME_DEBOUNCE_DELAY = 2500;
  5986. if (!READ(HOME_PIN)) {
  5987. if (!homeDebounceCount) {
  5988. enqueuecommands_P(PSTR("G28"));
  5989. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5990. }
  5991. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5992. homeDebounceCount++;
  5993. else
  5994. homeDebounceCount = 0;
  5995. }
  5996. #endif
  5997. #if HAS_CONTROLLERFAN
  5998. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5999. #endif
  6000. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6001. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  6002. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6003. bool oldstatus;
  6004. switch (active_extruder) {
  6005. case 0:
  6006. oldstatus = E0_ENABLE_READ;
  6007. enable_e0();
  6008. break;
  6009. #if EXTRUDERS > 1
  6010. case 1:
  6011. oldstatus = E1_ENABLE_READ;
  6012. enable_e1();
  6013. break;
  6014. #if EXTRUDERS > 2
  6015. case 2:
  6016. oldstatus = E2_ENABLE_READ;
  6017. enable_e2();
  6018. break;
  6019. #if EXTRUDERS > 3
  6020. case 3:
  6021. oldstatus = E3_ENABLE_READ;
  6022. enable_e3();
  6023. break;
  6024. #endif
  6025. #endif
  6026. #endif
  6027. }
  6028. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6030. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  6031. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  6032. current_position[E_AXIS] = oldepos;
  6033. destination[E_AXIS] = oldedes;
  6034. plan_set_e_position(oldepos);
  6035. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6036. st_synchronize();
  6037. switch (active_extruder) {
  6038. case 0:
  6039. E0_ENABLE_WRITE(oldstatus);
  6040. break;
  6041. #if EXTRUDERS > 1
  6042. case 1:
  6043. E1_ENABLE_WRITE(oldstatus);
  6044. break;
  6045. #if EXTRUDERS > 2
  6046. case 2:
  6047. E2_ENABLE_WRITE(oldstatus);
  6048. break;
  6049. #if EXTRUDERS > 3
  6050. case 3:
  6051. E3_ENABLE_WRITE(oldstatus);
  6052. break;
  6053. #endif
  6054. #endif
  6055. #endif
  6056. }
  6057. }
  6058. #endif
  6059. #if ENABLED(DUAL_X_CARRIAGE)
  6060. // handle delayed move timeout
  6061. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6062. // travel moves have been received so enact them
  6063. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6064. set_destination_to_current();
  6065. prepare_move();
  6066. }
  6067. #endif
  6068. #if ENABLED(TEMP_STAT_LEDS)
  6069. handle_status_leds();
  6070. #endif
  6071. check_axes_activity();
  6072. }
  6073. void kill(const char* lcd_msg) {
  6074. #if ENABLED(ULTRA_LCD)
  6075. lcd_setalertstatuspgm(lcd_msg);
  6076. #else
  6077. UNUSED(lcd_msg);
  6078. #endif
  6079. cli(); // Stop interrupts
  6080. disable_all_heaters();
  6081. disable_all_steppers();
  6082. #if HAS_POWER_SWITCH
  6083. pinMode(PS_ON_PIN, INPUT);
  6084. #endif
  6085. SERIAL_ERROR_START;
  6086. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6087. // FMC small patch to update the LCD before ending
  6088. sei(); // enable interrupts
  6089. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6090. cli(); // disable interrupts
  6091. suicide();
  6092. while (1) { /* Intentionally left empty */ } // Wait for reset
  6093. }
  6094. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6095. void filrunout() {
  6096. if (!filrunoutEnqueued) {
  6097. filrunoutEnqueued = true;
  6098. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6099. st_synchronize();
  6100. }
  6101. }
  6102. #endif // FILAMENT_RUNOUT_SENSOR
  6103. #if ENABLED(FAST_PWM_FAN)
  6104. void setPwmFrequency(uint8_t pin, int val) {
  6105. val &= 0x07;
  6106. switch (digitalPinToTimer(pin)) {
  6107. #if defined(TCCR0A)
  6108. case TIMER0A:
  6109. case TIMER0B:
  6110. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6111. // TCCR0B |= val;
  6112. break;
  6113. #endif
  6114. #if defined(TCCR1A)
  6115. case TIMER1A:
  6116. case TIMER1B:
  6117. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6118. // TCCR1B |= val;
  6119. break;
  6120. #endif
  6121. #if defined(TCCR2)
  6122. case TIMER2:
  6123. case TIMER2:
  6124. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6125. TCCR2 |= val;
  6126. break;
  6127. #endif
  6128. #if defined(TCCR2A)
  6129. case TIMER2A:
  6130. case TIMER2B:
  6131. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6132. TCCR2B |= val;
  6133. break;
  6134. #endif
  6135. #if defined(TCCR3A)
  6136. case TIMER3A:
  6137. case TIMER3B:
  6138. case TIMER3C:
  6139. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6140. TCCR3B |= val;
  6141. break;
  6142. #endif
  6143. #if defined(TCCR4A)
  6144. case TIMER4A:
  6145. case TIMER4B:
  6146. case TIMER4C:
  6147. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6148. TCCR4B |= val;
  6149. break;
  6150. #endif
  6151. #if defined(TCCR5A)
  6152. case TIMER5A:
  6153. case TIMER5B:
  6154. case TIMER5C:
  6155. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6156. TCCR5B |= val;
  6157. break;
  6158. #endif
  6159. }
  6160. }
  6161. #endif // FAST_PWM_FAN
  6162. void Stop() {
  6163. disable_all_heaters();
  6164. if (IsRunning()) {
  6165. Running = false;
  6166. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6167. SERIAL_ERROR_START;
  6168. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6169. LCD_MESSAGEPGM(MSG_STOPPED);
  6170. }
  6171. }
  6172. /**
  6173. * Set target_extruder from the T parameter or the active_extruder
  6174. *
  6175. * Returns TRUE if the target is invalid
  6176. */
  6177. bool setTargetedHotend(int code) {
  6178. target_extruder = active_extruder;
  6179. if (code_seen('T')) {
  6180. target_extruder = code_value_short();
  6181. if (target_extruder >= EXTRUDERS) {
  6182. SERIAL_ECHO_START;
  6183. SERIAL_CHAR('M');
  6184. SERIAL_ECHO(code);
  6185. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6186. SERIAL_ECHOLN(target_extruder);
  6187. return true;
  6188. }
  6189. }
  6190. return false;
  6191. }
  6192. float calculate_volumetric_multiplier(float diameter) {
  6193. if (!volumetric_enabled || diameter == 0) return 1.0;
  6194. float d2 = diameter * 0.5;
  6195. return 1.0 / (M_PI * d2 * d2);
  6196. }
  6197. void calculate_volumetric_multipliers() {
  6198. for (int i = 0; i < EXTRUDERS; i++)
  6199. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6200. }