#!/usr/bin/env python3 # Render image to Oscilloscope XY vector audio # # https://pypi.org/project/svgpathtools/ # https://dood.al/oscilloscope/ # # ---------------------------------------------------------------------------- # Copyright (c) 2024 Thomas Buck (thomas@xythobuz.de) # Copyright (c) 2024 Philipp Schönberger (mail@phschoen.de) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # See . # ---------------------------------------------------------------------------- import sys import math import wave import argparse from svgpathtools import svg2paths def rot_p(p_center, p, angle_d): angle = math.radians(angle_d) ox = p_center[0] oy = p_center[1] qx = ox + math.cos(angle) * (p[0] - ox) - math.sin(angle) * (p[1] - oy) qy = oy + math.sin(angle) * (p[0] - ox) + math.cos(angle) * (p[1] - oy) p = [qx, qy] return p def interpolate(p1, p2, step): p = [] for i in range(0, 2): diff = p2[i] - p1[i] v = p1[i] + diff * step p.append(v) return p def read_image(filename, path_steps, volume_percent, samplerate, time, angle_d, rot_steps, rot_size): paths, attributes = svg2paths(filename) print("paths={}".format(len(paths))) for i, path in enumerate(paths): print("path={} segments={}".format(i, len(path))) # find center point to rotate around p0 = [ paths[0][0].start.real, paths[0][0].start.imag ] p_min = [p0[0], p0[1]] p_max = [p0[0], p0[1]] for path in paths: for segment in path: p = [ segment.end.real, segment.end.imag ] for i in range(0, 2): if p[i] < p_min[i]: p_min[i] = p[i] if p[i] > p_max[i]: p_max[i] = p[i] p_center = [ p_min[0] + (p_max[0] - p_min[0]) / 2, p_min[1] + (p_max[1] - p_min[1]) / 2 ] # find bounding box for rotated object for path in paths: for segment in path: a = angle_d while (a < (angle_d + (rot_steps * rot_size))) or ((rot_steps <= 0) and (a == angle_d)): p = rot_p(p_center, [ segment.end.real, segment.end.imag ], a) for i in range(0, 2): if p[i] < p_min[i]: p_min[i] = p[i] if p[i] > p_max[i]: p_max[i] = p[i] a += rot_size print("min={} max={}".format(p_min, p_max)) print("center={} ".format(p_center)) def add_point(p, data): for i in range(0, 2): v = p[i] v -= p_min[i] v /= p_max[i] - p_min[i] if i == 1: v = 1 - v c = int((v * 2 - 1) * (32767 / 100 * volume_percent)) data.extend(c.to_bytes(2, byteorder="little", signed=True)) def add_segment(p1, p2, data): l = math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) ps = max(1, int(path_steps * l)) for step in range(0, ps): p = interpolate(p1, p2, step / ps) add_point(p, data) wave = bytearray() a = angle_d while (a < (angle_d + (rot_steps * rot_size))) or ((rot_steps <= 0) and (a == angle_d)): data = bytearray() for path in paths: p0 = [ path[0].start.real, path[0].start.imag ] points = [ rot_p(p_center, p0, a) ] for segment in path: p = [ segment.end.real, segment.end.imag ] p = rot_p(p_center, p, a) points.append(p) # walk path forwards for n in range(0, len(points) - 1): add_segment(points[n], points[n + 1], data) # walk path backwards add_point(points[len(points) - 1], data) for n in range(len(points) - 2, -1, -1): add_segment(points[n + 1], points[n], data) add_point(points[0], data) # improve start/end of path. TODO only in virtual scope? add_point(points[0], data) # extend data to required length / runtime samplecount = int(len(data) / 2 / 2) # stereo, int16 drawrate = samplerate / samplecount drawcount = drawrate * (time / max(1, rot_steps)) for n in range(0, max(1, int(drawcount))): wave.extend(data) a += rot_size return wave def write_waveform(data, filename, samplerate): with wave.open(filename, "w") as f: f.setnchannels(2) f.setsampwidth(2) f.setframerate(samplerate) f.writeframes(data) def main(): parser = argparse.ArgumentParser( prog=sys.argv[0], description='Render SVG path to vector XY audio file', epilog='Made by Thomas Buck (thomas@xythobuz.de) and Philipp Schönberger (mail@phschoen.de). Licensed as GPLv3.') parser.add_argument("input", help="Input SVG image file path.") parser.add_argument("-o", "--output", dest="output", default="out.wav", help="Output wav sound file path. Defaults to 'out.wav'.") parser.add_argument("-t", "--time", dest="time", default=5.0, type=float, help="Length of sound file in seconds. Defaults to 5s.") parser.add_argument("-s", "--samplerate", dest="samplerate", default=44100, type=int, help="Samplerate of output file in Hz. Defaults to 44.1kHz.") parser.add_argument("-v", "--volume", dest="volume", default=100.0, type=float, help="Volume of output file in percent. Defaults to 100%%.") parser.add_argument("-i", "--interpolate", dest="interpolate", default=3, type=int, help="Steps on interpolated paths. Defaults to 3.") parser.add_argument("-r", "--rotate", dest="angle_d", default=0.0, type=float, help="Angle to rotate image, in degrees. Defaults to 0 deg.") parser.add_argument("-p", "--rot-steps", dest="rot_steps", default=0, type=int, help="Number of steps to animate rotation. Defaults to 0.") parser.add_argument("-z", "--rot-size", dest="rot_size", default=5.0, type=float, help="Step size for rotation animation. Defaults to 5 deg.") args = parser.parse_args() print(args) data = read_image(args.input, args.interpolate, args.volume, args.samplerate, args.time, args.angle_d, args.rot_steps, args.rot_size) write_waveform(bytes(data), args.output, args.samplerate) if __name__ == "__main__": main()