No Description
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

render.py 6.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. #!/usr/bin/env python3
  2. # Render image to Oscilloscope XY vector audio
  3. #
  4. # https://pypi.org/project/svgpathtools/
  5. # https://dood.al/oscilloscope/
  6. #
  7. # ----------------------------------------------------------------------------
  8. # Copyright (c) 2024 Thomas Buck (thomas@xythobuz.de)
  9. #
  10. # This program is free software: you can redistribute it and/or modify
  11. # it under the terms of the GNU General Public License as published by
  12. # the Free Software Foundation, either version 3 of the License, or
  13. # (at your option) any later version.
  14. #
  15. # This program is distributed in the hope that it will be useful,
  16. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. # GNU General Public License for more details.
  19. #
  20. # See <http://www.gnu.org/licenses/>.
  21. # ----------------------------------------------------------------------------
  22. import sys
  23. import math
  24. import wave
  25. import argparse
  26. from svgpathtools import svg2paths
  27. def rot_p(p_center, p, angle_d):
  28. angle = math.radians(angle_d)
  29. ox = p_center[0]
  30. oy = p_center[1]
  31. qx = ox + math.cos(angle) * (p[0] - ox) - math.sin(angle) * (p[1] - oy)
  32. qy = oy + math.sin(angle) * (p[0] - ox) + math.cos(angle) * (p[1] - oy)
  33. p = [qx, qy]
  34. return p
  35. def read_image(filename, path_steps, volume_percent, angle_d):
  36. paths, attributes = svg2paths(filename)
  37. path = paths[0]
  38. if len(paths) > 1:
  39. print("WARNING: multiple paths in file. will just draw first one.")
  40. print("paths={} segments={}".format(len(paths), len(path)))
  41. points = [[path[0].start.real, path[0].start.imag]]
  42. p_min = [points[0][0], points[0][1]]
  43. p_max = [points[0][0], points[0][1]]
  44. # find center
  45. for segment in path:
  46. p = [segment.end.real, segment.end.imag]
  47. for i in range(0, 2):
  48. if p[i] < p_min[i]:
  49. p_min[i] = p[i]
  50. if p[i] > p_max[i]:
  51. p_max[i] = p[i]
  52. p_center = [ p_min[0] + (p_max[0] - p_min[0] )/2 , p_min[1] + (p_max[1] - p_min[1] )/2]
  53. # find min max for all rotatations
  54. for segment in path:
  55. p_org = [segment.end.real, segment.end.imag]
  56. for a in range(0, 360, 5):
  57. p = rot_p(p_center, p_org , a)
  58. for i in range(0, 2):
  59. if p[i] < p_min[i]:
  60. p_min[i] = p[i]
  61. if p[i] > p_max[i]:
  62. p_max[i] = p[i]
  63. p = [path[0].start.real, path[0].start.imag]
  64. p = rot_p(p_center, p , angle_d)
  65. points = [p]
  66. # p_min = [points[0][0], points[0][1]]
  67. # p_max = [points[0][0], points[0][1]]
  68. for segment in path:
  69. p = [segment.end.real, segment.end.imag]
  70. p = rot_p(p_center, p , angle_d)
  71. for i in range(0, 2):
  72. if p[i] < p_min[i]:
  73. p_min[i] = p[i]
  74. if p[i] > p_max[i]:
  75. p_max[i] = p[i]
  76. points.append(p)
  77. print("min={} max={}".format(p_min, p_max))
  78. print("center={} ".format(p_center))
  79. data = bytearray()
  80. def add_point(p):
  81. for i in range(0, 2):
  82. v = p[i]
  83. v -= p_min[i]
  84. v /= p_max[i] - p_min[i]
  85. if i == 1:
  86. v = 1 - v
  87. c = int((v * 2 - 1) * (32767 / 100 * volume_percent))
  88. data.extend(c.to_bytes(2, byteorder="little", signed=True))
  89. def interpolate(p1, p2, step):
  90. p = []
  91. for i in range(0, 2):
  92. diff = p2[i] - p1[i]
  93. v = p1[i] + diff * step
  94. p.append(v)
  95. return p
  96. def add_segment(p1, p2, f):
  97. p = interpolate(p1, p2, f)
  98. add_point(p)
  99. for n in range(0, len(points) - 1):
  100. for step in range(0, path_steps):
  101. add_segment(points[n], points[n + 1], step / path_steps)
  102. #add_point(points[len(points) - 1])
  103. for n in range(len(points) - 2, -1, -1):
  104. for step in range(0, path_steps):
  105. add_segment(points[n + 1], points[n], step / path_steps)
  106. add_point(points[0])
  107. return data
  108. def write_waveform(data, filename, samplerate):
  109. with wave.open(filename, "w") as f:
  110. f.setnchannels(2)
  111. f.setsampwidth(2)
  112. f.setframerate(samplerate)
  113. f.writeframes(data)
  114. def main():
  115. parser = argparse.ArgumentParser(
  116. prog=sys.argv[0],
  117. description='Render SVG path to vector XY audio file',
  118. epilog='Made by Thomas Buck <thomas@xythobuz.de>. Licensed as GPLv3.')
  119. parser.add_argument("input", help="Input SVG image file path.")
  120. parser.add_argument("-o", "--output", dest="output", default="out.wav",
  121. help="Output wav sound file path. Defaults to 'out.wav'.")
  122. parser.add_argument("-t", "--time", dest="time", default=5.0, type=float,
  123. help="Length of sound file in seconds. Defaults to 5s.")
  124. parser.add_argument("-s", "--samplerate", dest="samplerate", default=44100, type=int,
  125. help="Samplerate of output file in Hz. Defaults to 44.1kHz.")
  126. parser.add_argument("-v", "--volume", dest="volume", default=100.0, type=float,
  127. help="Volume of output file in percent. Defaults to 100%%.")
  128. parser.add_argument("-i", "--interpolate", dest="interpolate", default=10, type=int,
  129. help="Steps on interpolated paths. Defaults to 10.")
  130. parser.add_argument("-r", "--rotate", dest="angle_d", default=10, type=int,
  131. help="angle to rotate Defaults to 10.")
  132. args = parser.parse_args()
  133. print(args)
  134. wave = read_image(args.input, args.interpolate, args.volume, args.angle_d)
  135. samplecount = int(len(wave) / 2 / 2) # stereo, int16
  136. drawrate = args.samplerate / samplecount
  137. drawcount = drawrate * args.time
  138. print("len={} samples={} drawrate={:.2f} count={:.2f}".format(len(wave), samplecount, drawrate, drawcount))
  139. data = bytearray()
  140. for n in range(0, int(drawcount)):
  141. data.extend(wave)
  142. print("len={}".format(len(data)))
  143. write_waveform(bytes(data), args.output, args.samplerate)
  144. if __name__ == "__main__":
  145. main()