Naze32 clone with Frysky receiver
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

arm_math.h 239KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556
  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
  3. *
  4. * $Date: 19. March 2015
  5. * $Revision: V.1.4.5
  6. *
  7. * Project: CMSIS DSP Library
  8. * Title: arm_math.h
  9. *
  10. * Description: Public header file for CMSIS DSP Library
  11. *
  12. * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
  13. *
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. * - Redistributions of source code must retain the above copyright
  18. * notice, this list of conditions and the following disclaimer.
  19. * - Redistributions in binary form must reproduce the above copyright
  20. * notice, this list of conditions and the following disclaimer in
  21. * the documentation and/or other materials provided with the
  22. * distribution.
  23. * - Neither the name of ARM LIMITED nor the names of its contributors
  24. * may be used to endorse or promote products derived from this
  25. * software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.
  39. * -------------------------------------------------------------------- */
  40. /**
  41. \mainpage CMSIS DSP Software Library
  42. *
  43. * Introduction
  44. * ------------
  45. *
  46. * This user manual describes the CMSIS DSP software library,
  47. * a suite of common signal processing functions for use on Cortex-M processor based devices.
  48. *
  49. * The library is divided into a number of functions each covering a specific category:
  50. * - Basic math functions
  51. * - Fast math functions
  52. * - Complex math functions
  53. * - Filters
  54. * - Matrix functions
  55. * - Transforms
  56. * - Motor control functions
  57. * - Statistical functions
  58. * - Support functions
  59. * - Interpolation functions
  60. *
  61. * The library has separate functions for operating on 8-bit integers, 16-bit integers,
  62. * 32-bit integer and 32-bit floating-point values.
  63. *
  64. * Using the Library
  65. * ------------
  66. *
  67. * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
  68. * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
  69. * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
  70. * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
  71. * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
  72. * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
  73. * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
  74. * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
  75. * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
  76. * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
  77. * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
  78. * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
  79. * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
  80. * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
  81. * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
  82. *
  83. * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
  84. * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
  85. * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
  86. * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
  87. * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
  88. *
  89. * Examples
  90. * --------
  91. *
  92. * The library ships with a number of examples which demonstrate how to use the library functions.
  93. *
  94. * Toolchain Support
  95. * ------------
  96. *
  97. * The library has been developed and tested with MDK-ARM version 5.14.0.0
  98. * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
  99. *
  100. * Building the Library
  101. * ------------
  102. *
  103. * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
  104. * - arm_cortexM_math.uvprojx
  105. *
  106. *
  107. * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
  108. *
  109. * Pre-processor Macros
  110. * ------------
  111. *
  112. * Each library project have differant pre-processor macros.
  113. *
  114. * - UNALIGNED_SUPPORT_DISABLE:
  115. *
  116. * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
  117. *
  118. * - ARM_MATH_BIG_ENDIAN:
  119. *
  120. * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
  121. *
  122. * - ARM_MATH_MATRIX_CHECK:
  123. *
  124. * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
  125. *
  126. * - ARM_MATH_ROUNDING:
  127. *
  128. * Define macro ARM_MATH_ROUNDING for rounding on support functions
  129. *
  130. * - ARM_MATH_CMx:
  131. *
  132. * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
  133. * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
  134. * ARM_MATH_CM7 for building the library on cortex-M7.
  135. *
  136. * - __FPU_PRESENT:
  137. *
  138. * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
  139. *
  140. * <hr>
  141. * CMSIS-DSP in ARM::CMSIS Pack
  142. * -----------------------------
  143. *
  144. * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
  145. * |File/Folder |Content |
  146. * |------------------------------|------------------------------------------------------------------------|
  147. * |\b CMSIS\\Documentation\\DSP | This documentation |
  148. * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
  149. * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
  150. * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
  151. *
  152. * <hr>
  153. * Revision History of CMSIS-DSP
  154. * ------------
  155. * Please refer to \ref ChangeLog_pg.
  156. *
  157. * Copyright Notice
  158. * ------------
  159. *
  160. * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
  161. */
  162. /**
  163. * @defgroup groupMath Basic Math Functions
  164. */
  165. /**
  166. * @defgroup groupFastMath Fast Math Functions
  167. * This set of functions provides a fast approximation to sine, cosine, and square root.
  168. * As compared to most of the other functions in the CMSIS math library, the fast math functions
  169. * operate on individual values and not arrays.
  170. * There are separate functions for Q15, Q31, and floating-point data.
  171. *
  172. */
  173. /**
  174. * @defgroup groupCmplxMath Complex Math Functions
  175. * This set of functions operates on complex data vectors.
  176. * The data in the complex arrays is stored in an interleaved fashion
  177. * (real, imag, real, imag, ...).
  178. * In the API functions, the number of samples in a complex array refers
  179. * to the number of complex values; the array contains twice this number of
  180. * real values.
  181. */
  182. /**
  183. * @defgroup groupFilters Filtering Functions
  184. */
  185. /**
  186. * @defgroup groupMatrix Matrix Functions
  187. *
  188. * This set of functions provides basic matrix math operations.
  189. * The functions operate on matrix data structures. For example,
  190. * the type
  191. * definition for the floating-point matrix structure is shown
  192. * below:
  193. * <pre>
  194. * typedef struct
  195. * {
  196. * uint16_t numRows; // number of rows of the matrix.
  197. * uint16_t numCols; // number of columns of the matrix.
  198. * float32_t *pData; // points to the data of the matrix.
  199. * } arm_matrix_instance_f32;
  200. * </pre>
  201. * There are similar definitions for Q15 and Q31 data types.
  202. *
  203. * The structure specifies the size of the matrix and then points to
  204. * an array of data. The array is of size <code>numRows X numCols</code>
  205. * and the values are arranged in row order. That is, the
  206. * matrix element (i, j) is stored at:
  207. * <pre>
  208. * pData[i*numCols + j]
  209. * </pre>
  210. *
  211. * \par Init Functions
  212. * There is an associated initialization function for each type of matrix
  213. * data structure.
  214. * The initialization function sets the values of the internal structure fields.
  215. * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
  216. * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
  217. *
  218. * \par
  219. * Use of the initialization function is optional. However, if initialization function is used
  220. * then the instance structure cannot be placed into a const data section.
  221. * To place the instance structure in a const data
  222. * section, manually initialize the data structure. For example:
  223. * <pre>
  224. * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
  225. * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
  226. * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
  227. * </pre>
  228. * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
  229. * specifies the number of columns, and <code>pData</code> points to the
  230. * data array.
  231. *
  232. * \par Size Checking
  233. * By default all of the matrix functions perform size checking on the input and
  234. * output matrices. For example, the matrix addition function verifies that the
  235. * two input matrices and the output matrix all have the same number of rows and
  236. * columns. If the size check fails the functions return:
  237. * <pre>
  238. * ARM_MATH_SIZE_MISMATCH
  239. * </pre>
  240. * Otherwise the functions return
  241. * <pre>
  242. * ARM_MATH_SUCCESS
  243. * </pre>
  244. * There is some overhead associated with this matrix size checking.
  245. * The matrix size checking is enabled via the \#define
  246. * <pre>
  247. * ARM_MATH_MATRIX_CHECK
  248. * </pre>
  249. * within the library project settings. By default this macro is defined
  250. * and size checking is enabled. By changing the project settings and
  251. * undefining this macro size checking is eliminated and the functions
  252. * run a bit faster. With size checking disabled the functions always
  253. * return <code>ARM_MATH_SUCCESS</code>.
  254. */
  255. /**
  256. * @defgroup groupTransforms Transform Functions
  257. */
  258. /**
  259. * @defgroup groupController Controller Functions
  260. */
  261. /**
  262. * @defgroup groupStats Statistics Functions
  263. */
  264. /**
  265. * @defgroup groupSupport Support Functions
  266. */
  267. /**
  268. * @defgroup groupInterpolation Interpolation Functions
  269. * These functions perform 1- and 2-dimensional interpolation of data.
  270. * Linear interpolation is used for 1-dimensional data and
  271. * bilinear interpolation is used for 2-dimensional data.
  272. */
  273. /**
  274. * @defgroup groupExamples Examples
  275. */
  276. #ifndef _ARM_MATH_H
  277. #define _ARM_MATH_H
  278. #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
  279. #if defined(ARM_MATH_CM7)
  280. #include "core_cm7.h"
  281. #elif defined (ARM_MATH_CM4)
  282. #include "core_cm4.h"
  283. #elif defined (ARM_MATH_CM3)
  284. #include "core_cm3.h"
  285. #elif defined (ARM_MATH_CM0)
  286. #include "core_cm0.h"
  287. #define ARM_MATH_CM0_FAMILY
  288. #elif defined (ARM_MATH_CM0PLUS)
  289. #include "core_cm0plus.h"
  290. #define ARM_MATH_CM0_FAMILY
  291. #else
  292. #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
  293. #endif
  294. #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
  295. #include "string.h"
  296. #include "math.h"
  297. #ifdef __cplusplus
  298. extern "C"
  299. {
  300. #endif
  301. /**
  302. * @brief Macros required for reciprocal calculation in Normalized LMS
  303. */
  304. #define DELTA_Q31 (0x100)
  305. #define DELTA_Q15 0x5
  306. #define INDEX_MASK 0x0000003F
  307. #ifndef PI
  308. #define PI 3.14159265358979f
  309. #endif
  310. /**
  311. * @brief Macros required for SINE and COSINE Fast math approximations
  312. */
  313. #define FAST_MATH_TABLE_SIZE 512
  314. #define FAST_MATH_Q31_SHIFT (32 - 10)
  315. #define FAST_MATH_Q15_SHIFT (16 - 10)
  316. #define CONTROLLER_Q31_SHIFT (32 - 9)
  317. #define TABLE_SIZE 256
  318. #define TABLE_SPACING_Q31 0x400000
  319. #define TABLE_SPACING_Q15 0x80
  320. /**
  321. * @brief Macros required for SINE and COSINE Controller functions
  322. */
  323. /* 1.31(q31) Fixed value of 2/360 */
  324. /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
  325. #define INPUT_SPACING 0xB60B61
  326. /**
  327. * @brief Macro for Unaligned Support
  328. */
  329. #ifndef UNALIGNED_SUPPORT_DISABLE
  330. #define ALIGN4
  331. #else
  332. #if defined (__GNUC__)
  333. #define ALIGN4 __attribute__((aligned(4)))
  334. #else
  335. #define ALIGN4 __align(4)
  336. #endif
  337. #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
  338. /**
  339. * @brief Error status returned by some functions in the library.
  340. */
  341. typedef enum
  342. {
  343. ARM_MATH_SUCCESS = 0, /**< No error */
  344. ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
  345. ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
  346. ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
  347. ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
  348. ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
  349. ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
  350. } arm_status;
  351. /**
  352. * @brief 8-bit fractional data type in 1.7 format.
  353. */
  354. typedef int8_t q7_t;
  355. /**
  356. * @brief 16-bit fractional data type in 1.15 format.
  357. */
  358. typedef int16_t q15_t;
  359. /**
  360. * @brief 32-bit fractional data type in 1.31 format.
  361. */
  362. typedef int32_t q31_t;
  363. /**
  364. * @brief 64-bit fractional data type in 1.63 format.
  365. */
  366. typedef int64_t q63_t;
  367. /**
  368. * @brief 32-bit floating-point type definition.
  369. */
  370. typedef float float32_t;
  371. /**
  372. * @brief 64-bit floating-point type definition.
  373. */
  374. typedef double float64_t;
  375. /**
  376. * @brief definition to read/write two 16 bit values.
  377. */
  378. #if defined __CC_ARM
  379. #define __SIMD32_TYPE int32_t __packed
  380. #define CMSIS_UNUSED __attribute__((unused))
  381. #elif defined __ICCARM__
  382. #define __SIMD32_TYPE int32_t __packed
  383. #define CMSIS_UNUSED
  384. #elif defined __GNUC__
  385. #define __SIMD32_TYPE int32_t
  386. #define CMSIS_UNUSED __attribute__((unused))
  387. #elif defined __CSMC__ /* Cosmic */
  388. #define __SIMD32_TYPE int32_t
  389. #define CMSIS_UNUSED
  390. #elif defined __TASKING__
  391. #define __SIMD32_TYPE __unaligned int32_t
  392. #define CMSIS_UNUSED
  393. #else
  394. #error Unknown compiler
  395. #endif
  396. #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
  397. #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
  398. #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
  399. #define __SIMD64(addr) (*(int64_t **) & (addr))
  400. #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
  401. /**
  402. * @brief definition to pack two 16 bit values.
  403. */
  404. #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
  405. (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
  406. #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
  407. (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
  408. #endif
  409. /**
  410. * @brief definition to pack four 8 bit values.
  411. */
  412. #ifndef ARM_MATH_BIG_ENDIAN
  413. #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
  414. (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
  415. (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
  416. (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
  417. #else
  418. #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
  419. (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
  420. (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
  421. (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
  422. #endif
  423. /**
  424. * @brief Clips Q63 to Q31 values.
  425. */
  426. static __INLINE q31_t clip_q63_to_q31(
  427. q63_t x)
  428. {
  429. return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
  430. ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
  431. }
  432. /**
  433. * @brief Clips Q63 to Q15 values.
  434. */
  435. static __INLINE q15_t clip_q63_to_q15(
  436. q63_t x)
  437. {
  438. return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
  439. ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
  440. }
  441. /**
  442. * @brief Clips Q31 to Q7 values.
  443. */
  444. static __INLINE q7_t clip_q31_to_q7(
  445. q31_t x)
  446. {
  447. return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
  448. ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
  449. }
  450. /**
  451. * @brief Clips Q31 to Q15 values.
  452. */
  453. static __INLINE q15_t clip_q31_to_q15(
  454. q31_t x)
  455. {
  456. return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
  457. ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
  458. }
  459. /**
  460. * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
  461. */
  462. static __INLINE q63_t mult32x64(
  463. q63_t x,
  464. q31_t y)
  465. {
  466. return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
  467. (((q63_t) (x >> 32) * y)));
  468. }
  469. //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
  470. //#define __CLZ __clz
  471. //#endif
  472. //note: function can be removed when all toolchain support __CLZ for Cortex-M0
  473. #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
  474. static __INLINE uint32_t __CLZ(
  475. q31_t data);
  476. static __INLINE uint32_t __CLZ(
  477. q31_t data)
  478. {
  479. uint32_t count = 0;
  480. uint32_t mask = 0x80000000;
  481. while((data & mask) == 0)
  482. {
  483. count += 1u;
  484. mask = mask >> 1u;
  485. }
  486. return (count);
  487. }
  488. #endif
  489. /**
  490. * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
  491. */
  492. static __INLINE uint32_t arm_recip_q31(
  493. q31_t in,
  494. q31_t * dst,
  495. q31_t * pRecipTable)
  496. {
  497. uint32_t out, tempVal;
  498. uint32_t index, i;
  499. uint32_t signBits;
  500. if(in > 0)
  501. {
  502. signBits = __CLZ(in) - 1;
  503. }
  504. else
  505. {
  506. signBits = __CLZ(-in) - 1;
  507. }
  508. /* Convert input sample to 1.31 format */
  509. in = in << signBits;
  510. /* calculation of index for initial approximated Val */
  511. index = (uint32_t) (in >> 24u);
  512. index = (index & INDEX_MASK);
  513. /* 1.31 with exp 1 */
  514. out = pRecipTable[index];
  515. /* calculation of reciprocal value */
  516. /* running approximation for two iterations */
  517. for (i = 0u; i < 2u; i++)
  518. {
  519. tempVal = (q31_t) (((q63_t) in * out) >> 31u);
  520. tempVal = 0x7FFFFFFF - tempVal;
  521. /* 1.31 with exp 1 */
  522. //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
  523. out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
  524. }
  525. /* write output */
  526. *dst = out;
  527. /* return num of signbits of out = 1/in value */
  528. return (signBits + 1u);
  529. }
  530. /**
  531. * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
  532. */
  533. static __INLINE uint32_t arm_recip_q15(
  534. q15_t in,
  535. q15_t * dst,
  536. q15_t * pRecipTable)
  537. {
  538. uint32_t out = 0, tempVal = 0;
  539. uint32_t index = 0, i = 0;
  540. uint32_t signBits = 0;
  541. if(in > 0)
  542. {
  543. signBits = __CLZ(in) - 17;
  544. }
  545. else
  546. {
  547. signBits = __CLZ(-in) - 17;
  548. }
  549. /* Convert input sample to 1.15 format */
  550. in = in << signBits;
  551. /* calculation of index for initial approximated Val */
  552. index = in >> 8;
  553. index = (index & INDEX_MASK);
  554. /* 1.15 with exp 1 */
  555. out = pRecipTable[index];
  556. /* calculation of reciprocal value */
  557. /* running approximation for two iterations */
  558. for (i = 0; i < 2; i++)
  559. {
  560. tempVal = (q15_t) (((q31_t) in * out) >> 15);
  561. tempVal = 0x7FFF - tempVal;
  562. /* 1.15 with exp 1 */
  563. out = (q15_t) (((q31_t) out * tempVal) >> 14);
  564. }
  565. /* write output */
  566. *dst = out;
  567. /* return num of signbits of out = 1/in value */
  568. return (signBits + 1);
  569. }
  570. /*
  571. * @brief C custom defined intrinisic function for only M0 processors
  572. */
  573. #if defined(ARM_MATH_CM0_FAMILY)
  574. static __INLINE q31_t __SSAT(
  575. q31_t x,
  576. uint32_t y)
  577. {
  578. int32_t posMax, negMin;
  579. uint32_t i;
  580. posMax = 1;
  581. for (i = 0; i < (y - 1); i++)
  582. {
  583. posMax = posMax * 2;
  584. }
  585. if(x > 0)
  586. {
  587. posMax = (posMax - 1);
  588. if(x > posMax)
  589. {
  590. x = posMax;
  591. }
  592. }
  593. else
  594. {
  595. negMin = -posMax;
  596. if(x < negMin)
  597. {
  598. x = negMin;
  599. }
  600. }
  601. return (x);
  602. }
  603. #endif /* end of ARM_MATH_CM0_FAMILY */
  604. /*
  605. * @brief C custom defined intrinsic function for M3 and M0 processors
  606. */
  607. #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
  608. /*
  609. * @brief C custom defined QADD8 for M3 and M0 processors
  610. */
  611. static __INLINE q31_t __QADD8(
  612. q31_t x,
  613. q31_t y)
  614. {
  615. q31_t sum;
  616. q7_t r, s, t, u;
  617. r = (q7_t) x;
  618. s = (q7_t) y;
  619. r = __SSAT((q31_t) (r + s), 8);
  620. s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
  621. t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
  622. u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
  623. sum =
  624. (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
  625. (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
  626. return sum;
  627. }
  628. /*
  629. * @brief C custom defined QSUB8 for M3 and M0 processors
  630. */
  631. static __INLINE q31_t __QSUB8(
  632. q31_t x,
  633. q31_t y)
  634. {
  635. q31_t sum;
  636. q31_t r, s, t, u;
  637. r = (q7_t) x;
  638. s = (q7_t) y;
  639. r = __SSAT((r - s), 8);
  640. s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
  641. t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
  642. u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
  643. sum =
  644. (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
  645. 0x000000FF);
  646. return sum;
  647. }
  648. /*
  649. * @brief C custom defined QADD16 for M3 and M0 processors
  650. */
  651. /*
  652. * @brief C custom defined QADD16 for M3 and M0 processors
  653. */
  654. static __INLINE q31_t __QADD16(
  655. q31_t x,
  656. q31_t y)
  657. {
  658. q31_t sum;
  659. q31_t r, s;
  660. r = (q15_t) x;
  661. s = (q15_t) y;
  662. r = __SSAT(r + s, 16);
  663. s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
  664. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  665. return sum;
  666. }
  667. /*
  668. * @brief C custom defined SHADD16 for M3 and M0 processors
  669. */
  670. static __INLINE q31_t __SHADD16(
  671. q31_t x,
  672. q31_t y)
  673. {
  674. q31_t sum;
  675. q31_t r, s;
  676. r = (q15_t) x;
  677. s = (q15_t) y;
  678. r = ((r >> 1) + (s >> 1));
  679. s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
  680. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  681. return sum;
  682. }
  683. /*
  684. * @brief C custom defined QSUB16 for M3 and M0 processors
  685. */
  686. static __INLINE q31_t __QSUB16(
  687. q31_t x,
  688. q31_t y)
  689. {
  690. q31_t sum;
  691. q31_t r, s;
  692. r = (q15_t) x;
  693. s = (q15_t) y;
  694. r = __SSAT(r - s, 16);
  695. s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
  696. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  697. return sum;
  698. }
  699. /*
  700. * @brief C custom defined SHSUB16 for M3 and M0 processors
  701. */
  702. static __INLINE q31_t __SHSUB16(
  703. q31_t x,
  704. q31_t y)
  705. {
  706. q31_t diff;
  707. q31_t r, s;
  708. r = (q15_t) x;
  709. s = (q15_t) y;
  710. r = ((r >> 1) - (s >> 1));
  711. s = (((x >> 17) - (y >> 17)) << 16);
  712. diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  713. return diff;
  714. }
  715. /*
  716. * @brief C custom defined QASX for M3 and M0 processors
  717. */
  718. static __INLINE q31_t __QASX(
  719. q31_t x,
  720. q31_t y)
  721. {
  722. q31_t sum = 0;
  723. sum =
  724. ((sum +
  725. clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
  726. clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
  727. return sum;
  728. }
  729. /*
  730. * @brief C custom defined SHASX for M3 and M0 processors
  731. */
  732. static __INLINE q31_t __SHASX(
  733. q31_t x,
  734. q31_t y)
  735. {
  736. q31_t sum;
  737. q31_t r, s;
  738. r = (q15_t) x;
  739. s = (q15_t) y;
  740. r = ((r >> 1) - (y >> 17));
  741. s = (((x >> 17) + (s >> 1)) << 16);
  742. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  743. return sum;
  744. }
  745. /*
  746. * @brief C custom defined QSAX for M3 and M0 processors
  747. */
  748. static __INLINE q31_t __QSAX(
  749. q31_t x,
  750. q31_t y)
  751. {
  752. q31_t sum = 0;
  753. sum =
  754. ((sum +
  755. clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
  756. clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
  757. return sum;
  758. }
  759. /*
  760. * @brief C custom defined SHSAX for M3 and M0 processors
  761. */
  762. static __INLINE q31_t __SHSAX(
  763. q31_t x,
  764. q31_t y)
  765. {
  766. q31_t sum;
  767. q31_t r, s;
  768. r = (q15_t) x;
  769. s = (q15_t) y;
  770. r = ((r >> 1) + (y >> 17));
  771. s = (((x >> 17) - (s >> 1)) << 16);
  772. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  773. return sum;
  774. }
  775. /*
  776. * @brief C custom defined SMUSDX for M3 and M0 processors
  777. */
  778. static __INLINE q31_t __SMUSDX(
  779. q31_t x,
  780. q31_t y)
  781. {
  782. return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
  783. ((q15_t) (x >> 16) * (q15_t) y)));
  784. }
  785. /*
  786. * @brief C custom defined SMUADX for M3 and M0 processors
  787. */
  788. static __INLINE q31_t __SMUADX(
  789. q31_t x,
  790. q31_t y)
  791. {
  792. return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
  793. ((q15_t) (x >> 16) * (q15_t) y)));
  794. }
  795. /*
  796. * @brief C custom defined QADD for M3 and M0 processors
  797. */
  798. static __INLINE q31_t __QADD(
  799. q31_t x,
  800. q31_t y)
  801. {
  802. return clip_q63_to_q31((q63_t) x + y);
  803. }
  804. /*
  805. * @brief C custom defined QSUB for M3 and M0 processors
  806. */
  807. static __INLINE q31_t __QSUB(
  808. q31_t x,
  809. q31_t y)
  810. {
  811. return clip_q63_to_q31((q63_t) x - y);
  812. }
  813. /*
  814. * @brief C custom defined SMLAD for M3 and M0 processors
  815. */
  816. static __INLINE q31_t __SMLAD(
  817. q31_t x,
  818. q31_t y,
  819. q31_t sum)
  820. {
  821. return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
  822. ((q15_t) x * (q15_t) y));
  823. }
  824. /*
  825. * @brief C custom defined SMLADX for M3 and M0 processors
  826. */
  827. static __INLINE q31_t __SMLADX(
  828. q31_t x,
  829. q31_t y,
  830. q31_t sum)
  831. {
  832. return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
  833. ((q15_t) x * (q15_t) (y >> 16)));
  834. }
  835. /*
  836. * @brief C custom defined SMLSDX for M3 and M0 processors
  837. */
  838. static __INLINE q31_t __SMLSDX(
  839. q31_t x,
  840. q31_t y,
  841. q31_t sum)
  842. {
  843. return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
  844. ((q15_t) x * (q15_t) (y >> 16)));
  845. }
  846. /*
  847. * @brief C custom defined SMLALD for M3 and M0 processors
  848. */
  849. static __INLINE q63_t __SMLALD(
  850. q31_t x,
  851. q31_t y,
  852. q63_t sum)
  853. {
  854. return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
  855. ((q15_t) x * (q15_t) y));
  856. }
  857. /*
  858. * @brief C custom defined SMLALDX for M3 and M0 processors
  859. */
  860. static __INLINE q63_t __SMLALDX(
  861. q31_t x,
  862. q31_t y,
  863. q63_t sum)
  864. {
  865. return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
  866. ((q15_t) x * (q15_t) (y >> 16));
  867. }
  868. /*
  869. * @brief C custom defined SMUAD for M3 and M0 processors
  870. */
  871. static __INLINE q31_t __SMUAD(
  872. q31_t x,
  873. q31_t y)
  874. {
  875. return (((x >> 16) * (y >> 16)) +
  876. (((x << 16) >> 16) * ((y << 16) >> 16)));
  877. }
  878. /*
  879. * @brief C custom defined SMUSD for M3 and M0 processors
  880. */
  881. static __INLINE q31_t __SMUSD(
  882. q31_t x,
  883. q31_t y)
  884. {
  885. return (-((x >> 16) * (y >> 16)) +
  886. (((x << 16) >> 16) * ((y << 16) >> 16)));
  887. }
  888. /*
  889. * @brief C custom defined SXTB16 for M3 and M0 processors
  890. */
  891. static __INLINE q31_t __SXTB16(
  892. q31_t x)
  893. {
  894. return ((((x << 24) >> 24) & 0x0000FFFF) |
  895. (((x << 8) >> 8) & 0xFFFF0000));
  896. }
  897. #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
  898. /**
  899. * @brief Instance structure for the Q7 FIR filter.
  900. */
  901. typedef struct
  902. {
  903. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  904. q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  905. q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  906. } arm_fir_instance_q7;
  907. /**
  908. * @brief Instance structure for the Q15 FIR filter.
  909. */
  910. typedef struct
  911. {
  912. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  913. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  914. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  915. } arm_fir_instance_q15;
  916. /**
  917. * @brief Instance structure for the Q31 FIR filter.
  918. */
  919. typedef struct
  920. {
  921. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  922. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  923. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  924. } arm_fir_instance_q31;
  925. /**
  926. * @brief Instance structure for the floating-point FIR filter.
  927. */
  928. typedef struct
  929. {
  930. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  931. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  932. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  933. } arm_fir_instance_f32;
  934. /**
  935. * @brief Processing function for the Q7 FIR filter.
  936. * @param[in] *S points to an instance of the Q7 FIR filter structure.
  937. * @param[in] *pSrc points to the block of input data.
  938. * @param[out] *pDst points to the block of output data.
  939. * @param[in] blockSize number of samples to process.
  940. * @return none.
  941. */
  942. void arm_fir_q7(
  943. const arm_fir_instance_q7 * S,
  944. q7_t * pSrc,
  945. q7_t * pDst,
  946. uint32_t blockSize);
  947. /**
  948. * @brief Initialization function for the Q7 FIR filter.
  949. * @param[in,out] *S points to an instance of the Q7 FIR structure.
  950. * @param[in] numTaps Number of filter coefficients in the filter.
  951. * @param[in] *pCoeffs points to the filter coefficients.
  952. * @param[in] *pState points to the state buffer.
  953. * @param[in] blockSize number of samples that are processed.
  954. * @return none
  955. */
  956. void arm_fir_init_q7(
  957. arm_fir_instance_q7 * S,
  958. uint16_t numTaps,
  959. q7_t * pCoeffs,
  960. q7_t * pState,
  961. uint32_t blockSize);
  962. /**
  963. * @brief Processing function for the Q15 FIR filter.
  964. * @param[in] *S points to an instance of the Q15 FIR structure.
  965. * @param[in] *pSrc points to the block of input data.
  966. * @param[out] *pDst points to the block of output data.
  967. * @param[in] blockSize number of samples to process.
  968. * @return none.
  969. */
  970. void arm_fir_q15(
  971. const arm_fir_instance_q15 * S,
  972. q15_t * pSrc,
  973. q15_t * pDst,
  974. uint32_t blockSize);
  975. /**
  976. * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
  977. * @param[in] *S points to an instance of the Q15 FIR filter structure.
  978. * @param[in] *pSrc points to the block of input data.
  979. * @param[out] *pDst points to the block of output data.
  980. * @param[in] blockSize number of samples to process.
  981. * @return none.
  982. */
  983. void arm_fir_fast_q15(
  984. const arm_fir_instance_q15 * S,
  985. q15_t * pSrc,
  986. q15_t * pDst,
  987. uint32_t blockSize);
  988. /**
  989. * @brief Initialization function for the Q15 FIR filter.
  990. * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
  991. * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
  992. * @param[in] *pCoeffs points to the filter coefficients.
  993. * @param[in] *pState points to the state buffer.
  994. * @param[in] blockSize number of samples that are processed at a time.
  995. * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
  996. * <code>numTaps</code> is not a supported value.
  997. */
  998. arm_status arm_fir_init_q15(
  999. arm_fir_instance_q15 * S,
  1000. uint16_t numTaps,
  1001. q15_t * pCoeffs,
  1002. q15_t * pState,
  1003. uint32_t blockSize);
  1004. /**
  1005. * @brief Processing function for the Q31 FIR filter.
  1006. * @param[in] *S points to an instance of the Q31 FIR filter structure.
  1007. * @param[in] *pSrc points to the block of input data.
  1008. * @param[out] *pDst points to the block of output data.
  1009. * @param[in] blockSize number of samples to process.
  1010. * @return none.
  1011. */
  1012. void arm_fir_q31(
  1013. const arm_fir_instance_q31 * S,
  1014. q31_t * pSrc,
  1015. q31_t * pDst,
  1016. uint32_t blockSize);
  1017. /**
  1018. * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
  1019. * @param[in] *S points to an instance of the Q31 FIR structure.
  1020. * @param[in] *pSrc points to the block of input data.
  1021. * @param[out] *pDst points to the block of output data.
  1022. * @param[in] blockSize number of samples to process.
  1023. * @return none.
  1024. */
  1025. void arm_fir_fast_q31(
  1026. const arm_fir_instance_q31 * S,
  1027. q31_t * pSrc,
  1028. q31_t * pDst,
  1029. uint32_t blockSize);
  1030. /**
  1031. * @brief Initialization function for the Q31 FIR filter.
  1032. * @param[in,out] *S points to an instance of the Q31 FIR structure.
  1033. * @param[in] numTaps Number of filter coefficients in the filter.
  1034. * @param[in] *pCoeffs points to the filter coefficients.
  1035. * @param[in] *pState points to the state buffer.
  1036. * @param[in] blockSize number of samples that are processed at a time.
  1037. * @return none.
  1038. */
  1039. void arm_fir_init_q31(
  1040. arm_fir_instance_q31 * S,
  1041. uint16_t numTaps,
  1042. q31_t * pCoeffs,
  1043. q31_t * pState,
  1044. uint32_t blockSize);
  1045. /**
  1046. * @brief Processing function for the floating-point FIR filter.
  1047. * @param[in] *S points to an instance of the floating-point FIR structure.
  1048. * @param[in] *pSrc points to the block of input data.
  1049. * @param[out] *pDst points to the block of output data.
  1050. * @param[in] blockSize number of samples to process.
  1051. * @return none.
  1052. */
  1053. void arm_fir_f32(
  1054. const arm_fir_instance_f32 * S,
  1055. float32_t * pSrc,
  1056. float32_t * pDst,
  1057. uint32_t blockSize);
  1058. /**
  1059. * @brief Initialization function for the floating-point FIR filter.
  1060. * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
  1061. * @param[in] numTaps Number of filter coefficients in the filter.
  1062. * @param[in] *pCoeffs points to the filter coefficients.
  1063. * @param[in] *pState points to the state buffer.
  1064. * @param[in] blockSize number of samples that are processed at a time.
  1065. * @return none.
  1066. */
  1067. void arm_fir_init_f32(
  1068. arm_fir_instance_f32 * S,
  1069. uint16_t numTaps,
  1070. float32_t * pCoeffs,
  1071. float32_t * pState,
  1072. uint32_t blockSize);
  1073. /**
  1074. * @brief Instance structure for the Q15 Biquad cascade filter.
  1075. */
  1076. typedef struct
  1077. {
  1078. int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  1079. q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
  1080. q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
  1081. int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
  1082. } arm_biquad_casd_df1_inst_q15;
  1083. /**
  1084. * @brief Instance structure for the Q31 Biquad cascade filter.
  1085. */
  1086. typedef struct
  1087. {
  1088. uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  1089. q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
  1090. q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
  1091. uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
  1092. } arm_biquad_casd_df1_inst_q31;
  1093. /**
  1094. * @brief Instance structure for the floating-point Biquad cascade filter.
  1095. */
  1096. typedef struct
  1097. {
  1098. uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  1099. float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
  1100. float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
  1101. } arm_biquad_casd_df1_inst_f32;
  1102. /**
  1103. * @brief Processing function for the Q15 Biquad cascade filter.
  1104. * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
  1105. * @param[in] *pSrc points to the block of input data.
  1106. * @param[out] *pDst points to the block of output data.
  1107. * @param[in] blockSize number of samples to process.
  1108. * @return none.
  1109. */
  1110. void arm_biquad_cascade_df1_q15(
  1111. const arm_biquad_casd_df1_inst_q15 * S,
  1112. q15_t * pSrc,
  1113. q15_t * pDst,
  1114. uint32_t blockSize);
  1115. /**
  1116. * @brief Initialization function for the Q15 Biquad cascade filter.
  1117. * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
  1118. * @param[in] numStages number of 2nd order stages in the filter.
  1119. * @param[in] *pCoeffs points to the filter coefficients.
  1120. * @param[in] *pState points to the state buffer.
  1121. * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
  1122. * @return none
  1123. */
  1124. void arm_biquad_cascade_df1_init_q15(
  1125. arm_biquad_casd_df1_inst_q15 * S,
  1126. uint8_t numStages,
  1127. q15_t * pCoeffs,
  1128. q15_t * pState,
  1129. int8_t postShift);
  1130. /**
  1131. * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
  1132. * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
  1133. * @param[in] *pSrc points to the block of input data.
  1134. * @param[out] *pDst points to the block of output data.
  1135. * @param[in] blockSize number of samples to process.
  1136. * @return none.
  1137. */
  1138. void arm_biquad_cascade_df1_fast_q15(
  1139. const arm_biquad_casd_df1_inst_q15 * S,
  1140. q15_t * pSrc,
  1141. q15_t * pDst,
  1142. uint32_t blockSize);
  1143. /**
  1144. * @brief Processing function for the Q31 Biquad cascade filter
  1145. * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
  1146. * @param[in] *pSrc points to the block of input data.
  1147. * @param[out] *pDst points to the block of output data.
  1148. * @param[in] blockSize number of samples to process.
  1149. * @return none.
  1150. */
  1151. void arm_biquad_cascade_df1_q31(
  1152. const arm_biquad_casd_df1_inst_q31 * S,
  1153. q31_t * pSrc,
  1154. q31_t * pDst,
  1155. uint32_t blockSize);
  1156. /**
  1157. * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
  1158. * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
  1159. * @param[in] *pSrc points to the block of input data.
  1160. * @param[out] *pDst points to the block of output data.
  1161. * @param[in] blockSize number of samples to process.
  1162. * @return none.
  1163. */
  1164. void arm_biquad_cascade_df1_fast_q31(
  1165. const arm_biquad_casd_df1_inst_q31 * S,
  1166. q31_t * pSrc,
  1167. q31_t * pDst,
  1168. uint32_t blockSize);
  1169. /**
  1170. * @brief Initialization function for the Q31 Biquad cascade filter.
  1171. * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
  1172. * @param[in] numStages number of 2nd order stages in the filter.
  1173. * @param[in] *pCoeffs points to the filter coefficients.
  1174. * @param[in] *pState points to the state buffer.
  1175. * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
  1176. * @return none
  1177. */
  1178. void arm_biquad_cascade_df1_init_q31(
  1179. arm_biquad_casd_df1_inst_q31 * S,
  1180. uint8_t numStages,
  1181. q31_t * pCoeffs,
  1182. q31_t * pState,
  1183. int8_t postShift);
  1184. /**
  1185. * @brief Processing function for the floating-point Biquad cascade filter.
  1186. * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
  1187. * @param[in] *pSrc points to the block of input data.
  1188. * @param[out] *pDst points to the block of output data.
  1189. * @param[in] blockSize number of samples to process.
  1190. * @return none.
  1191. */
  1192. void arm_biquad_cascade_df1_f32(
  1193. const arm_biquad_casd_df1_inst_f32 * S,
  1194. float32_t * pSrc,
  1195. float32_t * pDst,
  1196. uint32_t blockSize);
  1197. /**
  1198. * @brief Initialization function for the floating-point Biquad cascade filter.
  1199. * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
  1200. * @param[in] numStages number of 2nd order stages in the filter.
  1201. * @param[in] *pCoeffs points to the filter coefficients.
  1202. * @param[in] *pState points to the state buffer.
  1203. * @return none
  1204. */
  1205. void arm_biquad_cascade_df1_init_f32(
  1206. arm_biquad_casd_df1_inst_f32 * S,
  1207. uint8_t numStages,
  1208. float32_t * pCoeffs,
  1209. float32_t * pState);
  1210. /**
  1211. * @brief Instance structure for the floating-point matrix structure.
  1212. */
  1213. typedef struct
  1214. {
  1215. uint16_t numRows; /**< number of rows of the matrix. */
  1216. uint16_t numCols; /**< number of columns of the matrix. */
  1217. float32_t *pData; /**< points to the data of the matrix. */
  1218. } arm_matrix_instance_f32;
  1219. /**
  1220. * @brief Instance structure for the floating-point matrix structure.
  1221. */
  1222. typedef struct
  1223. {
  1224. uint16_t numRows; /**< number of rows of the matrix. */
  1225. uint16_t numCols; /**< number of columns of the matrix. */
  1226. float64_t *pData; /**< points to the data of the matrix. */
  1227. } arm_matrix_instance_f64;
  1228. /**
  1229. * @brief Instance structure for the Q15 matrix structure.
  1230. */
  1231. typedef struct
  1232. {
  1233. uint16_t numRows; /**< number of rows of the matrix. */
  1234. uint16_t numCols; /**< number of columns of the matrix. */
  1235. q15_t *pData; /**< points to the data of the matrix. */
  1236. } arm_matrix_instance_q15;
  1237. /**
  1238. * @brief Instance structure for the Q31 matrix structure.
  1239. */
  1240. typedef struct
  1241. {
  1242. uint16_t numRows; /**< number of rows of the matrix. */
  1243. uint16_t numCols; /**< number of columns of the matrix. */
  1244. q31_t *pData; /**< points to the data of the matrix. */
  1245. } arm_matrix_instance_q31;
  1246. /**
  1247. * @brief Floating-point matrix addition.
  1248. * @param[in] *pSrcA points to the first input matrix structure
  1249. * @param[in] *pSrcB points to the second input matrix structure
  1250. * @param[out] *pDst points to output matrix structure
  1251. * @return The function returns either
  1252. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1253. */
  1254. arm_status arm_mat_add_f32(
  1255. const arm_matrix_instance_f32 * pSrcA,
  1256. const arm_matrix_instance_f32 * pSrcB,
  1257. arm_matrix_instance_f32 * pDst);
  1258. /**
  1259. * @brief Q15 matrix addition.
  1260. * @param[in] *pSrcA points to the first input matrix structure
  1261. * @param[in] *pSrcB points to the second input matrix structure
  1262. * @param[out] *pDst points to output matrix structure
  1263. * @return The function returns either
  1264. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1265. */
  1266. arm_status arm_mat_add_q15(
  1267. const arm_matrix_instance_q15 * pSrcA,
  1268. const arm_matrix_instance_q15 * pSrcB,
  1269. arm_matrix_instance_q15 * pDst);
  1270. /**
  1271. * @brief Q31 matrix addition.
  1272. * @param[in] *pSrcA points to the first input matrix structure
  1273. * @param[in] *pSrcB points to the second input matrix structure
  1274. * @param[out] *pDst points to output matrix structure
  1275. * @return The function returns either
  1276. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1277. */
  1278. arm_status arm_mat_add_q31(
  1279. const arm_matrix_instance_q31 * pSrcA,
  1280. const arm_matrix_instance_q31 * pSrcB,
  1281. arm_matrix_instance_q31 * pDst);
  1282. /**
  1283. * @brief Floating-point, complex, matrix multiplication.
  1284. * @param[in] *pSrcA points to the first input matrix structure
  1285. * @param[in] *pSrcB points to the second input matrix structure
  1286. * @param[out] *pDst points to output matrix structure
  1287. * @return The function returns either
  1288. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1289. */
  1290. arm_status arm_mat_cmplx_mult_f32(
  1291. const arm_matrix_instance_f32 * pSrcA,
  1292. const arm_matrix_instance_f32 * pSrcB,
  1293. arm_matrix_instance_f32 * pDst);
  1294. /**
  1295. * @brief Q15, complex, matrix multiplication.
  1296. * @param[in] *pSrcA points to the first input matrix structure
  1297. * @param[in] *pSrcB points to the second input matrix structure
  1298. * @param[out] *pDst points to output matrix structure
  1299. * @return The function returns either
  1300. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1301. */
  1302. arm_status arm_mat_cmplx_mult_q15(
  1303. const arm_matrix_instance_q15 * pSrcA,
  1304. const arm_matrix_instance_q15 * pSrcB,
  1305. arm_matrix_instance_q15 * pDst,
  1306. q15_t * pScratch);
  1307. /**
  1308. * @brief Q31, complex, matrix multiplication.
  1309. * @param[in] *pSrcA points to the first input matrix structure
  1310. * @param[in] *pSrcB points to the second input matrix structure
  1311. * @param[out] *pDst points to output matrix structure
  1312. * @return The function returns either
  1313. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1314. */
  1315. arm_status arm_mat_cmplx_mult_q31(
  1316. const arm_matrix_instance_q31 * pSrcA,
  1317. const arm_matrix_instance_q31 * pSrcB,
  1318. arm_matrix_instance_q31 * pDst);
  1319. /**
  1320. * @brief Floating-point matrix transpose.
  1321. * @param[in] *pSrc points to the input matrix
  1322. * @param[out] *pDst points to the output matrix
  1323. * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
  1324. * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1325. */
  1326. arm_status arm_mat_trans_f32(
  1327. const arm_matrix_instance_f32 * pSrc,
  1328. arm_matrix_instance_f32 * pDst);
  1329. /**
  1330. * @brief Q15 matrix transpose.
  1331. * @param[in] *pSrc points to the input matrix
  1332. * @param[out] *pDst points to the output matrix
  1333. * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
  1334. * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1335. */
  1336. arm_status arm_mat_trans_q15(
  1337. const arm_matrix_instance_q15 * pSrc,
  1338. arm_matrix_instance_q15 * pDst);
  1339. /**
  1340. * @brief Q31 matrix transpose.
  1341. * @param[in] *pSrc points to the input matrix
  1342. * @param[out] *pDst points to the output matrix
  1343. * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
  1344. * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1345. */
  1346. arm_status arm_mat_trans_q31(
  1347. const arm_matrix_instance_q31 * pSrc,
  1348. arm_matrix_instance_q31 * pDst);
  1349. /**
  1350. * @brief Floating-point matrix multiplication
  1351. * @param[in] *pSrcA points to the first input matrix structure
  1352. * @param[in] *pSrcB points to the second input matrix structure
  1353. * @param[out] *pDst points to output matrix structure
  1354. * @return The function returns either
  1355. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1356. */
  1357. arm_status arm_mat_mult_f32(
  1358. const arm_matrix_instance_f32 * pSrcA,
  1359. const arm_matrix_instance_f32 * pSrcB,
  1360. arm_matrix_instance_f32 * pDst);
  1361. /**
  1362. * @brief Q15 matrix multiplication
  1363. * @param[in] *pSrcA points to the first input matrix structure
  1364. * @param[in] *pSrcB points to the second input matrix structure
  1365. * @param[out] *pDst points to output matrix structure
  1366. * @param[in] *pState points to the array for storing intermediate results
  1367. * @return The function returns either
  1368. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1369. */
  1370. arm_status arm_mat_mult_q15(
  1371. const arm_matrix_instance_q15 * pSrcA,
  1372. const arm_matrix_instance_q15 * pSrcB,
  1373. arm_matrix_instance_q15 * pDst,
  1374. q15_t * pState);
  1375. /**
  1376. * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
  1377. * @param[in] *pSrcA points to the first input matrix structure
  1378. * @param[in] *pSrcB points to the second input matrix structure
  1379. * @param[out] *pDst points to output matrix structure
  1380. * @param[in] *pState points to the array for storing intermediate results
  1381. * @return The function returns either
  1382. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1383. */
  1384. arm_status arm_mat_mult_fast_q15(
  1385. const arm_matrix_instance_q15 * pSrcA,
  1386. const arm_matrix_instance_q15 * pSrcB,
  1387. arm_matrix_instance_q15 * pDst,
  1388. q15_t * pState);
  1389. /**
  1390. * @brief Q31 matrix multiplication
  1391. * @param[in] *pSrcA points to the first input matrix structure
  1392. * @param[in] *pSrcB points to the second input matrix structure
  1393. * @param[out] *pDst points to output matrix structure
  1394. * @return The function returns either
  1395. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1396. */
  1397. arm_status arm_mat_mult_q31(
  1398. const arm_matrix_instance_q31 * pSrcA,
  1399. const arm_matrix_instance_q31 * pSrcB,
  1400. arm_matrix_instance_q31 * pDst);
  1401. /**
  1402. * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
  1403. * @param[in] *pSrcA points to the first input matrix structure
  1404. * @param[in] *pSrcB points to the second input matrix structure
  1405. * @param[out] *pDst points to output matrix structure
  1406. * @return The function returns either
  1407. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1408. */
  1409. arm_status arm_mat_mult_fast_q31(
  1410. const arm_matrix_instance_q31 * pSrcA,
  1411. const arm_matrix_instance_q31 * pSrcB,
  1412. arm_matrix_instance_q31 * pDst);
  1413. /**
  1414. * @brief Floating-point matrix subtraction
  1415. * @param[in] *pSrcA points to the first input matrix structure
  1416. * @param[in] *pSrcB points to the second input matrix structure
  1417. * @param[out] *pDst points to output matrix structure
  1418. * @return The function returns either
  1419. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1420. */
  1421. arm_status arm_mat_sub_f32(
  1422. const arm_matrix_instance_f32 * pSrcA,
  1423. const arm_matrix_instance_f32 * pSrcB,
  1424. arm_matrix_instance_f32 * pDst);
  1425. /**
  1426. * @brief Q15 matrix subtraction
  1427. * @param[in] *pSrcA points to the first input matrix structure
  1428. * @param[in] *pSrcB points to the second input matrix structure
  1429. * @param[out] *pDst points to output matrix structure
  1430. * @return The function returns either
  1431. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1432. */
  1433. arm_status arm_mat_sub_q15(
  1434. const arm_matrix_instance_q15 * pSrcA,
  1435. const arm_matrix_instance_q15 * pSrcB,
  1436. arm_matrix_instance_q15 * pDst);
  1437. /**
  1438. * @brief Q31 matrix subtraction
  1439. * @param[in] *pSrcA points to the first input matrix structure
  1440. * @param[in] *pSrcB points to the second input matrix structure
  1441. * @param[out] *pDst points to output matrix structure
  1442. * @return The function returns either
  1443. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1444. */
  1445. arm_status arm_mat_sub_q31(
  1446. const arm_matrix_instance_q31 * pSrcA,
  1447. const arm_matrix_instance_q31 * pSrcB,
  1448. arm_matrix_instance_q31 * pDst);
  1449. /**
  1450. * @brief Floating-point matrix scaling.
  1451. * @param[in] *pSrc points to the input matrix
  1452. * @param[in] scale scale factor
  1453. * @param[out] *pDst points to the output matrix
  1454. * @return The function returns either
  1455. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1456. */
  1457. arm_status arm_mat_scale_f32(
  1458. const arm_matrix_instance_f32 * pSrc,
  1459. float32_t scale,
  1460. arm_matrix_instance_f32 * pDst);
  1461. /**
  1462. * @brief Q15 matrix scaling.
  1463. * @param[in] *pSrc points to input matrix
  1464. * @param[in] scaleFract fractional portion of the scale factor
  1465. * @param[in] shift number of bits to shift the result by
  1466. * @param[out] *pDst points to output matrix
  1467. * @return The function returns either
  1468. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1469. */
  1470. arm_status arm_mat_scale_q15(
  1471. const arm_matrix_instance_q15 * pSrc,
  1472. q15_t scaleFract,
  1473. int32_t shift,
  1474. arm_matrix_instance_q15 * pDst);
  1475. /**
  1476. * @brief Q31 matrix scaling.
  1477. * @param[in] *pSrc points to input matrix
  1478. * @param[in] scaleFract fractional portion of the scale factor
  1479. * @param[in] shift number of bits to shift the result by
  1480. * @param[out] *pDst points to output matrix structure
  1481. * @return The function returns either
  1482. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1483. */
  1484. arm_status arm_mat_scale_q31(
  1485. const arm_matrix_instance_q31 * pSrc,
  1486. q31_t scaleFract,
  1487. int32_t shift,
  1488. arm_matrix_instance_q31 * pDst);
  1489. /**
  1490. * @brief Q31 matrix initialization.
  1491. * @param[in,out] *S points to an instance of the floating-point matrix structure.
  1492. * @param[in] nRows number of rows in the matrix.
  1493. * @param[in] nColumns number of columns in the matrix.
  1494. * @param[in] *pData points to the matrix data array.
  1495. * @return none
  1496. */
  1497. void arm_mat_init_q31(
  1498. arm_matrix_instance_q31 * S,
  1499. uint16_t nRows,
  1500. uint16_t nColumns,
  1501. q31_t * pData);
  1502. /**
  1503. * @brief Q15 matrix initialization.
  1504. * @param[in,out] *S points to an instance of the floating-point matrix structure.
  1505. * @param[in] nRows number of rows in the matrix.
  1506. * @param[in] nColumns number of columns in the matrix.
  1507. * @param[in] *pData points to the matrix data array.
  1508. * @return none
  1509. */
  1510. void arm_mat_init_q15(
  1511. arm_matrix_instance_q15 * S,
  1512. uint16_t nRows,
  1513. uint16_t nColumns,
  1514. q15_t * pData);
  1515. /**
  1516. * @brief Floating-point matrix initialization.
  1517. * @param[in,out] *S points to an instance of the floating-point matrix structure.
  1518. * @param[in] nRows number of rows in the matrix.
  1519. * @param[in] nColumns number of columns in the matrix.
  1520. * @param[in] *pData points to the matrix data array.
  1521. * @return none
  1522. */
  1523. void arm_mat_init_f32(
  1524. arm_matrix_instance_f32 * S,
  1525. uint16_t nRows,
  1526. uint16_t nColumns,
  1527. float32_t * pData);
  1528. /**
  1529. * @brief Instance structure for the Q15 PID Control.
  1530. */
  1531. typedef struct
  1532. {
  1533. q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
  1534. #ifdef ARM_MATH_CM0_FAMILY
  1535. q15_t A1;
  1536. q15_t A2;
  1537. #else
  1538. q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
  1539. #endif
  1540. q15_t state[3]; /**< The state array of length 3. */
  1541. q15_t Kp; /**< The proportional gain. */
  1542. q15_t Ki; /**< The integral gain. */
  1543. q15_t Kd; /**< The derivative gain. */
  1544. } arm_pid_instance_q15;
  1545. /**
  1546. * @brief Instance structure for the Q31 PID Control.
  1547. */
  1548. typedef struct
  1549. {
  1550. q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
  1551. q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
  1552. q31_t A2; /**< The derived gain, A2 = Kd . */
  1553. q31_t state[3]; /**< The state array of length 3. */
  1554. q31_t Kp; /**< The proportional gain. */
  1555. q31_t Ki; /**< The integral gain. */
  1556. q31_t Kd; /**< The derivative gain. */
  1557. } arm_pid_instance_q31;
  1558. /**
  1559. * @brief Instance structure for the floating-point PID Control.
  1560. */
  1561. typedef struct
  1562. {
  1563. float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
  1564. float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
  1565. float32_t A2; /**< The derived gain, A2 = Kd . */
  1566. float32_t state[3]; /**< The state array of length 3. */
  1567. float32_t Kp; /**< The proportional gain. */
  1568. float32_t Ki; /**< The integral gain. */
  1569. float32_t Kd; /**< The derivative gain. */
  1570. } arm_pid_instance_f32;
  1571. /**
  1572. * @brief Initialization function for the floating-point PID Control.
  1573. * @param[in,out] *S points to an instance of the PID structure.
  1574. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
  1575. * @return none.
  1576. */
  1577. void arm_pid_init_f32(
  1578. arm_pid_instance_f32 * S,
  1579. int32_t resetStateFlag);
  1580. /**
  1581. * @brief Reset function for the floating-point PID Control.
  1582. * @param[in,out] *S is an instance of the floating-point PID Control structure
  1583. * @return none
  1584. */
  1585. void arm_pid_reset_f32(
  1586. arm_pid_instance_f32 * S);
  1587. /**
  1588. * @brief Initialization function for the Q31 PID Control.
  1589. * @param[in,out] *S points to an instance of the Q15 PID structure.
  1590. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
  1591. * @return none.
  1592. */
  1593. void arm_pid_init_q31(
  1594. arm_pid_instance_q31 * S,
  1595. int32_t resetStateFlag);
  1596. /**
  1597. * @brief Reset function for the Q31 PID Control.
  1598. * @param[in,out] *S points to an instance of the Q31 PID Control structure
  1599. * @return none
  1600. */
  1601. void arm_pid_reset_q31(
  1602. arm_pid_instance_q31 * S);
  1603. /**
  1604. * @brief Initialization function for the Q15 PID Control.
  1605. * @param[in,out] *S points to an instance of the Q15 PID structure.
  1606. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
  1607. * @return none.
  1608. */
  1609. void arm_pid_init_q15(
  1610. arm_pid_instance_q15 * S,
  1611. int32_t resetStateFlag);
  1612. /**
  1613. * @brief Reset function for the Q15 PID Control.
  1614. * @param[in,out] *S points to an instance of the q15 PID Control structure
  1615. * @return none
  1616. */
  1617. void arm_pid_reset_q15(
  1618. arm_pid_instance_q15 * S);
  1619. /**
  1620. * @brief Instance structure for the floating-point Linear Interpolate function.
  1621. */
  1622. typedef struct
  1623. {
  1624. uint32_t nValues; /**< nValues */
  1625. float32_t x1; /**< x1 */
  1626. float32_t xSpacing; /**< xSpacing */
  1627. float32_t *pYData; /**< pointer to the table of Y values */
  1628. } arm_linear_interp_instance_f32;
  1629. /**
  1630. * @brief Instance structure for the floating-point bilinear interpolation function.
  1631. */
  1632. typedef struct
  1633. {
  1634. uint16_t numRows; /**< number of rows in the data table. */
  1635. uint16_t numCols; /**< number of columns in the data table. */
  1636. float32_t *pData; /**< points to the data table. */
  1637. } arm_bilinear_interp_instance_f32;
  1638. /**
  1639. * @brief Instance structure for the Q31 bilinear interpolation function.
  1640. */
  1641. typedef struct
  1642. {
  1643. uint16_t numRows; /**< number of rows in the data table. */
  1644. uint16_t numCols; /**< number of columns in the data table. */
  1645. q31_t *pData; /**< points to the data table. */
  1646. } arm_bilinear_interp_instance_q31;
  1647. /**
  1648. * @brief Instance structure for the Q15 bilinear interpolation function.
  1649. */
  1650. typedef struct
  1651. {
  1652. uint16_t numRows; /**< number of rows in the data table. */
  1653. uint16_t numCols; /**< number of columns in the data table. */
  1654. q15_t *pData; /**< points to the data table. */
  1655. } arm_bilinear_interp_instance_q15;
  1656. /**
  1657. * @brief Instance structure for the Q15 bilinear interpolation function.
  1658. */
  1659. typedef struct
  1660. {
  1661. uint16_t numRows; /**< number of rows in the data table. */
  1662. uint16_t numCols; /**< number of columns in the data table. */
  1663. q7_t *pData; /**< points to the data table. */
  1664. } arm_bilinear_interp_instance_q7;
  1665. /**
  1666. * @brief Q7 vector multiplication.
  1667. * @param[in] *pSrcA points to the first input vector
  1668. * @param[in] *pSrcB points to the second input vector
  1669. * @param[out] *pDst points to the output vector
  1670. * @param[in] blockSize number of samples in each vector
  1671. * @return none.
  1672. */
  1673. void arm_mult_q7(
  1674. q7_t * pSrcA,
  1675. q7_t * pSrcB,
  1676. q7_t * pDst,
  1677. uint32_t blockSize);
  1678. /**
  1679. * @brief Q15 vector multiplication.
  1680. * @param[in] *pSrcA points to the first input vector
  1681. * @param[in] *pSrcB points to the second input vector
  1682. * @param[out] *pDst points to the output vector
  1683. * @param[in] blockSize number of samples in each vector
  1684. * @return none.
  1685. */
  1686. void arm_mult_q15(
  1687. q15_t * pSrcA,
  1688. q15_t * pSrcB,
  1689. q15_t * pDst,
  1690. uint32_t blockSize);
  1691. /**
  1692. * @brief Q31 vector multiplication.
  1693. * @param[in] *pSrcA points to the first input vector
  1694. * @param[in] *pSrcB points to the second input vector
  1695. * @param[out] *pDst points to the output vector
  1696. * @param[in] blockSize number of samples in each vector
  1697. * @return none.
  1698. */
  1699. void arm_mult_q31(
  1700. q31_t * pSrcA,
  1701. q31_t * pSrcB,
  1702. q31_t * pDst,
  1703. uint32_t blockSize);
  1704. /**
  1705. * @brief Floating-point vector multiplication.
  1706. * @param[in] *pSrcA points to the first input vector
  1707. * @param[in] *pSrcB points to the second input vector
  1708. * @param[out] *pDst points to the output vector
  1709. * @param[in] blockSize number of samples in each vector
  1710. * @return none.
  1711. */
  1712. void arm_mult_f32(
  1713. float32_t * pSrcA,
  1714. float32_t * pSrcB,
  1715. float32_t * pDst,
  1716. uint32_t blockSize);
  1717. /**
  1718. * @brief Instance structure for the Q15 CFFT/CIFFT function.
  1719. */
  1720. typedef struct
  1721. {
  1722. uint16_t fftLen; /**< length of the FFT. */
  1723. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1724. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1725. q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
  1726. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1727. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1728. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1729. } arm_cfft_radix2_instance_q15;
  1730. /* Deprecated */
  1731. arm_status arm_cfft_radix2_init_q15(
  1732. arm_cfft_radix2_instance_q15 * S,
  1733. uint16_t fftLen,
  1734. uint8_t ifftFlag,
  1735. uint8_t bitReverseFlag);
  1736. /* Deprecated */
  1737. void arm_cfft_radix2_q15(
  1738. const arm_cfft_radix2_instance_q15 * S,
  1739. q15_t * pSrc);
  1740. /**
  1741. * @brief Instance structure for the Q15 CFFT/CIFFT function.
  1742. */
  1743. typedef struct
  1744. {
  1745. uint16_t fftLen; /**< length of the FFT. */
  1746. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1747. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1748. q15_t *pTwiddle; /**< points to the twiddle factor table. */
  1749. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1750. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1751. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1752. } arm_cfft_radix4_instance_q15;
  1753. /* Deprecated */
  1754. arm_status arm_cfft_radix4_init_q15(
  1755. arm_cfft_radix4_instance_q15 * S,
  1756. uint16_t fftLen,
  1757. uint8_t ifftFlag,
  1758. uint8_t bitReverseFlag);
  1759. /* Deprecated */
  1760. void arm_cfft_radix4_q15(
  1761. const arm_cfft_radix4_instance_q15 * S,
  1762. q15_t * pSrc);
  1763. /**
  1764. * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
  1765. */
  1766. typedef struct
  1767. {
  1768. uint16_t fftLen; /**< length of the FFT. */
  1769. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1770. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1771. q31_t *pTwiddle; /**< points to the Twiddle factor table. */
  1772. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1773. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1774. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1775. } arm_cfft_radix2_instance_q31;
  1776. /* Deprecated */
  1777. arm_status arm_cfft_radix2_init_q31(
  1778. arm_cfft_radix2_instance_q31 * S,
  1779. uint16_t fftLen,
  1780. uint8_t ifftFlag,
  1781. uint8_t bitReverseFlag);
  1782. /* Deprecated */
  1783. void arm_cfft_radix2_q31(
  1784. const arm_cfft_radix2_instance_q31 * S,
  1785. q31_t * pSrc);
  1786. /**
  1787. * @brief Instance structure for the Q31 CFFT/CIFFT function.
  1788. */
  1789. typedef struct
  1790. {
  1791. uint16_t fftLen; /**< length of the FFT. */
  1792. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1793. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1794. q31_t *pTwiddle; /**< points to the twiddle factor table. */
  1795. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1796. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1797. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1798. } arm_cfft_radix4_instance_q31;
  1799. /* Deprecated */
  1800. void arm_cfft_radix4_q31(
  1801. const arm_cfft_radix4_instance_q31 * S,
  1802. q31_t * pSrc);
  1803. /* Deprecated */
  1804. arm_status arm_cfft_radix4_init_q31(
  1805. arm_cfft_radix4_instance_q31 * S,
  1806. uint16_t fftLen,
  1807. uint8_t ifftFlag,
  1808. uint8_t bitReverseFlag);
  1809. /**
  1810. * @brief Instance structure for the floating-point CFFT/CIFFT function.
  1811. */
  1812. typedef struct
  1813. {
  1814. uint16_t fftLen; /**< length of the FFT. */
  1815. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1816. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1817. float32_t *pTwiddle; /**< points to the Twiddle factor table. */
  1818. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1819. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1820. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1821. float32_t onebyfftLen; /**< value of 1/fftLen. */
  1822. } arm_cfft_radix2_instance_f32;
  1823. /* Deprecated */
  1824. arm_status arm_cfft_radix2_init_f32(
  1825. arm_cfft_radix2_instance_f32 * S,
  1826. uint16_t fftLen,
  1827. uint8_t ifftFlag,
  1828. uint8_t bitReverseFlag);
  1829. /* Deprecated */
  1830. void arm_cfft_radix2_f32(
  1831. const arm_cfft_radix2_instance_f32 * S,
  1832. float32_t * pSrc);
  1833. /**
  1834. * @brief Instance structure for the floating-point CFFT/CIFFT function.
  1835. */
  1836. typedef struct
  1837. {
  1838. uint16_t fftLen; /**< length of the FFT. */
  1839. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1840. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1841. float32_t *pTwiddle; /**< points to the Twiddle factor table. */
  1842. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1843. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1844. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1845. float32_t onebyfftLen; /**< value of 1/fftLen. */
  1846. } arm_cfft_radix4_instance_f32;
  1847. /* Deprecated */
  1848. arm_status arm_cfft_radix4_init_f32(
  1849. arm_cfft_radix4_instance_f32 * S,
  1850. uint16_t fftLen,
  1851. uint8_t ifftFlag,
  1852. uint8_t bitReverseFlag);
  1853. /* Deprecated */
  1854. void arm_cfft_radix4_f32(
  1855. const arm_cfft_radix4_instance_f32 * S,
  1856. float32_t * pSrc);
  1857. /**
  1858. * @brief Instance structure for the fixed-point CFFT/CIFFT function.
  1859. */
  1860. typedef struct
  1861. {
  1862. uint16_t fftLen; /**< length of the FFT. */
  1863. const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
  1864. const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1865. uint16_t bitRevLength; /**< bit reversal table length. */
  1866. } arm_cfft_instance_q15;
  1867. void arm_cfft_q15(
  1868. const arm_cfft_instance_q15 * S,
  1869. q15_t * p1,
  1870. uint8_t ifftFlag,
  1871. uint8_t bitReverseFlag);
  1872. /**
  1873. * @brief Instance structure for the fixed-point CFFT/CIFFT function.
  1874. */
  1875. typedef struct
  1876. {
  1877. uint16_t fftLen; /**< length of the FFT. */
  1878. const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
  1879. const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1880. uint16_t bitRevLength; /**< bit reversal table length. */
  1881. } arm_cfft_instance_q31;
  1882. void arm_cfft_q31(
  1883. const arm_cfft_instance_q31 * S,
  1884. q31_t * p1,
  1885. uint8_t ifftFlag,
  1886. uint8_t bitReverseFlag);
  1887. /**
  1888. * @brief Instance structure for the floating-point CFFT/CIFFT function.
  1889. */
  1890. typedef struct
  1891. {
  1892. uint16_t fftLen; /**< length of the FFT. */
  1893. const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
  1894. const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1895. uint16_t bitRevLength; /**< bit reversal table length. */
  1896. } arm_cfft_instance_f32;
  1897. void arm_cfft_f32(
  1898. const arm_cfft_instance_f32 * S,
  1899. float32_t * p1,
  1900. uint8_t ifftFlag,
  1901. uint8_t bitReverseFlag);
  1902. /**
  1903. * @brief Instance structure for the Q15 RFFT/RIFFT function.
  1904. */
  1905. typedef struct
  1906. {
  1907. uint32_t fftLenReal; /**< length of the real FFT. */
  1908. uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
  1909. uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
  1910. uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1911. q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
  1912. q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
  1913. const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
  1914. } arm_rfft_instance_q15;
  1915. arm_status arm_rfft_init_q15(
  1916. arm_rfft_instance_q15 * S,
  1917. uint32_t fftLenReal,
  1918. uint32_t ifftFlagR,
  1919. uint32_t bitReverseFlag);
  1920. void arm_rfft_q15(
  1921. const arm_rfft_instance_q15 * S,
  1922. q15_t * pSrc,
  1923. q15_t * pDst);
  1924. /**
  1925. * @brief Instance structure for the Q31 RFFT/RIFFT function.
  1926. */
  1927. typedef struct
  1928. {
  1929. uint32_t fftLenReal; /**< length of the real FFT. */
  1930. uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
  1931. uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
  1932. uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1933. q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
  1934. q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
  1935. const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
  1936. } arm_rfft_instance_q31;
  1937. arm_status arm_rfft_init_q31(
  1938. arm_rfft_instance_q31 * S,
  1939. uint32_t fftLenReal,
  1940. uint32_t ifftFlagR,
  1941. uint32_t bitReverseFlag);
  1942. void arm_rfft_q31(
  1943. const arm_rfft_instance_q31 * S,
  1944. q31_t * pSrc,
  1945. q31_t * pDst);
  1946. /**
  1947. * @brief Instance structure for the floating-point RFFT/RIFFT function.
  1948. */
  1949. typedef struct
  1950. {
  1951. uint32_t fftLenReal; /**< length of the real FFT. */
  1952. uint16_t fftLenBy2; /**< length of the complex FFT. */
  1953. uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
  1954. uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
  1955. uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1956. float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
  1957. float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
  1958. arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
  1959. } arm_rfft_instance_f32;
  1960. arm_status arm_rfft_init_f32(
  1961. arm_rfft_instance_f32 * S,
  1962. arm_cfft_radix4_instance_f32 * S_CFFT,
  1963. uint32_t fftLenReal,
  1964. uint32_t ifftFlagR,
  1965. uint32_t bitReverseFlag);
  1966. void arm_rfft_f32(
  1967. const arm_rfft_instance_f32 * S,
  1968. float32_t * pSrc,
  1969. float32_t * pDst);
  1970. /**
  1971. * @brief Instance structure for the floating-point RFFT/RIFFT function.
  1972. */
  1973. typedef struct
  1974. {
  1975. arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
  1976. uint16_t fftLenRFFT; /**< length of the real sequence */
  1977. float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
  1978. } arm_rfft_fast_instance_f32 ;
  1979. arm_status arm_rfft_fast_init_f32 (
  1980. arm_rfft_fast_instance_f32 * S,
  1981. uint16_t fftLen);
  1982. void arm_rfft_fast_f32(
  1983. arm_rfft_fast_instance_f32 * S,
  1984. float32_t * p, float32_t * pOut,
  1985. uint8_t ifftFlag);
  1986. /**
  1987. * @brief Instance structure for the floating-point DCT4/IDCT4 function.
  1988. */
  1989. typedef struct
  1990. {
  1991. uint16_t N; /**< length of the DCT4. */
  1992. uint16_t Nby2; /**< half of the length of the DCT4. */
  1993. float32_t normalize; /**< normalizing factor. */
  1994. float32_t *pTwiddle; /**< points to the twiddle factor table. */
  1995. float32_t *pCosFactor; /**< points to the cosFactor table. */
  1996. arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
  1997. arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
  1998. } arm_dct4_instance_f32;
  1999. /**
  2000. * @brief Initialization function for the floating-point DCT4/IDCT4.
  2001. * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
  2002. * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
  2003. * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
  2004. * @param[in] N length of the DCT4.
  2005. * @param[in] Nby2 half of the length of the DCT4.
  2006. * @param[in] normalize normalizing factor.
  2007. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
  2008. */
  2009. arm_status arm_dct4_init_f32(
  2010. arm_dct4_instance_f32 * S,
  2011. arm_rfft_instance_f32 * S_RFFT,
  2012. arm_cfft_radix4_instance_f32 * S_CFFT,
  2013. uint16_t N,
  2014. uint16_t Nby2,
  2015. float32_t normalize);
  2016. /**
  2017. * @brief Processing function for the floating-point DCT4/IDCT4.
  2018. * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
  2019. * @param[in] *pState points to state buffer.
  2020. * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
  2021. * @return none.
  2022. */
  2023. void arm_dct4_f32(
  2024. const arm_dct4_instance_f32 * S,
  2025. float32_t * pState,
  2026. float32_t * pInlineBuffer);
  2027. /**
  2028. * @brief Instance structure for the Q31 DCT4/IDCT4 function.
  2029. */
  2030. typedef struct
  2031. {
  2032. uint16_t N; /**< length of the DCT4. */
  2033. uint16_t Nby2; /**< half of the length of the DCT4. */
  2034. q31_t normalize; /**< normalizing factor. */
  2035. q31_t *pTwiddle; /**< points to the twiddle factor table. */
  2036. q31_t *pCosFactor; /**< points to the cosFactor table. */
  2037. arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
  2038. arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
  2039. } arm_dct4_instance_q31;
  2040. /**
  2041. * @brief Initialization function for the Q31 DCT4/IDCT4.
  2042. * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
  2043. * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
  2044. * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
  2045. * @param[in] N length of the DCT4.
  2046. * @param[in] Nby2 half of the length of the DCT4.
  2047. * @param[in] normalize normalizing factor.
  2048. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
  2049. */
  2050. arm_status arm_dct4_init_q31(
  2051. arm_dct4_instance_q31 * S,
  2052. arm_rfft_instance_q31 * S_RFFT,
  2053. arm_cfft_radix4_instance_q31 * S_CFFT,
  2054. uint16_t N,
  2055. uint16_t Nby2,
  2056. q31_t normalize);
  2057. /**
  2058. * @brief Processing function for the Q31 DCT4/IDCT4.
  2059. * @param[in] *S points to an instance of the Q31 DCT4 structure.
  2060. * @param[in] *pState points to state buffer.
  2061. * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
  2062. * @return none.
  2063. */
  2064. void arm_dct4_q31(
  2065. const arm_dct4_instance_q31 * S,
  2066. q31_t * pState,
  2067. q31_t * pInlineBuffer);
  2068. /**
  2069. * @brief Instance structure for the Q15 DCT4/IDCT4 function.
  2070. */
  2071. typedef struct
  2072. {
  2073. uint16_t N; /**< length of the DCT4. */
  2074. uint16_t Nby2; /**< half of the length of the DCT4. */
  2075. q15_t normalize; /**< normalizing factor. */
  2076. q15_t *pTwiddle; /**< points to the twiddle factor table. */
  2077. q15_t *pCosFactor; /**< points to the cosFactor table. */
  2078. arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
  2079. arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
  2080. } arm_dct4_instance_q15;
  2081. /**
  2082. * @brief Initialization function for the Q15 DCT4/IDCT4.
  2083. * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
  2084. * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
  2085. * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
  2086. * @param[in] N length of the DCT4.
  2087. * @param[in] Nby2 half of the length of the DCT4.
  2088. * @param[in] normalize normalizing factor.
  2089. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
  2090. */
  2091. arm_status arm_dct4_init_q15(
  2092. arm_dct4_instance_q15 * S,
  2093. arm_rfft_instance_q15 * S_RFFT,
  2094. arm_cfft_radix4_instance_q15 * S_CFFT,
  2095. uint16_t N,
  2096. uint16_t Nby2,
  2097. q15_t normalize);
  2098. /**
  2099. * @brief Processing function for the Q15 DCT4/IDCT4.
  2100. * @param[in] *S points to an instance of the Q15 DCT4 structure.
  2101. * @param[in] *pState points to state buffer.
  2102. * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
  2103. * @return none.
  2104. */
  2105. void arm_dct4_q15(
  2106. const arm_dct4_instance_q15 * S,
  2107. q15_t * pState,
  2108. q15_t * pInlineBuffer);
  2109. /**
  2110. * @brief Floating-point vector addition.
  2111. * @param[in] *pSrcA points to the first input vector
  2112. * @param[in] *pSrcB points to the second input vector
  2113. * @param[out] *pDst points to the output vector
  2114. * @param[in] blockSize number of samples in each vector
  2115. * @return none.
  2116. */
  2117. void arm_add_f32(
  2118. float32_t * pSrcA,
  2119. float32_t * pSrcB,
  2120. float32_t * pDst,
  2121. uint32_t blockSize);
  2122. /**
  2123. * @brief Q7 vector addition.
  2124. * @param[in] *pSrcA points to the first input vector
  2125. * @param[in] *pSrcB points to the second input vector
  2126. * @param[out] *pDst points to the output vector
  2127. * @param[in] blockSize number of samples in each vector
  2128. * @return none.
  2129. */
  2130. void arm_add_q7(
  2131. q7_t * pSrcA,
  2132. q7_t * pSrcB,
  2133. q7_t * pDst,
  2134. uint32_t blockSize);
  2135. /**
  2136. * @brief Q15 vector addition.
  2137. * @param[in] *pSrcA points to the first input vector
  2138. * @param[in] *pSrcB points to the second input vector
  2139. * @param[out] *pDst points to the output vector
  2140. * @param[in] blockSize number of samples in each vector
  2141. * @return none.
  2142. */
  2143. void arm_add_q15(
  2144. q15_t * pSrcA,
  2145. q15_t * pSrcB,
  2146. q15_t * pDst,
  2147. uint32_t blockSize);
  2148. /**
  2149. * @brief Q31 vector addition.
  2150. * @param[in] *pSrcA points to the first input vector
  2151. * @param[in] *pSrcB points to the second input vector
  2152. * @param[out] *pDst points to the output vector
  2153. * @param[in] blockSize number of samples in each vector
  2154. * @return none.
  2155. */
  2156. void arm_add_q31(
  2157. q31_t * pSrcA,
  2158. q31_t * pSrcB,
  2159. q31_t * pDst,
  2160. uint32_t blockSize);
  2161. /**
  2162. * @brief Floating-point vector subtraction.
  2163. * @param[in] *pSrcA points to the first input vector
  2164. * @param[in] *pSrcB points to the second input vector
  2165. * @param[out] *pDst points to the output vector
  2166. * @param[in] blockSize number of samples in each vector
  2167. * @return none.
  2168. */
  2169. void arm_sub_f32(
  2170. float32_t * pSrcA,
  2171. float32_t * pSrcB,
  2172. float32_t * pDst,
  2173. uint32_t blockSize);
  2174. /**
  2175. * @brief Q7 vector subtraction.
  2176. * @param[in] *pSrcA points to the first input vector
  2177. * @param[in] *pSrcB points to the second input vector
  2178. * @param[out] *pDst points to the output vector
  2179. * @param[in] blockSize number of samples in each vector
  2180. * @return none.
  2181. */
  2182. void arm_sub_q7(
  2183. q7_t * pSrcA,
  2184. q7_t * pSrcB,
  2185. q7_t * pDst,
  2186. uint32_t blockSize);
  2187. /**
  2188. * @brief Q15 vector subtraction.
  2189. * @param[in] *pSrcA points to the first input vector
  2190. * @param[in] *pSrcB points to the second input vector
  2191. * @param[out] *pDst points to the output vector
  2192. * @param[in] blockSize number of samples in each vector
  2193. * @return none.
  2194. */
  2195. void arm_sub_q15(
  2196. q15_t * pSrcA,
  2197. q15_t * pSrcB,
  2198. q15_t * pDst,
  2199. uint32_t blockSize);
  2200. /**
  2201. * @brief Q31 vector subtraction.
  2202. * @param[in] *pSrcA points to the first input vector
  2203. * @param[in] *pSrcB points to the second input vector
  2204. * @param[out] *pDst points to the output vector
  2205. * @param[in] blockSize number of samples in each vector
  2206. * @return none.
  2207. */
  2208. void arm_sub_q31(
  2209. q31_t * pSrcA,
  2210. q31_t * pSrcB,
  2211. q31_t * pDst,
  2212. uint32_t blockSize);
  2213. /**
  2214. * @brief Multiplies a floating-point vector by a scalar.
  2215. * @param[in] *pSrc points to the input vector
  2216. * @param[in] scale scale factor to be applied
  2217. * @param[out] *pDst points to the output vector
  2218. * @param[in] blockSize number of samples in the vector
  2219. * @return none.
  2220. */
  2221. void arm_scale_f32(
  2222. float32_t * pSrc,
  2223. float32_t scale,
  2224. float32_t * pDst,
  2225. uint32_t blockSize);
  2226. /**
  2227. * @brief Multiplies a Q7 vector by a scalar.
  2228. * @param[in] *pSrc points to the input vector
  2229. * @param[in] scaleFract fractional portion of the scale value
  2230. * @param[in] shift number of bits to shift the result by
  2231. * @param[out] *pDst points to the output vector
  2232. * @param[in] blockSize number of samples in the vector
  2233. * @return none.
  2234. */
  2235. void arm_scale_q7(
  2236. q7_t * pSrc,
  2237. q7_t scaleFract,
  2238. int8_t shift,
  2239. q7_t * pDst,
  2240. uint32_t blockSize);
  2241. /**
  2242. * @brief Multiplies a Q15 vector by a scalar.
  2243. * @param[in] *pSrc points to the input vector
  2244. * @param[in] scaleFract fractional portion of the scale value
  2245. * @param[in] shift number of bits to shift the result by
  2246. * @param[out] *pDst points to the output vector
  2247. * @param[in] blockSize number of samples in the vector
  2248. * @return none.
  2249. */
  2250. void arm_scale_q15(
  2251. q15_t * pSrc,
  2252. q15_t scaleFract,
  2253. int8_t shift,
  2254. q15_t * pDst,
  2255. uint32_t blockSize);
  2256. /**
  2257. * @brief Multiplies a Q31 vector by a scalar.
  2258. * @param[in] *pSrc points to the input vector
  2259. * @param[in] scaleFract fractional portion of the scale value
  2260. * @param[in] shift number of bits to shift the result by
  2261. * @param[out] *pDst points to the output vector
  2262. * @param[in] blockSize number of samples in the vector
  2263. * @return none.
  2264. */
  2265. void arm_scale_q31(
  2266. q31_t * pSrc,
  2267. q31_t scaleFract,
  2268. int8_t shift,
  2269. q31_t * pDst,
  2270. uint32_t blockSize);
  2271. /**
  2272. * @brief Q7 vector absolute value.
  2273. * @param[in] *pSrc points to the input buffer
  2274. * @param[out] *pDst points to the output buffer
  2275. * @param[in] blockSize number of samples in each vector
  2276. * @return none.
  2277. */
  2278. void arm_abs_q7(
  2279. q7_t * pSrc,
  2280. q7_t * pDst,
  2281. uint32_t blockSize);
  2282. /**
  2283. * @brief Floating-point vector absolute value.
  2284. * @param[in] *pSrc points to the input buffer
  2285. * @param[out] *pDst points to the output buffer
  2286. * @param[in] blockSize number of samples in each vector
  2287. * @return none.
  2288. */
  2289. void arm_abs_f32(
  2290. float32_t * pSrc,
  2291. float32_t * pDst,
  2292. uint32_t blockSize);
  2293. /**
  2294. * @brief Q15 vector absolute value.
  2295. * @param[in] *pSrc points to the input buffer
  2296. * @param[out] *pDst points to the output buffer
  2297. * @param[in] blockSize number of samples in each vector
  2298. * @return none.
  2299. */
  2300. void arm_abs_q15(
  2301. q15_t * pSrc,
  2302. q15_t * pDst,
  2303. uint32_t blockSize);
  2304. /**
  2305. * @brief Q31 vector absolute value.
  2306. * @param[in] *pSrc points to the input buffer
  2307. * @param[out] *pDst points to the output buffer
  2308. * @param[in] blockSize number of samples in each vector
  2309. * @return none.
  2310. */
  2311. void arm_abs_q31(
  2312. q31_t * pSrc,
  2313. q31_t * pDst,
  2314. uint32_t blockSize);
  2315. /**
  2316. * @brief Dot product of floating-point vectors.
  2317. * @param[in] *pSrcA points to the first input vector
  2318. * @param[in] *pSrcB points to the second input vector
  2319. * @param[in] blockSize number of samples in each vector
  2320. * @param[out] *result output result returned here
  2321. * @return none.
  2322. */
  2323. void arm_dot_prod_f32(
  2324. float32_t * pSrcA,
  2325. float32_t * pSrcB,
  2326. uint32_t blockSize,
  2327. float32_t * result);
  2328. /**
  2329. * @brief Dot product of Q7 vectors.
  2330. * @param[in] *pSrcA points to the first input vector
  2331. * @param[in] *pSrcB points to the second input vector
  2332. * @param[in] blockSize number of samples in each vector
  2333. * @param[out] *result output result returned here
  2334. * @return none.
  2335. */
  2336. void arm_dot_prod_q7(
  2337. q7_t * pSrcA,
  2338. q7_t * pSrcB,
  2339. uint32_t blockSize,
  2340. q31_t * result);
  2341. /**
  2342. * @brief Dot product of Q15 vectors.
  2343. * @param[in] *pSrcA points to the first input vector
  2344. * @param[in] *pSrcB points to the second input vector
  2345. * @param[in] blockSize number of samples in each vector
  2346. * @param[out] *result output result returned here
  2347. * @return none.
  2348. */
  2349. void arm_dot_prod_q15(
  2350. q15_t * pSrcA,
  2351. q15_t * pSrcB,
  2352. uint32_t blockSize,
  2353. q63_t * result);
  2354. /**
  2355. * @brief Dot product of Q31 vectors.
  2356. * @param[in] *pSrcA points to the first input vector
  2357. * @param[in] *pSrcB points to the second input vector
  2358. * @param[in] blockSize number of samples in each vector
  2359. * @param[out] *result output result returned here
  2360. * @return none.
  2361. */
  2362. void arm_dot_prod_q31(
  2363. q31_t * pSrcA,
  2364. q31_t * pSrcB,
  2365. uint32_t blockSize,
  2366. q63_t * result);
  2367. /**
  2368. * @brief Shifts the elements of a Q7 vector a specified number of bits.
  2369. * @param[in] *pSrc points to the input vector
  2370. * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
  2371. * @param[out] *pDst points to the output vector
  2372. * @param[in] blockSize number of samples in the vector
  2373. * @return none.
  2374. */
  2375. void arm_shift_q7(
  2376. q7_t * pSrc,
  2377. int8_t shiftBits,
  2378. q7_t * pDst,
  2379. uint32_t blockSize);
  2380. /**
  2381. * @brief Shifts the elements of a Q15 vector a specified number of bits.
  2382. * @param[in] *pSrc points to the input vector
  2383. * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
  2384. * @param[out] *pDst points to the output vector
  2385. * @param[in] blockSize number of samples in the vector
  2386. * @return none.
  2387. */
  2388. void arm_shift_q15(
  2389. q15_t * pSrc,
  2390. int8_t shiftBits,
  2391. q15_t * pDst,
  2392. uint32_t blockSize);
  2393. /**
  2394. * @brief Shifts the elements of a Q31 vector a specified number of bits.
  2395. * @param[in] *pSrc points to the input vector
  2396. * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
  2397. * @param[out] *pDst points to the output vector
  2398. * @param[in] blockSize number of samples in the vector
  2399. * @return none.
  2400. */
  2401. void arm_shift_q31(
  2402. q31_t * pSrc,
  2403. int8_t shiftBits,
  2404. q31_t * pDst,
  2405. uint32_t blockSize);
  2406. /**
  2407. * @brief Adds a constant offset to a floating-point vector.
  2408. * @param[in] *pSrc points to the input vector
  2409. * @param[in] offset is the offset to be added
  2410. * @param[out] *pDst points to the output vector
  2411. * @param[in] blockSize number of samples in the vector
  2412. * @return none.
  2413. */
  2414. void arm_offset_f32(
  2415. float32_t * pSrc,
  2416. float32_t offset,
  2417. float32_t * pDst,
  2418. uint32_t blockSize);
  2419. /**
  2420. * @brief Adds a constant offset to a Q7 vector.
  2421. * @param[in] *pSrc points to the input vector
  2422. * @param[in] offset is the offset to be added
  2423. * @param[out] *pDst points to the output vector
  2424. * @param[in] blockSize number of samples in the vector
  2425. * @return none.
  2426. */
  2427. void arm_offset_q7(
  2428. q7_t * pSrc,
  2429. q7_t offset,
  2430. q7_t * pDst,
  2431. uint32_t blockSize);
  2432. /**
  2433. * @brief Adds a constant offset to a Q15 vector.
  2434. * @param[in] *pSrc points to the input vector
  2435. * @param[in] offset is the offset to be added
  2436. * @param[out] *pDst points to the output vector
  2437. * @param[in] blockSize number of samples in the vector
  2438. * @return none.
  2439. */
  2440. void arm_offset_q15(
  2441. q15_t * pSrc,
  2442. q15_t offset,
  2443. q15_t * pDst,
  2444. uint32_t blockSize);
  2445. /**
  2446. * @brief Adds a constant offset to a Q31 vector.
  2447. * @param[in] *pSrc points to the input vector
  2448. * @param[in] offset is the offset to be added
  2449. * @param[out] *pDst points to the output vector
  2450. * @param[in] blockSize number of samples in the vector
  2451. * @return none.
  2452. */
  2453. void arm_offset_q31(
  2454. q31_t * pSrc,
  2455. q31_t offset,
  2456. q31_t * pDst,
  2457. uint32_t blockSize);
  2458. /**
  2459. * @brief Negates the elements of a floating-point vector.
  2460. * @param[in] *pSrc points to the input vector
  2461. * @param[out] *pDst points to the output vector
  2462. * @param[in] blockSize number of samples in the vector
  2463. * @return none.
  2464. */
  2465. void arm_negate_f32(
  2466. float32_t * pSrc,
  2467. float32_t * pDst,
  2468. uint32_t blockSize);
  2469. /**
  2470. * @brief Negates the elements of a Q7 vector.
  2471. * @param[in] *pSrc points to the input vector
  2472. * @param[out] *pDst points to the output vector
  2473. * @param[in] blockSize number of samples in the vector
  2474. * @return none.
  2475. */
  2476. void arm_negate_q7(
  2477. q7_t * pSrc,
  2478. q7_t * pDst,
  2479. uint32_t blockSize);
  2480. /**
  2481. * @brief Negates the elements of a Q15 vector.
  2482. * @param[in] *pSrc points to the input vector
  2483. * @param[out] *pDst points to the output vector
  2484. * @param[in] blockSize number of samples in the vector
  2485. * @return none.
  2486. */
  2487. void arm_negate_q15(
  2488. q15_t * pSrc,
  2489. q15_t * pDst,
  2490. uint32_t blockSize);
  2491. /**
  2492. * @brief Negates the elements of a Q31 vector.
  2493. * @param[in] *pSrc points to the input vector
  2494. * @param[out] *pDst points to the output vector
  2495. * @param[in] blockSize number of samples in the vector
  2496. * @return none.
  2497. */
  2498. void arm_negate_q31(
  2499. q31_t * pSrc,
  2500. q31_t * pDst,
  2501. uint32_t blockSize);
  2502. /**
  2503. * @brief Copies the elements of a floating-point vector.
  2504. * @param[in] *pSrc input pointer
  2505. * @param[out] *pDst output pointer
  2506. * @param[in] blockSize number of samples to process
  2507. * @return none.
  2508. */
  2509. void arm_copy_f32(
  2510. float32_t * pSrc,
  2511. float32_t * pDst,
  2512. uint32_t blockSize);
  2513. /**
  2514. * @brief Copies the elements of a Q7 vector.
  2515. * @param[in] *pSrc input pointer
  2516. * @param[out] *pDst output pointer
  2517. * @param[in] blockSize number of samples to process
  2518. * @return none.
  2519. */
  2520. void arm_copy_q7(
  2521. q7_t * pSrc,
  2522. q7_t * pDst,
  2523. uint32_t blockSize);
  2524. /**
  2525. * @brief Copies the elements of a Q15 vector.
  2526. * @param[in] *pSrc input pointer
  2527. * @param[out] *pDst output pointer
  2528. * @param[in] blockSize number of samples to process
  2529. * @return none.
  2530. */
  2531. void arm_copy_q15(
  2532. q15_t * pSrc,
  2533. q15_t * pDst,
  2534. uint32_t blockSize);
  2535. /**
  2536. * @brief Copies the elements of a Q31 vector.
  2537. * @param[in] *pSrc input pointer
  2538. * @param[out] *pDst output pointer
  2539. * @param[in] blockSize number of samples to process
  2540. * @return none.
  2541. */
  2542. void arm_copy_q31(
  2543. q31_t * pSrc,
  2544. q31_t * pDst,
  2545. uint32_t blockSize);
  2546. /**
  2547. * @brief Fills a constant value into a floating-point vector.
  2548. * @param[in] value input value to be filled
  2549. * @param[out] *pDst output pointer
  2550. * @param[in] blockSize number of samples to process
  2551. * @return none.
  2552. */
  2553. void arm_fill_f32(
  2554. float32_t value,
  2555. float32_t * pDst,
  2556. uint32_t blockSize);
  2557. /**
  2558. * @brief Fills a constant value into a Q7 vector.
  2559. * @param[in] value input value to be filled
  2560. * @param[out] *pDst output pointer
  2561. * @param[in] blockSize number of samples to process
  2562. * @return none.
  2563. */
  2564. void arm_fill_q7(
  2565. q7_t value,
  2566. q7_t * pDst,
  2567. uint32_t blockSize);
  2568. /**
  2569. * @brief Fills a constant value into a Q15 vector.
  2570. * @param[in] value input value to be filled
  2571. * @param[out] *pDst output pointer
  2572. * @param[in] blockSize number of samples to process
  2573. * @return none.
  2574. */
  2575. void arm_fill_q15(
  2576. q15_t value,
  2577. q15_t * pDst,
  2578. uint32_t blockSize);
  2579. /**
  2580. * @brief Fills a constant value into a Q31 vector.
  2581. * @param[in] value input value to be filled
  2582. * @param[out] *pDst output pointer
  2583. * @param[in] blockSize number of samples to process
  2584. * @return none.
  2585. */
  2586. void arm_fill_q31(
  2587. q31_t value,
  2588. q31_t * pDst,
  2589. uint32_t blockSize);
  2590. /**
  2591. * @brief Convolution of floating-point sequences.
  2592. * @param[in] *pSrcA points to the first input sequence.
  2593. * @param[in] srcALen length of the first input sequence.
  2594. * @param[in] *pSrcB points to the second input sequence.
  2595. * @param[in] srcBLen length of the second input sequence.
  2596. * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
  2597. * @return none.
  2598. */
  2599. void arm_conv_f32(
  2600. float32_t * pSrcA,
  2601. uint32_t srcALen,
  2602. float32_t * pSrcB,
  2603. uint32_t srcBLen,
  2604. float32_t * pDst);
  2605. /**
  2606. * @brief Convolution of Q15 sequences.
  2607. * @param[in] *pSrcA points to the first input sequence.
  2608. * @param[in] srcALen length of the first input sequence.
  2609. * @param[in] *pSrcB points to the second input sequence.
  2610. * @param[in] srcBLen length of the second input sequence.
  2611. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2612. * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2613. * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2614. * @return none.
  2615. */
  2616. void arm_conv_opt_q15(
  2617. q15_t * pSrcA,
  2618. uint32_t srcALen,
  2619. q15_t * pSrcB,
  2620. uint32_t srcBLen,
  2621. q15_t * pDst,
  2622. q15_t * pScratch1,
  2623. q15_t * pScratch2);
  2624. /**
  2625. * @brief Convolution of Q15 sequences.
  2626. * @param[in] *pSrcA points to the first input sequence.
  2627. * @param[in] srcALen length of the first input sequence.
  2628. * @param[in] *pSrcB points to the second input sequence.
  2629. * @param[in] srcBLen length of the second input sequence.
  2630. * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
  2631. * @return none.
  2632. */
  2633. void arm_conv_q15(
  2634. q15_t * pSrcA,
  2635. uint32_t srcALen,
  2636. q15_t * pSrcB,
  2637. uint32_t srcBLen,
  2638. q15_t * pDst);
  2639. /**
  2640. * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2641. * @param[in] *pSrcA points to the first input sequence.
  2642. * @param[in] srcALen length of the first input sequence.
  2643. * @param[in] *pSrcB points to the second input sequence.
  2644. * @param[in] srcBLen length of the second input sequence.
  2645. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2646. * @return none.
  2647. */
  2648. void arm_conv_fast_q15(
  2649. q15_t * pSrcA,
  2650. uint32_t srcALen,
  2651. q15_t * pSrcB,
  2652. uint32_t srcBLen,
  2653. q15_t * pDst);
  2654. /**
  2655. * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2656. * @param[in] *pSrcA points to the first input sequence.
  2657. * @param[in] srcALen length of the first input sequence.
  2658. * @param[in] *pSrcB points to the second input sequence.
  2659. * @param[in] srcBLen length of the second input sequence.
  2660. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2661. * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2662. * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2663. * @return none.
  2664. */
  2665. void arm_conv_fast_opt_q15(
  2666. q15_t * pSrcA,
  2667. uint32_t srcALen,
  2668. q15_t * pSrcB,
  2669. uint32_t srcBLen,
  2670. q15_t * pDst,
  2671. q15_t * pScratch1,
  2672. q15_t * pScratch2);
  2673. /**
  2674. * @brief Convolution of Q31 sequences.
  2675. * @param[in] *pSrcA points to the first input sequence.
  2676. * @param[in] srcALen length of the first input sequence.
  2677. * @param[in] *pSrcB points to the second input sequence.
  2678. * @param[in] srcBLen length of the second input sequence.
  2679. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2680. * @return none.
  2681. */
  2682. void arm_conv_q31(
  2683. q31_t * pSrcA,
  2684. uint32_t srcALen,
  2685. q31_t * pSrcB,
  2686. uint32_t srcBLen,
  2687. q31_t * pDst);
  2688. /**
  2689. * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
  2690. * @param[in] *pSrcA points to the first input sequence.
  2691. * @param[in] srcALen length of the first input sequence.
  2692. * @param[in] *pSrcB points to the second input sequence.
  2693. * @param[in] srcBLen length of the second input sequence.
  2694. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2695. * @return none.
  2696. */
  2697. void arm_conv_fast_q31(
  2698. q31_t * pSrcA,
  2699. uint32_t srcALen,
  2700. q31_t * pSrcB,
  2701. uint32_t srcBLen,
  2702. q31_t * pDst);
  2703. /**
  2704. * @brief Convolution of Q7 sequences.
  2705. * @param[in] *pSrcA points to the first input sequence.
  2706. * @param[in] srcALen length of the first input sequence.
  2707. * @param[in] *pSrcB points to the second input sequence.
  2708. * @param[in] srcBLen length of the second input sequence.
  2709. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2710. * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2711. * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
  2712. * @return none.
  2713. */
  2714. void arm_conv_opt_q7(
  2715. q7_t * pSrcA,
  2716. uint32_t srcALen,
  2717. q7_t * pSrcB,
  2718. uint32_t srcBLen,
  2719. q7_t * pDst,
  2720. q15_t * pScratch1,
  2721. q15_t * pScratch2);
  2722. /**
  2723. * @brief Convolution of Q7 sequences.
  2724. * @param[in] *pSrcA points to the first input sequence.
  2725. * @param[in] srcALen length of the first input sequence.
  2726. * @param[in] *pSrcB points to the second input sequence.
  2727. * @param[in] srcBLen length of the second input sequence.
  2728. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2729. * @return none.
  2730. */
  2731. void arm_conv_q7(
  2732. q7_t * pSrcA,
  2733. uint32_t srcALen,
  2734. q7_t * pSrcB,
  2735. uint32_t srcBLen,
  2736. q7_t * pDst);
  2737. /**
  2738. * @brief Partial convolution of floating-point sequences.
  2739. * @param[in] *pSrcA points to the first input sequence.
  2740. * @param[in] srcALen length of the first input sequence.
  2741. * @param[in] *pSrcB points to the second input sequence.
  2742. * @param[in] srcBLen length of the second input sequence.
  2743. * @param[out] *pDst points to the block of output data
  2744. * @param[in] firstIndex is the first output sample to start with.
  2745. * @param[in] numPoints is the number of output points to be computed.
  2746. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2747. */
  2748. arm_status arm_conv_partial_f32(
  2749. float32_t * pSrcA,
  2750. uint32_t srcALen,
  2751. float32_t * pSrcB,
  2752. uint32_t srcBLen,
  2753. float32_t * pDst,
  2754. uint32_t firstIndex,
  2755. uint32_t numPoints);
  2756. /**
  2757. * @brief Partial convolution of Q15 sequences.
  2758. * @param[in] *pSrcA points to the first input sequence.
  2759. * @param[in] srcALen length of the first input sequence.
  2760. * @param[in] *pSrcB points to the second input sequence.
  2761. * @param[in] srcBLen length of the second input sequence.
  2762. * @param[out] *pDst points to the block of output data
  2763. * @param[in] firstIndex is the first output sample to start with.
  2764. * @param[in] numPoints is the number of output points to be computed.
  2765. * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2766. * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2767. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2768. */
  2769. arm_status arm_conv_partial_opt_q15(
  2770. q15_t * pSrcA,
  2771. uint32_t srcALen,
  2772. q15_t * pSrcB,
  2773. uint32_t srcBLen,
  2774. q15_t * pDst,
  2775. uint32_t firstIndex,
  2776. uint32_t numPoints,
  2777. q15_t * pScratch1,
  2778. q15_t * pScratch2);
  2779. /**
  2780. * @brief Partial convolution of Q15 sequences.
  2781. * @param[in] *pSrcA points to the first input sequence.
  2782. * @param[in] srcALen length of the first input sequence.
  2783. * @param[in] *pSrcB points to the second input sequence.
  2784. * @param[in] srcBLen length of the second input sequence.
  2785. * @param[out] *pDst points to the block of output data
  2786. * @param[in] firstIndex is the first output sample to start with.
  2787. * @param[in] numPoints is the number of output points to be computed.
  2788. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2789. */
  2790. arm_status arm_conv_partial_q15(
  2791. q15_t * pSrcA,
  2792. uint32_t srcALen,
  2793. q15_t * pSrcB,
  2794. uint32_t srcBLen,
  2795. q15_t * pDst,
  2796. uint32_t firstIndex,
  2797. uint32_t numPoints);
  2798. /**
  2799. * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2800. * @param[in] *pSrcA points to the first input sequence.
  2801. * @param[in] srcALen length of the first input sequence.
  2802. * @param[in] *pSrcB points to the second input sequence.
  2803. * @param[in] srcBLen length of the second input sequence.
  2804. * @param[out] *pDst points to the block of output data
  2805. * @param[in] firstIndex is the first output sample to start with.
  2806. * @param[in] numPoints is the number of output points to be computed.
  2807. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2808. */
  2809. arm_status arm_conv_partial_fast_q15(
  2810. q15_t * pSrcA,
  2811. uint32_t srcALen,
  2812. q15_t * pSrcB,
  2813. uint32_t srcBLen,
  2814. q15_t * pDst,
  2815. uint32_t firstIndex,
  2816. uint32_t numPoints);
  2817. /**
  2818. * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2819. * @param[in] *pSrcA points to the first input sequence.
  2820. * @param[in] srcALen length of the first input sequence.
  2821. * @param[in] *pSrcB points to the second input sequence.
  2822. * @param[in] srcBLen length of the second input sequence.
  2823. * @param[out] *pDst points to the block of output data
  2824. * @param[in] firstIndex is the first output sample to start with.
  2825. * @param[in] numPoints is the number of output points to be computed.
  2826. * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2827. * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2828. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2829. */
  2830. arm_status arm_conv_partial_fast_opt_q15(
  2831. q15_t * pSrcA,
  2832. uint32_t srcALen,
  2833. q15_t * pSrcB,
  2834. uint32_t srcBLen,
  2835. q15_t * pDst,
  2836. uint32_t firstIndex,
  2837. uint32_t numPoints,
  2838. q15_t * pScratch1,
  2839. q15_t * pScratch2);
  2840. /**
  2841. * @brief Partial convolution of Q31 sequences.
  2842. * @param[in] *pSrcA points to the first input sequence.
  2843. * @param[in] srcALen length of the first input sequence.
  2844. * @param[in] *pSrcB points to the second input sequence.
  2845. * @param[in] srcBLen length of the second input sequence.
  2846. * @param[out] *pDst points to the block of output data
  2847. * @param[in] firstIndex is the first output sample to start with.
  2848. * @param[in] numPoints is the number of output points to be computed.
  2849. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2850. */
  2851. arm_status arm_conv_partial_q31(
  2852. q31_t * pSrcA,
  2853. uint32_t srcALen,
  2854. q31_t * pSrcB,
  2855. uint32_t srcBLen,
  2856. q31_t * pDst,
  2857. uint32_t firstIndex,
  2858. uint32_t numPoints);
  2859. /**
  2860. * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
  2861. * @param[in] *pSrcA points to the first input sequence.
  2862. * @param[in] srcALen length of the first input sequence.
  2863. * @param[in] *pSrcB points to the second input sequence.
  2864. * @param[in] srcBLen length of the second input sequence.
  2865. * @param[out] *pDst points to the block of output data
  2866. * @param[in] firstIndex is the first output sample to start with.
  2867. * @param[in] numPoints is the number of output points to be computed.
  2868. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2869. */
  2870. arm_status arm_conv_partial_fast_q31(
  2871. q31_t * pSrcA,
  2872. uint32_t srcALen,
  2873. q31_t * pSrcB,
  2874. uint32_t srcBLen,
  2875. q31_t * pDst,
  2876. uint32_t firstIndex,
  2877. uint32_t numPoints);
  2878. /**
  2879. * @brief Partial convolution of Q7 sequences
  2880. * @param[in] *pSrcA points to the first input sequence.
  2881. * @param[in] srcALen length of the first input sequence.
  2882. * @param[in] *pSrcB points to the second input sequence.
  2883. * @param[in] srcBLen length of the second input sequence.
  2884. * @param[out] *pDst points to the block of output data
  2885. * @param[in] firstIndex is the first output sample to start with.
  2886. * @param[in] numPoints is the number of output points to be computed.
  2887. * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2888. * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
  2889. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2890. */
  2891. arm_status arm_conv_partial_opt_q7(
  2892. q7_t * pSrcA,
  2893. uint32_t srcALen,
  2894. q7_t * pSrcB,
  2895. uint32_t srcBLen,
  2896. q7_t * pDst,
  2897. uint32_t firstIndex,
  2898. uint32_t numPoints,
  2899. q15_t * pScratch1,
  2900. q15_t * pScratch2);
  2901. /**
  2902. * @brief Partial convolution of Q7 sequences.
  2903. * @param[in] *pSrcA points to the first input sequence.
  2904. * @param[in] srcALen length of the first input sequence.
  2905. * @param[in] *pSrcB points to the second input sequence.
  2906. * @param[in] srcBLen length of the second input sequence.
  2907. * @param[out] *pDst points to the block of output data
  2908. * @param[in] firstIndex is the first output sample to start with.
  2909. * @param[in] numPoints is the number of output points to be computed.
  2910. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2911. */
  2912. arm_status arm_conv_partial_q7(
  2913. q7_t * pSrcA,
  2914. uint32_t srcALen,
  2915. q7_t * pSrcB,
  2916. uint32_t srcBLen,
  2917. q7_t * pDst,
  2918. uint32_t firstIndex,
  2919. uint32_t numPoints);
  2920. /**
  2921. * @brief Instance structure for the Q15 FIR decimator.
  2922. */
  2923. typedef struct
  2924. {
  2925. uint8_t M; /**< decimation factor. */
  2926. uint16_t numTaps; /**< number of coefficients in the filter. */
  2927. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  2928. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  2929. } arm_fir_decimate_instance_q15;
  2930. /**
  2931. * @brief Instance structure for the Q31 FIR decimator.
  2932. */
  2933. typedef struct
  2934. {
  2935. uint8_t M; /**< decimation factor. */
  2936. uint16_t numTaps; /**< number of coefficients in the filter. */
  2937. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  2938. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  2939. } arm_fir_decimate_instance_q31;
  2940. /**
  2941. * @brief Instance structure for the floating-point FIR decimator.
  2942. */
  2943. typedef struct
  2944. {
  2945. uint8_t M; /**< decimation factor. */
  2946. uint16_t numTaps; /**< number of coefficients in the filter. */
  2947. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  2948. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  2949. } arm_fir_decimate_instance_f32;
  2950. /**
  2951. * @brief Processing function for the floating-point FIR decimator.
  2952. * @param[in] *S points to an instance of the floating-point FIR decimator structure.
  2953. * @param[in] *pSrc points to the block of input data.
  2954. * @param[out] *pDst points to the block of output data
  2955. * @param[in] blockSize number of input samples to process per call.
  2956. * @return none
  2957. */
  2958. void arm_fir_decimate_f32(
  2959. const arm_fir_decimate_instance_f32 * S,
  2960. float32_t * pSrc,
  2961. float32_t * pDst,
  2962. uint32_t blockSize);
  2963. /**
  2964. * @brief Initialization function for the floating-point FIR decimator.
  2965. * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
  2966. * @param[in] numTaps number of coefficients in the filter.
  2967. * @param[in] M decimation factor.
  2968. * @param[in] *pCoeffs points to the filter coefficients.
  2969. * @param[in] *pState points to the state buffer.
  2970. * @param[in] blockSize number of input samples to process per call.
  2971. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  2972. * <code>blockSize</code> is not a multiple of <code>M</code>.
  2973. */
  2974. arm_status arm_fir_decimate_init_f32(
  2975. arm_fir_decimate_instance_f32 * S,
  2976. uint16_t numTaps,
  2977. uint8_t M,
  2978. float32_t * pCoeffs,
  2979. float32_t * pState,
  2980. uint32_t blockSize);
  2981. /**
  2982. * @brief Processing function for the Q15 FIR decimator.
  2983. * @param[in] *S points to an instance of the Q15 FIR decimator structure.
  2984. * @param[in] *pSrc points to the block of input data.
  2985. * @param[out] *pDst points to the block of output data
  2986. * @param[in] blockSize number of input samples to process per call.
  2987. * @return none
  2988. */
  2989. void arm_fir_decimate_q15(
  2990. const arm_fir_decimate_instance_q15 * S,
  2991. q15_t * pSrc,
  2992. q15_t * pDst,
  2993. uint32_t blockSize);
  2994. /**
  2995. * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
  2996. * @param[in] *S points to an instance of the Q15 FIR decimator structure.
  2997. * @param[in] *pSrc points to the block of input data.
  2998. * @param[out] *pDst points to the block of output data
  2999. * @param[in] blockSize number of input samples to process per call.
  3000. * @return none
  3001. */
  3002. void arm_fir_decimate_fast_q15(
  3003. const arm_fir_decimate_instance_q15 * S,
  3004. q15_t * pSrc,
  3005. q15_t * pDst,
  3006. uint32_t blockSize);
  3007. /**
  3008. * @brief Initialization function for the Q15 FIR decimator.
  3009. * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
  3010. * @param[in] numTaps number of coefficients in the filter.
  3011. * @param[in] M decimation factor.
  3012. * @param[in] *pCoeffs points to the filter coefficients.
  3013. * @param[in] *pState points to the state buffer.
  3014. * @param[in] blockSize number of input samples to process per call.
  3015. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3016. * <code>blockSize</code> is not a multiple of <code>M</code>.
  3017. */
  3018. arm_status arm_fir_decimate_init_q15(
  3019. arm_fir_decimate_instance_q15 * S,
  3020. uint16_t numTaps,
  3021. uint8_t M,
  3022. q15_t * pCoeffs,
  3023. q15_t * pState,
  3024. uint32_t blockSize);
  3025. /**
  3026. * @brief Processing function for the Q31 FIR decimator.
  3027. * @param[in] *S points to an instance of the Q31 FIR decimator structure.
  3028. * @param[in] *pSrc points to the block of input data.
  3029. * @param[out] *pDst points to the block of output data
  3030. * @param[in] blockSize number of input samples to process per call.
  3031. * @return none
  3032. */
  3033. void arm_fir_decimate_q31(
  3034. const arm_fir_decimate_instance_q31 * S,
  3035. q31_t * pSrc,
  3036. q31_t * pDst,
  3037. uint32_t blockSize);
  3038. /**
  3039. * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
  3040. * @param[in] *S points to an instance of the Q31 FIR decimator structure.
  3041. * @param[in] *pSrc points to the block of input data.
  3042. * @param[out] *pDst points to the block of output data
  3043. * @param[in] blockSize number of input samples to process per call.
  3044. * @return none
  3045. */
  3046. void arm_fir_decimate_fast_q31(
  3047. arm_fir_decimate_instance_q31 * S,
  3048. q31_t * pSrc,
  3049. q31_t * pDst,
  3050. uint32_t blockSize);
  3051. /**
  3052. * @brief Initialization function for the Q31 FIR decimator.
  3053. * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
  3054. * @param[in] numTaps number of coefficients in the filter.
  3055. * @param[in] M decimation factor.
  3056. * @param[in] *pCoeffs points to the filter coefficients.
  3057. * @param[in] *pState points to the state buffer.
  3058. * @param[in] blockSize number of input samples to process per call.
  3059. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3060. * <code>blockSize</code> is not a multiple of <code>M</code>.
  3061. */
  3062. arm_status arm_fir_decimate_init_q31(
  3063. arm_fir_decimate_instance_q31 * S,
  3064. uint16_t numTaps,
  3065. uint8_t M,
  3066. q31_t * pCoeffs,
  3067. q31_t * pState,
  3068. uint32_t blockSize);
  3069. /**
  3070. * @brief Instance structure for the Q15 FIR interpolator.
  3071. */
  3072. typedef struct
  3073. {
  3074. uint8_t L; /**< upsample factor. */
  3075. uint16_t phaseLength; /**< length of each polyphase filter component. */
  3076. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
  3077. q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
  3078. } arm_fir_interpolate_instance_q15;
  3079. /**
  3080. * @brief Instance structure for the Q31 FIR interpolator.
  3081. */
  3082. typedef struct
  3083. {
  3084. uint8_t L; /**< upsample factor. */
  3085. uint16_t phaseLength; /**< length of each polyphase filter component. */
  3086. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
  3087. q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
  3088. } arm_fir_interpolate_instance_q31;
  3089. /**
  3090. * @brief Instance structure for the floating-point FIR interpolator.
  3091. */
  3092. typedef struct
  3093. {
  3094. uint8_t L; /**< upsample factor. */
  3095. uint16_t phaseLength; /**< length of each polyphase filter component. */
  3096. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
  3097. float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
  3098. } arm_fir_interpolate_instance_f32;
  3099. /**
  3100. * @brief Processing function for the Q15 FIR interpolator.
  3101. * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
  3102. * @param[in] *pSrc points to the block of input data.
  3103. * @param[out] *pDst points to the block of output data.
  3104. * @param[in] blockSize number of input samples to process per call.
  3105. * @return none.
  3106. */
  3107. void arm_fir_interpolate_q15(
  3108. const arm_fir_interpolate_instance_q15 * S,
  3109. q15_t * pSrc,
  3110. q15_t * pDst,
  3111. uint32_t blockSize);
  3112. /**
  3113. * @brief Initialization function for the Q15 FIR interpolator.
  3114. * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
  3115. * @param[in] L upsample factor.
  3116. * @param[in] numTaps number of filter coefficients in the filter.
  3117. * @param[in] *pCoeffs points to the filter coefficient buffer.
  3118. * @param[in] *pState points to the state buffer.
  3119. * @param[in] blockSize number of input samples to process per call.
  3120. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3121. * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
  3122. */
  3123. arm_status arm_fir_interpolate_init_q15(
  3124. arm_fir_interpolate_instance_q15 * S,
  3125. uint8_t L,
  3126. uint16_t numTaps,
  3127. q15_t * pCoeffs,
  3128. q15_t * pState,
  3129. uint32_t blockSize);
  3130. /**
  3131. * @brief Processing function for the Q31 FIR interpolator.
  3132. * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
  3133. * @param[in] *pSrc points to the block of input data.
  3134. * @param[out] *pDst points to the block of output data.
  3135. * @param[in] blockSize number of input samples to process per call.
  3136. * @return none.
  3137. */
  3138. void arm_fir_interpolate_q31(
  3139. const arm_fir_interpolate_instance_q31 * S,
  3140. q31_t * pSrc,
  3141. q31_t * pDst,
  3142. uint32_t blockSize);
  3143. /**
  3144. * @brief Initialization function for the Q31 FIR interpolator.
  3145. * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
  3146. * @param[in] L upsample factor.
  3147. * @param[in] numTaps number of filter coefficients in the filter.
  3148. * @param[in] *pCoeffs points to the filter coefficient buffer.
  3149. * @param[in] *pState points to the state buffer.
  3150. * @param[in] blockSize number of input samples to process per call.
  3151. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3152. * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
  3153. */
  3154. arm_status arm_fir_interpolate_init_q31(
  3155. arm_fir_interpolate_instance_q31 * S,
  3156. uint8_t L,
  3157. uint16_t numTaps,
  3158. q31_t * pCoeffs,
  3159. q31_t * pState,
  3160. uint32_t blockSize);
  3161. /**
  3162. * @brief Processing function for the floating-point FIR interpolator.
  3163. * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
  3164. * @param[in] *pSrc points to the block of input data.
  3165. * @param[out] *pDst points to the block of output data.
  3166. * @param[in] blockSize number of input samples to process per call.
  3167. * @return none.
  3168. */
  3169. void arm_fir_interpolate_f32(
  3170. const arm_fir_interpolate_instance_f32 * S,
  3171. float32_t * pSrc,
  3172. float32_t * pDst,
  3173. uint32_t blockSize);
  3174. /**
  3175. * @brief Initialization function for the floating-point FIR interpolator.
  3176. * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
  3177. * @param[in] L upsample factor.
  3178. * @param[in] numTaps number of filter coefficients in the filter.
  3179. * @param[in] *pCoeffs points to the filter coefficient buffer.
  3180. * @param[in] *pState points to the state buffer.
  3181. * @param[in] blockSize number of input samples to process per call.
  3182. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3183. * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
  3184. */
  3185. arm_status arm_fir_interpolate_init_f32(
  3186. arm_fir_interpolate_instance_f32 * S,
  3187. uint8_t L,
  3188. uint16_t numTaps,
  3189. float32_t * pCoeffs,
  3190. float32_t * pState,
  3191. uint32_t blockSize);
  3192. /**
  3193. * @brief Instance structure for the high precision Q31 Biquad cascade filter.
  3194. */
  3195. typedef struct
  3196. {
  3197. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3198. q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
  3199. q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3200. uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
  3201. } arm_biquad_cas_df1_32x64_ins_q31;
  3202. /**
  3203. * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
  3204. * @param[in] *pSrc points to the block of input data.
  3205. * @param[out] *pDst points to the block of output data
  3206. * @param[in] blockSize number of samples to process.
  3207. * @return none.
  3208. */
  3209. void arm_biquad_cas_df1_32x64_q31(
  3210. const arm_biquad_cas_df1_32x64_ins_q31 * S,
  3211. q31_t * pSrc,
  3212. q31_t * pDst,
  3213. uint32_t blockSize);
  3214. /**
  3215. * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
  3216. * @param[in] numStages number of 2nd order stages in the filter.
  3217. * @param[in] *pCoeffs points to the filter coefficients.
  3218. * @param[in] *pState points to the state buffer.
  3219. * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
  3220. * @return none
  3221. */
  3222. void arm_biquad_cas_df1_32x64_init_q31(
  3223. arm_biquad_cas_df1_32x64_ins_q31 * S,
  3224. uint8_t numStages,
  3225. q31_t * pCoeffs,
  3226. q63_t * pState,
  3227. uint8_t postShift);
  3228. /**
  3229. * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
  3230. */
  3231. typedef struct
  3232. {
  3233. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3234. float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
  3235. float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3236. } arm_biquad_cascade_df2T_instance_f32;
  3237. /**
  3238. * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
  3239. */
  3240. typedef struct
  3241. {
  3242. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3243. float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
  3244. float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3245. } arm_biquad_cascade_stereo_df2T_instance_f32;
  3246. /**
  3247. * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
  3248. */
  3249. typedef struct
  3250. {
  3251. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3252. float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
  3253. float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3254. } arm_biquad_cascade_df2T_instance_f64;
  3255. /**
  3256. * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
  3257. * @param[in] *S points to an instance of the filter data structure.
  3258. * @param[in] *pSrc points to the block of input data.
  3259. * @param[out] *pDst points to the block of output data
  3260. * @param[in] blockSize number of samples to process.
  3261. * @return none.
  3262. */
  3263. void arm_biquad_cascade_df2T_f32(
  3264. const arm_biquad_cascade_df2T_instance_f32 * S,
  3265. float32_t * pSrc,
  3266. float32_t * pDst,
  3267. uint32_t blockSize);
  3268. /**
  3269. * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
  3270. * @param[in] *S points to an instance of the filter data structure.
  3271. * @param[in] *pSrc points to the block of input data.
  3272. * @param[out] *pDst points to the block of output data
  3273. * @param[in] blockSize number of samples to process.
  3274. * @return none.
  3275. */
  3276. void arm_biquad_cascade_stereo_df2T_f32(
  3277. const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
  3278. float32_t * pSrc,
  3279. float32_t * pDst,
  3280. uint32_t blockSize);
  3281. /**
  3282. * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
  3283. * @param[in] *S points to an instance of the filter data structure.
  3284. * @param[in] *pSrc points to the block of input data.
  3285. * @param[out] *pDst points to the block of output data
  3286. * @param[in] blockSize number of samples to process.
  3287. * @return none.
  3288. */
  3289. void arm_biquad_cascade_df2T_f64(
  3290. const arm_biquad_cascade_df2T_instance_f64 * S,
  3291. float64_t * pSrc,
  3292. float64_t * pDst,
  3293. uint32_t blockSize);
  3294. /**
  3295. * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
  3296. * @param[in,out] *S points to an instance of the filter data structure.
  3297. * @param[in] numStages number of 2nd order stages in the filter.
  3298. * @param[in] *pCoeffs points to the filter coefficients.
  3299. * @param[in] *pState points to the state buffer.
  3300. * @return none
  3301. */
  3302. void arm_biquad_cascade_df2T_init_f32(
  3303. arm_biquad_cascade_df2T_instance_f32 * S,
  3304. uint8_t numStages,
  3305. float32_t * pCoeffs,
  3306. float32_t * pState);
  3307. /**
  3308. * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
  3309. * @param[in,out] *S points to an instance of the filter data structure.
  3310. * @param[in] numStages number of 2nd order stages in the filter.
  3311. * @param[in] *pCoeffs points to the filter coefficients.
  3312. * @param[in] *pState points to the state buffer.
  3313. * @return none
  3314. */
  3315. void arm_biquad_cascade_stereo_df2T_init_f32(
  3316. arm_biquad_cascade_stereo_df2T_instance_f32 * S,
  3317. uint8_t numStages,
  3318. float32_t * pCoeffs,
  3319. float32_t * pState);
  3320. /**
  3321. * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
  3322. * @param[in,out] *S points to an instance of the filter data structure.
  3323. * @param[in] numStages number of 2nd order stages in the filter.
  3324. * @param[in] *pCoeffs points to the filter coefficients.
  3325. * @param[in] *pState points to the state buffer.
  3326. * @return none
  3327. */
  3328. void arm_biquad_cascade_df2T_init_f64(
  3329. arm_biquad_cascade_df2T_instance_f64 * S,
  3330. uint8_t numStages,
  3331. float64_t * pCoeffs,
  3332. float64_t * pState);
  3333. /**
  3334. * @brief Instance structure for the Q15 FIR lattice filter.
  3335. */
  3336. typedef struct
  3337. {
  3338. uint16_t numStages; /**< number of filter stages. */
  3339. q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
  3340. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
  3341. } arm_fir_lattice_instance_q15;
  3342. /**
  3343. * @brief Instance structure for the Q31 FIR lattice filter.
  3344. */
  3345. typedef struct
  3346. {
  3347. uint16_t numStages; /**< number of filter stages. */
  3348. q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
  3349. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
  3350. } arm_fir_lattice_instance_q31;
  3351. /**
  3352. * @brief Instance structure for the floating-point FIR lattice filter.
  3353. */
  3354. typedef struct
  3355. {
  3356. uint16_t numStages; /**< number of filter stages. */
  3357. float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
  3358. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
  3359. } arm_fir_lattice_instance_f32;
  3360. /**
  3361. * @brief Initialization function for the Q15 FIR lattice filter.
  3362. * @param[in] *S points to an instance of the Q15 FIR lattice structure.
  3363. * @param[in] numStages number of filter stages.
  3364. * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
  3365. * @param[in] *pState points to the state buffer. The array is of length numStages.
  3366. * @return none.
  3367. */
  3368. void arm_fir_lattice_init_q15(
  3369. arm_fir_lattice_instance_q15 * S,
  3370. uint16_t numStages,
  3371. q15_t * pCoeffs,
  3372. q15_t * pState);
  3373. /**
  3374. * @brief Processing function for the Q15 FIR lattice filter.
  3375. * @param[in] *S points to an instance of the Q15 FIR lattice structure.
  3376. * @param[in] *pSrc points to the block of input data.
  3377. * @param[out] *pDst points to the block of output data.
  3378. * @param[in] blockSize number of samples to process.
  3379. * @return none.
  3380. */
  3381. void arm_fir_lattice_q15(
  3382. const arm_fir_lattice_instance_q15 * S,
  3383. q15_t * pSrc,
  3384. q15_t * pDst,
  3385. uint32_t blockSize);
  3386. /**
  3387. * @brief Initialization function for the Q31 FIR lattice filter.
  3388. * @param[in] *S points to an instance of the Q31 FIR lattice structure.
  3389. * @param[in] numStages number of filter stages.
  3390. * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
  3391. * @param[in] *pState points to the state buffer. The array is of length numStages.
  3392. * @return none.
  3393. */
  3394. void arm_fir_lattice_init_q31(
  3395. arm_fir_lattice_instance_q31 * S,
  3396. uint16_t numStages,
  3397. q31_t * pCoeffs,
  3398. q31_t * pState);
  3399. /**
  3400. * @brief Processing function for the Q31 FIR lattice filter.
  3401. * @param[in] *S points to an instance of the Q31 FIR lattice structure.
  3402. * @param[in] *pSrc points to the block of input data.
  3403. * @param[out] *pDst points to the block of output data
  3404. * @param[in] blockSize number of samples to process.
  3405. * @return none.
  3406. */
  3407. void arm_fir_lattice_q31(
  3408. const arm_fir_lattice_instance_q31 * S,
  3409. q31_t * pSrc,
  3410. q31_t * pDst,
  3411. uint32_t blockSize);
  3412. /**
  3413. * @brief Initialization function for the floating-point FIR lattice filter.
  3414. * @param[in] *S points to an instance of the floating-point FIR lattice structure.
  3415. * @param[in] numStages number of filter stages.
  3416. * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
  3417. * @param[in] *pState points to the state buffer. The array is of length numStages.
  3418. * @return none.
  3419. */
  3420. void arm_fir_lattice_init_f32(
  3421. arm_fir_lattice_instance_f32 * S,
  3422. uint16_t numStages,
  3423. float32_t * pCoeffs,
  3424. float32_t * pState);
  3425. /**
  3426. * @brief Processing function for the floating-point FIR lattice filter.
  3427. * @param[in] *S points to an instance of the floating-point FIR lattice structure.
  3428. * @param[in] *pSrc points to the block of input data.
  3429. * @param[out] *pDst points to the block of output data
  3430. * @param[in] blockSize number of samples to process.
  3431. * @return none.
  3432. */
  3433. void arm_fir_lattice_f32(
  3434. const arm_fir_lattice_instance_f32 * S,
  3435. float32_t * pSrc,
  3436. float32_t * pDst,
  3437. uint32_t blockSize);
  3438. /**
  3439. * @brief Instance structure for the Q15 IIR lattice filter.
  3440. */
  3441. typedef struct
  3442. {
  3443. uint16_t numStages; /**< number of stages in the filter. */
  3444. q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
  3445. q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
  3446. q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
  3447. } arm_iir_lattice_instance_q15;
  3448. /**
  3449. * @brief Instance structure for the Q31 IIR lattice filter.
  3450. */
  3451. typedef struct
  3452. {
  3453. uint16_t numStages; /**< number of stages in the filter. */
  3454. q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
  3455. q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
  3456. q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
  3457. } arm_iir_lattice_instance_q31;
  3458. /**
  3459. * @brief Instance structure for the floating-point IIR lattice filter.
  3460. */
  3461. typedef struct
  3462. {
  3463. uint16_t numStages; /**< number of stages in the filter. */
  3464. float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
  3465. float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
  3466. float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
  3467. } arm_iir_lattice_instance_f32;
  3468. /**
  3469. * @brief Processing function for the floating-point IIR lattice filter.
  3470. * @param[in] *S points to an instance of the floating-point IIR lattice structure.
  3471. * @param[in] *pSrc points to the block of input data.
  3472. * @param[out] *pDst points to the block of output data.
  3473. * @param[in] blockSize number of samples to process.
  3474. * @return none.
  3475. */
  3476. void arm_iir_lattice_f32(
  3477. const arm_iir_lattice_instance_f32 * S,
  3478. float32_t * pSrc,
  3479. float32_t * pDst,
  3480. uint32_t blockSize);
  3481. /**
  3482. * @brief Initialization function for the floating-point IIR lattice filter.
  3483. * @param[in] *S points to an instance of the floating-point IIR lattice structure.
  3484. * @param[in] numStages number of stages in the filter.
  3485. * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
  3486. * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
  3487. * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
  3488. * @param[in] blockSize number of samples to process.
  3489. * @return none.
  3490. */
  3491. void arm_iir_lattice_init_f32(
  3492. arm_iir_lattice_instance_f32 * S,
  3493. uint16_t numStages,
  3494. float32_t * pkCoeffs,
  3495. float32_t * pvCoeffs,
  3496. float32_t * pState,
  3497. uint32_t blockSize);
  3498. /**
  3499. * @brief Processing function for the Q31 IIR lattice filter.
  3500. * @param[in] *S points to an instance of the Q31 IIR lattice structure.
  3501. * @param[in] *pSrc points to the block of input data.
  3502. * @param[out] *pDst points to the block of output data.
  3503. * @param[in] blockSize number of samples to process.
  3504. * @return none.
  3505. */
  3506. void arm_iir_lattice_q31(
  3507. const arm_iir_lattice_instance_q31 * S,
  3508. q31_t * pSrc,
  3509. q31_t * pDst,
  3510. uint32_t blockSize);
  3511. /**
  3512. * @brief Initialization function for the Q31 IIR lattice filter.
  3513. * @param[in] *S points to an instance of the Q31 IIR lattice structure.
  3514. * @param[in] numStages number of stages in the filter.
  3515. * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
  3516. * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
  3517. * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
  3518. * @param[in] blockSize number of samples to process.
  3519. * @return none.
  3520. */
  3521. void arm_iir_lattice_init_q31(
  3522. arm_iir_lattice_instance_q31 * S,
  3523. uint16_t numStages,
  3524. q31_t * pkCoeffs,
  3525. q31_t * pvCoeffs,
  3526. q31_t * pState,
  3527. uint32_t blockSize);
  3528. /**
  3529. * @brief Processing function for the Q15 IIR lattice filter.
  3530. * @param[in] *S points to an instance of the Q15 IIR lattice structure.
  3531. * @param[in] *pSrc points to the block of input data.
  3532. * @param[out] *pDst points to the block of output data.
  3533. * @param[in] blockSize number of samples to process.
  3534. * @return none.
  3535. */
  3536. void arm_iir_lattice_q15(
  3537. const arm_iir_lattice_instance_q15 * S,
  3538. q15_t * pSrc,
  3539. q15_t * pDst,
  3540. uint32_t blockSize);
  3541. /**
  3542. * @brief Initialization function for the Q15 IIR lattice filter.
  3543. * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
  3544. * @param[in] numStages number of stages in the filter.
  3545. * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
  3546. * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
  3547. * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
  3548. * @param[in] blockSize number of samples to process per call.
  3549. * @return none.
  3550. */
  3551. void arm_iir_lattice_init_q15(
  3552. arm_iir_lattice_instance_q15 * S,
  3553. uint16_t numStages,
  3554. q15_t * pkCoeffs,
  3555. q15_t * pvCoeffs,
  3556. q15_t * pState,
  3557. uint32_t blockSize);
  3558. /**
  3559. * @brief Instance structure for the floating-point LMS filter.
  3560. */
  3561. typedef struct
  3562. {
  3563. uint16_t numTaps; /**< number of coefficients in the filter. */
  3564. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3565. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3566. float32_t mu; /**< step size that controls filter coefficient updates. */
  3567. } arm_lms_instance_f32;
  3568. /**
  3569. * @brief Processing function for floating-point LMS filter.
  3570. * @param[in] *S points to an instance of the floating-point LMS filter structure.
  3571. * @param[in] *pSrc points to the block of input data.
  3572. * @param[in] *pRef points to the block of reference data.
  3573. * @param[out] *pOut points to the block of output data.
  3574. * @param[out] *pErr points to the block of error data.
  3575. * @param[in] blockSize number of samples to process.
  3576. * @return none.
  3577. */
  3578. void arm_lms_f32(
  3579. const arm_lms_instance_f32 * S,
  3580. float32_t * pSrc,
  3581. float32_t * pRef,
  3582. float32_t * pOut,
  3583. float32_t * pErr,
  3584. uint32_t blockSize);
  3585. /**
  3586. * @brief Initialization function for floating-point LMS filter.
  3587. * @param[in] *S points to an instance of the floating-point LMS filter structure.
  3588. * @param[in] numTaps number of filter coefficients.
  3589. * @param[in] *pCoeffs points to the coefficient buffer.
  3590. * @param[in] *pState points to state buffer.
  3591. * @param[in] mu step size that controls filter coefficient updates.
  3592. * @param[in] blockSize number of samples to process.
  3593. * @return none.
  3594. */
  3595. void arm_lms_init_f32(
  3596. arm_lms_instance_f32 * S,
  3597. uint16_t numTaps,
  3598. float32_t * pCoeffs,
  3599. float32_t * pState,
  3600. float32_t mu,
  3601. uint32_t blockSize);
  3602. /**
  3603. * @brief Instance structure for the Q15 LMS filter.
  3604. */
  3605. typedef struct
  3606. {
  3607. uint16_t numTaps; /**< number of coefficients in the filter. */
  3608. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3609. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3610. q15_t mu; /**< step size that controls filter coefficient updates. */
  3611. uint32_t postShift; /**< bit shift applied to coefficients. */
  3612. } arm_lms_instance_q15;
  3613. /**
  3614. * @brief Initialization function for the Q15 LMS filter.
  3615. * @param[in] *S points to an instance of the Q15 LMS filter structure.
  3616. * @param[in] numTaps number of filter coefficients.
  3617. * @param[in] *pCoeffs points to the coefficient buffer.
  3618. * @param[in] *pState points to the state buffer.
  3619. * @param[in] mu step size that controls filter coefficient updates.
  3620. * @param[in] blockSize number of samples to process.
  3621. * @param[in] postShift bit shift applied to coefficients.
  3622. * @return none.
  3623. */
  3624. void arm_lms_init_q15(
  3625. arm_lms_instance_q15 * S,
  3626. uint16_t numTaps,
  3627. q15_t * pCoeffs,
  3628. q15_t * pState,
  3629. q15_t mu,
  3630. uint32_t blockSize,
  3631. uint32_t postShift);
  3632. /**
  3633. * @brief Processing function for Q15 LMS filter.
  3634. * @param[in] *S points to an instance of the Q15 LMS filter structure.
  3635. * @param[in] *pSrc points to the block of input data.
  3636. * @param[in] *pRef points to the block of reference data.
  3637. * @param[out] *pOut points to the block of output data.
  3638. * @param[out] *pErr points to the block of error data.
  3639. * @param[in] blockSize number of samples to process.
  3640. * @return none.
  3641. */
  3642. void arm_lms_q15(
  3643. const arm_lms_instance_q15 * S,
  3644. q15_t * pSrc,
  3645. q15_t * pRef,
  3646. q15_t * pOut,
  3647. q15_t * pErr,
  3648. uint32_t blockSize);
  3649. /**
  3650. * @brief Instance structure for the Q31 LMS filter.
  3651. */
  3652. typedef struct
  3653. {
  3654. uint16_t numTaps; /**< number of coefficients in the filter. */
  3655. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3656. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3657. q31_t mu; /**< step size that controls filter coefficient updates. */
  3658. uint32_t postShift; /**< bit shift applied to coefficients. */
  3659. } arm_lms_instance_q31;
  3660. /**
  3661. * @brief Processing function for Q31 LMS filter.
  3662. * @param[in] *S points to an instance of the Q15 LMS filter structure.
  3663. * @param[in] *pSrc points to the block of input data.
  3664. * @param[in] *pRef points to the block of reference data.
  3665. * @param[out] *pOut points to the block of output data.
  3666. * @param[out] *pErr points to the block of error data.
  3667. * @param[in] blockSize number of samples to process.
  3668. * @return none.
  3669. */
  3670. void arm_lms_q31(
  3671. const arm_lms_instance_q31 * S,
  3672. q31_t * pSrc,
  3673. q31_t * pRef,
  3674. q31_t * pOut,
  3675. q31_t * pErr,
  3676. uint32_t blockSize);
  3677. /**
  3678. * @brief Initialization function for Q31 LMS filter.
  3679. * @param[in] *S points to an instance of the Q31 LMS filter structure.
  3680. * @param[in] numTaps number of filter coefficients.
  3681. * @param[in] *pCoeffs points to coefficient buffer.
  3682. * @param[in] *pState points to state buffer.
  3683. * @param[in] mu step size that controls filter coefficient updates.
  3684. * @param[in] blockSize number of samples to process.
  3685. * @param[in] postShift bit shift applied to coefficients.
  3686. * @return none.
  3687. */
  3688. void arm_lms_init_q31(
  3689. arm_lms_instance_q31 * S,
  3690. uint16_t numTaps,
  3691. q31_t * pCoeffs,
  3692. q31_t * pState,
  3693. q31_t mu,
  3694. uint32_t blockSize,
  3695. uint32_t postShift);
  3696. /**
  3697. * @brief Instance structure for the floating-point normalized LMS filter.
  3698. */
  3699. typedef struct
  3700. {
  3701. uint16_t numTaps; /**< number of coefficients in the filter. */
  3702. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3703. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3704. float32_t mu; /**< step size that control filter coefficient updates. */
  3705. float32_t energy; /**< saves previous frame energy. */
  3706. float32_t x0; /**< saves previous input sample. */
  3707. } arm_lms_norm_instance_f32;
  3708. /**
  3709. * @brief Processing function for floating-point normalized LMS filter.
  3710. * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
  3711. * @param[in] *pSrc points to the block of input data.
  3712. * @param[in] *pRef points to the block of reference data.
  3713. * @param[out] *pOut points to the block of output data.
  3714. * @param[out] *pErr points to the block of error data.
  3715. * @param[in] blockSize number of samples to process.
  3716. * @return none.
  3717. */
  3718. void arm_lms_norm_f32(
  3719. arm_lms_norm_instance_f32 * S,
  3720. float32_t * pSrc,
  3721. float32_t * pRef,
  3722. float32_t * pOut,
  3723. float32_t * pErr,
  3724. uint32_t blockSize);
  3725. /**
  3726. * @brief Initialization function for floating-point normalized LMS filter.
  3727. * @param[in] *S points to an instance of the floating-point LMS filter structure.
  3728. * @param[in] numTaps number of filter coefficients.
  3729. * @param[in] *pCoeffs points to coefficient buffer.
  3730. * @param[in] *pState points to state buffer.
  3731. * @param[in] mu step size that controls filter coefficient updates.
  3732. * @param[in] blockSize number of samples to process.
  3733. * @return none.
  3734. */
  3735. void arm_lms_norm_init_f32(
  3736. arm_lms_norm_instance_f32 * S,
  3737. uint16_t numTaps,
  3738. float32_t * pCoeffs,
  3739. float32_t * pState,
  3740. float32_t mu,
  3741. uint32_t blockSize);
  3742. /**
  3743. * @brief Instance structure for the Q31 normalized LMS filter.
  3744. */
  3745. typedef struct
  3746. {
  3747. uint16_t numTaps; /**< number of coefficients in the filter. */
  3748. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3749. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3750. q31_t mu; /**< step size that controls filter coefficient updates. */
  3751. uint8_t postShift; /**< bit shift applied to coefficients. */
  3752. q31_t *recipTable; /**< points to the reciprocal initial value table. */
  3753. q31_t energy; /**< saves previous frame energy. */
  3754. q31_t x0; /**< saves previous input sample. */
  3755. } arm_lms_norm_instance_q31;
  3756. /**
  3757. * @brief Processing function for Q31 normalized LMS filter.
  3758. * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
  3759. * @param[in] *pSrc points to the block of input data.
  3760. * @param[in] *pRef points to the block of reference data.
  3761. * @param[out] *pOut points to the block of output data.
  3762. * @param[out] *pErr points to the block of error data.
  3763. * @param[in] blockSize number of samples to process.
  3764. * @return none.
  3765. */
  3766. void arm_lms_norm_q31(
  3767. arm_lms_norm_instance_q31 * S,
  3768. q31_t * pSrc,
  3769. q31_t * pRef,
  3770. q31_t * pOut,
  3771. q31_t * pErr,
  3772. uint32_t blockSize);
  3773. /**
  3774. * @brief Initialization function for Q31 normalized LMS filter.
  3775. * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
  3776. * @param[in] numTaps number of filter coefficients.
  3777. * @param[in] *pCoeffs points to coefficient buffer.
  3778. * @param[in] *pState points to state buffer.
  3779. * @param[in] mu step size that controls filter coefficient updates.
  3780. * @param[in] blockSize number of samples to process.
  3781. * @param[in] postShift bit shift applied to coefficients.
  3782. * @return none.
  3783. */
  3784. void arm_lms_norm_init_q31(
  3785. arm_lms_norm_instance_q31 * S,
  3786. uint16_t numTaps,
  3787. q31_t * pCoeffs,
  3788. q31_t * pState,
  3789. q31_t mu,
  3790. uint32_t blockSize,
  3791. uint8_t postShift);
  3792. /**
  3793. * @brief Instance structure for the Q15 normalized LMS filter.
  3794. */
  3795. typedef struct
  3796. {
  3797. uint16_t numTaps; /**< Number of coefficients in the filter. */
  3798. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3799. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3800. q15_t mu; /**< step size that controls filter coefficient updates. */
  3801. uint8_t postShift; /**< bit shift applied to coefficients. */
  3802. q15_t *recipTable; /**< Points to the reciprocal initial value table. */
  3803. q15_t energy; /**< saves previous frame energy. */
  3804. q15_t x0; /**< saves previous input sample. */
  3805. } arm_lms_norm_instance_q15;
  3806. /**
  3807. * @brief Processing function for Q15 normalized LMS filter.
  3808. * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
  3809. * @param[in] *pSrc points to the block of input data.
  3810. * @param[in] *pRef points to the block of reference data.
  3811. * @param[out] *pOut points to the block of output data.
  3812. * @param[out] *pErr points to the block of error data.
  3813. * @param[in] blockSize number of samples to process.
  3814. * @return none.
  3815. */
  3816. void arm_lms_norm_q15(
  3817. arm_lms_norm_instance_q15 * S,
  3818. q15_t * pSrc,
  3819. q15_t * pRef,
  3820. q15_t * pOut,
  3821. q15_t * pErr,
  3822. uint32_t blockSize);
  3823. /**
  3824. * @brief Initialization function for Q15 normalized LMS filter.
  3825. * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
  3826. * @param[in] numTaps number of filter coefficients.
  3827. * @param[in] *pCoeffs points to coefficient buffer.
  3828. * @param[in] *pState points to state buffer.
  3829. * @param[in] mu step size that controls filter coefficient updates.
  3830. * @param[in] blockSize number of samples to process.
  3831. * @param[in] postShift bit shift applied to coefficients.
  3832. * @return none.
  3833. */
  3834. void arm_lms_norm_init_q15(
  3835. arm_lms_norm_instance_q15 * S,
  3836. uint16_t numTaps,
  3837. q15_t * pCoeffs,
  3838. q15_t * pState,
  3839. q15_t mu,
  3840. uint32_t blockSize,
  3841. uint8_t postShift);
  3842. /**
  3843. * @brief Correlation of floating-point sequences.
  3844. * @param[in] *pSrcA points to the first input sequence.
  3845. * @param[in] srcALen length of the first input sequence.
  3846. * @param[in] *pSrcB points to the second input sequence.
  3847. * @param[in] srcBLen length of the second input sequence.
  3848. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3849. * @return none.
  3850. */
  3851. void arm_correlate_f32(
  3852. float32_t * pSrcA,
  3853. uint32_t srcALen,
  3854. float32_t * pSrcB,
  3855. uint32_t srcBLen,
  3856. float32_t * pDst);
  3857. /**
  3858. * @brief Correlation of Q15 sequences
  3859. * @param[in] *pSrcA points to the first input sequence.
  3860. * @param[in] srcALen length of the first input sequence.
  3861. * @param[in] *pSrcB points to the second input sequence.
  3862. * @param[in] srcBLen length of the second input sequence.
  3863. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3864. * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  3865. * @return none.
  3866. */
  3867. void arm_correlate_opt_q15(
  3868. q15_t * pSrcA,
  3869. uint32_t srcALen,
  3870. q15_t * pSrcB,
  3871. uint32_t srcBLen,
  3872. q15_t * pDst,
  3873. q15_t * pScratch);
  3874. /**
  3875. * @brief Correlation of Q15 sequences.
  3876. * @param[in] *pSrcA points to the first input sequence.
  3877. * @param[in] srcALen length of the first input sequence.
  3878. * @param[in] *pSrcB points to the second input sequence.
  3879. * @param[in] srcBLen length of the second input sequence.
  3880. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3881. * @return none.
  3882. */
  3883. void arm_correlate_q15(
  3884. q15_t * pSrcA,
  3885. uint32_t srcALen,
  3886. q15_t * pSrcB,
  3887. uint32_t srcBLen,
  3888. q15_t * pDst);
  3889. /**
  3890. * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
  3891. * @param[in] *pSrcA points to the first input sequence.
  3892. * @param[in] srcALen length of the first input sequence.
  3893. * @param[in] *pSrcB points to the second input sequence.
  3894. * @param[in] srcBLen length of the second input sequence.
  3895. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3896. * @return none.
  3897. */
  3898. void arm_correlate_fast_q15(
  3899. q15_t * pSrcA,
  3900. uint32_t srcALen,
  3901. q15_t * pSrcB,
  3902. uint32_t srcBLen,
  3903. q15_t * pDst);
  3904. /**
  3905. * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
  3906. * @param[in] *pSrcA points to the first input sequence.
  3907. * @param[in] srcALen length of the first input sequence.
  3908. * @param[in] *pSrcB points to the second input sequence.
  3909. * @param[in] srcBLen length of the second input sequence.
  3910. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3911. * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  3912. * @return none.
  3913. */
  3914. void arm_correlate_fast_opt_q15(
  3915. q15_t * pSrcA,
  3916. uint32_t srcALen,
  3917. q15_t * pSrcB,
  3918. uint32_t srcBLen,
  3919. q15_t * pDst,
  3920. q15_t * pScratch);
  3921. /**
  3922. * @brief Correlation of Q31 sequences.
  3923. * @param[in] *pSrcA points to the first input sequence.
  3924. * @param[in] srcALen length of the first input sequence.
  3925. * @param[in] *pSrcB points to the second input sequence.
  3926. * @param[in] srcBLen length of the second input sequence.
  3927. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3928. * @return none.
  3929. */
  3930. void arm_correlate_q31(
  3931. q31_t * pSrcA,
  3932. uint32_t srcALen,
  3933. q31_t * pSrcB,
  3934. uint32_t srcBLen,
  3935. q31_t * pDst);
  3936. /**
  3937. * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
  3938. * @param[in] *pSrcA points to the first input sequence.
  3939. * @param[in] srcALen length of the first input sequence.
  3940. * @param[in] *pSrcB points to the second input sequence.
  3941. * @param[in] srcBLen length of the second input sequence.
  3942. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3943. * @return none.
  3944. */
  3945. void arm_correlate_fast_q31(
  3946. q31_t * pSrcA,
  3947. uint32_t srcALen,
  3948. q31_t * pSrcB,
  3949. uint32_t srcBLen,
  3950. q31_t * pDst);
  3951. /**
  3952. * @brief Correlation of Q7 sequences.
  3953. * @param[in] *pSrcA points to the first input sequence.
  3954. * @param[in] srcALen length of the first input sequence.
  3955. * @param[in] *pSrcB points to the second input sequence.
  3956. * @param[in] srcBLen length of the second input sequence.
  3957. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3958. * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  3959. * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
  3960. * @return none.
  3961. */
  3962. void arm_correlate_opt_q7(
  3963. q7_t * pSrcA,
  3964. uint32_t srcALen,
  3965. q7_t * pSrcB,
  3966. uint32_t srcBLen,
  3967. q7_t * pDst,
  3968. q15_t * pScratch1,
  3969. q15_t * pScratch2);
  3970. /**
  3971. * @brief Correlation of Q7 sequences.
  3972. * @param[in] *pSrcA points to the first input sequence.
  3973. * @param[in] srcALen length of the first input sequence.
  3974. * @param[in] *pSrcB points to the second input sequence.
  3975. * @param[in] srcBLen length of the second input sequence.
  3976. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3977. * @return none.
  3978. */
  3979. void arm_correlate_q7(
  3980. q7_t * pSrcA,
  3981. uint32_t srcALen,
  3982. q7_t * pSrcB,
  3983. uint32_t srcBLen,
  3984. q7_t * pDst);
  3985. /**
  3986. * @brief Instance structure for the floating-point sparse FIR filter.
  3987. */
  3988. typedef struct
  3989. {
  3990. uint16_t numTaps; /**< number of coefficients in the filter. */
  3991. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  3992. float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  3993. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  3994. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  3995. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  3996. } arm_fir_sparse_instance_f32;
  3997. /**
  3998. * @brief Instance structure for the Q31 sparse FIR filter.
  3999. */
  4000. typedef struct
  4001. {
  4002. uint16_t numTaps; /**< number of coefficients in the filter. */
  4003. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  4004. q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  4005. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  4006. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  4007. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  4008. } arm_fir_sparse_instance_q31;
  4009. /**
  4010. * @brief Instance structure for the Q15 sparse FIR filter.
  4011. */
  4012. typedef struct
  4013. {
  4014. uint16_t numTaps; /**< number of coefficients in the filter. */
  4015. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  4016. q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  4017. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  4018. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  4019. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  4020. } arm_fir_sparse_instance_q15;
  4021. /**
  4022. * @brief Instance structure for the Q7 sparse FIR filter.
  4023. */
  4024. typedef struct
  4025. {
  4026. uint16_t numTaps; /**< number of coefficients in the filter. */
  4027. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  4028. q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  4029. q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  4030. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  4031. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  4032. } arm_fir_sparse_instance_q7;
  4033. /**
  4034. * @brief Processing function for the floating-point sparse FIR filter.
  4035. * @param[in] *S points to an instance of the floating-point sparse FIR structure.
  4036. * @param[in] *pSrc points to the block of input data.
  4037. * @param[out] *pDst points to the block of output data
  4038. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4039. * @param[in] blockSize number of input samples to process per call.
  4040. * @return none.
  4041. */
  4042. void arm_fir_sparse_f32(
  4043. arm_fir_sparse_instance_f32 * S,
  4044. float32_t * pSrc,
  4045. float32_t * pDst,
  4046. float32_t * pScratchIn,
  4047. uint32_t blockSize);
  4048. /**
  4049. * @brief Initialization function for the floating-point sparse FIR filter.
  4050. * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
  4051. * @param[in] numTaps number of nonzero coefficients in the filter.
  4052. * @param[in] *pCoeffs points to the array of filter coefficients.
  4053. * @param[in] *pState points to the state buffer.
  4054. * @param[in] *pTapDelay points to the array of offset times.
  4055. * @param[in] maxDelay maximum offset time supported.
  4056. * @param[in] blockSize number of samples that will be processed per block.
  4057. * @return none
  4058. */
  4059. void arm_fir_sparse_init_f32(
  4060. arm_fir_sparse_instance_f32 * S,
  4061. uint16_t numTaps,
  4062. float32_t * pCoeffs,
  4063. float32_t * pState,
  4064. int32_t * pTapDelay,
  4065. uint16_t maxDelay,
  4066. uint32_t blockSize);
  4067. /**
  4068. * @brief Processing function for the Q31 sparse FIR filter.
  4069. * @param[in] *S points to an instance of the Q31 sparse FIR structure.
  4070. * @param[in] *pSrc points to the block of input data.
  4071. * @param[out] *pDst points to the block of output data
  4072. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4073. * @param[in] blockSize number of input samples to process per call.
  4074. * @return none.
  4075. */
  4076. void arm_fir_sparse_q31(
  4077. arm_fir_sparse_instance_q31 * S,
  4078. q31_t * pSrc,
  4079. q31_t * pDst,
  4080. q31_t * pScratchIn,
  4081. uint32_t blockSize);
  4082. /**
  4083. * @brief Initialization function for the Q31 sparse FIR filter.
  4084. * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
  4085. * @param[in] numTaps number of nonzero coefficients in the filter.
  4086. * @param[in] *pCoeffs points to the array of filter coefficients.
  4087. * @param[in] *pState points to the state buffer.
  4088. * @param[in] *pTapDelay points to the array of offset times.
  4089. * @param[in] maxDelay maximum offset time supported.
  4090. * @param[in] blockSize number of samples that will be processed per block.
  4091. * @return none
  4092. */
  4093. void arm_fir_sparse_init_q31(
  4094. arm_fir_sparse_instance_q31 * S,
  4095. uint16_t numTaps,
  4096. q31_t * pCoeffs,
  4097. q31_t * pState,
  4098. int32_t * pTapDelay,
  4099. uint16_t maxDelay,
  4100. uint32_t blockSize);
  4101. /**
  4102. * @brief Processing function for the Q15 sparse FIR filter.
  4103. * @param[in] *S points to an instance of the Q15 sparse FIR structure.
  4104. * @param[in] *pSrc points to the block of input data.
  4105. * @param[out] *pDst points to the block of output data
  4106. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4107. * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
  4108. * @param[in] blockSize number of input samples to process per call.
  4109. * @return none.
  4110. */
  4111. void arm_fir_sparse_q15(
  4112. arm_fir_sparse_instance_q15 * S,
  4113. q15_t * pSrc,
  4114. q15_t * pDst,
  4115. q15_t * pScratchIn,
  4116. q31_t * pScratchOut,
  4117. uint32_t blockSize);
  4118. /**
  4119. * @brief Initialization function for the Q15 sparse FIR filter.
  4120. * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
  4121. * @param[in] numTaps number of nonzero coefficients in the filter.
  4122. * @param[in] *pCoeffs points to the array of filter coefficients.
  4123. * @param[in] *pState points to the state buffer.
  4124. * @param[in] *pTapDelay points to the array of offset times.
  4125. * @param[in] maxDelay maximum offset time supported.
  4126. * @param[in] blockSize number of samples that will be processed per block.
  4127. * @return none
  4128. */
  4129. void arm_fir_sparse_init_q15(
  4130. arm_fir_sparse_instance_q15 * S,
  4131. uint16_t numTaps,
  4132. q15_t * pCoeffs,
  4133. q15_t * pState,
  4134. int32_t * pTapDelay,
  4135. uint16_t maxDelay,
  4136. uint32_t blockSize);
  4137. /**
  4138. * @brief Processing function for the Q7 sparse FIR filter.
  4139. * @param[in] *S points to an instance of the Q7 sparse FIR structure.
  4140. * @param[in] *pSrc points to the block of input data.
  4141. * @param[out] *pDst points to the block of output data
  4142. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4143. * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
  4144. * @param[in] blockSize number of input samples to process per call.
  4145. * @return none.
  4146. */
  4147. void arm_fir_sparse_q7(
  4148. arm_fir_sparse_instance_q7 * S,
  4149. q7_t * pSrc,
  4150. q7_t * pDst,
  4151. q7_t * pScratchIn,
  4152. q31_t * pScratchOut,
  4153. uint32_t blockSize);
  4154. /**
  4155. * @brief Initialization function for the Q7 sparse FIR filter.
  4156. * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
  4157. * @param[in] numTaps number of nonzero coefficients in the filter.
  4158. * @param[in] *pCoeffs points to the array of filter coefficients.
  4159. * @param[in] *pState points to the state buffer.
  4160. * @param[in] *pTapDelay points to the array of offset times.
  4161. * @param[in] maxDelay maximum offset time supported.
  4162. * @param[in] blockSize number of samples that will be processed per block.
  4163. * @return none
  4164. */
  4165. void arm_fir_sparse_init_q7(
  4166. arm_fir_sparse_instance_q7 * S,
  4167. uint16_t numTaps,
  4168. q7_t * pCoeffs,
  4169. q7_t * pState,
  4170. int32_t * pTapDelay,
  4171. uint16_t maxDelay,
  4172. uint32_t blockSize);
  4173. /*
  4174. * @brief Floating-point sin_cos function.
  4175. * @param[in] theta input value in degrees
  4176. * @param[out] *pSinVal points to the processed sine output.
  4177. * @param[out] *pCosVal points to the processed cos output.
  4178. * @return none.
  4179. */
  4180. void arm_sin_cos_f32(
  4181. float32_t theta,
  4182. float32_t * pSinVal,
  4183. float32_t * pCcosVal);
  4184. /*
  4185. * @brief Q31 sin_cos function.
  4186. * @param[in] theta scaled input value in degrees
  4187. * @param[out] *pSinVal points to the processed sine output.
  4188. * @param[out] *pCosVal points to the processed cosine output.
  4189. * @return none.
  4190. */
  4191. void arm_sin_cos_q31(
  4192. q31_t theta,
  4193. q31_t * pSinVal,
  4194. q31_t * pCosVal);
  4195. /**
  4196. * @brief Floating-point complex conjugate.
  4197. * @param[in] *pSrc points to the input vector
  4198. * @param[out] *pDst points to the output vector
  4199. * @param[in] numSamples number of complex samples in each vector
  4200. * @return none.
  4201. */
  4202. void arm_cmplx_conj_f32(
  4203. float32_t * pSrc,
  4204. float32_t * pDst,
  4205. uint32_t numSamples);
  4206. /**
  4207. * @brief Q31 complex conjugate.
  4208. * @param[in] *pSrc points to the input vector
  4209. * @param[out] *pDst points to the output vector
  4210. * @param[in] numSamples number of complex samples in each vector
  4211. * @return none.
  4212. */
  4213. void arm_cmplx_conj_q31(
  4214. q31_t * pSrc,
  4215. q31_t * pDst,
  4216. uint32_t numSamples);
  4217. /**
  4218. * @brief Q15 complex conjugate.
  4219. * @param[in] *pSrc points to the input vector
  4220. * @param[out] *pDst points to the output vector
  4221. * @param[in] numSamples number of complex samples in each vector
  4222. * @return none.
  4223. */
  4224. void arm_cmplx_conj_q15(
  4225. q15_t * pSrc,
  4226. q15_t * pDst,
  4227. uint32_t numSamples);
  4228. /**
  4229. * @brief Floating-point complex magnitude squared
  4230. * @param[in] *pSrc points to the complex input vector
  4231. * @param[out] *pDst points to the real output vector
  4232. * @param[in] numSamples number of complex samples in the input vector
  4233. * @return none.
  4234. */
  4235. void arm_cmplx_mag_squared_f32(
  4236. float32_t * pSrc,
  4237. float32_t * pDst,
  4238. uint32_t numSamples);
  4239. /**
  4240. * @brief Q31 complex magnitude squared
  4241. * @param[in] *pSrc points to the complex input vector
  4242. * @param[out] *pDst points to the real output vector
  4243. * @param[in] numSamples number of complex samples in the input vector
  4244. * @return none.
  4245. */
  4246. void arm_cmplx_mag_squared_q31(
  4247. q31_t * pSrc,
  4248. q31_t * pDst,
  4249. uint32_t numSamples);
  4250. /**
  4251. * @brief Q15 complex magnitude squared
  4252. * @param[in] *pSrc points to the complex input vector
  4253. * @param[out] *pDst points to the real output vector
  4254. * @param[in] numSamples number of complex samples in the input vector
  4255. * @return none.
  4256. */
  4257. void arm_cmplx_mag_squared_q15(
  4258. q15_t * pSrc,
  4259. q15_t * pDst,
  4260. uint32_t numSamples);
  4261. /**
  4262. * @ingroup groupController
  4263. */
  4264. /**
  4265. * @defgroup PID PID Motor Control
  4266. *
  4267. * A Proportional Integral Derivative (PID) controller is a generic feedback control
  4268. * loop mechanism widely used in industrial control systems.
  4269. * A PID controller is the most commonly used type of feedback controller.
  4270. *
  4271. * This set of functions implements (PID) controllers
  4272. * for Q15, Q31, and floating-point data types. The functions operate on a single sample
  4273. * of data and each call to the function returns a single processed value.
  4274. * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
  4275. * is the input sample value. The functions return the output value.
  4276. *
  4277. * \par Algorithm:
  4278. * <pre>
  4279. * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
  4280. * A0 = Kp + Ki + Kd
  4281. * A1 = (-Kp ) - (2 * Kd )
  4282. * A2 = Kd </pre>
  4283. *
  4284. * \par
  4285. * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
  4286. *
  4287. * \par
  4288. * \image html PID.gif "Proportional Integral Derivative Controller"
  4289. *
  4290. * \par
  4291. * The PID controller calculates an "error" value as the difference between
  4292. * the measured output and the reference input.
  4293. * The controller attempts to minimize the error by adjusting the process control inputs.
  4294. * The proportional value determines the reaction to the current error,
  4295. * the integral value determines the reaction based on the sum of recent errors,
  4296. * and the derivative value determines the reaction based on the rate at which the error has been changing.
  4297. *
  4298. * \par Instance Structure
  4299. * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
  4300. * A separate instance structure must be defined for each PID Controller.
  4301. * There are separate instance structure declarations for each of the 3 supported data types.
  4302. *
  4303. * \par Reset Functions
  4304. * There is also an associated reset function for each data type which clears the state array.
  4305. *
  4306. * \par Initialization Functions
  4307. * There is also an associated initialization function for each data type.
  4308. * The initialization function performs the following operations:
  4309. * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
  4310. * - Zeros out the values in the state buffer.
  4311. *
  4312. * \par
  4313. * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
  4314. *
  4315. * \par Fixed-Point Behavior
  4316. * Care must be taken when using the fixed-point versions of the PID Controller functions.
  4317. * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
  4318. * Refer to the function specific documentation below for usage guidelines.
  4319. */
  4320. /**
  4321. * @addtogroup PID
  4322. * @{
  4323. */
  4324. /**
  4325. * @brief Process function for the floating-point PID Control.
  4326. * @param[in,out] *S is an instance of the floating-point PID Control structure
  4327. * @param[in] in input sample to process
  4328. * @return out processed output sample.
  4329. */
  4330. static __INLINE float32_t arm_pid_f32(
  4331. arm_pid_instance_f32 * S,
  4332. float32_t in)
  4333. {
  4334. float32_t out;
  4335. /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
  4336. out = (S->A0 * in) +
  4337. (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
  4338. /* Update state */
  4339. S->state[1] = S->state[0];
  4340. S->state[0] = in;
  4341. S->state[2] = out;
  4342. /* return to application */
  4343. return (out);
  4344. }
  4345. /**
  4346. * @brief Process function for the Q31 PID Control.
  4347. * @param[in,out] *S points to an instance of the Q31 PID Control structure
  4348. * @param[in] in input sample to process
  4349. * @return out processed output sample.
  4350. *
  4351. * <b>Scaling and Overflow Behavior:</b>
  4352. * \par
  4353. * The function is implemented using an internal 64-bit accumulator.
  4354. * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
  4355. * Thus, if the accumulator result overflows it wraps around rather than clip.
  4356. * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
  4357. * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
  4358. */
  4359. static __INLINE q31_t arm_pid_q31(
  4360. arm_pid_instance_q31 * S,
  4361. q31_t in)
  4362. {
  4363. q63_t acc;
  4364. q31_t out;
  4365. /* acc = A0 * x[n] */
  4366. acc = (q63_t) S->A0 * in;
  4367. /* acc += A1 * x[n-1] */
  4368. acc += (q63_t) S->A1 * S->state[0];
  4369. /* acc += A2 * x[n-2] */
  4370. acc += (q63_t) S->A2 * S->state[1];
  4371. /* convert output to 1.31 format to add y[n-1] */
  4372. out = (q31_t) (acc >> 31u);
  4373. /* out += y[n-1] */
  4374. out += S->state[2];
  4375. /* Update state */
  4376. S->state[1] = S->state[0];
  4377. S->state[0] = in;
  4378. S->state[2] = out;
  4379. /* return to application */
  4380. return (out);
  4381. }
  4382. /**
  4383. * @brief Process function for the Q15 PID Control.
  4384. * @param[in,out] *S points to an instance of the Q15 PID Control structure
  4385. * @param[in] in input sample to process
  4386. * @return out processed output sample.
  4387. *
  4388. * <b>Scaling and Overflow Behavior:</b>
  4389. * \par
  4390. * The function is implemented using a 64-bit internal accumulator.
  4391. * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
  4392. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
  4393. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
  4394. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
  4395. * Lastly, the accumulator is saturated to yield a result in 1.15 format.
  4396. */
  4397. static __INLINE q15_t arm_pid_q15(
  4398. arm_pid_instance_q15 * S,
  4399. q15_t in)
  4400. {
  4401. q63_t acc;
  4402. q15_t out;
  4403. #ifndef ARM_MATH_CM0_FAMILY
  4404. __SIMD32_TYPE *vstate;
  4405. /* Implementation of PID controller */
  4406. /* acc = A0 * x[n] */
  4407. acc = (q31_t) __SMUAD(S->A0, in);
  4408. /* acc += A1 * x[n-1] + A2 * x[n-2] */
  4409. vstate = __SIMD32_CONST(S->state);
  4410. acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
  4411. #else
  4412. /* acc = A0 * x[n] */
  4413. acc = ((q31_t) S->A0) * in;
  4414. /* acc += A1 * x[n-1] + A2 * x[n-2] */
  4415. acc += (q31_t) S->A1 * S->state[0];
  4416. acc += (q31_t) S->A2 * S->state[1];
  4417. #endif
  4418. /* acc += y[n-1] */
  4419. acc += (q31_t) S->state[2] << 15;
  4420. /* saturate the output */
  4421. out = (q15_t) (__SSAT((acc >> 15), 16));
  4422. /* Update state */
  4423. S->state[1] = S->state[0];
  4424. S->state[0] = in;
  4425. S->state[2] = out;
  4426. /* return to application */
  4427. return (out);
  4428. }
  4429. /**
  4430. * @} end of PID group
  4431. */
  4432. /**
  4433. * @brief Floating-point matrix inverse.
  4434. * @param[in] *src points to the instance of the input floating-point matrix structure.
  4435. * @param[out] *dst points to the instance of the output floating-point matrix structure.
  4436. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
  4437. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
  4438. */
  4439. arm_status arm_mat_inverse_f32(
  4440. const arm_matrix_instance_f32 * src,
  4441. arm_matrix_instance_f32 * dst);
  4442. /**
  4443. * @brief Floating-point matrix inverse.
  4444. * @param[in] *src points to the instance of the input floating-point matrix structure.
  4445. * @param[out] *dst points to the instance of the output floating-point matrix structure.
  4446. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
  4447. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
  4448. */
  4449. arm_status arm_mat_inverse_f64(
  4450. const arm_matrix_instance_f64 * src,
  4451. arm_matrix_instance_f64 * dst);
  4452. /**
  4453. * @ingroup groupController
  4454. */
  4455. /**
  4456. * @defgroup clarke Vector Clarke Transform
  4457. * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
  4458. * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
  4459. * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
  4460. * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
  4461. * \image html clarke.gif Stator current space vector and its components in (a,b).
  4462. * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
  4463. * can be calculated using only <code>Ia</code> and <code>Ib</code>.
  4464. *
  4465. * The function operates on a single sample of data and each call to the function returns the processed output.
  4466. * The library provides separate functions for Q31 and floating-point data types.
  4467. * \par Algorithm
  4468. * \image html clarkeFormula.gif
  4469. * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
  4470. * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
  4471. * \par Fixed-Point Behavior
  4472. * Care must be taken when using the Q31 version of the Clarke transform.
  4473. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4474. * Refer to the function specific documentation below for usage guidelines.
  4475. */
  4476. /**
  4477. * @addtogroup clarke
  4478. * @{
  4479. */
  4480. /**
  4481. *
  4482. * @brief Floating-point Clarke transform
  4483. * @param[in] Ia input three-phase coordinate <code>a</code>
  4484. * @param[in] Ib input three-phase coordinate <code>b</code>
  4485. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4486. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4487. * @return none.
  4488. */
  4489. static __INLINE void arm_clarke_f32(
  4490. float32_t Ia,
  4491. float32_t Ib,
  4492. float32_t * pIalpha,
  4493. float32_t * pIbeta)
  4494. {
  4495. /* Calculate pIalpha using the equation, pIalpha = Ia */
  4496. *pIalpha = Ia;
  4497. /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
  4498. *pIbeta =
  4499. ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
  4500. }
  4501. /**
  4502. * @brief Clarke transform for Q31 version
  4503. * @param[in] Ia input three-phase coordinate <code>a</code>
  4504. * @param[in] Ib input three-phase coordinate <code>b</code>
  4505. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4506. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4507. * @return none.
  4508. *
  4509. * <b>Scaling and Overflow Behavior:</b>
  4510. * \par
  4511. * The function is implemented using an internal 32-bit accumulator.
  4512. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4513. * There is saturation on the addition, hence there is no risk of overflow.
  4514. */
  4515. static __INLINE void arm_clarke_q31(
  4516. q31_t Ia,
  4517. q31_t Ib,
  4518. q31_t * pIalpha,
  4519. q31_t * pIbeta)
  4520. {
  4521. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4522. /* Calculating pIalpha from Ia by equation pIalpha = Ia */
  4523. *pIalpha = Ia;
  4524. /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
  4525. product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
  4526. /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
  4527. product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
  4528. /* pIbeta is calculated by adding the intermediate products */
  4529. *pIbeta = __QADD(product1, product2);
  4530. }
  4531. /**
  4532. * @} end of clarke group
  4533. */
  4534. /**
  4535. * @brief Converts the elements of the Q7 vector to Q31 vector.
  4536. * @param[in] *pSrc input pointer
  4537. * @param[out] *pDst output pointer
  4538. * @param[in] blockSize number of samples to process
  4539. * @return none.
  4540. */
  4541. void arm_q7_to_q31(
  4542. q7_t * pSrc,
  4543. q31_t * pDst,
  4544. uint32_t blockSize);
  4545. /**
  4546. * @ingroup groupController
  4547. */
  4548. /**
  4549. * @defgroup inv_clarke Vector Inverse Clarke Transform
  4550. * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
  4551. *
  4552. * The function operates on a single sample of data and each call to the function returns the processed output.
  4553. * The library provides separate functions for Q31 and floating-point data types.
  4554. * \par Algorithm
  4555. * \image html clarkeInvFormula.gif
  4556. * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
  4557. * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
  4558. * \par Fixed-Point Behavior
  4559. * Care must be taken when using the Q31 version of the Clarke transform.
  4560. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4561. * Refer to the function specific documentation below for usage guidelines.
  4562. */
  4563. /**
  4564. * @addtogroup inv_clarke
  4565. * @{
  4566. */
  4567. /**
  4568. * @brief Floating-point Inverse Clarke transform
  4569. * @param[in] Ialpha input two-phase orthogonal vector axis alpha
  4570. * @param[in] Ibeta input two-phase orthogonal vector axis beta
  4571. * @param[out] *pIa points to output three-phase coordinate <code>a</code>
  4572. * @param[out] *pIb points to output three-phase coordinate <code>b</code>
  4573. * @return none.
  4574. */
  4575. static __INLINE void arm_inv_clarke_f32(
  4576. float32_t Ialpha,
  4577. float32_t Ibeta,
  4578. float32_t * pIa,
  4579. float32_t * pIb)
  4580. {
  4581. /* Calculating pIa from Ialpha by equation pIa = Ialpha */
  4582. *pIa = Ialpha;
  4583. /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
  4584. *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
  4585. }
  4586. /**
  4587. * @brief Inverse Clarke transform for Q31 version
  4588. * @param[in] Ialpha input two-phase orthogonal vector axis alpha
  4589. * @param[in] Ibeta input two-phase orthogonal vector axis beta
  4590. * @param[out] *pIa points to output three-phase coordinate <code>a</code>
  4591. * @param[out] *pIb points to output three-phase coordinate <code>b</code>
  4592. * @return none.
  4593. *
  4594. * <b>Scaling and Overflow Behavior:</b>
  4595. * \par
  4596. * The function is implemented using an internal 32-bit accumulator.
  4597. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4598. * There is saturation on the subtraction, hence there is no risk of overflow.
  4599. */
  4600. static __INLINE void arm_inv_clarke_q31(
  4601. q31_t Ialpha,
  4602. q31_t Ibeta,
  4603. q31_t * pIa,
  4604. q31_t * pIb)
  4605. {
  4606. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4607. /* Calculating pIa from Ialpha by equation pIa = Ialpha */
  4608. *pIa = Ialpha;
  4609. /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
  4610. product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
  4611. /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
  4612. product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
  4613. /* pIb is calculated by subtracting the products */
  4614. *pIb = __QSUB(product2, product1);
  4615. }
  4616. /**
  4617. * @} end of inv_clarke group
  4618. */
  4619. /**
  4620. * @brief Converts the elements of the Q7 vector to Q15 vector.
  4621. * @param[in] *pSrc input pointer
  4622. * @param[out] *pDst output pointer
  4623. * @param[in] blockSize number of samples to process
  4624. * @return none.
  4625. */
  4626. void arm_q7_to_q15(
  4627. q7_t * pSrc,
  4628. q15_t * pDst,
  4629. uint32_t blockSize);
  4630. /**
  4631. * @ingroup groupController
  4632. */
  4633. /**
  4634. * @defgroup park Vector Park Transform
  4635. *
  4636. * Forward Park transform converts the input two-coordinate vector to flux and torque components.
  4637. * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
  4638. * from the stationary to the moving reference frame and control the spatial relationship between
  4639. * the stator vector current and rotor flux vector.
  4640. * If we consider the d axis aligned with the rotor flux, the diagram below shows the
  4641. * current vector and the relationship from the two reference frames:
  4642. * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
  4643. *
  4644. * The function operates on a single sample of data and each call to the function returns the processed output.
  4645. * The library provides separate functions for Q31 and floating-point data types.
  4646. * \par Algorithm
  4647. * \image html parkFormula.gif
  4648. * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
  4649. * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
  4650. * cosine and sine values of theta (rotor flux position).
  4651. * \par Fixed-Point Behavior
  4652. * Care must be taken when using the Q31 version of the Park transform.
  4653. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4654. * Refer to the function specific documentation below for usage guidelines.
  4655. */
  4656. /**
  4657. * @addtogroup park
  4658. * @{
  4659. */
  4660. /**
  4661. * @brief Floating-point Park transform
  4662. * @param[in] Ialpha input two-phase vector coordinate alpha
  4663. * @param[in] Ibeta input two-phase vector coordinate beta
  4664. * @param[out] *pId points to output rotor reference frame d
  4665. * @param[out] *pIq points to output rotor reference frame q
  4666. * @param[in] sinVal sine value of rotation angle theta
  4667. * @param[in] cosVal cosine value of rotation angle theta
  4668. * @return none.
  4669. *
  4670. * The function implements the forward Park transform.
  4671. *
  4672. */
  4673. static __INLINE void arm_park_f32(
  4674. float32_t Ialpha,
  4675. float32_t Ibeta,
  4676. float32_t * pId,
  4677. float32_t * pIq,
  4678. float32_t sinVal,
  4679. float32_t cosVal)
  4680. {
  4681. /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
  4682. *pId = Ialpha * cosVal + Ibeta * sinVal;
  4683. /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
  4684. *pIq = -Ialpha * sinVal + Ibeta * cosVal;
  4685. }
  4686. /**
  4687. * @brief Park transform for Q31 version
  4688. * @param[in] Ialpha input two-phase vector coordinate alpha
  4689. * @param[in] Ibeta input two-phase vector coordinate beta
  4690. * @param[out] *pId points to output rotor reference frame d
  4691. * @param[out] *pIq points to output rotor reference frame q
  4692. * @param[in] sinVal sine value of rotation angle theta
  4693. * @param[in] cosVal cosine value of rotation angle theta
  4694. * @return none.
  4695. *
  4696. * <b>Scaling and Overflow Behavior:</b>
  4697. * \par
  4698. * The function is implemented using an internal 32-bit accumulator.
  4699. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4700. * There is saturation on the addition and subtraction, hence there is no risk of overflow.
  4701. */
  4702. static __INLINE void arm_park_q31(
  4703. q31_t Ialpha,
  4704. q31_t Ibeta,
  4705. q31_t * pId,
  4706. q31_t * pIq,
  4707. q31_t sinVal,
  4708. q31_t cosVal)
  4709. {
  4710. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4711. q31_t product3, product4; /* Temporary variables used to store intermediate results */
  4712. /* Intermediate product is calculated by (Ialpha * cosVal) */
  4713. product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
  4714. /* Intermediate product is calculated by (Ibeta * sinVal) */
  4715. product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
  4716. /* Intermediate product is calculated by (Ialpha * sinVal) */
  4717. product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
  4718. /* Intermediate product is calculated by (Ibeta * cosVal) */
  4719. product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
  4720. /* Calculate pId by adding the two intermediate products 1 and 2 */
  4721. *pId = __QADD(product1, product2);
  4722. /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
  4723. *pIq = __QSUB(product4, product3);
  4724. }
  4725. /**
  4726. * @} end of park group
  4727. */
  4728. /**
  4729. * @brief Converts the elements of the Q7 vector to floating-point vector.
  4730. * @param[in] *pSrc is input pointer
  4731. * @param[out] *pDst is output pointer
  4732. * @param[in] blockSize is the number of samples to process
  4733. * @return none.
  4734. */
  4735. void arm_q7_to_float(
  4736. q7_t * pSrc,
  4737. float32_t * pDst,
  4738. uint32_t blockSize);
  4739. /**
  4740. * @ingroup groupController
  4741. */
  4742. /**
  4743. * @defgroup inv_park Vector Inverse Park transform
  4744. * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
  4745. *
  4746. * The function operates on a single sample of data and each call to the function returns the processed output.
  4747. * The library provides separate functions for Q31 and floating-point data types.
  4748. * \par Algorithm
  4749. * \image html parkInvFormula.gif
  4750. * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
  4751. * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
  4752. * cosine and sine values of theta (rotor flux position).
  4753. * \par Fixed-Point Behavior
  4754. * Care must be taken when using the Q31 version of the Park transform.
  4755. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4756. * Refer to the function specific documentation below for usage guidelines.
  4757. */
  4758. /**
  4759. * @addtogroup inv_park
  4760. * @{
  4761. */
  4762. /**
  4763. * @brief Floating-point Inverse Park transform
  4764. * @param[in] Id input coordinate of rotor reference frame d
  4765. * @param[in] Iq input coordinate of rotor reference frame q
  4766. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4767. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4768. * @param[in] sinVal sine value of rotation angle theta
  4769. * @param[in] cosVal cosine value of rotation angle theta
  4770. * @return none.
  4771. */
  4772. static __INLINE void arm_inv_park_f32(
  4773. float32_t Id,
  4774. float32_t Iq,
  4775. float32_t * pIalpha,
  4776. float32_t * pIbeta,
  4777. float32_t sinVal,
  4778. float32_t cosVal)
  4779. {
  4780. /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
  4781. *pIalpha = Id * cosVal - Iq * sinVal;
  4782. /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
  4783. *pIbeta = Id * sinVal + Iq * cosVal;
  4784. }
  4785. /**
  4786. * @brief Inverse Park transform for Q31 version
  4787. * @param[in] Id input coordinate of rotor reference frame d
  4788. * @param[in] Iq input coordinate of rotor reference frame q
  4789. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4790. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4791. * @param[in] sinVal sine value of rotation angle theta
  4792. * @param[in] cosVal cosine value of rotation angle theta
  4793. * @return none.
  4794. *
  4795. * <b>Scaling and Overflow Behavior:</b>
  4796. * \par
  4797. * The function is implemented using an internal 32-bit accumulator.
  4798. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4799. * There is saturation on the addition, hence there is no risk of overflow.
  4800. */
  4801. static __INLINE void arm_inv_park_q31(
  4802. q31_t Id,
  4803. q31_t Iq,
  4804. q31_t * pIalpha,
  4805. q31_t * pIbeta,
  4806. q31_t sinVal,
  4807. q31_t cosVal)
  4808. {
  4809. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4810. q31_t product3, product4; /* Temporary variables used to store intermediate results */
  4811. /* Intermediate product is calculated by (Id * cosVal) */
  4812. product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
  4813. /* Intermediate product is calculated by (Iq * sinVal) */
  4814. product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
  4815. /* Intermediate product is calculated by (Id * sinVal) */
  4816. product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
  4817. /* Intermediate product is calculated by (Iq * cosVal) */
  4818. product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
  4819. /* Calculate pIalpha by using the two intermediate products 1 and 2 */
  4820. *pIalpha = __QSUB(product1, product2);
  4821. /* Calculate pIbeta by using the two intermediate products 3 and 4 */
  4822. *pIbeta = __QADD(product4, product3);
  4823. }
  4824. /**
  4825. * @} end of Inverse park group
  4826. */
  4827. /**
  4828. * @brief Converts the elements of the Q31 vector to floating-point vector.
  4829. * @param[in] *pSrc is input pointer
  4830. * @param[out] *pDst is output pointer
  4831. * @param[in] blockSize is the number of samples to process
  4832. * @return none.
  4833. */
  4834. void arm_q31_to_float(
  4835. q31_t * pSrc,
  4836. float32_t * pDst,
  4837. uint32_t blockSize);
  4838. /**
  4839. * @ingroup groupInterpolation
  4840. */
  4841. /**
  4842. * @defgroup LinearInterpolate Linear Interpolation
  4843. *
  4844. * Linear interpolation is a method of curve fitting using linear polynomials.
  4845. * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
  4846. *
  4847. * \par
  4848. * \image html LinearInterp.gif "Linear interpolation"
  4849. *
  4850. * \par
  4851. * A Linear Interpolate function calculates an output value(y), for the input(x)
  4852. * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
  4853. *
  4854. * \par Algorithm:
  4855. * <pre>
  4856. * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
  4857. * where x0, x1 are nearest values of input x
  4858. * y0, y1 are nearest values to output y
  4859. * </pre>
  4860. *
  4861. * \par
  4862. * This set of functions implements Linear interpolation process
  4863. * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
  4864. * sample of data and each call to the function returns a single processed value.
  4865. * <code>S</code> points to an instance of the Linear Interpolate function data structure.
  4866. * <code>x</code> is the input sample value. The functions returns the output value.
  4867. *
  4868. * \par
  4869. * if x is outside of the table boundary, Linear interpolation returns first value of the table
  4870. * if x is below input range and returns last value of table if x is above range.
  4871. */
  4872. /**
  4873. * @addtogroup LinearInterpolate
  4874. * @{
  4875. */
  4876. /**
  4877. * @brief Process function for the floating-point Linear Interpolation Function.
  4878. * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
  4879. * @param[in] x input sample to process
  4880. * @return y processed output sample.
  4881. *
  4882. */
  4883. static __INLINE float32_t arm_linear_interp_f32(
  4884. arm_linear_interp_instance_f32 * S,
  4885. float32_t x)
  4886. {
  4887. float32_t y;
  4888. float32_t x0, x1; /* Nearest input values */
  4889. float32_t y0, y1; /* Nearest output values */
  4890. float32_t xSpacing = S->xSpacing; /* spacing between input values */
  4891. int32_t i; /* Index variable */
  4892. float32_t *pYData = S->pYData; /* pointer to output table */
  4893. /* Calculation of index */
  4894. i = (int32_t) ((x - S->x1) / xSpacing);
  4895. if(i < 0)
  4896. {
  4897. /* Iniatilize output for below specified range as least output value of table */
  4898. y = pYData[0];
  4899. }
  4900. else if((uint32_t)i >= S->nValues)
  4901. {
  4902. /* Iniatilize output for above specified range as last output value of table */
  4903. y = pYData[S->nValues - 1];
  4904. }
  4905. else
  4906. {
  4907. /* Calculation of nearest input values */
  4908. x0 = S->x1 + i * xSpacing;
  4909. x1 = S->x1 + (i + 1) * xSpacing;
  4910. /* Read of nearest output values */
  4911. y0 = pYData[i];
  4912. y1 = pYData[i + 1];
  4913. /* Calculation of output */
  4914. y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
  4915. }
  4916. /* returns output value */
  4917. return (y);
  4918. }
  4919. /**
  4920. *
  4921. * @brief Process function for the Q31 Linear Interpolation Function.
  4922. * @param[in] *pYData pointer to Q31 Linear Interpolation table
  4923. * @param[in] x input sample to process
  4924. * @param[in] nValues number of table values
  4925. * @return y processed output sample.
  4926. *
  4927. * \par
  4928. * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
  4929. * This function can support maximum of table size 2^12.
  4930. *
  4931. */
  4932. static __INLINE q31_t arm_linear_interp_q31(
  4933. q31_t * pYData,
  4934. q31_t x,
  4935. uint32_t nValues)
  4936. {
  4937. q31_t y; /* output */
  4938. q31_t y0, y1; /* Nearest output values */
  4939. q31_t fract; /* fractional part */
  4940. int32_t index; /* Index to read nearest output values */
  4941. /* Input is in 12.20 format */
  4942. /* 12 bits for the table index */
  4943. /* Index value calculation */
  4944. index = ((x & 0xFFF00000) >> 20);
  4945. if(index >= (int32_t)(nValues - 1))
  4946. {
  4947. return (pYData[nValues - 1]);
  4948. }
  4949. else if(index < 0)
  4950. {
  4951. return (pYData[0]);
  4952. }
  4953. else
  4954. {
  4955. /* 20 bits for the fractional part */
  4956. /* shift left by 11 to keep fract in 1.31 format */
  4957. fract = (x & 0x000FFFFF) << 11;
  4958. /* Read two nearest output values from the index in 1.31(q31) format */
  4959. y0 = pYData[index];
  4960. y1 = pYData[index + 1u];
  4961. /* Calculation of y0 * (1-fract) and y is in 2.30 format */
  4962. y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
  4963. /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
  4964. y += ((q31_t) (((q63_t) y1 * fract) >> 32));
  4965. /* Convert y to 1.31 format */
  4966. return (y << 1u);
  4967. }
  4968. }
  4969. /**
  4970. *
  4971. * @brief Process function for the Q15 Linear Interpolation Function.
  4972. * @param[in] *pYData pointer to Q15 Linear Interpolation table
  4973. * @param[in] x input sample to process
  4974. * @param[in] nValues number of table values
  4975. * @return y processed output sample.
  4976. *
  4977. * \par
  4978. * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
  4979. * This function can support maximum of table size 2^12.
  4980. *
  4981. */
  4982. static __INLINE q15_t arm_linear_interp_q15(
  4983. q15_t * pYData,
  4984. q31_t x,
  4985. uint32_t nValues)
  4986. {
  4987. q63_t y; /* output */
  4988. q15_t y0, y1; /* Nearest output values */
  4989. q31_t fract; /* fractional part */
  4990. int32_t index; /* Index to read nearest output values */
  4991. /* Input is in 12.20 format */
  4992. /* 12 bits for the table index */
  4993. /* Index value calculation */
  4994. index = ((x & 0xFFF00000) >> 20u);
  4995. if(index >= (int32_t)(nValues - 1))
  4996. {
  4997. return (pYData[nValues - 1]);
  4998. }
  4999. else if(index < 0)
  5000. {
  5001. return (pYData[0]);
  5002. }
  5003. else
  5004. {
  5005. /* 20 bits for the fractional part */
  5006. /* fract is in 12.20 format */
  5007. fract = (x & 0x000FFFFF);
  5008. /* Read two nearest output values from the index */
  5009. y0 = pYData[index];
  5010. y1 = pYData[index + 1u];
  5011. /* Calculation of y0 * (1-fract) and y is in 13.35 format */
  5012. y = ((q63_t) y0 * (0xFFFFF - fract));
  5013. /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
  5014. y += ((q63_t) y1 * (fract));
  5015. /* convert y to 1.15 format */
  5016. return (y >> 20);
  5017. }
  5018. }
  5019. /**
  5020. *
  5021. * @brief Process function for the Q7 Linear Interpolation Function.
  5022. * @param[in] *pYData pointer to Q7 Linear Interpolation table
  5023. * @param[in] x input sample to process
  5024. * @param[in] nValues number of table values
  5025. * @return y processed output sample.
  5026. *
  5027. * \par
  5028. * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
  5029. * This function can support maximum of table size 2^12.
  5030. */
  5031. static __INLINE q7_t arm_linear_interp_q7(
  5032. q7_t * pYData,
  5033. q31_t x,
  5034. uint32_t nValues)
  5035. {
  5036. q31_t y; /* output */
  5037. q7_t y0, y1; /* Nearest output values */
  5038. q31_t fract; /* fractional part */
  5039. uint32_t index; /* Index to read nearest output values */
  5040. /* Input is in 12.20 format */
  5041. /* 12 bits for the table index */
  5042. /* Index value calculation */
  5043. if (x < 0)
  5044. {
  5045. return (pYData[0]);
  5046. }
  5047. index = (x >> 20) & 0xfff;
  5048. if(index >= (nValues - 1))
  5049. {
  5050. return (pYData[nValues - 1]);
  5051. }
  5052. else
  5053. {
  5054. /* 20 bits for the fractional part */
  5055. /* fract is in 12.20 format */
  5056. fract = (x & 0x000FFFFF);
  5057. /* Read two nearest output values from the index and are in 1.7(q7) format */
  5058. y0 = pYData[index];
  5059. y1 = pYData[index + 1u];
  5060. /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
  5061. y = ((y0 * (0xFFFFF - fract)));
  5062. /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
  5063. y += (y1 * fract);
  5064. /* convert y to 1.7(q7) format */
  5065. return (y >> 20u);
  5066. }
  5067. }
  5068. /**
  5069. * @} end of LinearInterpolate group
  5070. */
  5071. /**
  5072. * @brief Fast approximation to the trigonometric sine function for floating-point data.
  5073. * @param[in] x input value in radians.
  5074. * @return sin(x).
  5075. */
  5076. float32_t arm_sin_f32(
  5077. float32_t x);
  5078. /**
  5079. * @brief Fast approximation to the trigonometric sine function for Q31 data.
  5080. * @param[in] x Scaled input value in radians.
  5081. * @return sin(x).
  5082. */
  5083. q31_t arm_sin_q31(
  5084. q31_t x);
  5085. /**
  5086. * @brief Fast approximation to the trigonometric sine function for Q15 data.
  5087. * @param[in] x Scaled input value in radians.
  5088. * @return sin(x).
  5089. */
  5090. q15_t arm_sin_q15(
  5091. q15_t x);
  5092. /**
  5093. * @brief Fast approximation to the trigonometric cosine function for floating-point data.
  5094. * @param[in] x input value in radians.
  5095. * @return cos(x).
  5096. */
  5097. float32_t arm_cos_f32(
  5098. float32_t x);
  5099. /**
  5100. * @brief Fast approximation to the trigonometric cosine function for Q31 data.
  5101. * @param[in] x Scaled input value in radians.
  5102. * @return cos(x).
  5103. */
  5104. q31_t arm_cos_q31(
  5105. q31_t x);
  5106. /**
  5107. * @brief Fast approximation to the trigonometric cosine function for Q15 data.
  5108. * @param[in] x Scaled input value in radians.
  5109. * @return cos(x).
  5110. */
  5111. q15_t arm_cos_q15(
  5112. q15_t x);
  5113. /**
  5114. * @ingroup groupFastMath
  5115. */
  5116. /**
  5117. * @defgroup SQRT Square Root
  5118. *
  5119. * Computes the square root of a number.
  5120. * There are separate functions for Q15, Q31, and floating-point data types.
  5121. * The square root function is computed using the Newton-Raphson algorithm.
  5122. * This is an iterative algorithm of the form:
  5123. * <pre>
  5124. * x1 = x0 - f(x0)/f'(x0)
  5125. * </pre>
  5126. * where <code>x1</code> is the current estimate,
  5127. * <code>x0</code> is the previous estimate, and
  5128. * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
  5129. * For the square root function, the algorithm reduces to:
  5130. * <pre>
  5131. * x0 = in/2 [initial guess]
  5132. * x1 = 1/2 * ( x0 + in / x0) [each iteration]
  5133. * </pre>
  5134. */
  5135. /**
  5136. * @addtogroup SQRT
  5137. * @{
  5138. */
  5139. /**
  5140. * @brief Floating-point square root function.
  5141. * @param[in] in input value.
  5142. * @param[out] *pOut square root of input value.
  5143. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
  5144. * <code>in</code> is negative value and returns zero output for negative values.
  5145. */
  5146. static __INLINE arm_status arm_sqrt_f32(
  5147. float32_t in,
  5148. float32_t * pOut)
  5149. {
  5150. if(in >= 0.0f)
  5151. {
  5152. // #if __FPU_USED
  5153. #if (__FPU_USED == 1) && defined ( __CC_ARM )
  5154. *pOut = __sqrtf(in);
  5155. #else
  5156. *pOut = sqrtf(in);
  5157. #endif
  5158. return (ARM_MATH_SUCCESS);
  5159. }
  5160. else
  5161. {
  5162. *pOut = 0.0f;
  5163. return (ARM_MATH_ARGUMENT_ERROR);
  5164. }
  5165. }
  5166. /**
  5167. * @brief Q31 square root function.
  5168. * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
  5169. * @param[out] *pOut square root of input value.
  5170. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
  5171. * <code>in</code> is negative value and returns zero output for negative values.
  5172. */
  5173. arm_status arm_sqrt_q31(
  5174. q31_t in,
  5175. q31_t * pOut);
  5176. /**
  5177. * @brief Q15 square root function.
  5178. * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
  5179. * @param[out] *pOut square root of input value.
  5180. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
  5181. * <code>in</code> is negative value and returns zero output for negative values.
  5182. */
  5183. arm_status arm_sqrt_q15(
  5184. q15_t in,
  5185. q15_t * pOut);
  5186. /**
  5187. * @} end of SQRT group
  5188. */
  5189. /**
  5190. * @brief floating-point Circular write function.
  5191. */
  5192. static __INLINE void arm_circularWrite_f32(
  5193. int32_t * circBuffer,
  5194. int32_t L,
  5195. uint16_t * writeOffset,
  5196. int32_t bufferInc,
  5197. const int32_t * src,
  5198. int32_t srcInc,
  5199. uint32_t blockSize)
  5200. {
  5201. uint32_t i = 0u;
  5202. int32_t wOffset;
  5203. /* Copy the value of Index pointer that points
  5204. * to the current location where the input samples to be copied */
  5205. wOffset = *writeOffset;
  5206. /* Loop over the blockSize */
  5207. i = blockSize;
  5208. while(i > 0u)
  5209. {
  5210. /* copy the input sample to the circular buffer */
  5211. circBuffer[wOffset] = *src;
  5212. /* Update the input pointer */
  5213. src += srcInc;
  5214. /* Circularly update wOffset. Watch out for positive and negative value */
  5215. wOffset += bufferInc;
  5216. if(wOffset >= L)
  5217. wOffset -= L;
  5218. /* Decrement the loop counter */
  5219. i--;
  5220. }
  5221. /* Update the index pointer */
  5222. *writeOffset = wOffset;
  5223. }
  5224. /**
  5225. * @brief floating-point Circular Read function.
  5226. */
  5227. static __INLINE void arm_circularRead_f32(
  5228. int32_t * circBuffer,
  5229. int32_t L,
  5230. int32_t * readOffset,
  5231. int32_t bufferInc,
  5232. int32_t * dst,
  5233. int32_t * dst_base,
  5234. int32_t dst_length,
  5235. int32_t dstInc,
  5236. uint32_t blockSize)
  5237. {
  5238. uint32_t i = 0u;
  5239. int32_t rOffset, dst_end;
  5240. /* Copy the value of Index pointer that points
  5241. * to the current location from where the input samples to be read */
  5242. rOffset = *readOffset;
  5243. dst_end = (int32_t) (dst_base + dst_length);
  5244. /* Loop over the blockSize */
  5245. i = blockSize;
  5246. while(i > 0u)
  5247. {
  5248. /* copy the sample from the circular buffer to the destination buffer */
  5249. *dst = circBuffer[rOffset];
  5250. /* Update the input pointer */
  5251. dst += dstInc;
  5252. if(dst == (int32_t *) dst_end)
  5253. {
  5254. dst = dst_base;
  5255. }
  5256. /* Circularly update rOffset. Watch out for positive and negative value */
  5257. rOffset += bufferInc;
  5258. if(rOffset >= L)
  5259. {
  5260. rOffset -= L;
  5261. }
  5262. /* Decrement the loop counter */
  5263. i--;
  5264. }
  5265. /* Update the index pointer */
  5266. *readOffset = rOffset;
  5267. }
  5268. /**
  5269. * @brief Q15 Circular write function.
  5270. */
  5271. static __INLINE void arm_circularWrite_q15(
  5272. q15_t * circBuffer,
  5273. int32_t L,
  5274. uint16_t * writeOffset,
  5275. int32_t bufferInc,
  5276. const q15_t * src,
  5277. int32_t srcInc,
  5278. uint32_t blockSize)
  5279. {
  5280. uint32_t i = 0u;
  5281. int32_t wOffset;
  5282. /* Copy the value of Index pointer that points
  5283. * to the current location where the input samples to be copied */
  5284. wOffset = *writeOffset;
  5285. /* Loop over the blockSize */
  5286. i = blockSize;
  5287. while(i > 0u)
  5288. {
  5289. /* copy the input sample to the circular buffer */
  5290. circBuffer[wOffset] = *src;
  5291. /* Update the input pointer */
  5292. src += srcInc;
  5293. /* Circularly update wOffset. Watch out for positive and negative value */
  5294. wOffset += bufferInc;
  5295. if(wOffset >= L)
  5296. wOffset -= L;
  5297. /* Decrement the loop counter */
  5298. i--;
  5299. }
  5300. /* Update the index pointer */
  5301. *writeOffset = wOffset;
  5302. }
  5303. /**
  5304. * @brief Q15 Circular Read function.
  5305. */
  5306. static __INLINE void arm_circularRead_q15(
  5307. q15_t * circBuffer,
  5308. int32_t L,
  5309. int32_t * readOffset,
  5310. int32_t bufferInc,
  5311. q15_t * dst,
  5312. q15_t * dst_base,
  5313. int32_t dst_length,
  5314. int32_t dstInc,
  5315. uint32_t blockSize)
  5316. {
  5317. uint32_t i = 0;
  5318. int32_t rOffset, dst_end;
  5319. /* Copy the value of Index pointer that points
  5320. * to the current location from where the input samples to be read */
  5321. rOffset = *readOffset;
  5322. dst_end = (int32_t) (dst_base + dst_length);
  5323. /* Loop over the blockSize */
  5324. i = blockSize;
  5325. while(i > 0u)
  5326. {
  5327. /* copy the sample from the circular buffer to the destination buffer */
  5328. *dst = circBuffer[rOffset];
  5329. /* Update the input pointer */
  5330. dst += dstInc;
  5331. if(dst == (q15_t *) dst_end)
  5332. {
  5333. dst = dst_base;
  5334. }
  5335. /* Circularly update wOffset. Watch out for positive and negative value */
  5336. rOffset += bufferInc;
  5337. if(rOffset >= L)
  5338. {
  5339. rOffset -= L;
  5340. }
  5341. /* Decrement the loop counter */
  5342. i--;
  5343. }
  5344. /* Update the index pointer */
  5345. *readOffset = rOffset;
  5346. }
  5347. /**
  5348. * @brief Q7 Circular write function.
  5349. */
  5350. static __INLINE void arm_circularWrite_q7(
  5351. q7_t * circBuffer,
  5352. int32_t L,
  5353. uint16_t * writeOffset,
  5354. int32_t bufferInc,
  5355. const q7_t * src,
  5356. int32_t srcInc,
  5357. uint32_t blockSize)
  5358. {
  5359. uint32_t i = 0u;
  5360. int32_t wOffset;
  5361. /* Copy the value of Index pointer that points
  5362. * to the current location where the input samples to be copied */
  5363. wOffset = *writeOffset;
  5364. /* Loop over the blockSize */
  5365. i = blockSize;
  5366. while(i > 0u)
  5367. {
  5368. /* copy the input sample to the circular buffer */
  5369. circBuffer[wOffset] = *src;
  5370. /* Update the input pointer */
  5371. src += srcInc;
  5372. /* Circularly update wOffset. Watch out for positive and negative value */
  5373. wOffset += bufferInc;
  5374. if(wOffset >= L)
  5375. wOffset -= L;
  5376. /* Decrement the loop counter */
  5377. i--;
  5378. }
  5379. /* Update the index pointer */
  5380. *writeOffset = wOffset;
  5381. }
  5382. /**
  5383. * @brief Q7 Circular Read function.
  5384. */
  5385. static __INLINE void arm_circularRead_q7(
  5386. q7_t * circBuffer,
  5387. int32_t L,
  5388. int32_t * readOffset,
  5389. int32_t bufferInc,
  5390. q7_t * dst,
  5391. q7_t * dst_base,
  5392. int32_t dst_length,
  5393. int32_t dstInc,
  5394. uint32_t blockSize)
  5395. {
  5396. uint32_t i = 0;
  5397. int32_t rOffset, dst_end;
  5398. /* Copy the value of Index pointer that points
  5399. * to the current location from where the input samples to be read */
  5400. rOffset = *readOffset;
  5401. dst_end = (int32_t) (dst_base + dst_length);
  5402. /* Loop over the blockSize */
  5403. i = blockSize;
  5404. while(i > 0u)
  5405. {
  5406. /* copy the sample from the circular buffer to the destination buffer */
  5407. *dst = circBuffer[rOffset];
  5408. /* Update the input pointer */
  5409. dst += dstInc;
  5410. if(dst == (q7_t *) dst_end)
  5411. {
  5412. dst = dst_base;
  5413. }
  5414. /* Circularly update rOffset. Watch out for positive and negative value */
  5415. rOffset += bufferInc;
  5416. if(rOffset >= L)
  5417. {
  5418. rOffset -= L;
  5419. }
  5420. /* Decrement the loop counter */
  5421. i--;
  5422. }
  5423. /* Update the index pointer */
  5424. *readOffset = rOffset;
  5425. }
  5426. /**
  5427. * @brief Sum of the squares of the elements of a Q31 vector.
  5428. * @param[in] *pSrc is input pointer
  5429. * @param[in] blockSize is the number of samples to process
  5430. * @param[out] *pResult is output value.
  5431. * @return none.
  5432. */
  5433. void arm_power_q31(
  5434. q31_t * pSrc,
  5435. uint32_t blockSize,
  5436. q63_t * pResult);
  5437. /**
  5438. * @brief Sum of the squares of the elements of a floating-point vector.
  5439. * @param[in] *pSrc is input pointer
  5440. * @param[in] blockSize is the number of samples to process
  5441. * @param[out] *pResult is output value.
  5442. * @return none.
  5443. */
  5444. void arm_power_f32(
  5445. float32_t * pSrc,
  5446. uint32_t blockSize,
  5447. float32_t * pResult);
  5448. /**
  5449. * @brief Sum of the squares of the elements of a Q15 vector.
  5450. * @param[in] *pSrc is input pointer
  5451. * @param[in] blockSize is the number of samples to process
  5452. * @param[out] *pResult is output value.
  5453. * @return none.
  5454. */
  5455. void arm_power_q15(
  5456. q15_t * pSrc,
  5457. uint32_t blockSize,
  5458. q63_t * pResult);
  5459. /**
  5460. * @brief Sum of the squares of the elements of a Q7 vector.
  5461. * @param[in] *pSrc is input pointer
  5462. * @param[in] blockSize is the number of samples to process
  5463. * @param[out] *pResult is output value.
  5464. * @return none.
  5465. */
  5466. void arm_power_q7(
  5467. q7_t * pSrc,
  5468. uint32_t blockSize,
  5469. q31_t * pResult);
  5470. /**
  5471. * @brief Mean value of a Q7 vector.
  5472. * @param[in] *pSrc is input pointer
  5473. * @param[in] blockSize is the number of samples to process
  5474. * @param[out] *pResult is output value.
  5475. * @return none.
  5476. */
  5477. void arm_mean_q7(
  5478. q7_t * pSrc,
  5479. uint32_t blockSize,
  5480. q7_t * pResult);
  5481. /**
  5482. * @brief Mean value of a Q15 vector.
  5483. * @param[in] *pSrc is input pointer
  5484. * @param[in] blockSize is the number of samples to process
  5485. * @param[out] *pResult is output value.
  5486. * @return none.
  5487. */
  5488. void arm_mean_q15(
  5489. q15_t * pSrc,
  5490. uint32_t blockSize,
  5491. q15_t * pResult);
  5492. /**
  5493. * @brief Mean value of a Q31 vector.
  5494. * @param[in] *pSrc is input pointer
  5495. * @param[in] blockSize is the number of samples to process
  5496. * @param[out] *pResult is output value.
  5497. * @return none.
  5498. */
  5499. void arm_mean_q31(
  5500. q31_t * pSrc,
  5501. uint32_t blockSize,
  5502. q31_t * pResult);
  5503. /**
  5504. * @brief Mean value of a floating-point vector.
  5505. * @param[in] *pSrc is input pointer
  5506. * @param[in] blockSize is the number of samples to process
  5507. * @param[out] *pResult is output value.
  5508. * @return none.
  5509. */
  5510. void arm_mean_f32(
  5511. float32_t * pSrc,
  5512. uint32_t blockSize,
  5513. float32_t * pResult);
  5514. /**
  5515. * @brief Variance of the elements of a floating-point vector.
  5516. * @param[in] *pSrc is input pointer
  5517. * @param[in] blockSize is the number of samples to process
  5518. * @param[out] *pResult is output value.
  5519. * @return none.
  5520. */
  5521. void arm_var_f32(
  5522. float32_t * pSrc,
  5523. uint32_t blockSize,
  5524. float32_t * pResult);
  5525. /**
  5526. * @brief Variance of the elements of a Q31 vector.
  5527. * @param[in] *pSrc is input pointer
  5528. * @param[in] blockSize is the number of samples to process
  5529. * @param[out] *pResult is output value.
  5530. * @return none.
  5531. */
  5532. void arm_var_q31(
  5533. q31_t * pSrc,
  5534. uint32_t blockSize,
  5535. q31_t * pResult);
  5536. /**
  5537. * @brief Variance of the elements of a Q15 vector.
  5538. * @param[in] *pSrc is input pointer
  5539. * @param[in] blockSize is the number of samples to process
  5540. * @param[out] *pResult is output value.
  5541. * @return none.
  5542. */
  5543. void arm_var_q15(
  5544. q15_t * pSrc,
  5545. uint32_t blockSize,
  5546. q15_t * pResult);
  5547. /**
  5548. * @brief Root Mean Square of the elements of a floating-point vector.
  5549. * @param[in] *pSrc is input pointer
  5550. * @param[in] blockSize is the number of samples to process
  5551. * @param[out] *pResult is output value.
  5552. * @return none.
  5553. */
  5554. void arm_rms_f32(
  5555. float32_t * pSrc,
  5556. uint32_t blockSize,
  5557. float32_t * pResult);
  5558. /**
  5559. * @brief Root Mean Square of the elements of a Q31 vector.
  5560. * @param[in] *pSrc is input pointer
  5561. * @param[in] blockSize is the number of samples to process
  5562. * @param[out] *pResult is output value.
  5563. * @return none.
  5564. */
  5565. void arm_rms_q31(
  5566. q31_t * pSrc,
  5567. uint32_t blockSize,
  5568. q31_t * pResult);
  5569. /**
  5570. * @brief Root Mean Square of the elements of a Q15 vector.
  5571. * @param[in] *pSrc is input pointer
  5572. * @param[in] blockSize is the number of samples to process
  5573. * @param[out] *pResult is output value.
  5574. * @return none.
  5575. */
  5576. void arm_rms_q15(
  5577. q15_t * pSrc,
  5578. uint32_t blockSize,
  5579. q15_t * pResult);
  5580. /**
  5581. * @brief Standard deviation of the elements of a floating-point vector.
  5582. * @param[in] *pSrc is input pointer
  5583. * @param[in] blockSize is the number of samples to process
  5584. * @param[out] *pResult is output value.
  5585. * @return none.
  5586. */
  5587. void arm_std_f32(
  5588. float32_t * pSrc,
  5589. uint32_t blockSize,
  5590. float32_t * pResult);
  5591. /**
  5592. * @brief Standard deviation of the elements of a Q31 vector.
  5593. * @param[in] *pSrc is input pointer
  5594. * @param[in] blockSize is the number of samples to process
  5595. * @param[out] *pResult is output value.
  5596. * @return none.
  5597. */
  5598. void arm_std_q31(
  5599. q31_t * pSrc,
  5600. uint32_t blockSize,
  5601. q31_t * pResult);
  5602. /**
  5603. * @brief Standard deviation of the elements of a Q15 vector.
  5604. * @param[in] *pSrc is input pointer
  5605. * @param[in] blockSize is the number of samples to process
  5606. * @param[out] *pResult is output value.
  5607. * @return none.
  5608. */
  5609. void arm_std_q15(
  5610. q15_t * pSrc,
  5611. uint32_t blockSize,
  5612. q15_t * pResult);
  5613. /**
  5614. * @brief Floating-point complex magnitude
  5615. * @param[in] *pSrc points to the complex input vector
  5616. * @param[out] *pDst points to the real output vector
  5617. * @param[in] numSamples number of complex samples in the input vector
  5618. * @return none.
  5619. */
  5620. void arm_cmplx_mag_f32(
  5621. float32_t * pSrc,
  5622. float32_t * pDst,
  5623. uint32_t numSamples);
  5624. /**
  5625. * @brief Q31 complex magnitude
  5626. * @param[in] *pSrc points to the complex input vector
  5627. * @param[out] *pDst points to the real output vector
  5628. * @param[in] numSamples number of complex samples in the input vector
  5629. * @return none.
  5630. */
  5631. void arm_cmplx_mag_q31(
  5632. q31_t * pSrc,
  5633. q31_t * pDst,
  5634. uint32_t numSamples);
  5635. /**
  5636. * @brief Q15 complex magnitude
  5637. * @param[in] *pSrc points to the complex input vector
  5638. * @param[out] *pDst points to the real output vector
  5639. * @param[in] numSamples number of complex samples in the input vector
  5640. * @return none.
  5641. */
  5642. void arm_cmplx_mag_q15(
  5643. q15_t * pSrc,
  5644. q15_t * pDst,
  5645. uint32_t numSamples);
  5646. /**
  5647. * @brief Q15 complex dot product
  5648. * @param[in] *pSrcA points to the first input vector
  5649. * @param[in] *pSrcB points to the second input vector
  5650. * @param[in] numSamples number of complex samples in each vector
  5651. * @param[out] *realResult real part of the result returned here
  5652. * @param[out] *imagResult imaginary part of the result returned here
  5653. * @return none.
  5654. */
  5655. void arm_cmplx_dot_prod_q15(
  5656. q15_t * pSrcA,
  5657. q15_t * pSrcB,
  5658. uint32_t numSamples,
  5659. q31_t * realResult,
  5660. q31_t * imagResult);
  5661. /**
  5662. * @brief Q31 complex dot product
  5663. * @param[in] *pSrcA points to the first input vector
  5664. * @param[in] *pSrcB points to the second input vector
  5665. * @param[in] numSamples number of complex samples in each vector
  5666. * @param[out] *realResult real part of the result returned here
  5667. * @param[out] *imagResult imaginary part of the result returned here
  5668. * @return none.
  5669. */
  5670. void arm_cmplx_dot_prod_q31(
  5671. q31_t * pSrcA,
  5672. q31_t * pSrcB,
  5673. uint32_t numSamples,
  5674. q63_t * realResult,
  5675. q63_t * imagResult);
  5676. /**
  5677. * @brief Floating-point complex dot product
  5678. * @param[in] *pSrcA points to the first input vector
  5679. * @param[in] *pSrcB points to the second input vector
  5680. * @param[in] numSamples number of complex samples in each vector
  5681. * @param[out] *realResult real part of the result returned here
  5682. * @param[out] *imagResult imaginary part of the result returned here
  5683. * @return none.
  5684. */
  5685. void arm_cmplx_dot_prod_f32(
  5686. float32_t * pSrcA,
  5687. float32_t * pSrcB,
  5688. uint32_t numSamples,
  5689. float32_t * realResult,
  5690. float32_t * imagResult);
  5691. /**
  5692. * @brief Q15 complex-by-real multiplication
  5693. * @param[in] *pSrcCmplx points to the complex input vector
  5694. * @param[in] *pSrcReal points to the real input vector
  5695. * @param[out] *pCmplxDst points to the complex output vector
  5696. * @param[in] numSamples number of samples in each vector
  5697. * @return none.
  5698. */
  5699. void arm_cmplx_mult_real_q15(
  5700. q15_t * pSrcCmplx,
  5701. q15_t * pSrcReal,
  5702. q15_t * pCmplxDst,
  5703. uint32_t numSamples);
  5704. /**
  5705. * @brief Q31 complex-by-real multiplication
  5706. * @param[in] *pSrcCmplx points to the complex input vector
  5707. * @param[in] *pSrcReal points to the real input vector
  5708. * @param[out] *pCmplxDst points to the complex output vector
  5709. * @param[in] numSamples number of samples in each vector
  5710. * @return none.
  5711. */
  5712. void arm_cmplx_mult_real_q31(
  5713. q31_t * pSrcCmplx,
  5714. q31_t * pSrcReal,
  5715. q31_t * pCmplxDst,
  5716. uint32_t numSamples);
  5717. /**
  5718. * @brief Floating-point complex-by-real multiplication
  5719. * @param[in] *pSrcCmplx points to the complex input vector
  5720. * @param[in] *pSrcReal points to the real input vector
  5721. * @param[out] *pCmplxDst points to the complex output vector
  5722. * @param[in] numSamples number of samples in each vector
  5723. * @return none.
  5724. */
  5725. void arm_cmplx_mult_real_f32(
  5726. float32_t * pSrcCmplx,
  5727. float32_t * pSrcReal,
  5728. float32_t * pCmplxDst,
  5729. uint32_t numSamples);
  5730. /**
  5731. * @brief Minimum value of a Q7 vector.
  5732. * @param[in] *pSrc is input pointer
  5733. * @param[in] blockSize is the number of samples to process
  5734. * @param[out] *result is output pointer
  5735. * @param[in] index is the array index of the minimum value in the input buffer.
  5736. * @return none.
  5737. */
  5738. void arm_min_q7(
  5739. q7_t * pSrc,
  5740. uint32_t blockSize,
  5741. q7_t * result,
  5742. uint32_t * index);
  5743. /**
  5744. * @brief Minimum value of a Q15 vector.
  5745. * @param[in] *pSrc is input pointer
  5746. * @param[in] blockSize is the number of samples to process
  5747. * @param[out] *pResult is output pointer
  5748. * @param[in] *pIndex is the array index of the minimum value in the input buffer.
  5749. * @return none.
  5750. */
  5751. void arm_min_q15(
  5752. q15_t * pSrc,
  5753. uint32_t blockSize,
  5754. q15_t * pResult,
  5755. uint32_t * pIndex);
  5756. /**
  5757. * @brief Minimum value of a Q31 vector.
  5758. * @param[in] *pSrc is input pointer
  5759. * @param[in] blockSize is the number of samples to process
  5760. * @param[out] *pResult is output pointer
  5761. * @param[out] *pIndex is the array index of the minimum value in the input buffer.
  5762. * @return none.
  5763. */
  5764. void arm_min_q31(
  5765. q31_t * pSrc,
  5766. uint32_t blockSize,
  5767. q31_t * pResult,
  5768. uint32_t * pIndex);
  5769. /**
  5770. * @brief Minimum value of a floating-point vector.
  5771. * @param[in] *pSrc is input pointer
  5772. * @param[in] blockSize is the number of samples to process
  5773. * @param[out] *pResult is output pointer
  5774. * @param[out] *pIndex is the array index of the minimum value in the input buffer.
  5775. * @return none.
  5776. */
  5777. void arm_min_f32(
  5778. float32_t * pSrc,
  5779. uint32_t blockSize,
  5780. float32_t * pResult,
  5781. uint32_t * pIndex);
  5782. /**
  5783. * @brief Maximum value of a Q7 vector.
  5784. * @param[in] *pSrc points to the input buffer
  5785. * @param[in] blockSize length of the input vector
  5786. * @param[out] *pResult maximum value returned here
  5787. * @param[out] *pIndex index of maximum value returned here
  5788. * @return none.
  5789. */
  5790. void arm_max_q7(
  5791. q7_t * pSrc,
  5792. uint32_t blockSize,
  5793. q7_t * pResult,
  5794. uint32_t * pIndex);
  5795. /**
  5796. * @brief Maximum value of a Q15 vector.
  5797. * @param[in] *pSrc points to the input buffer
  5798. * @param[in] blockSize length of the input vector
  5799. * @param[out] *pResult maximum value returned here
  5800. * @param[out] *pIndex index of maximum value returned here
  5801. * @return none.
  5802. */
  5803. void arm_max_q15(
  5804. q15_t * pSrc,
  5805. uint32_t blockSize,
  5806. q15_t * pResult,
  5807. uint32_t * pIndex);
  5808. /**
  5809. * @brief Maximum value of a Q31 vector.
  5810. * @param[in] *pSrc points to the input buffer
  5811. * @param[in] blockSize length of the input vector
  5812. * @param[out] *pResult maximum value returned here
  5813. * @param[out] *pIndex index of maximum value returned here
  5814. * @return none.
  5815. */
  5816. void arm_max_q31(
  5817. q31_t * pSrc,
  5818. uint32_t blockSize,
  5819. q31_t * pResult,
  5820. uint32_t * pIndex);
  5821. /**
  5822. * @brief Maximum value of a floating-point vector.
  5823. * @param[in] *pSrc points to the input buffer
  5824. * @param[in] blockSize length of the input vector
  5825. * @param[out] *pResult maximum value returned here
  5826. * @param[out] *pIndex index of maximum value returned here
  5827. * @return none.
  5828. */
  5829. void arm_max_f32(
  5830. float32_t * pSrc,
  5831. uint32_t blockSize,
  5832. float32_t * pResult,
  5833. uint32_t * pIndex);
  5834. /**
  5835. * @brief Q15 complex-by-complex multiplication
  5836. * @param[in] *pSrcA points to the first input vector
  5837. * @param[in] *pSrcB points to the second input vector
  5838. * @param[out] *pDst points to the output vector
  5839. * @param[in] numSamples number of complex samples in each vector
  5840. * @return none.
  5841. */
  5842. void arm_cmplx_mult_cmplx_q15(
  5843. q15_t * pSrcA,
  5844. q15_t * pSrcB,
  5845. q15_t * pDst,
  5846. uint32_t numSamples);
  5847. /**
  5848. * @brief Q31 complex-by-complex multiplication
  5849. * @param[in] *pSrcA points to the first input vector
  5850. * @param[in] *pSrcB points to the second input vector
  5851. * @param[out] *pDst points to the output vector
  5852. * @param[in] numSamples number of complex samples in each vector
  5853. * @return none.
  5854. */
  5855. void arm_cmplx_mult_cmplx_q31(
  5856. q31_t * pSrcA,
  5857. q31_t * pSrcB,
  5858. q31_t * pDst,
  5859. uint32_t numSamples);
  5860. /**
  5861. * @brief Floating-point complex-by-complex multiplication
  5862. * @param[in] *pSrcA points to the first input vector
  5863. * @param[in] *pSrcB points to the second input vector
  5864. * @param[out] *pDst points to the output vector
  5865. * @param[in] numSamples number of complex samples in each vector
  5866. * @return none.
  5867. */
  5868. void arm_cmplx_mult_cmplx_f32(
  5869. float32_t * pSrcA,
  5870. float32_t * pSrcB,
  5871. float32_t * pDst,
  5872. uint32_t numSamples);
  5873. /**
  5874. * @brief Converts the elements of the floating-point vector to Q31 vector.
  5875. * @param[in] *pSrc points to the floating-point input vector
  5876. * @param[out] *pDst points to the Q31 output vector
  5877. * @param[in] blockSize length of the input vector
  5878. * @return none.
  5879. */
  5880. void arm_float_to_q31(
  5881. float32_t * pSrc,
  5882. q31_t * pDst,
  5883. uint32_t blockSize);
  5884. /**
  5885. * @brief Converts the elements of the floating-point vector to Q15 vector.
  5886. * @param[in] *pSrc points to the floating-point input vector
  5887. * @param[out] *pDst points to the Q15 output vector
  5888. * @param[in] blockSize length of the input vector
  5889. * @return none
  5890. */
  5891. void arm_float_to_q15(
  5892. float32_t * pSrc,
  5893. q15_t * pDst,
  5894. uint32_t blockSize);
  5895. /**
  5896. * @brief Converts the elements of the floating-point vector to Q7 vector.
  5897. * @param[in] *pSrc points to the floating-point input vector
  5898. * @param[out] *pDst points to the Q7 output vector
  5899. * @param[in] blockSize length of the input vector
  5900. * @return none
  5901. */
  5902. void arm_float_to_q7(
  5903. float32_t * pSrc,
  5904. q7_t * pDst,
  5905. uint32_t blockSize);
  5906. /**
  5907. * @brief Converts the elements of the Q31 vector to Q15 vector.
  5908. * @param[in] *pSrc is input pointer
  5909. * @param[out] *pDst is output pointer
  5910. * @param[in] blockSize is the number of samples to process
  5911. * @return none.
  5912. */
  5913. void arm_q31_to_q15(
  5914. q31_t * pSrc,
  5915. q15_t * pDst,
  5916. uint32_t blockSize);
  5917. /**
  5918. * @brief Converts the elements of the Q31 vector to Q7 vector.
  5919. * @param[in] *pSrc is input pointer
  5920. * @param[out] *pDst is output pointer
  5921. * @param[in] blockSize is the number of samples to process
  5922. * @return none.
  5923. */
  5924. void arm_q31_to_q7(
  5925. q31_t * pSrc,
  5926. q7_t * pDst,
  5927. uint32_t blockSize);
  5928. /**
  5929. * @brief Converts the elements of the Q15 vector to floating-point vector.
  5930. * @param[in] *pSrc is input pointer
  5931. * @param[out] *pDst is output pointer
  5932. * @param[in] blockSize is the number of samples to process
  5933. * @return none.
  5934. */
  5935. void arm_q15_to_float(
  5936. q15_t * pSrc,
  5937. float32_t * pDst,
  5938. uint32_t blockSize);
  5939. /**
  5940. * @brief Converts the elements of the Q15 vector to Q31 vector.
  5941. * @param[in] *pSrc is input pointer
  5942. * @param[out] *pDst is output pointer
  5943. * @param[in] blockSize is the number of samples to process
  5944. * @return none.
  5945. */
  5946. void arm_q15_to_q31(
  5947. q15_t * pSrc,
  5948. q31_t * pDst,
  5949. uint32_t blockSize);
  5950. /**
  5951. * @brief Converts the elements of the Q15 vector to Q7 vector.
  5952. * @param[in] *pSrc is input pointer
  5953. * @param[out] *pDst is output pointer
  5954. * @param[in] blockSize is the number of samples to process
  5955. * @return none.
  5956. */
  5957. void arm_q15_to_q7(
  5958. q15_t * pSrc,
  5959. q7_t * pDst,
  5960. uint32_t blockSize);
  5961. /**
  5962. * @ingroup groupInterpolation
  5963. */
  5964. /**
  5965. * @defgroup BilinearInterpolate Bilinear Interpolation
  5966. *
  5967. * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
  5968. * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
  5969. * determines values between the grid points.
  5970. * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
  5971. * Bilinear interpolation is often used in image processing to rescale images.
  5972. * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
  5973. *
  5974. * <b>Algorithm</b>
  5975. * \par
  5976. * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
  5977. * For floating-point, the instance structure is defined as:
  5978. * <pre>
  5979. * typedef struct
  5980. * {
  5981. * uint16_t numRows;
  5982. * uint16_t numCols;
  5983. * float32_t *pData;
  5984. * } arm_bilinear_interp_instance_f32;
  5985. * </pre>
  5986. *
  5987. * \par
  5988. * where <code>numRows</code> specifies the number of rows in the table;
  5989. * <code>numCols</code> specifies the number of columns in the table;
  5990. * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
  5991. * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
  5992. * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
  5993. *
  5994. * \par
  5995. * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
  5996. * <pre>
  5997. * XF = floor(x)
  5998. * YF = floor(y)
  5999. * </pre>
  6000. * \par
  6001. * The interpolated output point is computed as:
  6002. * <pre>
  6003. * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
  6004. * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
  6005. * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
  6006. * + f(XF+1, YF+1) * (x-XF)*(y-YF)
  6007. * </pre>
  6008. * Note that the coordinates (x, y) contain integer and fractional components.
  6009. * The integer components specify which portion of the table to use while the
  6010. * fractional components control the interpolation processor.
  6011. *
  6012. * \par
  6013. * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
  6014. */
  6015. /**
  6016. * @addtogroup BilinearInterpolate
  6017. * @{
  6018. */
  6019. /**
  6020. *
  6021. * @brief Floating-point bilinear interpolation.
  6022. * @param[in,out] *S points to an instance of the interpolation structure.
  6023. * @param[in] X interpolation coordinate.
  6024. * @param[in] Y interpolation coordinate.
  6025. * @return out interpolated value.
  6026. */
  6027. static __INLINE float32_t arm_bilinear_interp_f32(
  6028. const arm_bilinear_interp_instance_f32 * S,
  6029. float32_t X,
  6030. float32_t Y)
  6031. {
  6032. float32_t out;
  6033. float32_t f00, f01, f10, f11;
  6034. float32_t *pData = S->pData;
  6035. int32_t xIndex, yIndex, index;
  6036. float32_t xdiff, ydiff;
  6037. float32_t b1, b2, b3, b4;
  6038. xIndex = (int32_t) X;
  6039. yIndex = (int32_t) Y;
  6040. /* Care taken for table outside boundary */
  6041. /* Returns zero output when values are outside table boundary */
  6042. if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
  6043. || yIndex > (S->numCols - 1))
  6044. {
  6045. return (0);
  6046. }
  6047. /* Calculation of index for two nearest points in X-direction */
  6048. index = (xIndex - 1) + (yIndex - 1) * S->numCols;
  6049. /* Read two nearest points in X-direction */
  6050. f00 = pData[index];
  6051. f01 = pData[index + 1];
  6052. /* Calculation of index for two nearest points in Y-direction */
  6053. index = (xIndex - 1) + (yIndex) * S->numCols;
  6054. /* Read two nearest points in Y-direction */
  6055. f10 = pData[index];
  6056. f11 = pData[index + 1];
  6057. /* Calculation of intermediate values */
  6058. b1 = f00;
  6059. b2 = f01 - f00;
  6060. b3 = f10 - f00;
  6061. b4 = f00 - f01 - f10 + f11;
  6062. /* Calculation of fractional part in X */
  6063. xdiff = X - xIndex;
  6064. /* Calculation of fractional part in Y */
  6065. ydiff = Y - yIndex;
  6066. /* Calculation of bi-linear interpolated output */
  6067. out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
  6068. /* return to application */
  6069. return (out);
  6070. }
  6071. /**
  6072. *
  6073. * @brief Q31 bilinear interpolation.
  6074. * @param[in,out] *S points to an instance of the interpolation structure.
  6075. * @param[in] X interpolation coordinate in 12.20 format.
  6076. * @param[in] Y interpolation coordinate in 12.20 format.
  6077. * @return out interpolated value.
  6078. */
  6079. static __INLINE q31_t arm_bilinear_interp_q31(
  6080. arm_bilinear_interp_instance_q31 * S,
  6081. q31_t X,
  6082. q31_t Y)
  6083. {
  6084. q31_t out; /* Temporary output */
  6085. q31_t acc = 0; /* output */
  6086. q31_t xfract, yfract; /* X, Y fractional parts */
  6087. q31_t x1, x2, y1, y2; /* Nearest output values */
  6088. int32_t rI, cI; /* Row and column indices */
  6089. q31_t *pYData = S->pData; /* pointer to output table values */
  6090. uint32_t nCols = S->numCols; /* num of rows */
  6091. /* Input is in 12.20 format */
  6092. /* 12 bits for the table index */
  6093. /* Index value calculation */
  6094. rI = ((X & 0xFFF00000) >> 20u);
  6095. /* Input is in 12.20 format */
  6096. /* 12 bits for the table index */
  6097. /* Index value calculation */
  6098. cI = ((Y & 0xFFF00000) >> 20u);
  6099. /* Care taken for table outside boundary */
  6100. /* Returns zero output when values are outside table boundary */
  6101. if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
  6102. {
  6103. return (0);
  6104. }
  6105. /* 20 bits for the fractional part */
  6106. /* shift left xfract by 11 to keep 1.31 format */
  6107. xfract = (X & 0x000FFFFF) << 11u;
  6108. /* Read two nearest output values from the index */
  6109. x1 = pYData[(rI) + nCols * (cI)];
  6110. x2 = pYData[(rI) + nCols * (cI) + 1u];
  6111. /* 20 bits for the fractional part */
  6112. /* shift left yfract by 11 to keep 1.31 format */
  6113. yfract = (Y & 0x000FFFFF) << 11u;
  6114. /* Read two nearest output values from the index */
  6115. y1 = pYData[(rI) + nCols * (cI + 1)];
  6116. y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
  6117. /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
  6118. out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
  6119. acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
  6120. /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
  6121. out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
  6122. acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
  6123. /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
  6124. out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
  6125. acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
  6126. /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
  6127. out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
  6128. acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
  6129. /* Convert acc to 1.31(q31) format */
  6130. return (acc << 2u);
  6131. }
  6132. /**
  6133. * @brief Q15 bilinear interpolation.
  6134. * @param[in,out] *S points to an instance of the interpolation structure.
  6135. * @param[in] X interpolation coordinate in 12.20 format.
  6136. * @param[in] Y interpolation coordinate in 12.20 format.
  6137. * @return out interpolated value.
  6138. */
  6139. static __INLINE q15_t arm_bilinear_interp_q15(
  6140. arm_bilinear_interp_instance_q15 * S,
  6141. q31_t X,
  6142. q31_t Y)
  6143. {
  6144. q63_t acc = 0; /* output */
  6145. q31_t out; /* Temporary output */
  6146. q15_t x1, x2, y1, y2; /* Nearest output values */
  6147. q31_t xfract, yfract; /* X, Y fractional parts */
  6148. int32_t rI, cI; /* Row and column indices */
  6149. q15_t *pYData = S->pData; /* pointer to output table values */
  6150. uint32_t nCols = S->numCols; /* num of rows */
  6151. /* Input is in 12.20 format */
  6152. /* 12 bits for the table index */
  6153. /* Index value calculation */
  6154. rI = ((X & 0xFFF00000) >> 20);
  6155. /* Input is in 12.20 format */
  6156. /* 12 bits for the table index */
  6157. /* Index value calculation */
  6158. cI = ((Y & 0xFFF00000) >> 20);
  6159. /* Care taken for table outside boundary */
  6160. /* Returns zero output when values are outside table boundary */
  6161. if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
  6162. {
  6163. return (0);
  6164. }
  6165. /* 20 bits for the fractional part */
  6166. /* xfract should be in 12.20 format */
  6167. xfract = (X & 0x000FFFFF);
  6168. /* Read two nearest output values from the index */
  6169. x1 = pYData[(rI) + nCols * (cI)];
  6170. x2 = pYData[(rI) + nCols * (cI) + 1u];
  6171. /* 20 bits for the fractional part */
  6172. /* yfract should be in 12.20 format */
  6173. yfract = (Y & 0x000FFFFF);
  6174. /* Read two nearest output values from the index */
  6175. y1 = pYData[(rI) + nCols * (cI + 1)];
  6176. y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
  6177. /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
  6178. /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
  6179. /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
  6180. out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
  6181. acc = ((q63_t) out * (0xFFFFF - yfract));
  6182. /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
  6183. out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
  6184. acc += ((q63_t) out * (xfract));
  6185. /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
  6186. out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
  6187. acc += ((q63_t) out * (yfract));
  6188. /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
  6189. out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
  6190. acc += ((q63_t) out * (yfract));
  6191. /* acc is in 13.51 format and down shift acc by 36 times */
  6192. /* Convert out to 1.15 format */
  6193. return (acc >> 36);
  6194. }
  6195. /**
  6196. * @brief Q7 bilinear interpolation.
  6197. * @param[in,out] *S points to an instance of the interpolation structure.
  6198. * @param[in] X interpolation coordinate in 12.20 format.
  6199. * @param[in] Y interpolation coordinate in 12.20 format.
  6200. * @return out interpolated value.
  6201. */
  6202. static __INLINE q7_t arm_bilinear_interp_q7(
  6203. arm_bilinear_interp_instance_q7 * S,
  6204. q31_t X,
  6205. q31_t Y)
  6206. {
  6207. q63_t acc = 0; /* output */
  6208. q31_t out; /* Temporary output */
  6209. q31_t xfract, yfract; /* X, Y fractional parts */
  6210. q7_t x1, x2, y1, y2; /* Nearest output values */
  6211. int32_t rI, cI; /* Row and column indices */
  6212. q7_t *pYData = S->pData; /* pointer to output table values */
  6213. uint32_t nCols = S->numCols; /* num of rows */
  6214. /* Input is in 12.20 format */
  6215. /* 12 bits for the table index */
  6216. /* Index value calculation */
  6217. rI = ((X & 0xFFF00000) >> 20);
  6218. /* Input is in 12.20 format */
  6219. /* 12 bits for the table index */
  6220. /* Index value calculation */
  6221. cI = ((Y & 0xFFF00000) >> 20);
  6222. /* Care taken for table outside boundary */
  6223. /* Returns zero output when values are outside table boundary */
  6224. if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
  6225. {
  6226. return (0);
  6227. }
  6228. /* 20 bits for the fractional part */
  6229. /* xfract should be in 12.20 format */
  6230. xfract = (X & 0x000FFFFF);
  6231. /* Read two nearest output values from the index */
  6232. x1 = pYData[(rI) + nCols * (cI)];
  6233. x2 = pYData[(rI) + nCols * (cI) + 1u];
  6234. /* 20 bits for the fractional part */
  6235. /* yfract should be in 12.20 format */
  6236. yfract = (Y & 0x000FFFFF);
  6237. /* Read two nearest output values from the index */
  6238. y1 = pYData[(rI) + nCols * (cI + 1)];
  6239. y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
  6240. /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
  6241. out = ((x1 * (0xFFFFF - xfract)));
  6242. acc = (((q63_t) out * (0xFFFFF - yfract)));
  6243. /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
  6244. out = ((x2 * (0xFFFFF - yfract)));
  6245. acc += (((q63_t) out * (xfract)));
  6246. /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
  6247. out = ((y1 * (0xFFFFF - xfract)));
  6248. acc += (((q63_t) out * (yfract)));
  6249. /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
  6250. out = ((y2 * (yfract)));
  6251. acc += (((q63_t) out * (xfract)));
  6252. /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
  6253. return (acc >> 40);
  6254. }
  6255. /**
  6256. * @} end of BilinearInterpolate group
  6257. */
  6258. //SMMLAR
  6259. #define multAcc_32x32_keep32_R(a, x, y) \
  6260. a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
  6261. //SMMLSR
  6262. #define multSub_32x32_keep32_R(a, x, y) \
  6263. a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
  6264. //SMMULR
  6265. #define mult_32x32_keep32_R(a, x, y) \
  6266. a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
  6267. //SMMLA
  6268. #define multAcc_32x32_keep32(a, x, y) \
  6269. a += (q31_t) (((q63_t) x * y) >> 32)
  6270. //SMMLS
  6271. #define multSub_32x32_keep32(a, x, y) \
  6272. a -= (q31_t) (((q63_t) x * y) >> 32)
  6273. //SMMUL
  6274. #define mult_32x32_keep32(a, x, y) \
  6275. a = (q31_t) (((q63_t) x * y ) >> 32)
  6276. #if defined ( __CC_ARM ) //Keil
  6277. //Enter low optimization region - place directly above function definition
  6278. #ifdef ARM_MATH_CM4
  6279. #define LOW_OPTIMIZATION_ENTER \
  6280. _Pragma ("push") \
  6281. _Pragma ("O1")
  6282. #else
  6283. #define LOW_OPTIMIZATION_ENTER
  6284. #endif
  6285. //Exit low optimization region - place directly after end of function definition
  6286. #ifdef ARM_MATH_CM4
  6287. #define LOW_OPTIMIZATION_EXIT \
  6288. _Pragma ("pop")
  6289. #else
  6290. #define LOW_OPTIMIZATION_EXIT
  6291. #endif
  6292. //Enter low optimization region - place directly above function definition
  6293. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6294. //Exit low optimization region - place directly after end of function definition
  6295. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6296. #elif defined(__ICCARM__) //IAR
  6297. //Enter low optimization region - place directly above function definition
  6298. #ifdef ARM_MATH_CM4
  6299. #define LOW_OPTIMIZATION_ENTER \
  6300. _Pragma ("optimize=low")
  6301. #else
  6302. #define LOW_OPTIMIZATION_ENTER
  6303. #endif
  6304. //Exit low optimization region - place directly after end of function definition
  6305. #define LOW_OPTIMIZATION_EXIT
  6306. //Enter low optimization region - place directly above function definition
  6307. #ifdef ARM_MATH_CM4
  6308. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
  6309. _Pragma ("optimize=low")
  6310. #else
  6311. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6312. #endif
  6313. //Exit low optimization region - place directly after end of function definition
  6314. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6315. #elif defined(__GNUC__)
  6316. #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
  6317. #define LOW_OPTIMIZATION_EXIT
  6318. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6319. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6320. #elif defined(__CSMC__) // Cosmic
  6321. #define LOW_OPTIMIZATION_ENTER
  6322. #define LOW_OPTIMIZATION_EXIT
  6323. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6324. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6325. #elif defined(__TASKING__) // TASKING
  6326. #define LOW_OPTIMIZATION_ENTER
  6327. #define LOW_OPTIMIZATION_EXIT
  6328. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6329. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6330. #endif
  6331. #ifdef __cplusplus
  6332. }
  6333. #endif
  6334. #endif /* _ARM_MATH_H */
  6335. /**
  6336. *
  6337. * End of file.
  6338. */