Naze32 clone with Frysky receiver
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

frsky_arduino_rx_complete.ino 22KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * Frsky RX 2-way
  3. * By Midelic
  4. * on RCGroups
  5. * an adaptation from Kyrre Aalerud(Kreature)
  6. * 2012 Frsky rx demo code
  7. * http://www.rcgroups.com/forums/showthread.php?t=1667453
  8. * Thanks also to Phracturedblue and his deviation firmware
  9. **********************************
  10. */
  11. #include <avr/interrupt.h>
  12. #include <EEPROM.h>
  13. #include "iface_cc2500.h"
  14. //#define DEBUG
  15. //#define DEBUG_RSSI
  16. //#define DEBUG0
  17. //#define DEBUG1
  18. //#define DEBUG2
  19. //#define DEBUG3
  20. //#define DEBUG4
  21. //#define DEBUG5
  22. //#define RSSI_OVER_PPM 7
  23. #define FAILSAFE
  24. #define SPIBB
  25. //#define SPIHW
  26. #if defined SPIHW
  27. #include <SPI.h>
  28. #endif
  29. // Used for RSSI_OVER_PPM
  30. int rssi;
  31. const int rssi_offset = 71;
  32. const int rssi_min = -103;
  33. const int rssi_max = -96;
  34. #define chanel_number 8 //set the number of chanels
  35. #define SEEK_CHANSKIP 13
  36. #define MAX_MISSING_PKT 20
  37. #define FAILSAFE_MISSING_PKT 170
  38. #define PPM_FrLen 22500
  39. #define PPM_PulseLen 300
  40. #define default_servo_value 1500
  41. #define onState 0 //set polarity of the pulses: 1 is positive, 0 is negative
  42. #define sigPin 10
  43. #if defined(SPIBB)
  44. #define MO_pin 5 //D5
  45. #define MI_pin 6 //D6
  46. #define SCLK_pin 4 //D4
  47. #define CS 2 //D2
  48. #define GDO_pin 3 //D3 GDO0 pin
  49. #define SCK_on PORTD |= 0x10 //D4
  50. #define SCK_off PORTD &= 0xEF //D4
  51. #define MO_on PORTD |= 0x20 //D5
  52. #define MO_off PORTD &= 0xDF //D5
  53. #define MI_1 (PIND & 0x40) == 0x40 //D6 input
  54. #define MI_0 (PIND & 0x40) == 0x00 //D6
  55. #define CS_on PORTD |= 0x04 //D2
  56. #define CS_off PORTD &= 0xFB //D2
  57. #define GDO_1 (PIND & 0x08) == 0x08 //D3 input
  58. #define GDO_0 (PIND & 0x08) == 0x00 //D3
  59. #endif
  60. #define bind_pin A0 //C0 bind plug also servo8
  61. #define Servo1_OUT 7 //Servo1(D7)
  62. #define Servo2_OUT 8 //Servo2(B0)
  63. #define Servo3_OUT 9 //Servo3(B1)
  64. #define Servo4_OUT 10 //Servo4(B2)//PPM pin
  65. #define Servo5_OUT 11 //Servo5(B3)
  66. #define Servo6_OUT 12 //Servo6(B4)
  67. #define Servo7_OUT 13 //Servo7(B5)
  68. #define Servo8_OUT A0 //Servo8(C0)
  69. #define Servo1_OUT_HIGH PORTD |= _BV(7) //Servo1(D7)
  70. #define Servo2_OUT_HIGH PORTB |= _BV(0) //Servo2(B0)
  71. #define Servo3_OUT_HIGH PORTB |= _BV(1) //Servo3(B1)
  72. #define Servo4_OUT_HIGH PORTB |= _BV(2) //Servo4(B2)
  73. #define Servo5_OUT_HIGH PORTB |= _BV(3) //Servo5(B3)
  74. #define Servo6_OUT_HIGH PORTB |= _BV(4) //Servo6(B4)
  75. #define Servo7_OUT_HIGH PORTB |= _BV(5) //Servo7(B5)
  76. #define Servo8_OUT_HIGH PORTC |= _BV(0) //Servo8(C0)
  77. #define Servo_Ports_LOW PORTD &= 0x7F ; PORTB &= 0xc0; PORTC &=0xFE //all servos low
  78. #define LED_pin A3
  79. #define LED_ON PORTC |= _BV(3)
  80. #define LED_OFF PORTC &= ~_BV(3)
  81. #define NOP() __asm__ __volatile__("nop")
  82. // Globals:
  83. static uint8_t ccData[27];
  84. static uint8_t ccLen;
  85. static boolean packet = false;
  86. //static uint16_t time;
  87. static uint8_t channr;
  88. static uint8_t missingPackets = 0;
  89. uint8_t calData[60];
  90. uint8_t hopData[60];
  91. uint8_t listLength;
  92. uint8_t txid[2];
  93. static uint8_t counter = 0;
  94. volatile uint16_t Servo_data[10] = {1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500};
  95. volatile byte scale;
  96. static byte jumper1 = 0;
  97. static byte jumper2 = 0;
  98. volatile int ppm[chanel_number];
  99. volatile bool failed = false;
  100. static uint16_t total_servo_time = 0;
  101. static byte cur_chan_numb = 0;
  102. boolean debug = false;
  103. int count = 0;
  104. uint16_t c[8];
  105. boolean debug2 = true;
  106. boolean debug3 = false;
  107. void setup()
  108. {
  109. #if defined(SPIBB)
  110. pinMode(MO_pin, OUTPUT); //SI
  111. pinMode(MI_pin, INPUT); //SO
  112. pinMode(SCLK_pin, OUTPUT); //SCLK
  113. pinMode(CS, OUTPUT); //CS output
  114. pinMode(GDO_pin, INPUT); //GDO0 pin
  115. SCK_off; //start sck low
  116. MO_off; //low
  117. #endif
  118. pinMode(LED_pin, OUTPUT);
  119. CS_on;
  120. #if defined(SPIHW)
  121. pinMode(CS, OUTPUT);
  122. pinMode(GDO_pin, INPUT);
  123. SPI.setClockDivider(SPI_CLOCK_DIV2);
  124. SPI.setBitOrder( MSBFIRST);
  125. SPI.begin();
  126. #endif
  127. pinMode(Servo1_OUT, OUTPUT); //Servo1
  128. pinMode(Servo2_OUT, OUTPUT); //Servo2
  129. pinMode(Servo3_OUT, OUTPUT); //Servo3
  130. pinMode(Servo4_OUT, OUTPUT); //Servo4
  131. //
  132. pinMode(Servo6_OUT, OUTPUT); //Servo6
  133. pinMode(Servo7_OUT, OUTPUT); //Servo7
  134. pinMode(Servo8_OUT, OUTPUT); //Servo8
  135. //Servo8_OUT_HIGH;//bindpin pullup
  136. #if defined DEBUG
  137. Serial.begin(115200);
  138. int8_t i;
  139. Serial.print("PartNum ");
  140. i = cc2500_readReg(CC2500_30_PARTNUM + CC2500_READ_BURST);
  141. Serial.println(i);
  142. delay(10);
  143. Serial.print("Version ");
  144. i = cc2500_readReg(CC2500_31_VERSION + CC2500_READ_BURST);
  145. Serial.println(i);
  146. #endif
  147. #if F_CPU == 16000000
  148. scale = 2;
  149. #elif F_CPU == 8000000
  150. scale = 1;
  151. #else
  152. #error // 8 or 16MHz only !
  153. #endif
  154. initialize(1); //binding
  155. binding();
  156. pinMode(Servo8_OUT, OUTPUT); //Servo8.bind pin is set to output again.
  157. initialize(0); //data
  158. jumper1 = PPM_jumper(); // Check the possible jumper positions for changing the receiver mode.
  159. if (jumper1 == 1) {
  160. //initiallize default ppm values
  161. for (int i = 0; i < chanel_number; i++) {
  162. ppm[i] = default_servo_value;
  163. }
  164. pinMode(sigPin, OUTPUT);
  165. digitalWrite(sigPin, !onState); //set the PPM signal pin to the default state (off)
  166. }
  167. config_timer();
  168. channr = 0;
  169. cc2500_writeReg(CC2500_0A_CHANNR, hopData[channr]);//0A-hop
  170. cc2500_writeReg(CC2500_23_FSCAL3, 0x89); //23-89
  171. cc2500_strobe(CC2500_SRX);
  172. }
  173. void updateRSSI() {
  174. #if defined(RSSI_OVER_PPM)
  175. int rssi_dec = cc2500_readReg(CC2500_34_RSSI | CC2500_READ_BURST);
  176. if (rssi_dec < 128) {
  177. rssi = ((rssi_dec / 2) - rssi_offset) & 0x7f;
  178. } else {
  179. rssi = (((rssi_dec - 256) / 2)) - rssi_offset;
  180. }
  181. #if defined(DEBUG_RSSI2)
  182. Serial.print(millis());
  183. Serial.print("\t");
  184. Serial.println(rssi);
  185. #endif
  186. rssi = constrain(rssi, rssi_min, rssi_max);
  187. #endif
  188. }
  189. void loop()
  190. {
  191. unsigned long time = micros();
  192. #if defined(FAILSAFE)
  193. if (missingPackets > FAILSAFE_MISSING_PKT) {
  194. failed = true;
  195. missingPackets = 0;
  196. }
  197. #endif
  198. while (1) {
  199. if ((micros() - time) > 9000) {
  200. missingPackets++;
  201. cc2500_strobe(CC2500_SIDLE);
  202. if (missingPackets > MAX_MISSING_PKT) {
  203. nextChannel(SEEK_CHANSKIP);
  204. LED_OFF;
  205. counter++;
  206. if (counter > (MAX_MISSING_PKT << 1))
  207. LED_ON;
  208. if (counter == (MAX_MISSING_PKT << 2)) counter = 0;
  209. break;
  210. } else
  211. nextChannel(1);
  212. break;
  213. }
  214. if (GDO_1) {
  215. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  216. if (ccLen > 20)
  217. ccLen = 20;//
  218. if (ccLen) {
  219. cc2500_readFifo((uint8_t *)ccData, ccLen);
  220. if (ccData[ccLen - 1] & 0x80) { // Only if correct CRC
  221. missingPackets = 0;
  222. if (ccData[0] == 0x11) { // Correct length
  223. if ((ccData[1] == txid[0]) && (ccData[2] == txid[1])) { // Only if correct txid
  224. packet = true;
  225. //sei(); ///////////////////////////////////////////////////////////////////////////////////////
  226. updateRSSI();
  227. cc2500_strobe(CC2500_SIDLE);
  228. nextChannel(1);
  229. LED_ON;
  230. failed = false;
  231. break;
  232. }
  233. }
  234. }
  235. }
  236. }
  237. }
  238. if (packet == true) {
  239. packet = false;
  240. debug = true;
  241. //cli();
  242. c[0] = (uint16_t)(ccData[10] & 0x0F) << 8 | ccData[6];
  243. c[1] = (uint16_t)(ccData[10] & 0xF0) << 4 | ccData[7];
  244. c[2] = (uint16_t)(ccData[11] & 0x0F) << 8 | ccData[8];
  245. c[3] = (uint16_t)(ccData[11] & 0xF0) << 4 | ccData[9];
  246. c[4] = (uint16_t)(ccData[16] & 0x0F) << 8 | ccData[12];
  247. c[5] = (uint16_t)(ccData[16] & 0xF0) << 4 | ccData[13];
  248. c[6] = (uint16_t)(ccData[17] & 0x0F) << 8 | ccData[14];
  249. c[7] = (uint16_t)(ccData[17] & 0xF0) << 4 | ccData[15];
  250. //sei();
  251. for (int i = 0; i < 8; i++) {
  252. Servo_data[i] = 0.67 * c[i];
  253. if (Servo_data[i] < 900) { //added new
  254. Servo_data[i] = 1500; //added new
  255. Servo_data[2] = 1000;
  256. }
  257. ppm[i] = Servo_data[i];
  258. }
  259. #if defined(RSSI_OVER_PPM)
  260. ppm[RSSI_OVER_PPM] = map(rssi, rssi_min, rssi_max, 1000, 2000);
  261. #endif
  262. #if defined(DEBUG5)
  263. //Serial.println(rssi);
  264. #endif
  265. #if defined(DEBUG0)
  266. for (int i = 0; i < 8; i++) {
  267. Serial.print(" ");
  268. Serial.print(Servo_data[i]);
  269. Serial.print(" ");
  270. }
  271. Serial.println(" ");
  272. #endif
  273. }
  274. cc2500_strobe(CC2500_SRX);
  275. if (debug == true) {
  276. debug = false;
  277. #if defined(DEBUG2)
  278. Serial.println(ccData[3], HEX);
  279. #endif
  280. }
  281. }
  282. void initialize(int bind)
  283. {
  284. cc2500_resetChip();
  285. cc2500_writeReg(CC2500_02_IOCFG0, 0x01); // reg 0x02: RX complete interrupt(GDO0)
  286. cc2500_writeReg(CC2500_17_MCSM1, 0x0C); // reg 0x17:
  287. cc2500_writeReg(CC2500_18_MCSM0, 0x18); // reg 0x18:
  288. cc2500_writeReg(CC2500_06_PKTLEN, 0x19); // Leave room for appended status bytes
  289. cc2500_writeReg(CC2500_08_PKTCTRL0, 0x05); // reg 0x08:
  290. cc2500_writeReg(CC2500_3E_PATABLE, 0xFF); //
  291. cc2500_writeReg(CC2500_0B_FSCTRL1, 0x08); // reg 0x0B:
  292. cc2500_writeReg(CC2500_0C_FSCTRL0, 0x00); // reg 0x0C
  293. cc2500_writeReg(CC2500_0D_FREQ2, 0x5C); // reg 0x0D
  294. cc2500_writeReg(CC2500_0E_FREQ1, 0x76); // reg 0x0E
  295. cc2500_writeReg(CC2500_0F_FREQ0, 0x27); // reg 0x0F
  296. cc2500_writeReg(CC2500_10_MDMCFG4, 0xAA); // reg 0x10
  297. cc2500_writeReg(CC2500_11_MDMCFG3, 0x39); // reg 0x11
  298. cc2500_writeReg(CC2500_12_MDMCFG2, 0x11); // reg 0x12
  299. cc2500_writeReg(CC2500_13_MDMCFG1, 0x23); // reg 0x13
  300. cc2500_writeReg(CC2500_14_MDMCFG0, 0x7A); // reg 0x14
  301. cc2500_writeReg(CC2500_15_DEVIATN, 0x42); // reg 0x15
  302. cc2500_writeReg(CC2500_19_FOCCFG, 0x16); // reg 0x16
  303. cc2500_writeReg(CC2500_1A_BSCFG, 0x6C); // reg 0x1A
  304. cc2500_writeReg(CC2500_1B_AGCCTRL2, 0x03); // reg 0x1B
  305. cc2500_writeReg(CC2500_1C_AGCCTRL1, 0x40); // reg 0x1C
  306. cc2500_writeReg(CC2500_1D_AGCCTRL0, 0x91); // reg 0x1D
  307. cc2500_writeReg(CC2500_21_FREND1, 0x56); // reg 0x21:
  308. cc2500_writeReg(CC2500_22_FREND0, 0x10); // reg 0x22:
  309. cc2500_writeReg(CC2500_23_FSCAL3, 0xA9); // reg 0x23:
  310. cc2500_writeReg(CC2500_24_FSCAL2, 0x05); // reg 0x24:
  311. cc2500_writeReg(CC2500_25_FSCAL1, 0x00); // reg 0x25
  312. cc2500_writeReg(CC2500_26_FSCAL0, 0x11); // reg 0x26
  313. cc2500_writeReg(CC2500_29_FSTEST, 0x59); // reg 0x29
  314. cc2500_writeReg(CC2500_2C_TEST2, 0x88); // reg 0x2C
  315. cc2500_writeReg(CC2500_2D_TEST1, 0x31); // reg 0x2D
  316. cc2500_writeReg(CC2500_2E_TEST0, 0x0B); // reg 0x2E
  317. cc2500_writeReg(CC2500_03_FIFOTHR, 0x0F); // reg 0x03:
  318. cc2500_writeReg(CC2500_09_ADDR, bind ? 0x03 : txid[0]);
  319. cc2500_strobe(CC2500_SIDLE); // Go to idle...
  320. cc2500_writeReg(CC2500_07_PKTCTRL1, 0x0D); // reg 0x07 hack: Append status, filter by address, auto-flush on bad crc, PQT=0
  321. //cc2500_writeReg(CC2500_0C_FSCTRL0, 0); // Frequency offset...
  322. cc2500_writeReg(CC2500_0C_FSCTRL0, bind ? 0x00 : count); // Frequency offset hack
  323. cc2500_writeReg(CC2500_0A_CHANNR, 0x00);
  324. }
  325. // Receives complete bind setup
  326. void getBind(void)
  327. {
  328. cc2500_strobe(CC2500_SRX);//enter in rx mode
  329. listLength = 0;
  330. boolean eol = false;
  331. // len|bind |tx id|idx|h0|h1|h2|h3|h4|00|00|00|00|00|00|01
  332. // Start by getting bind packet 0 and the txid
  333. // 0 1 2 txid0(3) txid1()4 5 6 7 8 9 10 11 12 13 14 15 16 17
  334. //ccdata //11 03 01 d7 2d 00 00 1e 3c 5b 78 00 00 00 00 00 00 01
  335. //11 03 01 19 3e 00 02 8e 2f bb 5c 00 00 00 00 00 00 01
  336. while (1) {
  337. if (GDO_1) {
  338. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  339. if (ccLen) {
  340. cc2500_readFifo((uint8_t *)ccData, ccLen);
  341. if (ccData[ccLen - 1] & 0x80) {
  342. if (ccData[2] == 0x01) {
  343. if (ccData[5] == 0x00) {
  344. txid[0] = ccData[3];
  345. txid[1] = ccData[4];
  346. for (uint8_t n = 0; n < 5; n++) {
  347. hopData[ccData[5] + n] = ccData[6 + n];
  348. }
  349. break;
  350. }
  351. }
  352. }
  353. }
  354. }
  355. }
  356. #if defined(DEBUG)
  357. Serial.print(txid[0], HEX);
  358. Serial.println(txid[1], HEX);
  359. #endif
  360. for (uint8_t bindIdx = 0x05; bindIdx <= 120; bindIdx += 5) {
  361. while (1) {
  362. if (GDO_1) {
  363. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  364. if (ccLen) {
  365. cc2500_readFifo((uint8_t *)ccData, ccLen);
  366. if (ccData[ccLen - 1] & 0x80) {
  367. if (ccData[2] == 0x01) {
  368. if(debug3) {
  369. Serial.print("ccLen = ");
  370. Serial.println(ccLen);
  371. }
  372. if ((ccData[3] == txid[0]) && (ccData[4] == txid[1])) {
  373. if(debug3)
  374. {
  375. Serial.print("ccData[5] = ");
  376. Serial.println(ccData[5]);
  377. Serial.print("bindIdx = ");
  378. Serial.println(bindIdx);
  379. }
  380. if (ccData[5] == bindIdx) {
  381. for (uint8_t n = 0; n < 5; n++) {
  382. if(debug3)
  383. {
  384. Serial.print("ccData[6 + n] = ");
  385. Serial.println(ccData[6 + n]);
  386. Serial.print("ccData[ccLen - 3] = ");
  387. Serial.println(ccData[ccLen - 3]);
  388. }
  389. //if (ccData[6 + n] == ccData[ccLen - 3]) {
  390. if (ccData[6 + n] <= 3) {
  391. eol = true;
  392. #if defined(DEBUG)
  393. Serial.print("listLength: ");
  394. Serial.println(listLength);
  395. #endif
  396. listLength = ccData[5] + n;
  397. break;
  398. }
  399. hopData[ccData[5] + n] = ccData[6 + n];
  400. }
  401. break;
  402. }
  403. }
  404. }
  405. }
  406. }
  407. }
  408. }
  409. #if defined(DEBUG)
  410. Serial.println(bindIdx / 5);
  411. #endif
  412. if (eol) break; // End of list found, stop!
  413. }
  414. #if defined(DEBUG)
  415. listLength = 47;
  416. Serial.println("jumpIdx list: ");
  417. for (uint8_t jumpIdx = 0; jumpIdx < (listLength); jumpIdx++) {
  418. Serial.print(" ");
  419. Serial.print(hopData[jumpIdx], HEX);
  420. Serial.print(" ");
  421. }
  422. Serial.println(" ");
  423. #endif
  424. Store_bind();
  425. cc2500_strobe(CC2500_SIDLE); // Back to idle
  426. }
  427. ISR(TIMER1_COMPA_vect)
  428. {
  429. if (failed) {
  430. digitalWrite(sigPin, HIGH);
  431. return;
  432. }
  433. TCNT1 = 0;
  434. if (jumper1 == 0) {
  435. pinMode(Servo5_OUT, OUTPUT);
  436. Servo_Ports_LOW;
  437. //code for servo.
  438. cur_chan_numb++; //next servo
  439. if (cur_chan_numb < chanel_number) {
  440. total_servo_time += Servo_data[cur_chan_numb] * scale;
  441. OCR1A = Servo_data[cur_chan_numb] * scale;
  442. } else {
  443. OCR1A = PPM_FrLen * scale - total_servo_time;
  444. cur_chan_numb = 0xff;
  445. total_servo_time = 0;
  446. }
  447. switch (cur_chan_numb) {
  448. case 0:
  449. Servo1_OUT_HIGH;
  450. break;
  451. case 1:
  452. Servo2_OUT_HIGH;
  453. break;
  454. case 2:
  455. Servo3_OUT_HIGH;
  456. break;
  457. case 3:
  458. Servo4_OUT_HIGH;
  459. break;
  460. case 4:
  461. Servo5_OUT_HIGH;
  462. break;
  463. case 5:
  464. Servo6_OUT_HIGH;
  465. break;
  466. case 6:
  467. Servo7_OUT_HIGH;
  468. break;
  469. case 7:
  470. Servo8_OUT_HIGH;
  471. break;
  472. }
  473. } else {
  474. static boolean state = true;
  475. pinMode(sigPin, OUTPUT);
  476. digitalWrite(sigPin, !onState);
  477. if (state) {
  478. digitalWrite(sigPin, onState);
  479. OCR1A = PPM_PulseLen * scale;
  480. state = false;
  481. } else {
  482. static byte cur_chan_numb;
  483. static unsigned int calc_rest;
  484. // digitalWrite(sigPin, !onState);//PPM on servo4 pin10
  485. state = true;
  486. if (cur_chan_numb >= chanel_number) {
  487. cur_chan_numb = 0;
  488. calc_rest = calc_rest + PPM_PulseLen;//
  489. OCR1A = (PPM_FrLen - calc_rest) * scale;
  490. calc_rest = 0;
  491. } else {
  492. OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * scale;
  493. calc_rest = calc_rest + ppm[cur_chan_numb];
  494. cur_chan_numb++;
  495. }
  496. }
  497. }
  498. }
  499. void config_timer()
  500. {
  501. OCR1A = 50 * scale;
  502. cli();
  503. TCCR1A = 0; //
  504. TCCR1B = 0;
  505. TCCR1B |= (1 << WGM12);
  506. TCCR1B |= (1 << CS11);
  507. TIMSK1 |= (1 << OCIE1A);
  508. sei();
  509. }
  510. void nextChannel(uint8_t skip)
  511. {
  512. channr += skip;//
  513. if (channr >= listLength) channr -= listLength;
  514. cc2500_writeReg(CC2500_0A_CHANNR, hopData[channr]);
  515. cc2500_writeReg(CC2500_23_FSCAL3, 0x89);
  516. }
  517. void binding()
  518. {
  519. jumper2 = bind_jumper();
  520. while (1) {
  521. if (jumper2 == 0) { //bind complete or no bind
  522. uint8_t i;
  523. uint8_t adr = 100;
  524. for (i = 0; i < 2; i++) {
  525. txid[i] = EEPROM.read(adr + i);
  526. }
  527. if (txid[0] == 0xff && txid[1] == 0xff) {
  528. // No valid txid, forcing bind
  529. jumper2 = 1;
  530. continue;
  531. }
  532. for (i = 0; i < sizeof(hopData); i++) {
  533. hopData[i] = EEPROM.read(adr + 10 + i);
  534. }
  535. listLength = EEPROM.read(adr + 100);
  536. count = EEPROM.read(adr + 101);
  537. break;
  538. } else {
  539. LED_ON;
  540. tunning();
  541. //count=0xC8;//for test
  542. cc2500_writeReg(CC2500_0C_FSCTRL0, count);
  543. int adr = 100;
  544. EEPROM.write(adr + 101, count);
  545. getBind();
  546. while (1) {
  547. LED_ON;
  548. delay(500);
  549. LED_OFF;
  550. delay(500);
  551. }
  552. }
  553. }
  554. }
  555. void tunning()
  556. {
  557. cc2500_strobe(CC2500_SRX);//enter in rx mode
  558. int count1 = 0;
  559. while (1) {
  560. count1++;
  561. if (count >= 250) {
  562. count = 0;
  563. }
  564. if (count1 > 3000) {
  565. count1 = 0;
  566. cc2500_writeReg(CC2500_0C_FSCTRL0, count); // Frequency offset hack
  567. count = count + 10;
  568. //cc2500_strobe(CC2500_SRX);//enter in rx mode
  569. }
  570. if (GDO_1) {
  571. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  572. if (ccLen) {
  573. cc2500_readFifo((uint8_t *)ccData, ccLen);
  574. if (ccData[ccLen - 1] & 0x80) {
  575. if (ccData[2] == 0x01) {
  576. if (ccData[5] == 0x00) {
  577. break;
  578. }
  579. }
  580. }
  581. }
  582. }
  583. }
  584. #if defined(DEBUG1)
  585. Serial.println(count, HEX);
  586. #endif
  587. }
  588. void Store_bind()
  589. {
  590. uint8_t i;
  591. int adr = 100;
  592. for (i = 0; i < 2; i++) {
  593. EEPROM.write(adr + i, txid[i]);
  594. }
  595. for (i = 0; i < sizeof(hopData); i++) {
  596. EEPROM.write(adr + 10 + i, hopData[i]);
  597. }
  598. EEPROM.write(adr + 100, listLength);
  599. }
  600. unsigned char PPM_jumper(void)
  601. {
  602. // PPM Selection (jumper between Ch1 and ch3)
  603. pinMode(Servo3_OUT, INPUT); //CH3 input
  604. digitalWrite(Servo3_OUT, HIGH); // pull up
  605. digitalWrite(Servo1_OUT, HIGH); // CH1 is HIGH
  606. delayMicroseconds(1);
  607. if ( digitalRead(Servo3_OUT) == HIGH) {
  608. digitalWrite(Servo1_OUT, LOW); // CH1 is LOW
  609. delayMicroseconds(1);
  610. if (digitalRead(Servo3_OUT) == LOW) { // OK jumper plugged
  611. pinMode(Servo3_OUT, OUTPUT);
  612. return 1;
  613. }
  614. }
  615. pinMode(Servo3_OUT, OUTPUT);
  616. return 0; // servo PWM by default
  617. }
  618. //bind jumper
  619. unsigned char bind_jumper(void)
  620. {
  621. pinMode(bind_pin, INPUT_PULLUP);//pull up
  622. if ( digitalRead(bind_pin) == LOW) {
  623. delayMicroseconds(1);
  624. return 1;
  625. }
  626. return 0;
  627. }