Naze32 clone with Frysky receiver
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

frsky_arduino_rx_complete.ino 22KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * Frsky RX 2-way
  3. * By Midelic
  4. * on RCGroups
  5. * an adaptation from Kyrre Aalerud(Kreature)
  6. * 2012 Frsky rx demo code
  7. * http://www.rcgroups.com/forums/showthread.php?t=1667453
  8. * Thanks also to Phracturedblue and his deviation firmware
  9. **********************************
  10. */
  11. #include <avr/interrupt.h>
  12. #include <EEPROM.h>
  13. #include "iface_cc2500.h"
  14. //#define DEBUG
  15. //#define DEBUG_RSSI
  16. //#define DEBUG0
  17. //#define DEBUG1
  18. //#define DEBUG2
  19. //#define DEBUG3
  20. //#define DEBUG4
  21. //#define DEBUG5
  22. //#define RSSI_OVER_PPM 7
  23. #define FAILSAFE
  24. #define SPIBB
  25. //#define SPIHW
  26. #if defined SPIHW
  27. #include <SPI.h>
  28. #endif
  29. // Used for RSSI_OVER_PPM
  30. int rssi;
  31. const int rssi_offset = 71;
  32. const int rssi_min = -103;
  33. const int rssi_max = -96;
  34. #define chanel_number 8 //set the number of chanels
  35. #define SEEK_CHANSKIP 13
  36. #define MAX_MISSING_PKT 20
  37. #define PPM_FrLen 22500
  38. #define PPM_PulseLen 300
  39. #define default_servo_value 1500
  40. #define onState 0 //set polarity of the pulses: 1 is positive, 0 is negative
  41. #define sigPin 10
  42. #if defined(SPIBB)
  43. #define MO_pin 5 //D5
  44. #define MI_pin 6 //D6
  45. #define SCLK_pin 4 //D4
  46. #define CS 2 //D2
  47. #define GDO_pin 3 //D3 GDO0 pin
  48. #define SCK_on PORTD |= 0x10 //D4
  49. #define SCK_off PORTD &= 0xEF //D4
  50. #define MO_on PORTD |= 0x20 //D5
  51. #define MO_off PORTD &= 0xDF //D5
  52. #define MI_1 (PIND & 0x40) == 0x40 //D6 input
  53. #define MI_0 (PIND & 0x40) == 0x00 //D6
  54. #define CS_on PORTD |= 0x04 //D2
  55. #define CS_off PORTD &= 0xFB //D2
  56. #define GDO_1 (PIND & 0x08) == 0x08 //D3 input
  57. #define GDO_0 (PIND & 0x08) == 0x00 //D3
  58. #endif
  59. #define bind_pin A0 //C0 bind plug also servo8
  60. #define Servo1_OUT 7 //Servo1(D7)
  61. #define Servo2_OUT 8 //Servo2(B0)
  62. #define Servo3_OUT 9 //Servo3(B1)
  63. #define Servo4_OUT 10 //Servo4(B2)//PPM pin
  64. #define Servo5_OUT 11 //Servo5(B3)
  65. #define Servo6_OUT 12 //Servo6(B4)
  66. #define Servo7_OUT 13 //Servo7(B5)
  67. #define Servo8_OUT A0 //Servo8(C0)
  68. #define Servo1_OUT_HIGH PORTD |= _BV(7) //Servo1(D7)
  69. #define Servo2_OUT_HIGH PORTB |= _BV(0) //Servo2(B0)
  70. #define Servo3_OUT_HIGH PORTB |= _BV(1) //Servo3(B1)
  71. #define Servo4_OUT_HIGH PORTB |= _BV(2) //Servo4(B2)
  72. #define Servo5_OUT_HIGH PORTB |= _BV(3) //Servo5(B3)
  73. #define Servo6_OUT_HIGH PORTB |= _BV(4) //Servo6(B4)
  74. #define Servo7_OUT_HIGH PORTB |= _BV(5) //Servo7(B5)
  75. #define Servo8_OUT_HIGH PORTC |= _BV(0) //Servo8(C0)
  76. #define Servo_Ports_LOW PORTD &= 0x7F ; PORTB &= 0xc0; PORTC &=0xFE //all servos low
  77. #define LED_pin A3
  78. #define LED_ON PORTC |= _BV(3)
  79. #define LED_OFF PORTC &= ~_BV(3)
  80. #define NOP() __asm__ __volatile__("nop")
  81. // Globals:
  82. static uint8_t ccData[27];
  83. static uint8_t ccLen;
  84. static boolean packet = false;
  85. //static uint16_t time;
  86. static uint8_t channr;
  87. static uint8_t missingPackets = 0;
  88. uint8_t calData[60];
  89. uint8_t hopData[60];
  90. uint8_t listLength;
  91. uint8_t txid[2];
  92. static uint8_t counter = 0;
  93. volatile uint16_t Servo_data[10] = {1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500};
  94. volatile byte scale;
  95. static byte jumper1 = 0;
  96. static byte jumper2 = 0;
  97. volatile int ppm[chanel_number];
  98. static uint16_t total_servo_time = 0;
  99. static byte cur_chan_numb = 0;
  100. boolean debug = false;
  101. int count = 0;
  102. uint16_t c[8];
  103. boolean debug2 = true;
  104. boolean debug3 = false;
  105. void setup()
  106. {
  107. #if defined(SPIBB)
  108. pinMode(MO_pin, OUTPUT); //SI
  109. pinMode(MI_pin, INPUT); //SO
  110. pinMode(SCLK_pin, OUTPUT); //SCLK
  111. pinMode(CS, OUTPUT); //CS output
  112. pinMode(GDO_pin, INPUT); //GDO0 pin
  113. SCK_off; //start sck low
  114. MO_off; //low
  115. #endif
  116. pinMode(LED_pin, OUTPUT);
  117. CS_on;
  118. #if defined(SPIHW)
  119. pinMode(CS, OUTPUT);
  120. pinMode(GDO_pin, INPUT);
  121. SPI.setClockDivider(SPI_CLOCK_DIV2);
  122. SPI.setBitOrder( MSBFIRST);
  123. SPI.begin();
  124. #endif
  125. pinMode(Servo1_OUT, OUTPUT); //Servo1
  126. pinMode(Servo2_OUT, OUTPUT); //Servo2
  127. pinMode(Servo3_OUT, OUTPUT); //Servo3
  128. pinMode(Servo4_OUT, OUTPUT); //Servo4
  129. //
  130. pinMode(Servo6_OUT, OUTPUT); //Servo6
  131. pinMode(Servo7_OUT, OUTPUT); //Servo7
  132. pinMode(Servo8_OUT, OUTPUT); //Servo8
  133. //Servo8_OUT_HIGH;//bindpin pullup
  134. #if defined DEBUG
  135. Serial.begin(115200);
  136. int8_t i;
  137. Serial.print("PartNum ");
  138. i = cc2500_readReg(CC2500_30_PARTNUM + CC2500_READ_BURST);
  139. Serial.println(i);
  140. delay(10);
  141. Serial.print("Version ");
  142. i = cc2500_readReg(CC2500_31_VERSION + CC2500_READ_BURST);
  143. Serial.println(i);
  144. #endif
  145. #if F_CPU == 16000000
  146. scale = 2;
  147. #elif F_CPU == 8000000
  148. scale = 1;
  149. #else
  150. #error // 8 or 16MHz only !
  151. #endif
  152. initialize(1); //binding
  153. binding();
  154. pinMode(Servo8_OUT, OUTPUT); //Servo8.bind pin is set to output again.
  155. initialize(0); //data
  156. jumper1 = PPM_jumper(); // Check the possible jumper positions for changing the receiver mode.
  157. if (jumper1 == 1) {
  158. //initiallize default ppm values
  159. for (int i = 0; i < chanel_number; i++) {
  160. ppm[i] = default_servo_value;
  161. }
  162. pinMode(sigPin, OUTPUT);
  163. digitalWrite(sigPin, !onState); //set the PPM signal pin to the default state (off)
  164. }
  165. config_timer();
  166. channr = 0;
  167. cc2500_writeReg(CC2500_0A_CHANNR, hopData[channr]);//0A-hop
  168. cc2500_writeReg(CC2500_23_FSCAL3, 0x89); //23-89
  169. cc2500_strobe(CC2500_SRX);
  170. }
  171. void updateRSSI() {
  172. #if defined(RSSI_OVER_PPM)
  173. int rssi_dec = cc2500_readReg(CC2500_34_RSSI | CC2500_READ_BURST);
  174. if (rssi_dec < 128) {
  175. rssi = ((rssi_dec / 2) - rssi_offset) & 0x7f;
  176. } else {
  177. rssi = (((rssi_dec - 256) / 2)) - rssi_offset;
  178. }
  179. #if defined(DEBUG_RSSI2)
  180. Serial.print(millis());
  181. Serial.print("\t");
  182. Serial.println(rssi);
  183. #endif
  184. rssi = constrain(rssi, rssi_min, rssi_max);
  185. #endif
  186. }
  187. void loop()
  188. {
  189. unsigned long time = micros();
  190. #if defined(FAILSAFE)
  191. if (missingPackets > 170) {
  192. //**************************************
  193. //noInterrupts();//
  194. //digitalWrite(sigPin, LOW);
  195. //Servo_Ports_LOW;
  196. //**********************************************
  197. missingPackets = 0;
  198. int i;
  199. for (i = 0; i < 8; i++) {
  200. Servo_data[i] = 1000;
  201. ppm[i] = 1000;
  202. if (i == 2) {
  203. Servo_data[2] = 1000; //THROTLE ON CHN3 here it can be changed Throttle on other channel
  204. ppm[2] = 1000;
  205. }
  206. }
  207. }
  208. #endif
  209. while (1) {
  210. if ((micros() - time) > 9000) {
  211. missingPackets++;
  212. cc2500_strobe(CC2500_SIDLE);
  213. if (missingPackets > MAX_MISSING_PKT) {
  214. nextChannel(SEEK_CHANSKIP);
  215. LED_OFF;
  216. counter++;
  217. if (counter > (MAX_MISSING_PKT << 1))
  218. LED_ON;
  219. if (counter == (MAX_MISSING_PKT << 2)) counter = 0;
  220. break;
  221. } else
  222. nextChannel(1);
  223. break;
  224. }
  225. if (GDO_1) {
  226. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  227. if (ccLen > 20)
  228. ccLen = 20;//
  229. if (ccLen) {
  230. cc2500_readFifo((uint8_t *)ccData, ccLen);
  231. if (ccData[ccLen - 1] & 0x80) { // Only if correct CRC
  232. missingPackets = 0;
  233. if (ccData[0] == 0x11) { // Correct length
  234. if ((ccData[1] == txid[0]) && (ccData[2] == txid[1])) { // Only if correct txid
  235. packet = true;
  236. //sei(); ///////////////////////////////////////////////////////////////////////////////////////
  237. updateRSSI();
  238. cc2500_strobe(CC2500_SIDLE);
  239. nextChannel(1);
  240. LED_ON;
  241. break;
  242. }
  243. }
  244. }
  245. }
  246. }
  247. }
  248. if (packet == true) {
  249. packet = false;
  250. debug = true;
  251. //cli();
  252. c[0] = (uint16_t)(ccData[10] & 0x0F) << 8 | ccData[6];
  253. c[1] = (uint16_t)(ccData[10] & 0xF0) << 4 | ccData[7];
  254. c[2] = (uint16_t)(ccData[11] & 0x0F) << 8 | ccData[8];
  255. c[3] = (uint16_t)(ccData[11] & 0xF0) << 4 | ccData[9];
  256. c[4] = (uint16_t)(ccData[16] & 0x0F) << 8 | ccData[12];
  257. c[5] = (uint16_t)(ccData[16] & 0xF0) << 4 | ccData[13];
  258. c[6] = (uint16_t)(ccData[17] & 0x0F) << 8 | ccData[14];
  259. c[7] = (uint16_t)(ccData[17] & 0xF0) << 4 | ccData[15];
  260. //sei();
  261. for (int i = 0; i < 8; i++) {
  262. Servo_data[i] = 0.67 * c[i];
  263. if (Servo_data[i] < 900) { //added new
  264. Servo_data[i] = 1500; //added new
  265. Servo_data[2] = 1000;
  266. }
  267. ppm[i] = Servo_data[i];
  268. }
  269. #if defined(RSSI_OVER_PPM)
  270. ppm[RSSI_OVER_PPM] = map(rssi, rssi_min, rssi_max, 1000, 2000);
  271. #endif
  272. #if defined(DEBUG5)
  273. //Serial.println(rssi);
  274. #endif
  275. #if defined(DEBUG0)
  276. for (int i = 0; i < 8; i++) {
  277. Serial.print(" ");
  278. Serial.print(Servo_data[i]);
  279. Serial.print(" ");
  280. }
  281. Serial.println(" ");
  282. #endif
  283. }
  284. cc2500_strobe(CC2500_SRX);
  285. if (debug == true) {
  286. debug = false;
  287. #if defined(DEBUG2)
  288. Serial.println(ccData[3], HEX);
  289. #endif
  290. }
  291. }
  292. void initialize(int bind)
  293. {
  294. cc2500_resetChip();
  295. cc2500_writeReg(CC2500_02_IOCFG0, 0x01); // reg 0x02: RX complete interrupt(GDO0)
  296. cc2500_writeReg(CC2500_17_MCSM1, 0x0C); // reg 0x17:
  297. cc2500_writeReg(CC2500_18_MCSM0, 0x18); // reg 0x18:
  298. cc2500_writeReg(CC2500_06_PKTLEN, 0x19); // Leave room for appended status bytes
  299. cc2500_writeReg(CC2500_08_PKTCTRL0, 0x05); // reg 0x08:
  300. cc2500_writeReg(CC2500_3E_PATABLE, 0xFF); //
  301. cc2500_writeReg(CC2500_0B_FSCTRL1, 0x08); // reg 0x0B:
  302. cc2500_writeReg(CC2500_0C_FSCTRL0, 0x00); // reg 0x0C
  303. cc2500_writeReg(CC2500_0D_FREQ2, 0x5C); // reg 0x0D
  304. cc2500_writeReg(CC2500_0E_FREQ1, 0x76); // reg 0x0E
  305. cc2500_writeReg(CC2500_0F_FREQ0, 0x27); // reg 0x0F
  306. cc2500_writeReg(CC2500_10_MDMCFG4, 0xAA); // reg 0x10
  307. cc2500_writeReg(CC2500_11_MDMCFG3, 0x39); // reg 0x11
  308. cc2500_writeReg(CC2500_12_MDMCFG2, 0x11); // reg 0x12
  309. cc2500_writeReg(CC2500_13_MDMCFG1, 0x23); // reg 0x13
  310. cc2500_writeReg(CC2500_14_MDMCFG0, 0x7A); // reg 0x14
  311. cc2500_writeReg(CC2500_15_DEVIATN, 0x42); // reg 0x15
  312. cc2500_writeReg(CC2500_19_FOCCFG, 0x16); // reg 0x16
  313. cc2500_writeReg(CC2500_1A_BSCFG, 0x6C); // reg 0x1A
  314. cc2500_writeReg(CC2500_1B_AGCCTRL2, 0x03); // reg 0x1B
  315. cc2500_writeReg(CC2500_1C_AGCCTRL1, 0x40); // reg 0x1C
  316. cc2500_writeReg(CC2500_1D_AGCCTRL0, 0x91); // reg 0x1D
  317. cc2500_writeReg(CC2500_21_FREND1, 0x56); // reg 0x21:
  318. cc2500_writeReg(CC2500_22_FREND0, 0x10); // reg 0x22:
  319. cc2500_writeReg(CC2500_23_FSCAL3, 0xA9); // reg 0x23:
  320. cc2500_writeReg(CC2500_24_FSCAL2, 0x05); // reg 0x24:
  321. cc2500_writeReg(CC2500_25_FSCAL1, 0x00); // reg 0x25
  322. cc2500_writeReg(CC2500_26_FSCAL0, 0x11); // reg 0x26
  323. cc2500_writeReg(CC2500_29_FSTEST, 0x59); // reg 0x29
  324. cc2500_writeReg(CC2500_2C_TEST2, 0x88); // reg 0x2C
  325. cc2500_writeReg(CC2500_2D_TEST1, 0x31); // reg 0x2D
  326. cc2500_writeReg(CC2500_2E_TEST0, 0x0B); // reg 0x2E
  327. cc2500_writeReg(CC2500_03_FIFOTHR, 0x0F); // reg 0x03:
  328. cc2500_writeReg(CC2500_09_ADDR, bind ? 0x03 : txid[0]);
  329. cc2500_strobe(CC2500_SIDLE); // Go to idle...
  330. cc2500_writeReg(CC2500_07_PKTCTRL1, 0x0D); // reg 0x07 hack: Append status, filter by address, auto-flush on bad crc, PQT=0
  331. //cc2500_writeReg(CC2500_0C_FSCTRL0, 0); // Frequency offset...
  332. cc2500_writeReg(CC2500_0C_FSCTRL0, bind ? 0x00 : count); // Frequency offset hack
  333. cc2500_writeReg(CC2500_0A_CHANNR, 0x00);
  334. }
  335. // Receives complete bind setup
  336. void getBind(void)
  337. {
  338. cc2500_strobe(CC2500_SRX);//enter in rx mode
  339. listLength = 0;
  340. boolean eol = false;
  341. // len|bind |tx id|idx|h0|h1|h2|h3|h4|00|00|00|00|00|00|01
  342. // Start by getting bind packet 0 and the txid
  343. // 0 1 2 txid0(3) txid1()4 5 6 7 8 9 10 11 12 13 14 15 16 17
  344. //ccdata //11 03 01 d7 2d 00 00 1e 3c 5b 78 00 00 00 00 00 00 01
  345. //11 03 01 19 3e 00 02 8e 2f bb 5c 00 00 00 00 00 00 01
  346. while (1) {
  347. if (GDO_1) {
  348. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  349. if (ccLen) {
  350. cc2500_readFifo((uint8_t *)ccData, ccLen);
  351. if (ccData[ccLen - 1] & 0x80) {
  352. if (ccData[2] == 0x01) {
  353. if (ccData[5] == 0x00) {
  354. txid[0] = ccData[3];
  355. txid[1] = ccData[4];
  356. for (uint8_t n = 0; n < 5; n++) {
  357. hopData[ccData[5] + n] = ccData[6 + n];
  358. }
  359. break;
  360. }
  361. }
  362. }
  363. }
  364. }
  365. }
  366. #if defined(DEBUG)
  367. Serial.print(txid[0], HEX);
  368. Serial.println(txid[1], HEX);
  369. #endif
  370. for (uint8_t bindIdx = 0x05; bindIdx <= 120; bindIdx += 5) {
  371. while (1) {
  372. if (GDO_1) {
  373. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  374. if (ccLen) {
  375. cc2500_readFifo((uint8_t *)ccData, ccLen);
  376. if (ccData[ccLen - 1] & 0x80) {
  377. if (ccData[2] == 0x01) {
  378. if(debug3) {
  379. Serial.print("ccLen = ");
  380. Serial.println(ccLen);
  381. }
  382. if ((ccData[3] == txid[0]) && (ccData[4] == txid[1])) {
  383. if(debug3)
  384. {
  385. Serial.print("ccData[5] = ");
  386. Serial.println(ccData[5]);
  387. Serial.print("bindIdx = ");
  388. Serial.println(bindIdx);
  389. }
  390. if (ccData[5] == bindIdx) {
  391. for (uint8_t n = 0; n < 5; n++) {
  392. if(debug3)
  393. {
  394. Serial.print("ccData[6 + n] = ");
  395. Serial.println(ccData[6 + n]);
  396. Serial.print("ccData[ccLen - 3] = ");
  397. Serial.println(ccData[ccLen - 3]);
  398. }
  399. //if (ccData[6 + n] == ccData[ccLen - 3]) {
  400. if (ccData[6 + n] <= 3) {
  401. eol = true;
  402. #if defined(DEBUG)
  403. Serial.print("listLength: ");
  404. Serial.println(listLength);
  405. #endif
  406. listLength = ccData[5] + n;
  407. break;
  408. }
  409. hopData[ccData[5] + n] = ccData[6 + n];
  410. }
  411. break;
  412. }
  413. }
  414. }
  415. }
  416. }
  417. }
  418. }
  419. #if defined(DEBUG)
  420. Serial.println(bindIdx / 5);
  421. #endif
  422. if (eol) break; // End of list found, stop!
  423. }
  424. #if defined(DEBUG)
  425. listLength = 47;
  426. Serial.println("jumpIdx list: ");
  427. for (uint8_t jumpIdx = 0; jumpIdx < (listLength); jumpIdx++) {
  428. Serial.print(" ");
  429. Serial.print(hopData[jumpIdx], HEX);
  430. Serial.print(" ");
  431. }
  432. Serial.println(" ");
  433. #endif
  434. Store_bind();
  435. cc2500_strobe(CC2500_SIDLE); // Back to idle
  436. }
  437. ISR(TIMER1_COMPA_vect)
  438. {
  439. TCNT1 = 0;
  440. if (jumper1 == 0) {
  441. pinMode(Servo5_OUT, OUTPUT);
  442. Servo_Ports_LOW;
  443. //code for servo.
  444. cur_chan_numb++; //next servo
  445. if (cur_chan_numb < chanel_number) {
  446. total_servo_time += Servo_data[cur_chan_numb] * scale;
  447. OCR1A = Servo_data[cur_chan_numb] * scale;
  448. } else {
  449. OCR1A = PPM_FrLen * scale - total_servo_time;
  450. cur_chan_numb = 0xff;
  451. total_servo_time = 0;
  452. }
  453. switch (cur_chan_numb) {
  454. case 0:
  455. Servo1_OUT_HIGH;
  456. break;
  457. case 1:
  458. Servo2_OUT_HIGH;
  459. break;
  460. case 2:
  461. Servo3_OUT_HIGH;
  462. break;
  463. case 3:
  464. Servo4_OUT_HIGH;
  465. break;
  466. case 4:
  467. Servo5_OUT_HIGH;
  468. break;
  469. case 5:
  470. Servo6_OUT_HIGH;
  471. break;
  472. case 6:
  473. Servo7_OUT_HIGH;
  474. break;
  475. case 7:
  476. Servo8_OUT_HIGH;
  477. break;
  478. }
  479. } else {
  480. static boolean state = true;
  481. pinMode(sigPin, OUTPUT);
  482. digitalWrite(sigPin, !onState);
  483. if (state) {
  484. digitalWrite(sigPin, onState);
  485. OCR1A = PPM_PulseLen * scale;
  486. state = false;
  487. } else {
  488. static byte cur_chan_numb;
  489. static unsigned int calc_rest;
  490. // digitalWrite(sigPin, !onState);//PPM on servo4 pin10
  491. state = true;
  492. if (cur_chan_numb >= chanel_number) {
  493. cur_chan_numb = 0;
  494. calc_rest = calc_rest + PPM_PulseLen;//
  495. OCR1A = (PPM_FrLen - calc_rest) * scale;
  496. calc_rest = 0;
  497. } else {
  498. OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * scale;
  499. calc_rest = calc_rest + ppm[cur_chan_numb];
  500. cur_chan_numb++;
  501. }
  502. }
  503. }
  504. }
  505. void config_timer()
  506. {
  507. OCR1A = 50 * scale;
  508. cli();
  509. TCCR1A = 0; //
  510. TCCR1B = 0;
  511. TCCR1B |= (1 << WGM12);
  512. TCCR1B |= (1 << CS11);
  513. TIMSK1 |= (1 << OCIE1A);
  514. sei();
  515. }
  516. void nextChannel(uint8_t skip)
  517. {
  518. channr += skip;//
  519. if (channr >= listLength) channr -= listLength;
  520. cc2500_writeReg(CC2500_0A_CHANNR, hopData[channr]);
  521. cc2500_writeReg(CC2500_23_FSCAL3, 0x89);
  522. }
  523. void binding()
  524. {
  525. jumper2 = bind_jumper();
  526. while (1) {
  527. if (jumper2 == 0) { //bind complete or no bind
  528. uint8_t i;
  529. uint8_t adr = 100;
  530. for (i = 0; i < 2; i++) {
  531. txid[i] = EEPROM.read(adr + i);
  532. }
  533. if (txid[0] == 0xff && txid[1] == 0xff) {
  534. // No valid txid, forcing bind
  535. jumper2 = 1;
  536. continue;
  537. }
  538. for (i = 0; i < sizeof(hopData); i++) {
  539. hopData[i] = EEPROM.read(adr + 10 + i);
  540. }
  541. listLength = EEPROM.read(adr + 100);
  542. count = EEPROM.read(adr + 101);
  543. break;
  544. } else {
  545. LED_ON;
  546. tunning();
  547. //count=0xC8;//for test
  548. cc2500_writeReg(CC2500_0C_FSCTRL0, count);
  549. int adr = 100;
  550. EEPROM.write(adr + 101, count);
  551. getBind();
  552. while (1) {
  553. LED_ON;
  554. delay(500);
  555. LED_OFF;
  556. delay(500);
  557. }
  558. }
  559. }
  560. }
  561. void tunning()
  562. {
  563. cc2500_strobe(CC2500_SRX);//enter in rx mode
  564. int count1 = 0;
  565. while (1) {
  566. count1++;
  567. if (count >= 250) {
  568. count = 0;
  569. }
  570. if (count1 > 3000) {
  571. count1 = 0;
  572. cc2500_writeReg(CC2500_0C_FSCTRL0, count); // Frequency offset hack
  573. count = count + 10;
  574. //cc2500_strobe(CC2500_SRX);//enter in rx mode
  575. }
  576. if (GDO_1) {
  577. ccLen = cc2500_readReg(CC2500_3B_RXBYTES | CC2500_READ_BURST) & 0x7F;
  578. if (ccLen) {
  579. cc2500_readFifo((uint8_t *)ccData, ccLen);
  580. if (ccData[ccLen - 1] & 0x80) {
  581. if (ccData[2] == 0x01) {
  582. if (ccData[5] == 0x00) {
  583. break;
  584. }
  585. }
  586. }
  587. }
  588. }
  589. }
  590. #if defined(DEBUG1)
  591. Serial.println(count, HEX);
  592. #endif
  593. }
  594. void Store_bind()
  595. {
  596. uint8_t i;
  597. int adr = 100;
  598. for (i = 0; i < 2; i++) {
  599. EEPROM.write(adr + i, txid[i]);
  600. }
  601. for (i = 0; i < sizeof(hopData); i++) {
  602. EEPROM.write(adr + 10 + i, hopData[i]);
  603. }
  604. EEPROM.write(adr + 100, listLength);
  605. }
  606. unsigned char PPM_jumper(void)
  607. {
  608. // PPM Selection (jumper between Ch1 and ch3)
  609. pinMode(Servo3_OUT, INPUT); //CH3 input
  610. digitalWrite(Servo3_OUT, HIGH); // pull up
  611. digitalWrite(Servo1_OUT, HIGH); // CH1 is HIGH
  612. delayMicroseconds(1);
  613. if ( digitalRead(Servo3_OUT) == HIGH) {
  614. digitalWrite(Servo1_OUT, LOW); // CH1 is LOW
  615. delayMicroseconds(1);
  616. if (digitalRead(Servo3_OUT) == LOW) { // OK jumper plugged
  617. pinMode(Servo3_OUT, OUTPUT);
  618. return 1;
  619. }
  620. }
  621. pinMode(Servo3_OUT, OUTPUT);
  622. return 0; // servo PWM by default
  623. }
  624. //bind jumper
  625. unsigned char bind_jumper(void)
  626. {
  627. pinMode(bind_pin, INPUT_PULLUP);//pull up
  628. if ( digitalRead(bind_pin) == LOW) {
  629. delayMicroseconds(1);
  630. return 1;
  631. }
  632. return 0;
  633. }