Browse Source

Revert "Merge pull request #8611 from thinkyhead/bf2_planner_split_first"

This reverts commit 824980e70e, reversing
changes made to aa7efb96bf.
Scott Lahteine 6 years ago
parent
commit
dd8febca1a
2 changed files with 64 additions and 111 deletions
  1. 62
    98
      Marlin/src/module/planner.cpp
  2. 2
    13
      Marlin/src/module/planner.h

+ 62
- 98
Marlin/src/module/planner.cpp View File

@@ -698,35 +698,69 @@ void Planner::calculate_volumetric_multipliers() {
698 698
 #endif // PLANNER_LEVELING
699 699
 
700 700
 /**
701
- * Planner::_buffer_steps
701
+ * Planner::_buffer_line
702 702
  *
703
- * Add a new linear movement to the buffer (in terms of steps).
703
+ * Add a new linear movement to the buffer in axis units.
704 704
  *
705
- *  target    - target position in steps units
705
+ * Leveling and kinematics should be applied ahead of calling this.
706
+ *
707
+ *  a,b,c,e   - target positions in mm and/or degrees
706 708
  *  fr_mm_s   - (target) speed of the move
707 709
  *  extruder  - target extruder
708 710
  */
709
-void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder) {
711
+void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
712
+
713
+  // The target position of the tool in absolute steps
714
+  // Calculate target position in absolute steps
715
+  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
716
+  const long target[XYZE] = {
717
+    LROUND(a * axis_steps_per_mm[X_AXIS]),
718
+    LROUND(b * axis_steps_per_mm[Y_AXIS]),
719
+    LROUND(c * axis_steps_per_mm[Z_AXIS]),
720
+    LROUND(e * axis_steps_per_mm[E_AXIS_N])
721
+  };
722
+
723
+  // When changing extruders recalculate steps corresponding to the E position
724
+  #if ENABLED(DISTINCT_E_FACTORS)
725
+    if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
726
+      position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
727
+      last_extruder = extruder;
728
+    }
729
+  #endif
710 730
 
711 731
   const int32_t da = target[X_AXIS] - position[X_AXIS],
712 732
                 db = target[Y_AXIS] - position[Y_AXIS],
713 733
                 dc = target[Z_AXIS] - position[Z_AXIS];
714 734
 
715
-  int32_t de = target[E_AXIS] - position[E_AXIS];
716
-
717
-  /* <-- add a slash to enable
718
-    SERIAL_ECHOPAIR("  _buffer_steps FR:", fr_mm_s);
719
-    SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
735
+  /*
736
+  SERIAL_ECHOPAIR("  Planner FR:", fr_mm_s);
737
+  SERIAL_CHAR(' ');
738
+  #if IS_KINEMATIC
739
+    SERIAL_ECHOPAIR("A:", a);
740
+    SERIAL_ECHOPAIR(" (", da);
741
+    SERIAL_ECHOPAIR(") B:", b);
742
+  #else
743
+    SERIAL_ECHOPAIR("X:", a);
720 744
     SERIAL_ECHOPAIR(" (", da);
721
-    SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
722
-    SERIAL_ECHOPAIR(" (", db);
723
-    SERIAL_ECHOLNPGM(" steps) C:", target[C_AXIS]);
724
-    SERIAL_ECHOPAIR(" (", dc);
725
-    SERIAL_ECHOLNPGM(" steps) E:", target[E_AXIS]);
726
-    SERIAL_ECHOPAIR(" (", de);
727
-    SERIAL_ECHOLNPGM(" steps)");
745
+    SERIAL_ECHOPAIR(") Y:", b);
746
+  #endif
747
+  SERIAL_ECHOPAIR(" (", db);
748
+  #if ENABLED(DELTA)
749
+    SERIAL_ECHOPAIR(") C:", c);
750
+  #else
751
+    SERIAL_ECHOPAIR(") Z:", c);
752
+  #endif
753
+  SERIAL_ECHOPAIR(" (", dc);
754
+  SERIAL_CHAR(')');
755
+  SERIAL_EOL();
728 756
   //*/
729 757
 
758
+  // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
759
+  if (DEBUGGING(DRYRUN))
760
+    position[E_AXIS] = target[E_AXIS];
761
+
762
+  int32_t de = target[E_AXIS] - position[E_AXIS];
763
+
730 764
   #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
731 765
     if (de) {
732 766
       #if ENABLED(PREVENT_COLD_EXTRUSION)
@@ -1033,7 +1067,6 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
1033 1067
     // Segment time im micro seconds
1034 1068
     uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
1035 1069
   #endif
1036
-
1037 1070
   #if ENABLED(SLOWDOWN)
1038 1071
     if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
1039 1072
       if (segment_time_us < min_segment_time_us) {
@@ -1227,12 +1260,12 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
1227 1260
     vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
1228 1261
 
1229 1262
     // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
1230
-    if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) {
1263
+    if (moves_queued() && !UNEAR_ZERO(previous_nominal_speed)) {
1231 1264
       // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
1232 1265
       // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
1233
-      float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
1234
-                        - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
1235
-                        - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
1266
+      const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
1267
+                              - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
1268
+                              - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS];
1236 1269
       // Skip and use default max junction speed for 0 degree acute junction.
1237 1270
       if (cos_theta < 0.95) {
1238 1271
         vmax_junction = min(previous_nominal_speed, block->nominal_speed);
@@ -1272,24 +1305,25 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
1272 1305
     }
1273 1306
   }
1274 1307
 
1275
-  if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
1308
+  if (moves_queued > 1 && !UNEAR_ZERO(previous_nominal_speed)) {
1276 1309
     // Estimate a maximum velocity allowed at a joint of two successive segments.
1277 1310
     // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
1278 1311
     // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
1279 1312
 
1280 1313
     // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
1281
-    const bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
1282
-    const float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
1283 1314
     // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
1284
-    vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
1315
+    vmax_junction = min(block->nominal_speed, previous_nominal_speed);
1316
+
1317
+    const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
1318
+
1285 1319
     // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
1286 1320
     float v_factor = 1;
1287 1321
     limited = 0;
1288 1322
     // Now limit the jerk in all axes.
1289 1323
     LOOP_XYZE(axis) {
1290 1324
       // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
1291
-      float v_exit = previous_speed[axis], v_entry = current_speed[axis];
1292
-      if (prev_speed_larger) v_exit *= smaller_speed_factor;
1325
+      float v_exit = previous_speed[axis] * smaller_speed_factor,
1326
+            v_entry = current_speed[axis];
1293 1327
       if (limited) {
1294 1328
         v_exit *= v_factor;
1295 1329
         v_entry *= v_factor;
@@ -1384,79 +1418,9 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
1384 1418
 
1385 1419
   recalculate();
1386 1420
 
1387
-} // _buffer_steps()
1388
-
1389
-/**
1390
- * Planner::_buffer_line
1391
- *
1392
- * Add a new linear movement to the buffer in axis units.
1393
- *
1394
- * Leveling and kinematics should be applied ahead of calling this.
1395
- *
1396
- *  a,b,c,e   - target positions in mm and/or degrees
1397
- *  fr_mm_s   - (target) speed of the move
1398
- *  extruder  - target extruder
1399
- */
1400
-void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) {
1401
-  // When changing extruders recalculate steps corresponding to the E position
1402
-  #if ENABLED(DISTINCT_E_FACTORS)
1403
-    if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
1404
-      position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
1405
-      last_extruder = extruder;
1406
-    }
1407
-  #endif
1408
-
1409
-  // The target position of the tool in absolute steps
1410
-  // Calculate target position in absolute steps
1411
-  const int32_t target[XYZE] = {
1412
-    LROUND(a * axis_steps_per_mm[X_AXIS]),
1413
-    LROUND(b * axis_steps_per_mm[Y_AXIS]),
1414
-    LROUND(c * axis_steps_per_mm[Z_AXIS]),
1415
-    LROUND(e * axis_steps_per_mm[E_AXIS_N])
1416
-  };
1417
-
1418
-  /* <-- add a slash to enable
1419
-    SERIAL_ECHOPAIR("  _buffer_line FR:", fr_mm_s);
1420
-    #if IS_KINEMATIC
1421
-      SERIAL_ECHOPAIR(" A:", a);
1422
-      SERIAL_ECHOPAIR(" (", target[A_AXIS]);
1423
-      SERIAL_ECHOPAIR(" steps) B:", b);
1424
-    #else
1425
-      SERIAL_ECHOPAIR(" X:", a);
1426
-      SERIAL_ECHOPAIR(" (", target[X_AXIS]);
1427
-      SERIAL_ECHOPAIR(" steps) Y:", b);
1428
-    #endif
1429
-    SERIAL_ECHOPAIR(" (", target[Y_AXIS]);
1430
-    #if ENABLED(DELTA)
1431
-      SERIAL_ECHOPAIR(" steps) C:", c);
1432
-    #else
1433
-      SERIAL_ECHOPAIR(" steps) Z:", c);
1434
-    #endif
1435
-    SERIAL_ECHOPAIR(" (", target[Z_AXIS]);
1436
-    SERIAL_ECHOPAIR(" steps) E:", e);
1437
-    SERIAL_ECHOPAIR(" (", target[E_AXIS]);
1438
-    SERIAL_ECHOLNPGM(" steps)");
1439
-  //*/
1440
-
1441
-  // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
1442
-  if (DEBUGGING(DRYRUN))
1443
-    position[E_AXIS] = target[E_AXIS];
1444
-
1445
-  // Always split the first move in two so it can chain
1446
-  if (!blocks_queued()) {
1447
-    DISABLE_STEPPER_DRIVER_INTERRUPT();
1448
-    #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
1449
-    const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
1450
-    _buffer_steps(between, fr_mm_s, extruder);
1451
-    _buffer_steps(target, fr_mm_s, extruder);
1452
-    ENABLE_STEPPER_DRIVER_INTERRUPT();
1453
-  }
1454
-  else
1455
-    _buffer_steps(target, fr_mm_s, extruder);
1456
-
1457 1421
   stepper.wake_up();
1458 1422
 
1459
-} // _buffer_line()
1423
+} // buffer_line()
1460 1424
 
1461 1425
 /**
1462 1426
  * Directly set the planner XYZ position (and stepper positions)

+ 2
- 13
Marlin/src/module/planner.h View File

@@ -144,7 +144,7 @@ class Planner {
144 144
       static uint8_t last_extruder;             // Respond to extruder change
145 145
     #endif
146 146
 
147
-    static int16_t flow_percentage[EXTRUDERS];  // Extrusion factor for each extruder
147
+    static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
148 148
 
149 149
     static float e_factor[EXTRUDERS],               // The flow percentage and volumetric multiplier combine to scale E movement
150 150
                  filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
@@ -353,17 +353,6 @@ class Planner {
353 353
     #endif
354 354
 
355 355
     /**
356
-     * Planner::_buffer_steps
357
-     *
358
-     * Add a new linear movement to the buffer (in terms of steps).
359
-     *
360
-     *  target    - target position in steps units
361
-     *  fr_mm_s   - (target) speed of the move
362
-     *  extruder  - target extruder
363
-     */
364
-    static void _buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder);
365
-
366
-    /**
367 356
      * Planner::_buffer_line
368 357
      *
369 358
      * Add a new linear movement to the buffer in axis units.
@@ -374,7 +363,7 @@ class Planner {
374 363
      *  fr_mm_s   - (target) speed of the move
375 364
      *  extruder  - target extruder
376 365
      */
377
-    static void _buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder);
366
+    static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
378 367
 
379 368
     static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
380 369
 

Loading…
Cancel
Save