My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G425.cpp 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../MarlinCore.h"
  23. #if ENABLED(CALIBRATION_GCODE)
  24. #include "../gcode.h"
  25. #if ENABLED(BACKLASH_GCODE)
  26. #include "../../feature/backlash.h"
  27. #endif
  28. #include "../../lcd/marlinui.h"
  29. #include "../../module/motion.h"
  30. #include "../../module/planner.h"
  31. #include "../../module/tool_change.h"
  32. #include "../../module/endstops.h"
  33. #include "../../feature/bedlevel/bedlevel.h"
  34. #if !AXIS_CAN_CALIBRATE(X)
  35. #undef CALIBRATION_MEASURE_LEFT
  36. #undef CALIBRATION_MEASURE_RIGHT
  37. #endif
  38. #if !AXIS_CAN_CALIBRATE(Y)
  39. #undef CALIBRATION_MEASURE_FRONT
  40. #undef CALIBRATION_MEASURE_BACK
  41. #endif
  42. #if !AXIS_CAN_CALIBRATE(Z)
  43. #undef CALIBRATION_MEASURE_AT_TOP_EDGES
  44. #endif
  45. /**
  46. * G425 backs away from the calibration object by various distances
  47. * depending on the confidence level:
  48. *
  49. * UNKNOWN - No real notion on where the calibration object is on the bed
  50. * UNCERTAIN - Measurement may be uncertain due to backlash
  51. * CERTAIN - Measurement obtained with backlash compensation
  52. */
  53. #ifndef CALIBRATION_MEASUREMENT_UNKNOWN
  54. #define CALIBRATION_MEASUREMENT_UNKNOWN 5.0 // mm
  55. #endif
  56. #ifndef CALIBRATION_MEASUREMENT_UNCERTAIN
  57. #define CALIBRATION_MEASUREMENT_UNCERTAIN 1.0 // mm
  58. #endif
  59. #ifndef CALIBRATION_MEASUREMENT_CERTAIN
  60. #define CALIBRATION_MEASUREMENT_CERTAIN 0.5 // mm
  61. #endif
  62. #if BOTH(CALIBRATION_MEASURE_LEFT, CALIBRATION_MEASURE_RIGHT)
  63. #define HAS_X_CENTER 1
  64. #endif
  65. #if ALL(HAS_Y_AXIS, CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
  66. #define HAS_Y_CENTER 1
  67. #endif
  68. #if ALL(HAS_I_AXIS, CALIBRATION_MEASURE_IMIN, CALIBRATION_MEASURE_IMAX)
  69. #define HAS_I_CENTER 1
  70. #endif
  71. #if ALL(HAS_J_AXIS, CALIBRATION_MEASURE_JMIN, CALIBRATION_MEASURE_JMAX)
  72. #define HAS_J_CENTER 1
  73. #endif
  74. #if ALL(HAS_K_AXIS, CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
  75. #define HAS_K_CENTER 1
  76. #endif
  77. #if ALL(HAS_U_AXIS, CALIBRATION_MEASURE_UMIN, CALIBRATION_MEASURE_UMAX)
  78. #define HAS_U_CENTER 1
  79. #endif
  80. #if ALL(HAS_V_AXIS, CALIBRATION_MEASURE_VMIN, CALIBRATION_MEASURE_VMAX)
  81. #define HAS_V_CENTER 1
  82. #endif
  83. #if ALL(HAS_W_AXIS, CALIBRATION_MEASURE_WMIN, CALIBRATION_MEASURE_WMAX)
  84. #define HAS_W_CENTER 1
  85. #endif
  86. enum side_t : uint8_t {
  87. TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
  88. LIST_N(DOUBLE(SECONDARY_AXES), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM, UMINIMUM, UMAXIMUM, VMINIMUM, VMAXIMUM, WMINIMUM, WMAXIMUM)
  89. };
  90. static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
  91. static constexpr xyz_float_t dimensions CALIBRATION_OBJECT_DIMENSIONS;
  92. static constexpr xy_float_t nod = { CALIBRATION_NOZZLE_OUTER_DIAMETER, CALIBRATION_NOZZLE_OUTER_DIAMETER };
  93. struct measurements_t {
  94. xyz_pos_t obj_center = true_center; // Non-static must be assigned from xyz_pos_t
  95. float obj_side[NUM_SIDES], backlash[NUM_SIDES];
  96. xyz_float_t pos_error;
  97. xy_float_t nozzle_outer_dimension = nod;
  98. };
  99. #if ENABLED(BACKLASH_GCODE)
  100. class restorer_correction {
  101. const uint8_t val_;
  102. public:
  103. restorer_correction(const uint8_t temp_val) : val_(backlash.get_correction_uint8()) { backlash.set_correction_uint8(temp_val); }
  104. ~restorer_correction() { backlash.set_correction_uint8(val_); }
  105. };
  106. #define TEMPORARY_BACKLASH_CORRECTION(value) restorer_correction restorer_tbst(value)
  107. #else
  108. #define TEMPORARY_BACKLASH_CORRECTION(value)
  109. #endif
  110. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  111. class restorer_smoothing {
  112. const float val_;
  113. public:
  114. restorer_smoothing(const float temp_val) : val_(backlash.get_smoothing_mm()) { backlash.set_smoothing_mm(temp_val); }
  115. ~restorer_smoothing() { backlash.set_smoothing_mm(val_); }
  116. };
  117. #define TEMPORARY_BACKLASH_SMOOTHING(value) restorer_smoothing restorer_tbsm(value)
  118. #else
  119. #define TEMPORARY_BACKLASH_SMOOTHING(value)
  120. #endif
  121. inline void calibration_move() {
  122. do_blocking_move_to((xyz_pos_t)current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
  123. }
  124. /**
  125. * Move to the exact center above the calibration object
  126. *
  127. * m in - Measurement record
  128. * uncertainty in - How far away from the object top to park
  129. */
  130. inline void park_above_object(measurements_t &m, const float uncertainty) {
  131. // Move to safe distance above calibration object
  132. current_position.z = m.obj_center.z + dimensions.z / 2 + uncertainty;
  133. calibration_move();
  134. // Move to center of calibration object in XY
  135. current_position = xy_pos_t(m.obj_center);
  136. calibration_move();
  137. }
  138. #if HAS_MULTI_HOTEND
  139. inline void set_nozzle(measurements_t &m, const uint8_t extruder) {
  140. if (extruder != active_extruder) {
  141. park_above_object(m, CALIBRATION_MEASUREMENT_UNKNOWN);
  142. tool_change(extruder);
  143. }
  144. }
  145. #endif
  146. #if HAS_HOTEND_OFFSET
  147. inline void normalize_hotend_offsets() {
  148. LOOP_S_L_N(e, 1, HOTENDS)
  149. hotend_offset[e] -= hotend_offset[0];
  150. hotend_offset[0].reset();
  151. }
  152. #endif
  153. #if !PIN_EXISTS(CALIBRATION)
  154. #include "../../module/probe.h"
  155. #endif
  156. inline bool read_calibration_pin() {
  157. return (
  158. #if PIN_EXISTS(CALIBRATION)
  159. READ(CALIBRATION_PIN) != CALIBRATION_PIN_INVERTING
  160. #else
  161. PROBE_TRIGGERED()
  162. #endif
  163. );
  164. }
  165. /**
  166. * Move along axis in the specified dir until the probe value becomes stop_state,
  167. * then return the axis value.
  168. *
  169. * axis in - Axis along which the measurement will take place
  170. * dir in - Direction along that axis (-1 or 1)
  171. * stop_state in - Move until probe pin becomes this value
  172. * fast in - Fast vs. precise measurement
  173. */
  174. float measuring_movement(const AxisEnum axis, const int dir, const bool stop_state, const bool fast) {
  175. const float step = fast ? 0.25 : CALIBRATION_MEASUREMENT_RESOLUTION;
  176. const feedRate_t mms = fast ? MMM_TO_MMS(CALIBRATION_FEEDRATE_FAST) : MMM_TO_MMS(CALIBRATION_FEEDRATE_SLOW);
  177. const float limit = fast ? 50 : 5;
  178. destination = current_position;
  179. for (float travel = 0; travel < limit; travel += step) {
  180. destination[axis] += dir * step;
  181. do_blocking_move_to((xyz_pos_t)destination, mms);
  182. planner.synchronize();
  183. if (read_calibration_pin() == stop_state) break;
  184. }
  185. return destination[axis];
  186. }
  187. /**
  188. * Move along axis until the probe is triggered. Move toolhead to its starting
  189. * point and return the measured value.
  190. *
  191. * axis in - Axis along which the measurement will take place
  192. * dir in - Direction along that axis (-1 or 1)
  193. * stop_state in - Move until probe pin becomes this value
  194. * backlash_ptr in/out - When not nullptr, measure and record axis backlash
  195. * uncertainty in - If uncertainty is CALIBRATION_MEASUREMENT_UNKNOWN, do a fast probe.
  196. */
  197. inline float measure(const AxisEnum axis, const int dir, const bool stop_state, float * const backlash_ptr, const float uncertainty) {
  198. const bool fast = uncertainty == CALIBRATION_MEASUREMENT_UNKNOWN;
  199. // Save the current position of the specified axis
  200. const float start_pos = current_position[axis];
  201. // Take a measurement. Only the specified axis will be affected.
  202. const float measured_pos = measuring_movement(axis, dir, stop_state, fast);
  203. // Measure backlash
  204. if (backlash_ptr && !fast) {
  205. const float release_pos = measuring_movement(axis, -dir, !stop_state, fast);
  206. *backlash_ptr = ABS(release_pos - measured_pos);
  207. }
  208. // Move back to the starting position
  209. destination = current_position;
  210. destination[axis] = start_pos;
  211. do_blocking_move_to((xyz_pos_t)destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
  212. return measured_pos;
  213. }
  214. /**
  215. * Probe one side of the calibration object
  216. *
  217. * m in/out - Measurement record, m.obj_center and m.obj_side will be updated.
  218. * uncertainty in - How far away from the calibration object to begin probing
  219. * side in - Side of probe where probe will occur
  220. * probe_top_at_edge in - When probing sides, probe top of calibration object nearest edge
  221. * to find out height of edge
  222. */
  223. inline void probe_side(measurements_t &m, const float uncertainty, const side_t side, const bool probe_top_at_edge=false) {
  224. const xyz_float_t dimensions = CALIBRATION_OBJECT_DIMENSIONS;
  225. AxisEnum axis;
  226. float dir = 1;
  227. park_above_object(m, uncertainty);
  228. #define _ACASE(N,A,B) case A: dir = -1; case B: axis = N##_AXIS; break
  229. #define _PCASE(N) _ACASE(N, N##MINIMUM, N##MAXIMUM)
  230. switch (side) {
  231. #if AXIS_CAN_CALIBRATE(X)
  232. _ACASE(X, RIGHT, LEFT);
  233. #endif
  234. #if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
  235. _ACASE(Y, BACK, FRONT);
  236. #endif
  237. #if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
  238. case TOP: {
  239. const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
  240. m.obj_center.z = measurement - dimensions.z / 2;
  241. m.obj_side[TOP] = measurement;
  242. return;
  243. }
  244. #endif
  245. #if HAS_I_AXIS && AXIS_CAN_CALIBRATE(I)
  246. _PCASE(I);
  247. #endif
  248. #if HAS_J_AXIS && AXIS_CAN_CALIBRATE(J)
  249. _PCASE(J);
  250. #endif
  251. #if HAS_K_AXIS && AXIS_CAN_CALIBRATE(K)
  252. _PCASE(K);
  253. #endif
  254. #if HAS_U_AXIS && AXIS_CAN_CALIBRATE(U)
  255. _PCASE(U);
  256. #endif
  257. #if HAS_V_AXIS && AXIS_CAN_CALIBRATE(V)
  258. _PCASE(V);
  259. #endif
  260. #if HAS_W_AXIS && AXIS_CAN_CALIBRATE(W)
  261. _PCASE(W);
  262. #endif
  263. default: return;
  264. }
  265. if (probe_top_at_edge) {
  266. #if AXIS_CAN_CALIBRATE(Z)
  267. // Probe top nearest the side we are probing
  268. current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 - m.nozzle_outer_dimension[axis]);
  269. calibration_move();
  270. m.obj_side[TOP] = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
  271. m.obj_center.z = m.obj_side[TOP] - dimensions.z / 2;
  272. #endif
  273. }
  274. if ((AXIS_CAN_CALIBRATE(X) && axis == X_AXIS) || (AXIS_CAN_CALIBRATE(Y) && axis == Y_AXIS)) {
  275. // Move to safe distance to the side of the calibration object
  276. current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2 + uncertainty);
  277. calibration_move();
  278. // Plunge below the side of the calibration object and measure
  279. current_position.z = m.obj_side[TOP] - (CALIBRATION_NOZZLE_TIP_HEIGHT) * 0.7f;
  280. calibration_move();
  281. const float measurement = measure(axis, dir, true, &m.backlash[side], uncertainty);
  282. m.obj_center[axis] = measurement + dir * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2);
  283. m.obj_side[side] = measurement;
  284. }
  285. }
  286. /**
  287. * Probe all sides of the calibration calibration object
  288. *
  289. * m in/out - Measurement record: center, backlash and error values be updated.
  290. * uncertainty in - How far away from the calibration object to begin probing
  291. */
  292. inline void probe_sides(measurements_t &m, const float uncertainty) {
  293. #if ENABLED(CALIBRATION_MEASURE_AT_TOP_EDGES)
  294. constexpr bool probe_top_at_edge = true;
  295. #else
  296. // Probing at the exact center only works if the center is flat. Probing on a washer
  297. // or bolt will require probing the top near the side edges, away from the center.
  298. constexpr bool probe_top_at_edge = false;
  299. probe_side(m, uncertainty, TOP);
  300. #endif
  301. TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
  302. TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
  303. TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
  304. TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
  305. TERN_(CALIBRATION_MEASURE_IMIN, probe_side(m, uncertainty, IMINIMUM, probe_top_at_edge));
  306. TERN_(CALIBRATION_MEASURE_IMAX, probe_side(m, uncertainty, IMAXIMUM, probe_top_at_edge));
  307. TERN_(CALIBRATION_MEASURE_JMIN, probe_side(m, uncertainty, JMINIMUM, probe_top_at_edge));
  308. TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
  309. TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
  310. TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
  311. TERN_(CALIBRATION_MEASURE_UMIN, probe_side(m, uncertainty, UMINIMUM, probe_top_at_edge));
  312. TERN_(CALIBRATION_MEASURE_UMAX, probe_side(m, uncertainty, UMAXIMUM, probe_top_at_edge));
  313. TERN_(CALIBRATION_MEASURE_VMIN, probe_side(m, uncertainty, VMINIMUM, probe_top_at_edge));
  314. TERN_(CALIBRATION_MEASURE_VMAX, probe_side(m, uncertainty, VMAXIMUM, probe_top_at_edge));
  315. TERN_(CALIBRATION_MEASURE_WMIN, probe_side(m, uncertainty, WMINIMUM, probe_top_at_edge));
  316. TERN_(CALIBRATION_MEASURE_WMAX, probe_side(m, uncertainty, WMAXIMUM, probe_top_at_edge));
  317. // Compute the measured center of the calibration object.
  318. TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
  319. TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
  320. TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
  321. TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
  322. TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
  323. TERN_(HAS_U_CENTER, m.obj_center.u = (m.obj_side[UMINIMUM] + m.obj_side[UMAXIMUM]) / 2);
  324. TERN_(HAS_V_CENTER, m.obj_center.v = (m.obj_side[VMINIMUM] + m.obj_side[VMAXIMUM]) / 2);
  325. TERN_(HAS_W_CENTER, m.obj_center.w = (m.obj_side[WMINIMUM] + m.obj_side[WMAXIMUM]) / 2);
  326. // Compute the outside diameter of the nozzle at the height
  327. // at which it makes contact with the calibration object
  328. TERN_(HAS_X_CENTER, m.nozzle_outer_dimension.x = m.obj_side[RIGHT] - m.obj_side[LEFT] - dimensions.x);
  329. TERN_(HAS_Y_CENTER, m.nozzle_outer_dimension.y = m.obj_side[BACK] - m.obj_side[FRONT] - dimensions.y);
  330. park_above_object(m, uncertainty);
  331. // The difference between the known and the measured location
  332. // of the calibration object is the positional error
  333. NUM_AXIS_CODE(
  334. m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
  335. m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
  336. m.pos_error.z = true_center.z - m.obj_center.z,
  337. m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
  338. m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
  339. m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k),
  340. m.pos_error.u = TERN0(HAS_U_CENTER, true_center.u - m.obj_center.u),
  341. m.pos_error.v = TERN0(HAS_V_CENTER, true_center.v - m.obj_center.v),
  342. m.pos_error.w = TERN0(HAS_W_CENTER, true_center.w - m.obj_center.w)
  343. );
  344. }
  345. #if ENABLED(CALIBRATION_REPORTING)
  346. inline void report_measured_faces(const measurements_t &m) {
  347. SERIAL_ECHOLNPGM("Sides:");
  348. #if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
  349. SERIAL_ECHOLNPGM(" Top: ", m.obj_side[TOP]);
  350. #endif
  351. #if ENABLED(CALIBRATION_MEASURE_LEFT)
  352. SERIAL_ECHOLNPGM(" Left: ", m.obj_side[LEFT]);
  353. #endif
  354. #if ENABLED(CALIBRATION_MEASURE_RIGHT)
  355. SERIAL_ECHOLNPGM(" Right: ", m.obj_side[RIGHT]);
  356. #endif
  357. #if HAS_Y_AXIS
  358. #if ENABLED(CALIBRATION_MEASURE_FRONT)
  359. SERIAL_ECHOLNPGM(" Front: ", m.obj_side[FRONT]);
  360. #endif
  361. #if ENABLED(CALIBRATION_MEASURE_BACK)
  362. SERIAL_ECHOLNPGM(" Back: ", m.obj_side[BACK]);
  363. #endif
  364. #endif
  365. #if HAS_I_AXIS
  366. #if ENABLED(CALIBRATION_MEASURE_IMIN)
  367. SERIAL_ECHOLNPGM(" " STR_I_MIN ": ", m.obj_side[IMINIMUM]);
  368. #endif
  369. #if ENABLED(CALIBRATION_MEASURE_IMAX)
  370. SERIAL_ECHOLNPGM(" " STR_I_MAX ": ", m.obj_side[IMAXIMUM]);
  371. #endif
  372. #endif
  373. #if HAS_J_AXIS
  374. #if ENABLED(CALIBRATION_MEASURE_JMIN)
  375. SERIAL_ECHOLNPGM(" " STR_J_MIN ": ", m.obj_side[JMINIMUM]);
  376. #endif
  377. #if ENABLED(CALIBRATION_MEASURE_JMAX)
  378. SERIAL_ECHOLNPGM(" " STR_J_MAX ": ", m.obj_side[JMAXIMUM]);
  379. #endif
  380. #endif
  381. #if HAS_K_AXIS
  382. #if ENABLED(CALIBRATION_MEASURE_KMIN)
  383. SERIAL_ECHOLNPGM(" " STR_K_MIN ": ", m.obj_side[KMINIMUM]);
  384. #endif
  385. #if ENABLED(CALIBRATION_MEASURE_KMAX)
  386. SERIAL_ECHOLNPGM(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
  387. #endif
  388. #endif
  389. #if HAS_U_AXIS
  390. #if ENABLED(CALIBRATION_MEASURE_UMIN)
  391. SERIAL_ECHOLNPGM(" " STR_U_MIN ": ", m.obj_side[UMINIMUM]);
  392. #endif
  393. #if ENABLED(CALIBRATION_MEASURE_UMAX)
  394. SERIAL_ECHOLNPGM(" " STR_U_MAX ": ", m.obj_side[UMAXIMUM]);
  395. #endif
  396. #endif
  397. #if HAS_V_AXIS
  398. #if ENABLED(CALIBRATION_MEASURE_VMIN)
  399. SERIAL_ECHOLNPGM(" " STR_V_MIN ": ", m.obj_side[VMINIMUM]);
  400. #endif
  401. #if ENABLED(CALIBRATION_MEASURE_VMAX)
  402. SERIAL_ECHOLNPGM(" " STR_V_MAX ": ", m.obj_side[VMAXIMUM]);
  403. #endif
  404. #endif
  405. #if HAS_W_AXIS
  406. #if ENABLED(CALIBRATION_MEASURE_WMIN)
  407. SERIAL_ECHOLNPGM(" " STR_W_MIN ": ", m.obj_side[WMINIMUM]);
  408. #endif
  409. #if ENABLED(CALIBRATION_MEASURE_WMAX)
  410. SERIAL_ECHOLNPGM(" " STR_W_MAX ": ", m.obj_side[WMAXIMUM]);
  411. #endif
  412. #endif
  413. SERIAL_EOL();
  414. }
  415. inline void report_measured_center(const measurements_t &m) {
  416. SERIAL_ECHOLNPGM("Center:");
  417. #if HAS_X_CENTER
  418. SERIAL_ECHOLNPGM_P(SP_X_STR, m.obj_center.x);
  419. #endif
  420. #if HAS_Y_CENTER
  421. SERIAL_ECHOLNPGM_P(SP_Y_STR, m.obj_center.y);
  422. #endif
  423. SERIAL_ECHOLNPGM_P(SP_Z_STR, m.obj_center.z);
  424. #if HAS_I_CENTER
  425. SERIAL_ECHOLNPGM_P(SP_I_STR, m.obj_center.i);
  426. #endif
  427. #if HAS_J_CENTER
  428. SERIAL_ECHOLNPGM_P(SP_J_STR, m.obj_center.j);
  429. #endif
  430. #if HAS_K_CENTER
  431. SERIAL_ECHOLNPGM_P(SP_K_STR, m.obj_center.k);
  432. #endif
  433. #if HAS_U_CENTER
  434. SERIAL_ECHOLNPGM_P(SP_U_STR, m.obj_center.u);
  435. #endif
  436. #if HAS_V_CENTER
  437. SERIAL_ECHOLNPGM_P(SP_V_STR, m.obj_center.v);
  438. #endif
  439. #if HAS_W_CENTER
  440. SERIAL_ECHOLNPGM_P(SP_W_STR, m.obj_center.w);
  441. #endif
  442. SERIAL_EOL();
  443. }
  444. inline void report_measured_backlash(const measurements_t &m) {
  445. SERIAL_ECHOLNPGM("Backlash:");
  446. #if AXIS_CAN_CALIBRATE(X)
  447. #if ENABLED(CALIBRATION_MEASURE_LEFT)
  448. SERIAL_ECHOLNPGM(" Left: ", m.backlash[LEFT]);
  449. #endif
  450. #if ENABLED(CALIBRATION_MEASURE_RIGHT)
  451. SERIAL_ECHOLNPGM(" Right: ", m.backlash[RIGHT]);
  452. #endif
  453. #endif
  454. #if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
  455. #if ENABLED(CALIBRATION_MEASURE_FRONT)
  456. SERIAL_ECHOLNPGM(" Front: ", m.backlash[FRONT]);
  457. #endif
  458. #if ENABLED(CALIBRATION_MEASURE_BACK)
  459. SERIAL_ECHOLNPGM(" Back: ", m.backlash[BACK]);
  460. #endif
  461. #endif
  462. #if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
  463. SERIAL_ECHOLNPGM(" Top: ", m.backlash[TOP]);
  464. #endif
  465. #if HAS_I_AXIS && AXIS_CAN_CALIBRATE(I)
  466. #if ENABLED(CALIBRATION_MEASURE_IMIN)
  467. SERIAL_ECHOLNPGM(" " STR_I_MIN ": ", m.backlash[IMINIMUM]);
  468. #endif
  469. #if ENABLED(CALIBRATION_MEASURE_IMAX)
  470. SERIAL_ECHOLNPGM(" " STR_I_MAX ": ", m.backlash[IMAXIMUM]);
  471. #endif
  472. #endif
  473. #if HAS_J_AXIS && AXIS_CAN_CALIBRATE(J)
  474. #if ENABLED(CALIBRATION_MEASURE_JMIN)
  475. SERIAL_ECHOLNPGM(" " STR_J_MIN ": ", m.backlash[JMINIMUM]);
  476. #endif
  477. #if ENABLED(CALIBRATION_MEASURE_JMAX)
  478. SERIAL_ECHOLNPGM(" " STR_J_MAX ": ", m.backlash[JMAXIMUM]);
  479. #endif
  480. #endif
  481. #if HAS_K_AXIS && AXIS_CAN_CALIBRATE(K)
  482. #if ENABLED(CALIBRATION_MEASURE_KMIN)
  483. SERIAL_ECHOLNPGM(" " STR_K_MIN ": ", m.backlash[KMINIMUM]);
  484. #endif
  485. #if ENABLED(CALIBRATION_MEASURE_KMAX)
  486. SERIAL_ECHOLNPGM(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
  487. #endif
  488. #endif
  489. #if HAS_U_AXIS && AXIS_CAN_CALIBRATE(U)
  490. #if ENABLED(CALIBRATION_MEASURE_UMIN)
  491. SERIAL_ECHOLNPGM(" " STR_U_MIN ": ", m.backlash[UMINIMUM]);
  492. #endif
  493. #if ENABLED(CALIBRATION_MEASURE_UMAX)
  494. SERIAL_ECHOLNPGM(" " STR_U_MAX ": ", m.backlash[UMAXIMUM]);
  495. #endif
  496. #endif
  497. #if HAS_V_AXIS && AXIS_CAN_CALIBRATE(V)
  498. #if ENABLED(CALIBRATION_MEASURE_VMIN)
  499. SERIAL_ECHOLNPGM(" " STR_V_MIN ": ", m.backlash[VMINIMUM]);
  500. #endif
  501. #if ENABLED(CALIBRATION_MEASURE_VMAX)
  502. SERIAL_ECHOLNPGM(" " STR_V_MAX ": ", m.backlash[VMAXIMUM]);
  503. #endif
  504. #endif
  505. #if HAS_W_AXIS && AXIS_CAN_CALIBRATE(W)
  506. #if ENABLED(CALIBRATION_MEASURE_WMIN)
  507. SERIAL_ECHOLNPGM(" " STR_W_MIN ": ", m.backlash[WMINIMUM]);
  508. #endif
  509. #if ENABLED(CALIBRATION_MEASURE_WMAX)
  510. SERIAL_ECHOLNPGM(" " STR_W_MAX ": ", m.backlash[WMAXIMUM]);
  511. #endif
  512. #endif
  513. SERIAL_EOL();
  514. }
  515. inline void report_measured_positional_error(const measurements_t &m) {
  516. SERIAL_CHAR('T');
  517. SERIAL_ECHO(active_extruder);
  518. SERIAL_ECHOLNPGM(" Positional Error:");
  519. #if HAS_X_CENTER && AXIS_CAN_CALIBRATE(X)
  520. SERIAL_ECHOLNPGM_P(SP_X_STR, m.pos_error.x);
  521. #endif
  522. #if HAS_Y_CENTER && AXIS_CAN_CALIBRATE(Y)
  523. SERIAL_ECHOLNPGM_P(SP_Y_STR, m.pos_error.y);
  524. #endif
  525. #if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
  526. SERIAL_ECHOLNPGM_P(SP_Z_STR, m.pos_error.z);
  527. #endif
  528. #if HAS_I_CENTER && AXIS_CAN_CALIBRATE(I)
  529. SERIAL_ECHOLNPGM_P(SP_I_STR, m.pos_error.i);
  530. #endif
  531. #if HAS_J_CENTER && AXIS_CAN_CALIBRATE(J)
  532. SERIAL_ECHOLNPGM_P(SP_J_STR, m.pos_error.j);
  533. #endif
  534. #if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
  535. SERIAL_ECHOLNPGM_P(SP_K_STR, m.pos_error.k);
  536. #endif
  537. #if HAS_U_CENTER && AXIS_CAN_CALIBRATE(U)
  538. SERIAL_ECHOLNPGM_P(SP_U_STR, m.pos_error.u);
  539. #endif
  540. #if HAS_V_CENTER && AXIS_CAN_CALIBRATE(V)
  541. SERIAL_ECHOLNPGM_P(SP_V_STR, m.pos_error.v);
  542. #endif
  543. #if HAS_W_CENTER && AXIS_CAN_CALIBRATE(W)
  544. SERIAL_ECHOLNPGM_P(SP_W_STR, m.pos_error.w);
  545. #endif
  546. SERIAL_EOL();
  547. }
  548. inline void report_measured_nozzle_dimensions(const measurements_t &m) {
  549. SERIAL_ECHOLNPGM("Nozzle Tip Outer Dimensions:");
  550. #if HAS_X_CENTER
  551. SERIAL_ECHOLNPGM_P(SP_X_STR, m.nozzle_outer_dimension.x);
  552. #endif
  553. #if HAS_Y_CENTER
  554. SERIAL_ECHOLNPGM_P(SP_Y_STR, m.nozzle_outer_dimension.y);
  555. #endif
  556. SERIAL_EOL();
  557. UNUSED(m);
  558. }
  559. #if HAS_HOTEND_OFFSET
  560. //
  561. // This function requires normalize_hotend_offsets() to be called
  562. //
  563. inline void report_hotend_offsets() {
  564. LOOP_S_L_N(e, 1, HOTENDS)
  565. SERIAL_ECHOLNPGM_P(PSTR("T"), e, PSTR(" Hotend Offset X"), hotend_offset[e].x, SP_Y_STR, hotend_offset[e].y, SP_Z_STR, hotend_offset[e].z);
  566. }
  567. #endif
  568. #endif // CALIBRATION_REPORTING
  569. /**
  570. * Probe around the calibration object to measure backlash
  571. *
  572. * m in/out - Measurement record, updated with new readings
  573. * uncertainty in - How far away from the object to begin probing
  574. */
  575. inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
  576. // Backlash compensation should be off while measuring backlash
  577. {
  578. // New scope for TEMPORARY_BACKLASH_CORRECTION
  579. TEMPORARY_BACKLASH_CORRECTION(backlash.all_off);
  580. TEMPORARY_BACKLASH_SMOOTHING(0.0f);
  581. probe_sides(m, uncertainty);
  582. #if ENABLED(BACKLASH_GCODE)
  583. #if HAS_X_CENTER
  584. backlash.set_distance_mm(X_AXIS, (m.backlash[LEFT] + m.backlash[RIGHT]) / 2);
  585. #elif ENABLED(CALIBRATION_MEASURE_LEFT)
  586. backlash.set_distance_mm(X_AXIS, m.backlash[LEFT]);
  587. #elif ENABLED(CALIBRATION_MEASURE_RIGHT)
  588. backlash.set_distance_mm(X_AXIS, m.backlash[RIGHT]);
  589. #endif
  590. #if HAS_Y_CENTER
  591. backlash.set_distance_mm(Y_AXIS, (m.backlash[FRONT] + m.backlash[BACK]) / 2);
  592. #elif ENABLED(CALIBRATION_MEASURE_FRONT)
  593. backlash.set_distance_mm(Y_AXIS, m.backlash[FRONT]);
  594. #elif ENABLED(CALIBRATION_MEASURE_BACK)
  595. backlash.set_distance_mm(Y_AXIS, m.backlash[BACK]);
  596. #endif
  597. TERN_(HAS_Z_AXIS, if (AXIS_CAN_CALIBRATE(Z)) backlash.set_distance_mm(Z_AXIS, m.backlash[TOP]));
  598. #if HAS_I_CENTER
  599. backlash.set_distance_mm(I_AXIS, (m.backlash[IMINIMUM] + m.backlash[IMAXIMUM]) / 2);
  600. #elif ENABLED(CALIBRATION_MEASURE_IMIN)
  601. backlash.set_distance_mm(I_AXIS, m.backlash[IMINIMUM]);
  602. #elif ENABLED(CALIBRATION_MEASURE_IMAX)
  603. backlash.set_distance_mm(I_AXIS, m.backlash[IMAXIMUM]);
  604. #endif
  605. #if HAS_J_CENTER
  606. backlash.set_distance_mm(J_AXIS, (m.backlash[JMINIMUM] + m.backlash[JMAXIMUM]) / 2);
  607. #elif ENABLED(CALIBRATION_MEASURE_JMIN)
  608. backlash.set_distance_mm(J_AXIS, m.backlash[JMINIMUM]);
  609. #elif ENABLED(CALIBRATION_MEASURE_JMAX)
  610. backlash.set_distance_mm(J_AXIS, m.backlash[JMAXIMUM]);
  611. #endif
  612. #if HAS_K_CENTER
  613. backlash.set_distance_mm(K_AXIS, (m.backlash[KMINIMUM] + m.backlash[KMAXIMUM]) / 2);
  614. #elif ENABLED(CALIBRATION_MEASURE_KMIN)
  615. backlash.set_distance_mm(K_AXIS, m.backlash[KMINIMUM]);
  616. #elif ENABLED(CALIBRATION_MEASURE_KMAX)
  617. backlash.set_distance_mm(K_AXIS, m.backlash[KMAXIMUM]);
  618. #endif
  619. #if HAS_U_CENTER
  620. backlash.distance_mm.u = (m.backlash[UMINIMUM] + m.backlash[UMAXIMUM]) / 2;
  621. #elif ENABLED(CALIBRATION_MEASURE_UMIN)
  622. backlash.distance_mm.u = m.backlash[UMINIMUM];
  623. #elif ENABLED(CALIBRATION_MEASURE_UMAX)
  624. backlash.distance_mm.u = m.backlash[UMAXIMUM];
  625. #endif
  626. #if HAS_V_CENTER
  627. backlash.distance_mm.v = (m.backlash[VMINIMUM] + m.backlash[VMAXIMUM]) / 2;
  628. #elif ENABLED(CALIBRATION_MEASURE_VMIN)
  629. backlash.distance_mm.v = m.backlash[VMINIMUM];
  630. #elif ENABLED(CALIBRATION_MEASURE_UMAX)
  631. backlash.distance_mm.v = m.backlash[VMAXIMUM];
  632. #endif
  633. #if HAS_W_CENTER
  634. backlash.distance_mm.w = (m.backlash[WMINIMUM] + m.backlash[WMAXIMUM]) / 2;
  635. #elif ENABLED(CALIBRATION_MEASURE_WMIN)
  636. backlash.distance_mm.w = m.backlash[WMINIMUM];
  637. #elif ENABLED(CALIBRATION_MEASURE_WMAX)
  638. backlash.distance_mm.w = m.backlash[WMAXIMUM];
  639. #endif
  640. #endif // BACKLASH_GCODE
  641. }
  642. #if ENABLED(BACKLASH_GCODE)
  643. // Turn on backlash compensation and move in all
  644. // allowed directions to take up any backlash
  645. {
  646. // New scope for TEMPORARY_BACKLASH_CORRECTION
  647. TEMPORARY_BACKLASH_CORRECTION(backlash.all_on);
  648. TEMPORARY_BACKLASH_SMOOTHING(0.0f);
  649. const xyz_float_t move = NUM_AXIS_ARRAY(
  650. AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
  651. AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3,
  652. AXIS_CAN_CALIBRATE(U) * 3, AXIS_CAN_CALIBRATE(V) * 3, AXIS_CAN_CALIBRATE(W) * 3
  653. );
  654. current_position += move; calibration_move();
  655. current_position -= move; calibration_move();
  656. }
  657. #endif
  658. }
  659. inline void update_measurements(measurements_t &m, const AxisEnum axis) {
  660. current_position[axis] += m.pos_error[axis];
  661. m.obj_center[axis] = true_center[axis];
  662. m.pos_error[axis] = 0;
  663. }
  664. /**
  665. * Probe around the calibration object. Adjust the position and toolhead offset
  666. * using the deviation from the known position of the calibration object.
  667. *
  668. * m in/out - Measurement record, updated with new readings
  669. * uncertainty in - How far away from the object to begin probing
  670. * extruder in - What extruder to probe
  671. *
  672. * Prerequisites:
  673. * - Call calibrate_backlash() beforehand for best accuracy
  674. */
  675. inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const uint8_t extruder) {
  676. TEMPORARY_BACKLASH_CORRECTION(backlash.all_on);
  677. TEMPORARY_BACKLASH_SMOOTHING(0.0f);
  678. TERN(HAS_MULTI_HOTEND, set_nozzle(m, extruder), UNUSED(extruder));
  679. probe_sides(m, uncertainty);
  680. // Adjust the hotend offset
  681. #if HAS_HOTEND_OFFSET
  682. if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) hotend_offset[extruder].x += m.pos_error.x;
  683. if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) hotend_offset[extruder].y += m.pos_error.y;
  684. if (AXIS_CAN_CALIBRATE(Z)) hotend_offset[extruder].z += m.pos_error.z;
  685. normalize_hotend_offsets();
  686. #endif
  687. // Correct for positional error, so the object
  688. // is at the known actual spot
  689. planner.synchronize();
  690. if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) update_measurements(m, X_AXIS);
  691. if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
  692. if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
  693. TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
  694. TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
  695. TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
  696. TERN_(HAS_U_CENTER, update_measurements(m, U_AXIS));
  697. TERN_(HAS_V_CENTER, update_measurements(m, V_AXIS));
  698. TERN_(HAS_W_CENTER, update_measurements(m, W_AXIS));
  699. sync_plan_position();
  700. }
  701. /**
  702. * Probe around the calibration object for all toolheads, adjusting the coordinate
  703. * system for the first nozzle and the nozzle offset for subsequent nozzles.
  704. *
  705. * m in/out - Measurement record, updated with new readings
  706. * uncertainty in - How far away from the object to begin probing
  707. */
  708. inline void calibrate_all_toolheads(measurements_t &m, const float uncertainty) {
  709. TEMPORARY_BACKLASH_CORRECTION(backlash.all_on);
  710. TEMPORARY_BACKLASH_SMOOTHING(0.0f);
  711. HOTEND_LOOP() calibrate_toolhead(m, uncertainty, e);
  712. TERN_(HAS_HOTEND_OFFSET, normalize_hotend_offsets());
  713. TERN_(HAS_MULTI_HOTEND, set_nozzle(m, 0));
  714. }
  715. /**
  716. * Perform a full auto-calibration routine:
  717. *
  718. * 1) For each nozzle, touch top and sides of object to determine object position and
  719. * nozzle offsets. Do a fast but rough search over a wider area.
  720. * 2) With the first nozzle, touch top and sides of object to determine backlash values
  721. * for all axes (if BACKLASH_GCODE is enabled)
  722. * 3) For each nozzle, touch top and sides of object slowly to determine precise
  723. * position of object. Adjust coordinate system and nozzle offsets so probed object
  724. * location corresponds to known object location with a high degree of precision.
  725. */
  726. inline void calibrate_all() {
  727. measurements_t m;
  728. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  729. TEMPORARY_BACKLASH_CORRECTION(backlash.all_on);
  730. TEMPORARY_BACKLASH_SMOOTHING(0.0f);
  731. // Do a fast and rough calibration of the toolheads
  732. calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNKNOWN);
  733. TERN_(BACKLASH_GCODE, calibrate_backlash(m, CALIBRATION_MEASUREMENT_UNCERTAIN));
  734. // Cycle the toolheads so the servos settle into their "natural" positions
  735. #if HAS_MULTI_HOTEND
  736. HOTEND_LOOP() set_nozzle(m, e);
  737. #endif
  738. // Do a slow and precise calibration of the toolheads
  739. calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNCERTAIN);
  740. current_position.x = X_CENTER;
  741. calibration_move(); // Park nozzle away from calibration object
  742. }
  743. /**
  744. * G425: Perform calibration with calibration object.
  745. *
  746. * B - Perform calibration of backlash only.
  747. * T<extruder> - Perform calibration of toolhead only.
  748. * V - Probe object and print position, error, backlash and hotend offset.
  749. * U - Uncertainty, how far to start probe away from the object (mm)
  750. *
  751. * no args - Perform entire calibration sequence (backlash + position on all toolheads)
  752. */
  753. void GcodeSuite::G425() {
  754. #ifdef CALIBRATION_SCRIPT_PRE
  755. process_subcommands_now(F(CALIBRATION_SCRIPT_PRE));
  756. #endif
  757. if (homing_needed_error()) return;
  758. TEMPORARY_BED_LEVELING_STATE(false);
  759. SET_SOFT_ENDSTOP_LOOSE(true);
  760. measurements_t m;
  761. const float uncertainty = parser.floatval('U', CALIBRATION_MEASUREMENT_UNCERTAIN);
  762. if (parser.seen_test('B'))
  763. calibrate_backlash(m, uncertainty);
  764. else if (parser.seen_test('T'))
  765. calibrate_toolhead(m, uncertainty, parser.intval('T', active_extruder));
  766. #if ENABLED(CALIBRATION_REPORTING)
  767. else if (parser.seen('V')) {
  768. probe_sides(m, uncertainty);
  769. SERIAL_EOL();
  770. report_measured_faces(m);
  771. report_measured_center(m);
  772. report_measured_backlash(m);
  773. report_measured_nozzle_dimensions(m);
  774. report_measured_positional_error(m);
  775. #if HAS_HOTEND_OFFSET
  776. normalize_hotend_offsets();
  777. report_hotend_offsets();
  778. #endif
  779. }
  780. #endif
  781. else
  782. calibrate_all();
  783. SET_SOFT_ENDSTOP_LOOSE(false);
  784. #ifdef CALIBRATION_SCRIPT_POST
  785. process_subcommands_now(F(CALIBRATION_SCRIPT_POST));
  786. #endif
  787. }
  788. #endif // CALIBRATION_GCODE