My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

motion.h 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * motion.h
  24. *
  25. * High-level motion commands to feed the planner
  26. * Some of these methods may migrate to the planner class.
  27. */
  28. #ifndef MOTION_H
  29. #define MOTION_H
  30. #include "../inc/MarlinConfig.h"
  31. #if IS_SCARA
  32. #include "../module/scara.h"
  33. #endif
  34. extern bool relative_mode;
  35. extern float current_position[XYZE], // High-level current tool position
  36. destination[XYZE]; // Destination for a move
  37. // Scratch space for a cartesian result
  38. extern float cartes[XYZ];
  39. // Until kinematics.cpp is created, declare this here
  40. #if IS_KINEMATIC
  41. extern float delta[ABC];
  42. #endif
  43. #if OLDSCHOOL_ABL
  44. extern float xy_probe_feedrate_mm_s;
  45. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  46. #elif defined(XY_PROBE_SPEED)
  47. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  48. #else
  49. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  50. #endif
  51. /**
  52. * Feed rates are often configured with mm/m
  53. * but the planner and stepper like mm/s units.
  54. */
  55. extern const float homing_feedrate_mm_s[4];
  56. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  57. extern float feedrate_mm_s;
  58. /**
  59. * Feedrate scaling and conversion
  60. */
  61. extern int16_t feedrate_percentage;
  62. #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
  63. extern uint8_t active_extruder;
  64. #if HOTENDS > 1
  65. extern float hotend_offset[XYZ][HOTENDS];
  66. #endif
  67. extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
  68. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  69. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  70. #define XYZ_DEFS(type, array, CONFIG) \
  71. extern const type array##_P[XYZ]; \
  72. FORCE_INLINE type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  73. typedef void __void_##CONFIG##__
  74. XYZ_DEFS(float, base_min_pos, MIN_POS);
  75. XYZ_DEFS(float, base_max_pos, MAX_POS);
  76. XYZ_DEFS(float, base_home_pos, HOME_POS);
  77. XYZ_DEFS(float, max_length, MAX_LENGTH);
  78. XYZ_DEFS(float, home_bump_mm, HOME_BUMP_MM);
  79. XYZ_DEFS(signed char, home_dir, HOME_DIR);
  80. #if HAS_SOFTWARE_ENDSTOPS
  81. extern bool soft_endstops_enabled;
  82. void clamp_to_software_endstops(float target[XYZ]);
  83. #else
  84. #define soft_endstops_enabled false
  85. #define clamp_to_software_endstops(x) NOOP
  86. #endif
  87. void report_current_position();
  88. inline void set_current_from_destination() { COPY(current_position, destination); }
  89. inline void set_destination_from_current() { COPY(destination, current_position); }
  90. void get_cartesian_from_steppers();
  91. void set_current_from_steppers_for_axis(const AxisEnum axis);
  92. /**
  93. * sync_plan_position
  94. *
  95. * Set the planner/stepper positions directly from current_position with
  96. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  97. */
  98. void sync_plan_position();
  99. void sync_plan_position_e();
  100. #if IS_KINEMATIC
  101. void sync_plan_position_kinematic();
  102. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  103. #else
  104. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  105. #endif
  106. /**
  107. * Move the planner to the current position from wherever it last moved
  108. * (or from wherever it has been told it is located).
  109. */
  110. void line_to_current_position();
  111. /**
  112. * Move the planner to the position stored in the destination array, which is
  113. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  114. */
  115. void buffer_line_to_destination(const float fr_mm_s);
  116. #if IS_KINEMATIC
  117. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0);
  118. #endif
  119. void prepare_move_to_destination();
  120. /**
  121. * Blocking movement and shorthand functions
  122. */
  123. void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0.0);
  124. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0.0);
  125. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0.0);
  126. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0.0);
  127. void setup_for_endstop_or_probe_move();
  128. void clean_up_after_endstop_or_probe_move();
  129. void bracket_probe_move(const bool before);
  130. void setup_for_endstop_or_probe_move();
  131. void clean_up_after_endstop_or_probe_move();
  132. //
  133. // Homing
  134. //
  135. #define HAS_AXIS_UNHOMED_ERR ( \
  136. ENABLED(Z_PROBE_ALLEN_KEY) \
  137. || ENABLED(Z_PROBE_SLED) \
  138. || HAS_PROBING_PROCEDURE \
  139. || HOTENDS > 1 \
  140. || ENABLED(NOZZLE_CLEAN_FEATURE) \
  141. || ENABLED(NOZZLE_PARK_FEATURE) \
  142. || (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
  143. || HAS_M206_COMMAND \
  144. ) || ENABLED(NO_MOTION_BEFORE_HOMING)
  145. #if HAS_AXIS_UNHOMED_ERR
  146. bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
  147. #endif
  148. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  149. #define MOTION_CONDITIONS (IsRunning() && !axis_unhomed_error())
  150. #else
  151. #define MOTION_CONDITIONS IsRunning()
  152. #endif
  153. void set_axis_is_at_home(const AxisEnum axis);
  154. void homeaxis(const AxisEnum axis);
  155. #define HOMEAXIS(A) homeaxis(_AXIS(A))
  156. #if ENABLED(SENSORLESS_HOMING)
  157. void sensorless_homing_per_axis(const AxisEnum axis, const bool enable=true);
  158. #endif
  159. //
  160. // Macros
  161. //
  162. /**
  163. * Workspace offsets
  164. */
  165. #if HAS_WORKSPACE_OFFSET
  166. #if HAS_HOME_OFFSET
  167. extern float home_offset[XYZ];
  168. #endif
  169. #if HAS_POSITION_SHIFT
  170. extern float position_shift[XYZ];
  171. #endif
  172. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  173. extern float workspace_offset[XYZ];
  174. #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
  175. #elif HAS_HOME_OFFSET
  176. #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
  177. #elif HAS_POSITION_SHIFT
  178. #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
  179. #endif
  180. #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
  181. #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
  182. #else
  183. #define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
  184. #define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
  185. #endif
  186. #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
  187. #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
  188. #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
  189. #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
  190. #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
  191. #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
  192. /**
  193. * position_is_reachable family of functions
  194. */
  195. #if IS_KINEMATIC // (DELTA or SCARA)
  196. #if IS_SCARA
  197. extern const float L1, L2;
  198. #endif
  199. // Return true if the given point is within the printable area
  200. inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
  201. #if ENABLED(DELTA)
  202. return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
  203. #elif IS_SCARA
  204. const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
  205. return (
  206. R2 <= sq(L1 + L2) - inset
  207. #if MIDDLE_DEAD_ZONE_R > 0
  208. && R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
  209. #endif
  210. );
  211. #endif
  212. }
  213. #if HAS_BED_PROBE
  214. // Return true if the both nozzle and the probe can reach the given point.
  215. // Note: This won't work on SCARA since the probe offset rotates with the arm.
  216. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
  217. return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  218. && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
  219. }
  220. #endif
  221. #else // CARTESIAN
  222. // Return true if the given position is within the machine bounds.
  223. inline bool position_is_reachable(const float &rx, const float &ry) {
  224. // Add 0.001 margin to deal with float imprecision
  225. return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001)
  226. && WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001);
  227. }
  228. #if HAS_BED_PROBE
  229. /**
  230. * Return whether the given position is within the bed, and whether the nozzle
  231. * can reach the position required to put the probe at the given position.
  232. *
  233. * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
  234. * nozzle must be be able to reach +10,-10.
  235. */
  236. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
  237. return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  238. && WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001)
  239. && WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001);
  240. }
  241. #endif
  242. #endif // CARTESIAN
  243. #if !HAS_BED_PROBE
  244. FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
  245. #endif
  246. /**
  247. * Dual X Carriage / Dual Nozzle
  248. */
  249. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  250. extern bool extruder_duplication_enabled; // Used in Dual X mode 2
  251. #endif
  252. /**
  253. * Dual X Carriage
  254. */
  255. #if ENABLED(DUAL_X_CARRIAGE)
  256. enum DualXMode : char {
  257. DXC_FULL_CONTROL_MODE, // DUAL_X_CARRIAGE only
  258. DXC_AUTO_PARK_MODE, // DUAL_X_CARRIAGE only
  259. DXC_DUPLICATION_MODE
  260. };
  261. extern DualXMode dual_x_carriage_mode;
  262. extern float inactive_extruder_x_pos, // used in mode 0 & 1
  263. raised_parked_position[XYZE], // used in mode 1
  264. duplicate_extruder_x_offset; // used in mode 2
  265. extern bool active_extruder_parked; // used in mode 1 & 2
  266. extern millis_t delayed_move_time; // used in mode 1
  267. extern int16_t duplicate_extruder_temp_offset; // used in mode 2
  268. float x_home_pos(const int extruder);
  269. FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  270. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  271. enum DualXMode : char {
  272. DXC_DUPLICATION_MODE = 2
  273. };
  274. #endif
  275. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  276. void update_software_endstops(const AxisEnum axis);
  277. #endif
  278. #if HAS_M206_COMMAND
  279. void set_home_offset(const AxisEnum axis, const float v);
  280. #endif
  281. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  282. #if ENABLED(DELTA)
  283. #define ADJUST_DELTA(V) \
  284. if (planner.leveling_active) { \
  285. const float zadj = bilinear_z_offset(V); \
  286. delta[A_AXIS] += zadj; \
  287. delta[B_AXIS] += zadj; \
  288. delta[C_AXIS] += zadj; \
  289. }
  290. #else
  291. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  292. #endif
  293. #else
  294. #define ADJUST_DELTA(V) NOOP
  295. #endif
  296. #endif // MOTION_H