My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

temperature.cpp 48KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "language.h"
  28. #include "Sd2PinMap.h"
  29. //===========================================================================
  30. //================================== macros =================================
  31. //===========================================================================
  32. #if EXTRUDERS > 4
  33. #error Unsupported number of extruders
  34. #elif EXTRUDERS > 3
  35. #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
  36. #elif EXTRUDERS > 2
  37. #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
  38. #elif EXTRUDERS > 1
  39. #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
  40. #else
  41. #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
  42. #endif
  43. #define HAS_TEMP_0 (defined(TEMP_0_PIN) && TEMP_0_PIN >= 0)
  44. #define HAS_TEMP_1 (defined(TEMP_1_PIN) && TEMP_1_PIN >= 0)
  45. #define HAS_TEMP_2 (defined(TEMP_2_PIN) && TEMP_2_PIN >= 0)
  46. #define HAS_TEMP_3 (defined(TEMP_3_PIN) && TEMP_3_PIN >= 0)
  47. #define HAS_TEMP_BED (defined(TEMP_BED_PIN) && TEMP_BED_PIN >= 0)
  48. #define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && defined(FILWIDTH_PIN) && FILWIDTH_PIN >= 0)
  49. #define HAS_HEATER_0 (defined(HEATER_0_PIN) && HEATER_0_PIN >= 0)
  50. #define HAS_HEATER_1 (defined(HEATER_1_PIN) && HEATER_1_PIN >= 0)
  51. #define HAS_HEATER_2 (defined(HEATER_2_PIN) && HEATER_2_PIN >= 0)
  52. #define HAS_HEATER_3 (defined(HEATER_3_PIN) && HEATER_3_PIN >= 0)
  53. #define HAS_HEATER_BED (defined(HEATER_BED_PIN) && HEATER_BED_PIN >= 0)
  54. #define HAS_AUTO_FAN_0 (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN >= 0)
  55. #define HAS_AUTO_FAN_1 (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN >= 0)
  56. #define HAS_AUTO_FAN_2 (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN >= 0)
  57. #define HAS_AUTO_FAN_3 (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN >= 0)
  58. #define HAS_AUTO_FAN HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3
  59. #define HAS_FAN (defined(FAN_PIN) && FAN_PIN >= 0)
  60. //===========================================================================
  61. //============================= public variables ============================
  62. //===========================================================================
  63. #ifdef K1 // Defined in Configuration.h in the PID settings
  64. #define K2 (1.0-K1)
  65. #endif
  66. // Sampling period of the temperature routine
  67. #ifdef PID_dT
  68. #undef PID_dT
  69. #endif
  70. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  71. int target_temperature[EXTRUDERS] = { 0 };
  72. int target_temperature_bed = 0;
  73. int current_temperature_raw[EXTRUDERS] = { 0 };
  74. float current_temperature[EXTRUDERS] = { 0.0 };
  75. int current_temperature_bed_raw = 0;
  76. float current_temperature_bed = 0.0;
  77. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  78. int redundant_temperature_raw = 0;
  79. float redundant_temperature = 0.0;
  80. #endif
  81. #ifdef PIDTEMPBED
  82. float bedKp=DEFAULT_bedKp;
  83. float bedKi=(DEFAULT_bedKi*PID_dT);
  84. float bedKd=(DEFAULT_bedKd/PID_dT);
  85. #endif //PIDTEMPBED
  86. #ifdef FAN_SOFT_PWM
  87. unsigned char fanSpeedSoftPwm;
  88. #endif
  89. unsigned char soft_pwm_bed;
  90. #ifdef BABYSTEPPING
  91. volatile int babystepsTodo[3] = { 0 };
  92. #endif
  93. #ifdef FILAMENT_SENSOR
  94. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  95. #endif
  96. //===========================================================================
  97. //=============================private variables============================
  98. //===========================================================================
  99. static volatile bool temp_meas_ready = false;
  100. #ifdef PIDTEMP
  101. //static cannot be external:
  102. static float temp_iState[EXTRUDERS] = { 0 };
  103. static float temp_dState[EXTRUDERS] = { 0 };
  104. static float pTerm[EXTRUDERS];
  105. static float iTerm[EXTRUDERS];
  106. static float dTerm[EXTRUDERS];
  107. //int output;
  108. static float pid_error[EXTRUDERS];
  109. static float temp_iState_min[EXTRUDERS];
  110. static float temp_iState_max[EXTRUDERS];
  111. // static float pid_input[EXTRUDERS];
  112. // static float pid_output[EXTRUDERS];
  113. static bool pid_reset[EXTRUDERS];
  114. #endif //PIDTEMP
  115. #ifdef PIDTEMPBED
  116. //static cannot be external:
  117. static float temp_iState_bed = { 0 };
  118. static float temp_dState_bed = { 0 };
  119. static float pTerm_bed;
  120. static float iTerm_bed;
  121. static float dTerm_bed;
  122. //int output;
  123. static float pid_error_bed;
  124. static float temp_iState_min_bed;
  125. static float temp_iState_max_bed;
  126. #else //PIDTEMPBED
  127. static unsigned long previous_millis_bed_heater;
  128. #endif //PIDTEMPBED
  129. static unsigned char soft_pwm[EXTRUDERS];
  130. #ifdef FAN_SOFT_PWM
  131. static unsigned char soft_pwm_fan;
  132. #endif
  133. #if HAS_AUTO_FAN
  134. static unsigned long extruder_autofan_last_check;
  135. #endif
  136. #ifdef PIDTEMP
  137. #ifdef PID_PARAMS_PER_EXTRUDER
  138. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  139. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  140. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  141. #ifdef PID_ADD_EXTRUSION_RATE
  142. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  143. #endif // PID_ADD_EXTRUSION_RATE
  144. #else //PID_PARAMS_PER_EXTRUDER
  145. float Kp = DEFAULT_Kp;
  146. float Ki = DEFAULT_Ki * PID_dT;
  147. float Kd = DEFAULT_Kd / PID_dT;
  148. #ifdef PID_ADD_EXTRUSION_RATE
  149. float Kc = DEFAULT_Kc;
  150. #endif // PID_ADD_EXTRUSION_RATE
  151. #endif // PID_PARAMS_PER_EXTRUDER
  152. #endif //PIDTEMP
  153. // Init min and max temp with extreme values to prevent false errors during startup
  154. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  155. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  156. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 );
  157. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  158. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  159. #ifdef BED_MAXTEMP
  160. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  161. #endif
  162. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  163. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  164. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  165. #else
  166. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  167. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  168. #endif
  169. static float analog2temp(int raw, uint8_t e);
  170. static float analog2tempBed(int raw);
  171. static void updateTemperaturesFromRawValues();
  172. #ifdef WATCH_TEMP_PERIOD
  173. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
  174. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
  175. #endif //WATCH_TEMP_PERIOD
  176. #ifndef SOFT_PWM_SCALE
  177. #define SOFT_PWM_SCALE 0
  178. #endif
  179. #ifdef FILAMENT_SENSOR
  180. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  181. #endif
  182. #ifdef HEATER_0_USES_MAX6675
  183. static int read_max6675();
  184. #endif
  185. //===========================================================================
  186. //============================= functions ============================
  187. //===========================================================================
  188. void PID_autotune(float temp, int extruder, int ncycles)
  189. {
  190. float input = 0.0;
  191. int cycles = 0;
  192. bool heating = true;
  193. unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
  194. long t_high = 0, t_low = 0;
  195. long bias, d;
  196. float Ku, Tu;
  197. float Kp, Ki, Kd;
  198. float max = 0, min = 10000;
  199. #if HAS_AUTO_FAN
  200. unsigned long extruder_autofan_last_check = temp_millis;
  201. #endif
  202. if (extruder >= EXTRUDERS
  203. #if !HAS_TEMP_BED
  204. || extruder < 0
  205. #endif
  206. ) {
  207. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  208. return;
  209. }
  210. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  211. disable_heater(); // switch off all heaters.
  212. if (extruder < 0)
  213. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  214. else
  215. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  216. // PID Tuning loop
  217. for(;;) {
  218. unsigned long ms = millis();
  219. if (temp_meas_ready == true) { // temp sample ready
  220. updateTemperaturesFromRawValues();
  221. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  222. max = max(max, input);
  223. min = min(min, input);
  224. #if HAS_AUTO_FAN
  225. if (ms > extruder_autofan_last_check + 2500) {
  226. checkExtruderAutoFans();
  227. extruder_autofan_last_check = ms;
  228. }
  229. #endif
  230. if (heating == true && input > temp) {
  231. if (ms - t2 > 5000) {
  232. heating = false;
  233. if (extruder < 0)
  234. soft_pwm_bed = (bias - d) >> 1;
  235. else
  236. soft_pwm[extruder] = (bias - d) >> 1;
  237. t1 = ms;
  238. t_high = t1 - t2;
  239. max = temp;
  240. }
  241. }
  242. if (heating == false && input < temp) {
  243. if (ms - t1 > 5000) {
  244. heating = true;
  245. t2 = ms;
  246. t_low = t2 - t1;
  247. if (cycles > 0) {
  248. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  249. bias += (d*(t_high - t_low))/(t_low + t_high);
  250. bias = constrain(bias, 20, max_pow - 20);
  251. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  252. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  253. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  254. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  255. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  256. if (cycles > 2) {
  257. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  258. Tu = ((float)(t_low + t_high) / 1000.0);
  259. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  260. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  261. Kp = 0.6 * Ku;
  262. Ki = 2 * Kp / Tu;
  263. Kd = Kp * Tu / 8;
  264. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  265. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  266. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  267. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  268. /*
  269. Kp = 0.33*Ku;
  270. Ki = Kp/Tu;
  271. Kd = Kp*Tu/3;
  272. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  273. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  274. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  275. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  276. Kp = 0.2*Ku;
  277. Ki = 2*Kp/Tu;
  278. Kd = Kp*Tu/3;
  279. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  280. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  281. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  282. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  283. */
  284. }
  285. }
  286. if (extruder < 0)
  287. soft_pwm_bed = (bias + d) >> 1;
  288. else
  289. soft_pwm[extruder] = (bias + d) >> 1;
  290. cycles++;
  291. min = temp;
  292. }
  293. }
  294. }
  295. if (input > temp + 20) {
  296. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  297. return;
  298. }
  299. // Every 2 seconds...
  300. if (ms > temp_millis + 2000) {
  301. int p;
  302. if (extruder < 0) {
  303. p = soft_pwm_bed;
  304. SERIAL_PROTOCOLPGM(MSG_OK_B);
  305. }
  306. else {
  307. p = soft_pwm[extruder];
  308. SERIAL_PROTOCOLPGM(MSG_OK_T);
  309. }
  310. SERIAL_PROTOCOL(input);
  311. SERIAL_PROTOCOLPGM(MSG_AT);
  312. SERIAL_PROTOCOLLN(p);
  313. temp_millis = ms;
  314. } // every 2 seconds
  315. // Over 2 minutes?
  316. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  317. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  318. return;
  319. }
  320. if (cycles > ncycles) {
  321. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  322. return;
  323. }
  324. lcd_update();
  325. }
  326. }
  327. void updatePID() {
  328. #ifdef PIDTEMP
  329. for (int e = 0; e < EXTRUDERS; e++) {
  330. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  331. }
  332. #endif
  333. #ifdef PIDTEMPBED
  334. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  335. #endif
  336. }
  337. int getHeaterPower(int heater) {
  338. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  339. }
  340. #if HAS_AUTO_FAN
  341. #if HAS_FAN
  342. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  343. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  344. #endif
  345. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  346. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  347. #endif
  348. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  349. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  350. #endif
  351. #if EXTRUDER_3_AUTO_FAN_PIN == FAN_PIN
  352. #error "You cannot set EXTRUDER_3_AUTO_FAN_PIN equal to FAN_PIN"
  353. #endif
  354. #endif
  355. void setExtruderAutoFanState(int pin, bool state)
  356. {
  357. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  358. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  359. pinMode(pin, OUTPUT);
  360. digitalWrite(pin, newFanSpeed);
  361. analogWrite(pin, newFanSpeed);
  362. }
  363. void checkExtruderAutoFans()
  364. {
  365. uint8_t fanState = 0;
  366. // which fan pins need to be turned on?
  367. #if HAS_AUTO_FAN_0
  368. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  369. fanState |= 1;
  370. #endif
  371. #if HAS_AUTO_FAN_1
  372. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  373. {
  374. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  375. fanState |= 1;
  376. else
  377. fanState |= 2;
  378. }
  379. #endif
  380. #if HAS_AUTO_FAN_2
  381. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  382. {
  383. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  384. fanState |= 1;
  385. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  386. fanState |= 2;
  387. else
  388. fanState |= 4;
  389. }
  390. #endif
  391. #if HAS_AUTO_FAN_3
  392. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  393. {
  394. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  395. fanState |= 1;
  396. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  397. fanState |= 2;
  398. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  399. fanState |= 4;
  400. else
  401. fanState |= 8;
  402. }
  403. #endif
  404. // update extruder auto fan states
  405. #if HAS_AUTO_FAN_0
  406. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  407. #endif
  408. #if HAS_AUTO_FAN_1
  409. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  410. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  411. #endif
  412. #if HAS_AUTO_FAN_2
  413. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  414. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  415. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  416. #endif
  417. #if HAS_AUTO_FAN_3
  418. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  419. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  420. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  421. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  422. #endif
  423. }
  424. #endif // any extruder auto fan pins set
  425. //
  426. // Error checking and Write Routines
  427. //
  428. #if !HAS_HEATER_0
  429. #error HEATER_0_PIN not defined for this board
  430. #endif
  431. #define WRITE_HEATER_0P(v) WRITE(HEATER_0_PIN, v)
  432. #if EXTRUDERS > 1 || defined(HEATERS_PARALLEL)
  433. #if !HAS_HEATER_1
  434. #error HEATER_1_PIN not defined for this board
  435. #endif
  436. #define WRITE_HEATER_1(v) WRITE(HEATER_1_PIN, v)
  437. #if EXTRUDERS > 2
  438. #if !HAS_HEATER_2
  439. #error HEATER_2_PIN not defined for this board
  440. #endif
  441. #define WRITE_HEATER_2(v) WRITE(HEATER_2_PIN, v)
  442. #if EXTRUDERS > 3
  443. #if !HAS_HEATER_3
  444. #error HEATER_3_PIN not defined for this board
  445. #endif
  446. #define WRITE_HEATER_3(v) WRITE(HEATER_3_PIN, v)
  447. #endif
  448. #endif
  449. #endif
  450. #ifdef HEATERS_PARALLEL
  451. #define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); }
  452. #else
  453. #define WRITE_HEATER_0(v) WRITE_HEATER_0P(v)
  454. #endif
  455. #if HAS_HEATER_BED
  456. #define WRITE_HEATER_BED(v) WRITE(HEATER_BED_PIN, v)
  457. #endif
  458. #if HAS_FAN
  459. #define WRITE_FAN(v) WRITE(FAN_PIN, v)
  460. #endif
  461. inline void _temp_error(int e, const char *msg1, const char *msg2) {
  462. if (!IsStopped()) {
  463. SERIAL_ERROR_START;
  464. if (e >= 0) SERIAL_ERRORLN((int)e);
  465. serialprintPGM(msg1);
  466. MYSERIAL.write('\n');
  467. #ifdef ULTRA_LCD
  468. lcd_setalertstatuspgm(msg2);
  469. #endif
  470. }
  471. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  472. Stop();
  473. #endif
  474. }
  475. void max_temp_error(uint8_t e) {
  476. disable_heater();
  477. _temp_error(e, MSG_MAXTEMP_EXTRUDER_OFF, MSG_ERR_MAXTEMP);
  478. }
  479. void min_temp_error(uint8_t e) {
  480. disable_heater();
  481. _temp_error(e, MSG_MINTEMP_EXTRUDER_OFF, MSG_ERR_MINTEMP);
  482. }
  483. void bed_max_temp_error(void) {
  484. #if HAS_HEATER_BED
  485. WRITE_HEATER_BED(0);
  486. #endif
  487. _temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED);
  488. }
  489. float get_pid_output(int e) {
  490. float pid_output;
  491. #ifdef PIDTEMP
  492. #ifndef PID_OPENLOOP
  493. pid_error[e] = target_temperature[e] - current_temperature[e];
  494. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  495. pid_output = BANG_MAX;
  496. pid_reset[e] = true;
  497. }
  498. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  499. pid_output = 0;
  500. pid_reset[e] = true;
  501. }
  502. else {
  503. if (pid_reset[e]) {
  504. temp_iState[e] = 0.0;
  505. pid_reset[e] = false;
  506. }
  507. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  508. temp_iState[e] += pid_error[e];
  509. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  510. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  511. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  512. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  513. if (pid_output > PID_MAX) {
  514. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  515. pid_output = PID_MAX;
  516. }
  517. else if (pid_output < 0) {
  518. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  519. pid_output = 0;
  520. }
  521. }
  522. temp_dState[e] = current_temperature[e];
  523. #else
  524. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  525. #endif //PID_OPENLOOP
  526. #ifdef PID_DEBUG
  527. SERIAL_ECHO_START;
  528. SERIAL_ECHO(MSG_PID_DEBUG);
  529. SERIAL_ECHO(e);
  530. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  531. SERIAL_ECHO(current_temperature[e]);
  532. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  533. SERIAL_ECHO(pid_output);
  534. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  535. SERIAL_ECHO(pTerm[e]);
  536. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  537. SERIAL_ECHO(iTerm[e]);
  538. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  539. SERIAL_ECHOLN(dTerm[e]);
  540. #endif //PID_DEBUG
  541. #else /* PID off */
  542. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  543. #endif
  544. return pid_output;
  545. }
  546. #ifdef PIDTEMPBED
  547. float get_pid_output_bed() {
  548. float pid_output;
  549. #ifndef PID_OPENLOOP
  550. pid_error_bed = target_temperature_bed - current_temperature_bed;
  551. pTerm_bed = bedKp * pid_error_bed;
  552. temp_iState_bed += pid_error_bed;
  553. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  554. iTerm_bed = bedKi * temp_iState_bed;
  555. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  556. temp_dState_bed = current_temperature_bed;
  557. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  558. if (pid_output > MAX_BED_POWER) {
  559. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  560. pid_output = MAX_BED_POWER;
  561. }
  562. else if (pid_output < 0) {
  563. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  564. pid_output = 0;
  565. }
  566. #else
  567. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  568. #endif // PID_OPENLOOP
  569. return pid_output;
  570. }
  571. #endif
  572. void manage_heater() {
  573. if (!temp_meas_ready) return;
  574. updateTemperaturesFromRawValues();
  575. #ifdef HEATER_0_USES_MAX6675
  576. float ct = current_temperature[0];
  577. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  578. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  579. #endif //HEATER_0_USES_MAX6675
  580. unsigned long ms = millis();
  581. // Loop through all extruders
  582. for (int e = 0; e < EXTRUDERS; e++) {
  583. #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  584. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
  585. #endif
  586. float pid_output = get_pid_output(e);
  587. // Check if temperature is within the correct range
  588. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  589. #ifdef WATCH_TEMP_PERIOD
  590. if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
  591. if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
  592. setTargetHotend(0, e);
  593. LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
  594. SERIAL_ECHO_START;
  595. SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
  596. }
  597. else {
  598. watchmillis[e] = 0;
  599. }
  600. }
  601. #endif //WATCH_TEMP_PERIOD
  602. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  603. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  604. disable_heater();
  605. _temp_error(-1, MSG_EXTRUDER_SWITCHED_OFF, MSG_ERR_REDUNDANT_TEMP);
  606. }
  607. #endif //TEMP_SENSOR_1_AS_REDUNDANT
  608. } // Extruders Loop
  609. #if HAS_AUTO_FAN
  610. if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
  611. checkExtruderAutoFans();
  612. extruder_autofan_last_check = ms;
  613. }
  614. #endif
  615. #ifndef PIDTEMPBED
  616. if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
  617. previous_millis_bed_heater = ms;
  618. #endif //PIDTEMPBED
  619. #if TEMP_SENSOR_BED != 0
  620. #if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
  621. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
  622. #endif
  623. #ifdef PIDTEMPBED
  624. pid_output = get_pid_output_bed();
  625. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  626. #elif !defined(BED_LIMIT_SWITCHING)
  627. // Check if temperature is within the correct range
  628. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  629. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  630. }
  631. else {
  632. soft_pwm_bed = 0;
  633. WRITE_HEATER_BED(LOW);
  634. }
  635. #else //#ifdef BED_LIMIT_SWITCHING
  636. // Check if temperature is within the correct band
  637. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  638. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  639. soft_pwm_bed = 0;
  640. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  641. soft_pwm_bed = MAX_BED_POWER >> 1;
  642. }
  643. else {
  644. soft_pwm_bed = 0;
  645. WRITE_HEATER_BED(LOW);
  646. }
  647. #endif
  648. #endif //TEMP_SENSOR_BED != 0
  649. // Control the extruder rate based on the width sensor
  650. #ifdef FILAMENT_SENSOR
  651. if (filament_sensor) {
  652. meas_shift_index = delay_index1 - meas_delay_cm;
  653. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  654. // Get the delayed info and add 100 to reconstitute to a percent of
  655. // the nominal filament diameter then square it to get an area
  656. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  657. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  658. if (vm < 0.01) vm = 0.01;
  659. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  660. }
  661. #endif //FILAMENT_SENSOR
  662. }
  663. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  664. // Derived from RepRap FiveD extruder::getTemperature()
  665. // For hot end temperature measurement.
  666. static float analog2temp(int raw, uint8_t e) {
  667. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  668. if (e > EXTRUDERS)
  669. #else
  670. if (e >= EXTRUDERS)
  671. #endif
  672. {
  673. SERIAL_ERROR_START;
  674. SERIAL_ERROR((int)e);
  675. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  676. kill();
  677. return 0.0;
  678. }
  679. #ifdef HEATER_0_USES_MAX6675
  680. if (e == 0)
  681. {
  682. return 0.25 * raw;
  683. }
  684. #endif
  685. if(heater_ttbl_map[e] != NULL)
  686. {
  687. float celsius = 0;
  688. uint8_t i;
  689. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  690. for (i=1; i<heater_ttbllen_map[e]; i++)
  691. {
  692. if (PGM_RD_W((*tt)[i][0]) > raw)
  693. {
  694. celsius = PGM_RD_W((*tt)[i-1][1]) +
  695. (raw - PGM_RD_W((*tt)[i-1][0])) *
  696. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  697. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  698. break;
  699. }
  700. }
  701. // Overflow: Set to last value in the table
  702. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  703. return celsius;
  704. }
  705. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  706. }
  707. // Derived from RepRap FiveD extruder::getTemperature()
  708. // For bed temperature measurement.
  709. static float analog2tempBed(int raw) {
  710. #ifdef BED_USES_THERMISTOR
  711. float celsius = 0;
  712. byte i;
  713. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  714. {
  715. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  716. {
  717. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  718. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  719. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  720. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  721. break;
  722. }
  723. }
  724. // Overflow: Set to last value in the table
  725. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  726. return celsius;
  727. #elif defined BED_USES_AD595
  728. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  729. #else
  730. return 0;
  731. #endif
  732. }
  733. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  734. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  735. static void updateTemperaturesFromRawValues() {
  736. #ifdef HEATER_0_USES_MAX6675
  737. current_temperature_raw[0] = read_max6675();
  738. #endif
  739. for(uint8_t e = 0; e < EXTRUDERS; e++) {
  740. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  741. }
  742. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  743. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  744. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  745. #endif
  746. #if HAS_FILAMENT_SENSOR
  747. filament_width_meas = analog2widthFil();
  748. #endif
  749. //Reset the watchdog after we know we have a temperature measurement.
  750. watchdog_reset();
  751. CRITICAL_SECTION_START;
  752. temp_meas_ready = false;
  753. CRITICAL_SECTION_END;
  754. }
  755. #ifdef FILAMENT_SENSOR
  756. // Convert raw Filament Width to millimeters
  757. float analog2widthFil() {
  758. return current_raw_filwidth / 16383.0 * 5.0;
  759. //return current_raw_filwidth;
  760. }
  761. // Convert raw Filament Width to a ratio
  762. int widthFil_to_size_ratio() {
  763. float temp = filament_width_meas;
  764. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  765. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  766. return filament_width_nominal / temp * 100;
  767. }
  768. #endif
  769. void tp_init()
  770. {
  771. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  772. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  773. MCUCR=(1<<JTD);
  774. MCUCR=(1<<JTD);
  775. #endif
  776. // Finish init of mult extruder arrays
  777. for (int e = 0; e < EXTRUDERS; e++) {
  778. // populate with the first value
  779. maxttemp[e] = maxttemp[0];
  780. #ifdef PIDTEMP
  781. temp_iState_min[e] = 0.0;
  782. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  783. #endif //PIDTEMP
  784. #ifdef PIDTEMPBED
  785. temp_iState_min_bed = 0.0;
  786. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  787. #endif //PIDTEMPBED
  788. }
  789. #if HAS_HEATER_0
  790. SET_OUTPUT(HEATER_0_PIN);
  791. #endif
  792. #if HAS_HEATER_1
  793. SET_OUTPUT(HEATER_1_PIN);
  794. #endif
  795. #if HAS_HEATER_2
  796. SET_OUTPUT(HEATER_2_PIN);
  797. #endif
  798. #if HAS_HEATER_3
  799. SET_OUTPUT(HEATER_3_PIN);
  800. #endif
  801. #if HAS_HEATER_BED
  802. SET_OUTPUT(HEATER_BED_PIN);
  803. #endif
  804. #if HAS_FAN
  805. SET_OUTPUT(FAN_PIN);
  806. #ifdef FAST_PWM_FAN
  807. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  808. #endif
  809. #ifdef FAN_SOFT_PWM
  810. soft_pwm_fan = fanSpeedSoftPwm / 2;
  811. #endif
  812. #endif
  813. #ifdef HEATER_0_USES_MAX6675
  814. #ifndef SDSUPPORT
  815. OUT_WRITE(SCK_PIN, LOW);
  816. OUT_WRITE(MOSI_PIN, HIGH);
  817. OUT_WRITE(MISO_PIN, HIGH);
  818. #else
  819. pinMode(SS_PIN, OUTPUT);
  820. digitalWrite(SS_PIN, HIGH);
  821. #endif
  822. OUT_WRITE(MAX6675_SS,HIGH);
  823. #endif //HEATER_0_USES_MAX6675
  824. #ifdef DIDR2
  825. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
  826. #else
  827. #define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
  828. #endif
  829. // Set analog inputs
  830. ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
  831. DIDR0 = 0;
  832. #ifdef DIDR2
  833. DIDR2 = 0;
  834. #endif
  835. #if HAS_TEMP_0
  836. ANALOG_SELECT(TEMP_0_PIN);
  837. #endif
  838. #if HAS_TEMP_1
  839. ANALOG_SELECT(TEMP_1_PIN);
  840. #endif
  841. #if HAS_TEMP_2
  842. ANALOG_SELECT(TEMP_2_PIN);
  843. #endif
  844. #if HAS_TEMP_3
  845. ANALOG_SELECT(TEMP_3_PIN);
  846. #endif
  847. #if HAS_TEMP_BED
  848. ANALOG_SELECT(TEMP_BED_PIN);
  849. #endif
  850. #if HAS_FILAMENT_SENSOR
  851. ANALOG_SELECT(FILWIDTH_PIN);
  852. #endif
  853. // Use timer0 for temperature measurement
  854. // Interleave temperature interrupt with millies interrupt
  855. OCR0B = 128;
  856. TIMSK0 |= (1<<OCIE0B);
  857. // Wait for temperature measurement to settle
  858. delay(250);
  859. #define TEMP_MIN_ROUTINE(NR) \
  860. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  861. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  862. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  863. minttemp_raw[NR] += OVERSAMPLENR; \
  864. else \
  865. minttemp_raw[NR] -= OVERSAMPLENR; \
  866. }
  867. #define TEMP_MAX_ROUTINE(NR) \
  868. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  869. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  870. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  871. maxttemp_raw[NR] -= OVERSAMPLENR; \
  872. else \
  873. maxttemp_raw[NR] += OVERSAMPLENR; \
  874. }
  875. #ifdef HEATER_0_MINTEMP
  876. TEMP_MIN_ROUTINE(0);
  877. #endif
  878. #ifdef HEATER_0_MAXTEMP
  879. TEMP_MAX_ROUTINE(0);
  880. #endif
  881. #if EXTRUDERS > 1
  882. #ifdef HEATER_1_MINTEMP
  883. TEMP_MIN_ROUTINE(1);
  884. #endif
  885. #ifdef HEATER_1_MAXTEMP
  886. TEMP_MAX_ROUTINE(1);
  887. #endif
  888. #if EXTRUDERS > 2
  889. #ifdef HEATER_2_MINTEMP
  890. TEMP_MIN_ROUTINE(2);
  891. #endif
  892. #ifdef HEATER_2_MAXTEMP
  893. TEMP_MAX_ROUTINE(2);
  894. #endif
  895. #if EXTRUDERS > 3
  896. #ifdef HEATER_3_MINTEMP
  897. TEMP_MIN_ROUTINE(3);
  898. #endif
  899. #ifdef HEATER_3_MAXTEMP
  900. TEMP_MAX_ROUTINE(3);
  901. #endif
  902. #endif // EXTRUDERS > 3
  903. #endif // EXTRUDERS > 2
  904. #endif // EXTRUDERS > 1
  905. #ifdef BED_MINTEMP
  906. /* No bed MINTEMP error implemented?!? */ /*
  907. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  908. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  909. bed_minttemp_raw += OVERSAMPLENR;
  910. #else
  911. bed_minttemp_raw -= OVERSAMPLENR;
  912. #endif
  913. }
  914. */
  915. #endif //BED_MINTEMP
  916. #ifdef BED_MAXTEMP
  917. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  918. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  919. bed_maxttemp_raw -= OVERSAMPLENR;
  920. #else
  921. bed_maxttemp_raw += OVERSAMPLENR;
  922. #endif
  923. }
  924. #endif //BED_MAXTEMP
  925. }
  926. void setWatch() {
  927. #ifdef WATCH_TEMP_PERIOD
  928. unsigned long ms = millis();
  929. for (int e = 0; e < EXTRUDERS; e++) {
  930. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
  931. watch_start_temp[e] = degHotend(e);
  932. watchmillis[e] = ms;
  933. }
  934. }
  935. #endif
  936. }
  937. #if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  938. void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
  939. {
  940. /*
  941. SERIAL_ECHO_START;
  942. SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
  943. SERIAL_ECHO(heater_id);
  944. SERIAL_ECHO(" ; State:");
  945. SERIAL_ECHO(*state);
  946. SERIAL_ECHO(" ; Timer:");
  947. SERIAL_ECHO(*timer);
  948. SERIAL_ECHO(" ; Temperature:");
  949. SERIAL_ECHO(temperature);
  950. SERIAL_ECHO(" ; Target Temp:");
  951. SERIAL_ECHO(target_temperature);
  952. SERIAL_ECHOLN("");
  953. */
  954. if ((target_temperature == 0) || thermal_runaway)
  955. {
  956. *state = 0;
  957. *timer = 0;
  958. return;
  959. }
  960. switch (*state)
  961. {
  962. case 0: // "Heater Inactive" state
  963. if (target_temperature > 0) *state = 1;
  964. break;
  965. case 1: // "First Heating" state
  966. if (temperature >= target_temperature) *state = 2;
  967. break;
  968. case 2: // "Temperature Stable" state
  969. {
  970. unsigned long ms = millis();
  971. if (temperature >= (target_temperature - hysteresis_degc))
  972. {
  973. *timer = ms;
  974. }
  975. else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
  976. {
  977. SERIAL_ERROR_START;
  978. SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
  979. SERIAL_ERRORLN((int)heater_id);
  980. LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
  981. thermal_runaway = true;
  982. while(1)
  983. {
  984. disable_heater();
  985. disable_x();
  986. disable_y();
  987. disable_z();
  988. disable_e0();
  989. disable_e1();
  990. disable_e2();
  991. disable_e3();
  992. manage_heater();
  993. lcd_update();
  994. }
  995. }
  996. } break;
  997. }
  998. }
  999. #endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
  1000. void disable_heater() {
  1001. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  1002. setTargetBed(0);
  1003. #if HAS_TEMP_0
  1004. target_temperature[0] = 0;
  1005. soft_pwm[0] = 0;
  1006. WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1007. #endif
  1008. #if EXTRUDERS > 1 && HAS_TEMP_1
  1009. target_temperature[1] = 0;
  1010. soft_pwm[1] = 0;
  1011. WRITE_HEATER_1(LOW);
  1012. #endif
  1013. #if EXTRUDERS > 2 && HAS_TEMP_2
  1014. target_temperature[2] = 0;
  1015. soft_pwm[2] = 0;
  1016. WRITE_HEATER_2(LOW);
  1017. #endif
  1018. #if EXTRUDERS > 3 && HAS_TEMP_3
  1019. target_temperature[3] = 0;
  1020. soft_pwm[3] = 0;
  1021. WRITE_HEATER_3(LOW);
  1022. #endif
  1023. #if HAS_TEMP_BED
  1024. target_temperature_bed = 0;
  1025. soft_pwm_bed = 0;
  1026. #if HAS_HEATER_BED
  1027. WRITE_HEATER_BED(LOW);
  1028. #endif
  1029. #endif
  1030. }
  1031. #ifdef HEATER_0_USES_MAX6675
  1032. #define MAX6675_HEAT_INTERVAL 250
  1033. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1034. int max6675_temp = 2000;
  1035. static int read_max6675() {
  1036. unsigned long ms = millis();
  1037. if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
  1038. return max6675_temp;
  1039. max6675_previous_millis = ms;
  1040. max6675_temp = 0;
  1041. #ifdef PRR
  1042. PRR &= ~(1<<PRSPI);
  1043. #elif defined(PRR0)
  1044. PRR0 &= ~(1<<PRSPI);
  1045. #endif
  1046. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1047. // enable TT_MAX6675
  1048. WRITE(MAX6675_SS, 0);
  1049. // ensure 100ns delay - a bit extra is fine
  1050. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1051. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1052. // read MSB
  1053. SPDR = 0;
  1054. for (;(SPSR & (1<<SPIF)) == 0;);
  1055. max6675_temp = SPDR;
  1056. max6675_temp <<= 8;
  1057. // read LSB
  1058. SPDR = 0;
  1059. for (;(SPSR & (1<<SPIF)) == 0;);
  1060. max6675_temp |= SPDR;
  1061. // disable TT_MAX6675
  1062. WRITE(MAX6675_SS, 1);
  1063. if (max6675_temp & 4) {
  1064. // thermocouple open
  1065. max6675_temp = 4000;
  1066. }
  1067. else {
  1068. max6675_temp = max6675_temp >> 3;
  1069. }
  1070. return max6675_temp;
  1071. }
  1072. #endif //HEATER_0_USES_MAX6675
  1073. /**
  1074. * Stages in the ISR loop
  1075. */
  1076. enum TempState {
  1077. PrepareTemp_0,
  1078. MeasureTemp_0,
  1079. PrepareTemp_BED,
  1080. MeasureTemp_BED,
  1081. PrepareTemp_1,
  1082. MeasureTemp_1,
  1083. PrepareTemp_2,
  1084. MeasureTemp_2,
  1085. PrepareTemp_3,
  1086. MeasureTemp_3,
  1087. Prepare_FILWIDTH,
  1088. Measure_FILWIDTH,
  1089. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1090. };
  1091. //
  1092. // Timer 0 is shared with millies
  1093. //
  1094. ISR(TIMER0_COMPB_vect) {
  1095. //these variables are only accesible from the ISR, but static, so they don't lose their value
  1096. static unsigned char temp_count = 0;
  1097. static unsigned long raw_temp_0_value = 0;
  1098. static unsigned long raw_temp_1_value = 0;
  1099. static unsigned long raw_temp_2_value = 0;
  1100. static unsigned long raw_temp_3_value = 0;
  1101. static unsigned long raw_temp_bed_value = 0;
  1102. static TempState temp_state = StartupDelay;
  1103. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1104. // Static members for each heater
  1105. #ifdef SLOW_PWM_HEATERS
  1106. static unsigned char slow_pwm_count = 0;
  1107. #define ISR_STATICS(n) \
  1108. static unsigned char soft_pwm_ ## n; \
  1109. static unsigned char state_heater_ ## n = 0; \
  1110. static unsigned char state_timer_heater_ ## n = 0
  1111. #else
  1112. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1113. #endif
  1114. // Statics per heater
  1115. ISR_STATICS(0);
  1116. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1117. ISR_STATICS(1);
  1118. #if EXTRUDERS > 2
  1119. ISR_STATICS(2);
  1120. #if EXTRUDERS > 3
  1121. ISR_STATICS(3);
  1122. #endif
  1123. #endif
  1124. #endif
  1125. #if HAS_HEATER_BED
  1126. ISR_STATICS(BED);
  1127. #endif
  1128. #if HAS_FILAMENT_SENSOR
  1129. static unsigned long raw_filwidth_value = 0;
  1130. #endif
  1131. #ifndef SLOW_PWM_HEATERS
  1132. /**
  1133. * standard PWM modulation
  1134. */
  1135. if (pwm_count == 0) {
  1136. soft_pwm_0 = soft_pwm[0];
  1137. if (soft_pwm_0 > 0) {
  1138. WRITE_HEATER_0(1);
  1139. }
  1140. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1141. #if EXTRUDERS > 1
  1142. soft_pwm_1 = soft_pwm[1];
  1143. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1144. #if EXTRUDERS > 2
  1145. soft_pwm_2 = soft_pwm[2];
  1146. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1147. #if EXTRUDERS > 3
  1148. soft_pwm_3 = soft_pwm[3];
  1149. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1150. #endif
  1151. #endif
  1152. #endif
  1153. #if HAS_HEATER_BED
  1154. soft_pwm_BED = soft_pwm_bed;
  1155. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1156. #endif
  1157. #ifdef FAN_SOFT_PWM
  1158. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1159. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1160. #endif
  1161. }
  1162. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1163. #if EXTRUDERS > 1
  1164. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1165. #if EXTRUDERS > 2
  1166. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1167. #if EXTRUDERS > 3
  1168. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1169. #endif
  1170. #endif
  1171. #endif
  1172. #if HAS_HEATER_BED
  1173. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1174. #endif
  1175. #ifdef FAN_SOFT_PWM
  1176. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1177. #endif
  1178. pwm_count += (1 << SOFT_PWM_SCALE);
  1179. pwm_count &= 0x7f;
  1180. #else // SLOW_PWM_HEATERS
  1181. /*
  1182. * SLOW PWM HEATERS
  1183. *
  1184. * for heaters drived by relay
  1185. */
  1186. #ifndef MIN_STATE_TIME
  1187. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1188. #endif
  1189. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1190. #define _SLOW_PWM_ROUTINE(NR, src) \
  1191. soft_pwm_ ## NR = src; \
  1192. if (soft_pwm_ ## NR > 0) { \
  1193. if (state_timer_heater_ ## NR == 0) { \
  1194. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1195. state_heater_ ## NR = 1; \
  1196. WRITE_HEATER_ ## NR(1); \
  1197. } \
  1198. } \
  1199. else { \
  1200. if (state_timer_heater_ ## NR == 0) { \
  1201. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1202. state_heater_ ## NR = 0; \
  1203. WRITE_HEATER_ ## NR(0); \
  1204. } \
  1205. }
  1206. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1207. #define PWM_OFF_ROUTINE(NR) \
  1208. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1209. if (state_timer_heater_ ## NR == 0) { \
  1210. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1211. state_heater_ ## NR = 0; \
  1212. WRITE_HEATER_ ## NR (0); \
  1213. } \
  1214. }
  1215. if (slow_pwm_count == 0) {
  1216. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1217. #if EXTRUDERS > 1
  1218. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1219. #if EXTRUDERS > 2
  1220. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1221. #if EXTRUDERS > 3
  1222. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1223. #endif
  1224. #endif
  1225. #endif
  1226. #if HAS_HEATER_BED
  1227. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1228. #endif
  1229. } // slow_pwm_count == 0
  1230. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1231. #if EXTRUDERS > 1
  1232. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1233. #if EXTRUDERS > 2
  1234. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1235. #if EXTRUDERS > 3
  1236. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1237. #endif
  1238. #endif
  1239. #endif
  1240. #if HAS_HEATER_BED
  1241. PWM_OFF_ROUTINE(BED); // BED
  1242. #endif
  1243. #ifdef FAN_SOFT_PWM
  1244. if (pwm_count == 0) {
  1245. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1246. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1247. }
  1248. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1249. #endif //FAN_SOFT_PWM
  1250. pwm_count += (1 << SOFT_PWM_SCALE);
  1251. pwm_count &= 0x7f;
  1252. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1253. if ((pwm_count % 64) == 0) {
  1254. slow_pwm_count++;
  1255. slow_pwm_count &= 0x7f;
  1256. // EXTRUDER 0
  1257. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1258. #if EXTRUDERS > 1 // EXTRUDER 1
  1259. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1260. #if EXTRUDERS > 2 // EXTRUDER 2
  1261. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1262. #if EXTRUDERS > 3 // EXTRUDER 3
  1263. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1264. #endif
  1265. #endif
  1266. #endif
  1267. #if HAS_HEATER_BED
  1268. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1269. #endif
  1270. } // (pwm_count % 64) == 0
  1271. #endif // SLOW_PWM_HEATERS
  1272. #define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
  1273. #ifdef MUX5
  1274. #define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1275. #else
  1276. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1277. #endif
  1278. switch(temp_state) {
  1279. case PrepareTemp_0:
  1280. #if HAS_TEMP_0
  1281. START_ADC(TEMP_0_PIN);
  1282. #endif
  1283. lcd_buttons_update();
  1284. temp_state = MeasureTemp_0;
  1285. break;
  1286. case MeasureTemp_0:
  1287. #if HAS_TEMP_0
  1288. raw_temp_0_value += ADC;
  1289. #endif
  1290. temp_state = PrepareTemp_BED;
  1291. break;
  1292. case PrepareTemp_BED:
  1293. #if HAS_TEMP_BED
  1294. START_ADC(TEMP_BED_PIN);
  1295. #endif
  1296. lcd_buttons_update();
  1297. temp_state = MeasureTemp_BED;
  1298. break;
  1299. case MeasureTemp_BED:
  1300. #if HAS_TEMP_BED
  1301. raw_temp_bed_value += ADC;
  1302. #endif
  1303. temp_state = PrepareTemp_1;
  1304. break;
  1305. case PrepareTemp_1:
  1306. #if HAS_TEMP_1
  1307. START_ADC(TEMP_1_PIN);
  1308. #endif
  1309. lcd_buttons_update();
  1310. temp_state = MeasureTemp_1;
  1311. break;
  1312. case MeasureTemp_1:
  1313. #if HAS_TEMP_1
  1314. raw_temp_1_value += ADC;
  1315. #endif
  1316. temp_state = PrepareTemp_2;
  1317. break;
  1318. case PrepareTemp_2:
  1319. #if HAS_TEMP_2
  1320. START_ADC(TEMP_2_PIN);
  1321. #endif
  1322. lcd_buttons_update();
  1323. temp_state = MeasureTemp_2;
  1324. break;
  1325. case MeasureTemp_2:
  1326. #if HAS_TEMP_2
  1327. raw_temp_2_value += ADC;
  1328. #endif
  1329. temp_state = PrepareTemp_3;
  1330. break;
  1331. case PrepareTemp_3:
  1332. #if HAS_TEMP_3
  1333. START_ADC(TEMP_3_PIN);
  1334. #endif
  1335. lcd_buttons_update();
  1336. temp_state = MeasureTemp_3;
  1337. break;
  1338. case MeasureTemp_3:
  1339. #if HAS_TEMP_3
  1340. raw_temp_3_value += ADC;
  1341. #endif
  1342. temp_state = Prepare_FILWIDTH;
  1343. break;
  1344. case Prepare_FILWIDTH:
  1345. #if HAS_FILAMENT_SENSOR
  1346. START_ADC(FILWIDTH_PIN);
  1347. #endif
  1348. lcd_buttons_update();
  1349. temp_state = Measure_FILWIDTH;
  1350. break;
  1351. case Measure_FILWIDTH:
  1352. #if HAS_FILAMENT_SENSOR
  1353. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1354. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1355. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1356. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1357. }
  1358. #endif
  1359. temp_state = PrepareTemp_0;
  1360. temp_count++;
  1361. break;
  1362. case StartupDelay:
  1363. temp_state = PrepareTemp_0;
  1364. break;
  1365. // default:
  1366. // SERIAL_ERROR_START;
  1367. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1368. // break;
  1369. } // switch(temp_state)
  1370. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1371. if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading.
  1372. #ifndef HEATER_0_USES_MAX6675
  1373. current_temperature_raw[0] = raw_temp_0_value;
  1374. #endif
  1375. #if EXTRUDERS > 1
  1376. current_temperature_raw[1] = raw_temp_1_value;
  1377. #if EXTRUDERS > 2
  1378. current_temperature_raw[2] = raw_temp_2_value;
  1379. #if EXTRUDERS > 3
  1380. current_temperature_raw[3] = raw_temp_3_value;
  1381. #endif
  1382. #endif
  1383. #endif
  1384. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1385. redundant_temperature_raw = raw_temp_1_value;
  1386. #endif
  1387. current_temperature_bed_raw = raw_temp_bed_value;
  1388. } //!temp_meas_ready
  1389. // Filament Sensor - can be read any time since IIR filtering is used
  1390. #if HAS_FILAMENT_SENSOR
  1391. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1392. #endif
  1393. temp_meas_ready = true;
  1394. temp_count = 0;
  1395. raw_temp_0_value = 0;
  1396. raw_temp_1_value = 0;
  1397. raw_temp_2_value = 0;
  1398. raw_temp_3_value = 0;
  1399. raw_temp_bed_value = 0;
  1400. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1401. #define MAXTEST <=
  1402. #define MINTEST >=
  1403. #else
  1404. #define MAXTEST >=
  1405. #define MINTEST <=
  1406. #endif
  1407. for (int i=0; i<EXTRUDERS; i++) {
  1408. if (current_temperature_raw[i] MAXTEST maxttemp_raw[i]) max_temp_error(i);
  1409. else if (current_temperature_raw[i] MINTEST minttemp_raw[i]) min_temp_error(i);
  1410. }
  1411. /* No bed MINTEMP error? */
  1412. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1413. if (current_temperature_bed_raw MAXTEST bed_maxttemp_raw) {
  1414. target_temperature_bed = 0;
  1415. bed_max_temp_error();
  1416. }
  1417. #endif
  1418. } // temp_count >= OVERSAMPLENR
  1419. #ifdef BABYSTEPPING
  1420. for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
  1421. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1422. if (curTodo > 0) {
  1423. babystep(axis,/*fwd*/true);
  1424. babystepsTodo[axis]--; //less to do next time
  1425. }
  1426. else if(curTodo < 0) {
  1427. babystep(axis,/*fwd*/false);
  1428. babystepsTodo[axis]++; //less to do next time
  1429. }
  1430. }
  1431. #endif //BABYSTEPPING
  1432. }
  1433. #ifdef PIDTEMP
  1434. // Apply the scale factors to the PID values
  1435. float scalePID_i(float i) { return i * PID_dT; }
  1436. float unscalePID_i(float i) { return i / PID_dT; }
  1437. float scalePID_d(float d) { return d / PID_dT; }
  1438. float unscalePID_d(float d) { return d * PID_dT; }
  1439. #endif //PIDTEMP