1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624 |
- /*
- temperature.c - temperature control
- Part of Marlin
-
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
-
- */
-
-
- #include "Marlin.h"
- #include "ultralcd.h"
- #include "temperature.h"
- #include "watchdog.h"
- #include "language.h"
-
- #include "Sd2PinMap.h"
-
- //===========================================================================
- //================================== macros =================================
- //===========================================================================
-
- #if EXTRUDERS > 4
- #error Unsupported number of extruders
- #elif EXTRUDERS > 3
- #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
- #elif EXTRUDERS > 2
- #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
- #elif EXTRUDERS > 1
- #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
- #else
- #define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
- #endif
-
- #define HAS_TEMP_0 (defined(TEMP_0_PIN) && TEMP_0_PIN >= 0)
- #define HAS_TEMP_1 (defined(TEMP_1_PIN) && TEMP_1_PIN >= 0)
- #define HAS_TEMP_2 (defined(TEMP_2_PIN) && TEMP_2_PIN >= 0)
- #define HAS_TEMP_3 (defined(TEMP_3_PIN) && TEMP_3_PIN >= 0)
- #define HAS_TEMP_BED (defined(TEMP_BED_PIN) && TEMP_BED_PIN >= 0)
- #define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && defined(FILWIDTH_PIN) && FILWIDTH_PIN >= 0)
- #define HAS_HEATER_0 (defined(HEATER_0_PIN) && HEATER_0_PIN >= 0)
- #define HAS_HEATER_1 (defined(HEATER_1_PIN) && HEATER_1_PIN >= 0)
- #define HAS_HEATER_2 (defined(HEATER_2_PIN) && HEATER_2_PIN >= 0)
- #define HAS_HEATER_3 (defined(HEATER_3_PIN) && HEATER_3_PIN >= 0)
- #define HAS_HEATER_BED (defined(HEATER_BED_PIN) && HEATER_BED_PIN >= 0)
- #define HAS_AUTO_FAN_0 (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN >= 0)
- #define HAS_AUTO_FAN_1 (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN >= 0)
- #define HAS_AUTO_FAN_2 (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN >= 0)
- #define HAS_AUTO_FAN_3 (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN >= 0)
- #define HAS_AUTO_FAN HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3
- #define HAS_FAN (defined(FAN_PIN) && FAN_PIN >= 0)
-
- //===========================================================================
- //============================= public variables ============================
- //===========================================================================
-
- #ifdef K1 // Defined in Configuration.h in the PID settings
- #define K2 (1.0-K1)
- #endif
-
- // Sampling period of the temperature routine
- #ifdef PID_dT
- #undef PID_dT
- #endif
- #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
-
- int target_temperature[EXTRUDERS] = { 0 };
- int target_temperature_bed = 0;
- int current_temperature_raw[EXTRUDERS] = { 0 };
- float current_temperature[EXTRUDERS] = { 0.0 };
- int current_temperature_bed_raw = 0;
- float current_temperature_bed = 0.0;
- #ifdef TEMP_SENSOR_1_AS_REDUNDANT
- int redundant_temperature_raw = 0;
- float redundant_temperature = 0.0;
- #endif
-
- #ifdef PIDTEMPBED
- float bedKp=DEFAULT_bedKp;
- float bedKi=(DEFAULT_bedKi*PID_dT);
- float bedKd=(DEFAULT_bedKd/PID_dT);
- #endif //PIDTEMPBED
-
- #ifdef FAN_SOFT_PWM
- unsigned char fanSpeedSoftPwm;
- #endif
-
- unsigned char soft_pwm_bed;
-
- #ifdef BABYSTEPPING
- volatile int babystepsTodo[3] = { 0 };
- #endif
-
- #ifdef FILAMENT_SENSOR
- int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
- #endif
- //===========================================================================
- //=============================private variables============================
- //===========================================================================
- static volatile bool temp_meas_ready = false;
-
- #ifdef PIDTEMP
- //static cannot be external:
- static float temp_iState[EXTRUDERS] = { 0 };
- static float temp_dState[EXTRUDERS] = { 0 };
- static float pTerm[EXTRUDERS];
- static float iTerm[EXTRUDERS];
- static float dTerm[EXTRUDERS];
- //int output;
- static float pid_error[EXTRUDERS];
- static float temp_iState_min[EXTRUDERS];
- static float temp_iState_max[EXTRUDERS];
- // static float pid_input[EXTRUDERS];
- // static float pid_output[EXTRUDERS];
- static bool pid_reset[EXTRUDERS];
- #endif //PIDTEMP
- #ifdef PIDTEMPBED
- //static cannot be external:
- static float temp_iState_bed = { 0 };
- static float temp_dState_bed = { 0 };
- static float pTerm_bed;
- static float iTerm_bed;
- static float dTerm_bed;
- //int output;
- static float pid_error_bed;
- static float temp_iState_min_bed;
- static float temp_iState_max_bed;
- #else //PIDTEMPBED
- static unsigned long previous_millis_bed_heater;
- #endif //PIDTEMPBED
- static unsigned char soft_pwm[EXTRUDERS];
-
- #ifdef FAN_SOFT_PWM
- static unsigned char soft_pwm_fan;
- #endif
- #if HAS_AUTO_FAN
- static unsigned long extruder_autofan_last_check;
- #endif
-
- #ifdef PIDTEMP
- #ifdef PID_PARAMS_PER_EXTRUDER
- float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
- float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
- float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
- #ifdef PID_ADD_EXTRUSION_RATE
- float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
- #endif // PID_ADD_EXTRUSION_RATE
- #else //PID_PARAMS_PER_EXTRUDER
- float Kp = DEFAULT_Kp;
- float Ki = DEFAULT_Ki * PID_dT;
- float Kd = DEFAULT_Kd / PID_dT;
- #ifdef PID_ADD_EXTRUSION_RATE
- float Kc = DEFAULT_Kc;
- #endif // PID_ADD_EXTRUSION_RATE
- #endif // PID_PARAMS_PER_EXTRUDER
- #endif //PIDTEMP
-
- // Init min and max temp with extreme values to prevent false errors during startup
- static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
- static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
- static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 );
- static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
- //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
- #ifdef BED_MAXTEMP
- static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
- #endif
-
- #ifdef TEMP_SENSOR_1_AS_REDUNDANT
- static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
- static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
- #else
- static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
- static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
- #endif
-
- static float analog2temp(int raw, uint8_t e);
- static float analog2tempBed(int raw);
- static void updateTemperaturesFromRawValues();
-
- #ifdef WATCH_TEMP_PERIOD
- int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
- unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
- #endif //WATCH_TEMP_PERIOD
-
- #ifndef SOFT_PWM_SCALE
- #define SOFT_PWM_SCALE 0
- #endif
-
- #ifdef FILAMENT_SENSOR
- static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
- #endif
-
- #ifdef HEATER_0_USES_MAX6675
- static int read_max6675();
- #endif
-
- //===========================================================================
- //============================= functions ============================
- //===========================================================================
-
- void PID_autotune(float temp, int extruder, int ncycles)
- {
- float input = 0.0;
- int cycles = 0;
- bool heating = true;
-
- unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
- long t_high = 0, t_low = 0;
-
- long bias, d;
- float Ku, Tu;
- float Kp, Ki, Kd;
- float max = 0, min = 10000;
-
- #if HAS_AUTO_FAN
- unsigned long extruder_autofan_last_check = temp_millis;
- #endif
-
- if (extruder >= EXTRUDERS
- #if !HAS_TEMP_BED
- || extruder < 0
- #endif
- ) {
- SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
- return;
- }
-
- SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
-
- disable_heater(); // switch off all heaters.
-
- if (extruder < 0)
- soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
- else
- soft_pwm[extruder] = bias = d = PID_MAX / 2;
-
- // PID Tuning loop
- for(;;) {
-
- unsigned long ms = millis();
-
- if (temp_meas_ready == true) { // temp sample ready
- updateTemperaturesFromRawValues();
-
- input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
-
- max = max(max, input);
- min = min(min, input);
-
- #if HAS_AUTO_FAN
- if (ms > extruder_autofan_last_check + 2500) {
- checkExtruderAutoFans();
- extruder_autofan_last_check = ms;
- }
- #endif
-
- if (heating == true && input > temp) {
- if (ms - t2 > 5000) {
- heating = false;
- if (extruder < 0)
- soft_pwm_bed = (bias - d) >> 1;
- else
- soft_pwm[extruder] = (bias - d) >> 1;
- t1 = ms;
- t_high = t1 - t2;
- max = temp;
- }
- }
- if (heating == false && input < temp) {
- if (ms - t1 > 5000) {
- heating = true;
- t2 = ms;
- t_low = t2 - t1;
- if (cycles > 0) {
- long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
- bias += (d*(t_high - t_low))/(t_low + t_high);
- bias = constrain(bias, 20, max_pow - 20);
- d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
-
- SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
- SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
- SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
- SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
- if (cycles > 2) {
- Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
- Tu = ((float)(t_low + t_high) / 1000.0);
- SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
- SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
- Kp = 0.6 * Ku;
- Ki = 2 * Kp / Tu;
- Kd = Kp * Tu / 8;
- SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
- SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
- SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
- SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
- /*
- Kp = 0.33*Ku;
- Ki = Kp/Tu;
- Kd = Kp*Tu/3;
- SERIAL_PROTOCOLLNPGM(" Some overshoot ");
- SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
- SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
- SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
- Kp = 0.2*Ku;
- Ki = 2*Kp/Tu;
- Kd = Kp*Tu/3;
- SERIAL_PROTOCOLLNPGM(" No overshoot ");
- SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
- SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
- SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
- */
- }
- }
- if (extruder < 0)
- soft_pwm_bed = (bias + d) >> 1;
- else
- soft_pwm[extruder] = (bias + d) >> 1;
- cycles++;
- min = temp;
- }
- }
- }
- if (input > temp + 20) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
- return;
- }
- // Every 2 seconds...
- if (ms > temp_millis + 2000) {
- int p;
- if (extruder < 0) {
- p = soft_pwm_bed;
- SERIAL_PROTOCOLPGM(MSG_OK_B);
- }
- else {
- p = soft_pwm[extruder];
- SERIAL_PROTOCOLPGM(MSG_OK_T);
- }
-
- SERIAL_PROTOCOL(input);
- SERIAL_PROTOCOLPGM(MSG_AT);
- SERIAL_PROTOCOLLN(p);
-
- temp_millis = ms;
- } // every 2 seconds
- // Over 2 minutes?
- if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
- return;
- }
- if (cycles > ncycles) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
- return;
- }
- lcd_update();
- }
- }
-
- void updatePID() {
- #ifdef PIDTEMP
- for (int e = 0; e < EXTRUDERS; e++) {
- temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
- }
- #endif
- #ifdef PIDTEMPBED
- temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
- #endif
- }
-
- int getHeaterPower(int heater) {
- return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
- }
-
- #if HAS_AUTO_FAN
-
- #if HAS_FAN
- #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
- #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
- #endif
- #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
- #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
- #endif
- #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
- #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
- #endif
- #if EXTRUDER_3_AUTO_FAN_PIN == FAN_PIN
- #error "You cannot set EXTRUDER_3_AUTO_FAN_PIN equal to FAN_PIN"
- #endif
- #endif
-
- void setExtruderAutoFanState(int pin, bool state)
- {
- unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
- // this idiom allows both digital and PWM fan outputs (see M42 handling).
- pinMode(pin, OUTPUT);
- digitalWrite(pin, newFanSpeed);
- analogWrite(pin, newFanSpeed);
- }
-
- void checkExtruderAutoFans()
- {
- uint8_t fanState = 0;
-
- // which fan pins need to be turned on?
- #if HAS_AUTO_FAN_0
- if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
- fanState |= 1;
- #endif
- #if HAS_AUTO_FAN_1
- if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
- {
- if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
- fanState |= 1;
- else
- fanState |= 2;
- }
- #endif
- #if HAS_AUTO_FAN_2
- if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
- {
- if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
- fanState |= 1;
- else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
- fanState |= 2;
- else
- fanState |= 4;
- }
- #endif
- #if HAS_AUTO_FAN_3
- if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
- {
- if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
- fanState |= 1;
- else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
- fanState |= 2;
- else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
- fanState |= 4;
- else
- fanState |= 8;
- }
- #endif
-
- // update extruder auto fan states
- #if HAS_AUTO_FAN_0
- setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
- #endif
- #if HAS_AUTO_FAN_1
- if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
- setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
- #endif
- #if HAS_AUTO_FAN_2
- if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
- && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
- setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
- #endif
- #if HAS_AUTO_FAN_3
- if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
- && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
- && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
- setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
- #endif
- }
-
- #endif // any extruder auto fan pins set
-
- //
- // Error checking and Write Routines
- //
- #if !HAS_HEATER_0
- #error HEATER_0_PIN not defined for this board
- #endif
- #define WRITE_HEATER_0P(v) WRITE(HEATER_0_PIN, v)
- #if EXTRUDERS > 1 || defined(HEATERS_PARALLEL)
- #if !HAS_HEATER_1
- #error HEATER_1_PIN not defined for this board
- #endif
- #define WRITE_HEATER_1(v) WRITE(HEATER_1_PIN, v)
- #if EXTRUDERS > 2
- #if !HAS_HEATER_2
- #error HEATER_2_PIN not defined for this board
- #endif
- #define WRITE_HEATER_2(v) WRITE(HEATER_2_PIN, v)
- #if EXTRUDERS > 3
- #if !HAS_HEATER_3
- #error HEATER_3_PIN not defined for this board
- #endif
- #define WRITE_HEATER_3(v) WRITE(HEATER_3_PIN, v)
- #endif
- #endif
- #endif
- #ifdef HEATERS_PARALLEL
- #define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); }
- #else
- #define WRITE_HEATER_0(v) WRITE_HEATER_0P(v)
- #endif
- #if HAS_HEATER_BED
- #define WRITE_HEATER_BED(v) WRITE(HEATER_BED_PIN, v)
- #endif
- #if HAS_FAN
- #define WRITE_FAN(v) WRITE(FAN_PIN, v)
- #endif
-
- inline void _temp_error(int e, const char *msg1, const char *msg2) {
- if (!IsStopped()) {
- SERIAL_ERROR_START;
- if (e >= 0) SERIAL_ERRORLN((int)e);
- serialprintPGM(msg1);
- MYSERIAL.write('\n');
- #ifdef ULTRA_LCD
- lcd_setalertstatuspgm(msg2);
- #endif
- }
- #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
- Stop();
- #endif
- }
-
- void max_temp_error(uint8_t e) {
- disable_heater();
- _temp_error(e, MSG_MAXTEMP_EXTRUDER_OFF, MSG_ERR_MAXTEMP);
- }
- void min_temp_error(uint8_t e) {
- disable_heater();
- _temp_error(e, MSG_MINTEMP_EXTRUDER_OFF, MSG_ERR_MINTEMP);
- }
- void bed_max_temp_error(void) {
- #if HAS_HEATER_BED
- WRITE_HEATER_BED(0);
- #endif
- _temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED);
- }
-
- float get_pid_output(int e) {
- float pid_output;
- #ifdef PIDTEMP
- #ifndef PID_OPENLOOP
- pid_error[e] = target_temperature[e] - current_temperature[e];
- if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
- pid_output = BANG_MAX;
- pid_reset[e] = true;
- }
- else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
- pid_output = 0;
- pid_reset[e] = true;
- }
- else {
- if (pid_reset[e]) {
- temp_iState[e] = 0.0;
- pid_reset[e] = false;
- }
- pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
- temp_iState[e] += pid_error[e];
- temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
- iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
-
- dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
- pid_output = pTerm[e] + iTerm[e] - dTerm[e];
- if (pid_output > PID_MAX) {
- if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
- pid_output = PID_MAX;
- }
- else if (pid_output < 0) {
- if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
- pid_output = 0;
- }
- }
- temp_dState[e] = current_temperature[e];
- #else
- pid_output = constrain(target_temperature[e], 0, PID_MAX);
- #endif //PID_OPENLOOP
-
- #ifdef PID_DEBUG
- SERIAL_ECHO_START;
- SERIAL_ECHO(MSG_PID_DEBUG);
- SERIAL_ECHO(e);
- SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
- SERIAL_ECHO(current_temperature[e]);
- SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
- SERIAL_ECHO(pid_output);
- SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
- SERIAL_ECHO(pTerm[e]);
- SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
- SERIAL_ECHO(iTerm[e]);
- SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
- SERIAL_ECHOLN(dTerm[e]);
- #endif //PID_DEBUG
-
- #else /* PID off */
- pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
- #endif
-
- return pid_output;
- }
-
- #ifdef PIDTEMPBED
- float get_pid_output_bed() {
- float pid_output;
- #ifndef PID_OPENLOOP
- pid_error_bed = target_temperature_bed - current_temperature_bed;
- pTerm_bed = bedKp * pid_error_bed;
- temp_iState_bed += pid_error_bed;
- temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
- iTerm_bed = bedKi * temp_iState_bed;
-
- dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
- temp_dState_bed = current_temperature_bed;
-
- pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
- if (pid_output > MAX_BED_POWER) {
- if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
- pid_output = MAX_BED_POWER;
- }
- else if (pid_output < 0) {
- if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
- pid_output = 0;
- }
- #else
- pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
- #endif // PID_OPENLOOP
-
- return pid_output;
- }
- #endif
-
- void manage_heater() {
-
- if (!temp_meas_ready) return;
-
- updateTemperaturesFromRawValues();
-
- #ifdef HEATER_0_USES_MAX6675
- float ct = current_temperature[0];
- if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
- if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
- #endif //HEATER_0_USES_MAX6675
-
- unsigned long ms = millis();
-
- // Loop through all extruders
- for (int e = 0; e < EXTRUDERS; e++) {
-
- #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
- thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
- #endif
-
- float pid_output = get_pid_output(e);
-
- // Check if temperature is within the correct range
- soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
-
- #ifdef WATCH_TEMP_PERIOD
- if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
- if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
- setTargetHotend(0, e);
- LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
- }
- else {
- watchmillis[e] = 0;
- }
- }
- #endif //WATCH_TEMP_PERIOD
-
- #ifdef TEMP_SENSOR_1_AS_REDUNDANT
- if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
- disable_heater();
- _temp_error(-1, MSG_EXTRUDER_SWITCHED_OFF, MSG_ERR_REDUNDANT_TEMP);
- }
- #endif //TEMP_SENSOR_1_AS_REDUNDANT
-
- } // Extruders Loop
-
- #if HAS_AUTO_FAN
- if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
- checkExtruderAutoFans();
- extruder_autofan_last_check = ms;
- }
- #endif
-
- #ifndef PIDTEMPBED
- if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
- previous_millis_bed_heater = ms;
- #endif //PIDTEMPBED
-
- #if TEMP_SENSOR_BED != 0
-
- #if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
- thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
- #endif
-
- #ifdef PIDTEMPBED
- pid_output = get_pid_output_bed();
-
- soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
-
- #elif !defined(BED_LIMIT_SWITCHING)
- // Check if temperature is within the correct range
- if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
- soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
- }
- else {
- soft_pwm_bed = 0;
- WRITE_HEATER_BED(LOW);
- }
- #else //#ifdef BED_LIMIT_SWITCHING
- // Check if temperature is within the correct band
- if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
- if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
- soft_pwm_bed = 0;
- else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
- soft_pwm_bed = MAX_BED_POWER >> 1;
- }
- else {
- soft_pwm_bed = 0;
- WRITE_HEATER_BED(LOW);
- }
- #endif
- #endif //TEMP_SENSOR_BED != 0
-
- // Control the extruder rate based on the width sensor
- #ifdef FILAMENT_SENSOR
- if (filament_sensor) {
- meas_shift_index = delay_index1 - meas_delay_cm;
- if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
-
- // Get the delayed info and add 100 to reconstitute to a percent of
- // the nominal filament diameter then square it to get an area
- meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
- float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
- if (vm < 0.01) vm = 0.01;
- volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
- }
- #endif //FILAMENT_SENSOR
- }
-
- #define PGM_RD_W(x) (short)pgm_read_word(&x)
- // Derived from RepRap FiveD extruder::getTemperature()
- // For hot end temperature measurement.
- static float analog2temp(int raw, uint8_t e) {
- #ifdef TEMP_SENSOR_1_AS_REDUNDANT
- if (e > EXTRUDERS)
- #else
- if (e >= EXTRUDERS)
- #endif
- {
- SERIAL_ERROR_START;
- SERIAL_ERROR((int)e);
- SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
- kill();
- return 0.0;
- }
- #ifdef HEATER_0_USES_MAX6675
- if (e == 0)
- {
- return 0.25 * raw;
- }
- #endif
-
- if(heater_ttbl_map[e] != NULL)
- {
- float celsius = 0;
- uint8_t i;
- short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
-
- for (i=1; i<heater_ttbllen_map[e]; i++)
- {
- if (PGM_RD_W((*tt)[i][0]) > raw)
- {
- celsius = PGM_RD_W((*tt)[i-1][1]) +
- (raw - PGM_RD_W((*tt)[i-1][0])) *
- (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
- (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
-
- return celsius;
- }
- return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
- }
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For bed temperature measurement.
- static float analog2tempBed(int raw) {
- #ifdef BED_USES_THERMISTOR
- float celsius = 0;
- byte i;
-
- for (i=1; i<BEDTEMPTABLE_LEN; i++)
- {
- if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
- {
- celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
- (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
- (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
- (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
-
- return celsius;
- #elif defined BED_USES_AD595
- return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
- #else
- return 0;
- #endif
- }
-
- /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
- and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
- static void updateTemperaturesFromRawValues() {
- #ifdef HEATER_0_USES_MAX6675
- current_temperature_raw[0] = read_max6675();
- #endif
- for(uint8_t e = 0; e < EXTRUDERS; e++) {
- current_temperature[e] = analog2temp(current_temperature_raw[e], e);
- }
- current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
- #ifdef TEMP_SENSOR_1_AS_REDUNDANT
- redundant_temperature = analog2temp(redundant_temperature_raw, 1);
- #endif
- #if HAS_FILAMENT_SENSOR
- filament_width_meas = analog2widthFil();
- #endif
- //Reset the watchdog after we know we have a temperature measurement.
- watchdog_reset();
-
- CRITICAL_SECTION_START;
- temp_meas_ready = false;
- CRITICAL_SECTION_END;
- }
-
-
- #ifdef FILAMENT_SENSOR
-
- // Convert raw Filament Width to millimeters
- float analog2widthFil() {
- return current_raw_filwidth / 16383.0 * 5.0;
- //return current_raw_filwidth;
- }
-
- // Convert raw Filament Width to a ratio
- int widthFil_to_size_ratio() {
- float temp = filament_width_meas;
- if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
- else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
- return filament_width_nominal / temp * 100;
- }
-
- #endif
-
-
-
-
-
- void tp_init()
- {
- #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
- //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
- MCUCR=(1<<JTD);
- MCUCR=(1<<JTD);
- #endif
-
- // Finish init of mult extruder arrays
- for (int e = 0; e < EXTRUDERS; e++) {
- // populate with the first value
- maxttemp[e] = maxttemp[0];
- #ifdef PIDTEMP
- temp_iState_min[e] = 0.0;
- temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
- #endif //PIDTEMP
- #ifdef PIDTEMPBED
- temp_iState_min_bed = 0.0;
- temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
- #endif //PIDTEMPBED
- }
-
- #if HAS_HEATER_0
- SET_OUTPUT(HEATER_0_PIN);
- #endif
- #if HAS_HEATER_1
- SET_OUTPUT(HEATER_1_PIN);
- #endif
- #if HAS_HEATER_2
- SET_OUTPUT(HEATER_2_PIN);
- #endif
- #if HAS_HEATER_3
- SET_OUTPUT(HEATER_3_PIN);
- #endif
- #if HAS_HEATER_BED
- SET_OUTPUT(HEATER_BED_PIN);
- #endif
- #if HAS_FAN
- SET_OUTPUT(FAN_PIN);
- #ifdef FAST_PWM_FAN
- setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #ifdef FAN_SOFT_PWM
- soft_pwm_fan = fanSpeedSoftPwm / 2;
- #endif
- #endif
-
- #ifdef HEATER_0_USES_MAX6675
-
- #ifndef SDSUPPORT
- OUT_WRITE(SCK_PIN, LOW);
- OUT_WRITE(MOSI_PIN, HIGH);
- OUT_WRITE(MISO_PIN, HIGH);
- #else
- pinMode(SS_PIN, OUTPUT);
- digitalWrite(SS_PIN, HIGH);
- #endif
-
- OUT_WRITE(MAX6675_SS,HIGH);
-
- #endif //HEATER_0_USES_MAX6675
-
- #ifdef DIDR2
- #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
- #else
- #define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
- #endif
-
- // Set analog inputs
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
- DIDR0 = 0;
- #ifdef DIDR2
- DIDR2 = 0;
- #endif
- #if HAS_TEMP_0
- ANALOG_SELECT(TEMP_0_PIN);
- #endif
- #if HAS_TEMP_1
- ANALOG_SELECT(TEMP_1_PIN);
- #endif
- #if HAS_TEMP_2
- ANALOG_SELECT(TEMP_2_PIN);
- #endif
- #if HAS_TEMP_3
- ANALOG_SELECT(TEMP_3_PIN);
- #endif
- #if HAS_TEMP_BED
- ANALOG_SELECT(TEMP_BED_PIN);
- #endif
- #if HAS_FILAMENT_SENSOR
- ANALOG_SELECT(FILWIDTH_PIN);
- #endif
-
- // Use timer0 for temperature measurement
- // Interleave temperature interrupt with millies interrupt
- OCR0B = 128;
- TIMSK0 |= (1<<OCIE0B);
-
- // Wait for temperature measurement to settle
- delay(250);
-
- #define TEMP_MIN_ROUTINE(NR) \
- minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
- while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
- if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
- minttemp_raw[NR] += OVERSAMPLENR; \
- else \
- minttemp_raw[NR] -= OVERSAMPLENR; \
- }
- #define TEMP_MAX_ROUTINE(NR) \
- maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
- while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
- if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
- maxttemp_raw[NR] -= OVERSAMPLENR; \
- else \
- maxttemp_raw[NR] += OVERSAMPLENR; \
- }
-
- #ifdef HEATER_0_MINTEMP
- TEMP_MIN_ROUTINE(0);
- #endif
- #ifdef HEATER_0_MAXTEMP
- TEMP_MAX_ROUTINE(0);
- #endif
- #if EXTRUDERS > 1
- #ifdef HEATER_1_MINTEMP
- TEMP_MIN_ROUTINE(1);
- #endif
- #ifdef HEATER_1_MAXTEMP
- TEMP_MAX_ROUTINE(1);
- #endif
- #if EXTRUDERS > 2
- #ifdef HEATER_2_MINTEMP
- TEMP_MIN_ROUTINE(2);
- #endif
- #ifdef HEATER_2_MAXTEMP
- TEMP_MAX_ROUTINE(2);
- #endif
- #if EXTRUDERS > 3
- #ifdef HEATER_3_MINTEMP
- TEMP_MIN_ROUTINE(3);
- #endif
- #ifdef HEATER_3_MAXTEMP
- TEMP_MAX_ROUTINE(3);
- #endif
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
-
- #ifdef BED_MINTEMP
- /* No bed MINTEMP error implemented?!? */ /*
- while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
- #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
- bed_minttemp_raw += OVERSAMPLENR;
- #else
- bed_minttemp_raw -= OVERSAMPLENR;
- #endif
- }
- */
- #endif //BED_MINTEMP
- #ifdef BED_MAXTEMP
- while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
- #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
- bed_maxttemp_raw -= OVERSAMPLENR;
- #else
- bed_maxttemp_raw += OVERSAMPLENR;
- #endif
- }
- #endif //BED_MAXTEMP
- }
-
- void setWatch() {
- #ifdef WATCH_TEMP_PERIOD
- unsigned long ms = millis();
- for (int e = 0; e < EXTRUDERS; e++) {
- if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
- watch_start_temp[e] = degHotend(e);
- watchmillis[e] = ms;
- }
- }
- #endif
- }
-
- #if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
- void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
- {
- /*
- SERIAL_ECHO_START;
- SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
- SERIAL_ECHO(heater_id);
- SERIAL_ECHO(" ; State:");
- SERIAL_ECHO(*state);
- SERIAL_ECHO(" ; Timer:");
- SERIAL_ECHO(*timer);
- SERIAL_ECHO(" ; Temperature:");
- SERIAL_ECHO(temperature);
- SERIAL_ECHO(" ; Target Temp:");
- SERIAL_ECHO(target_temperature);
- SERIAL_ECHOLN("");
- */
- if ((target_temperature == 0) || thermal_runaway)
- {
- *state = 0;
- *timer = 0;
- return;
- }
- switch (*state)
- {
- case 0: // "Heater Inactive" state
- if (target_temperature > 0) *state = 1;
- break;
- case 1: // "First Heating" state
- if (temperature >= target_temperature) *state = 2;
- break;
- case 2: // "Temperature Stable" state
- {
- unsigned long ms = millis();
- if (temperature >= (target_temperature - hysteresis_degc))
- {
- *timer = ms;
- }
- else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
- {
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
- SERIAL_ERRORLN((int)heater_id);
- LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
- thermal_runaway = true;
- while(1)
- {
- disable_heater();
- disable_x();
- disable_y();
- disable_z();
- disable_e0();
- disable_e1();
- disable_e2();
- disable_e3();
- manage_heater();
- lcd_update();
- }
- }
- } break;
- }
- }
- #endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
-
-
- void disable_heater() {
- for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
- setTargetBed(0);
-
- #if HAS_TEMP_0
- target_temperature[0] = 0;
- soft_pwm[0] = 0;
- WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
- #endif
-
- #if EXTRUDERS > 1 && HAS_TEMP_1
- target_temperature[1] = 0;
- soft_pwm[1] = 0;
- WRITE_HEATER_1(LOW);
- #endif
-
- #if EXTRUDERS > 2 && HAS_TEMP_2
- target_temperature[2] = 0;
- soft_pwm[2] = 0;
- WRITE_HEATER_2(LOW);
- #endif
-
- #if EXTRUDERS > 3 && HAS_TEMP_3
- target_temperature[3] = 0;
- soft_pwm[3] = 0;
- WRITE_HEATER_3(LOW);
- #endif
-
- #if HAS_TEMP_BED
- target_temperature_bed = 0;
- soft_pwm_bed = 0;
- #if HAS_HEATER_BED
- WRITE_HEATER_BED(LOW);
- #endif
- #endif
- }
-
- #ifdef HEATER_0_USES_MAX6675
- #define MAX6675_HEAT_INTERVAL 250
- long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
- int max6675_temp = 2000;
-
- static int read_max6675() {
-
- unsigned long ms = millis();
- if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
- return max6675_temp;
-
- max6675_previous_millis = ms;
- max6675_temp = 0;
-
- #ifdef PRR
- PRR &= ~(1<<PRSPI);
- #elif defined(PRR0)
- PRR0 &= ~(1<<PRSPI);
- #endif
-
- SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
-
- // enable TT_MAX6675
- WRITE(MAX6675_SS, 0);
-
- // ensure 100ns delay - a bit extra is fine
- asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
- asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
-
- // read MSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp = SPDR;
- max6675_temp <<= 8;
-
- // read LSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp |= SPDR;
-
- // disable TT_MAX6675
- WRITE(MAX6675_SS, 1);
-
- if (max6675_temp & 4) {
- // thermocouple open
- max6675_temp = 4000;
- }
- else {
- max6675_temp = max6675_temp >> 3;
- }
-
- return max6675_temp;
- }
-
- #endif //HEATER_0_USES_MAX6675
-
- /**
- * Stages in the ISR loop
- */
- enum TempState {
- PrepareTemp_0,
- MeasureTemp_0,
- PrepareTemp_BED,
- MeasureTemp_BED,
- PrepareTemp_1,
- MeasureTemp_1,
- PrepareTemp_2,
- MeasureTemp_2,
- PrepareTemp_3,
- MeasureTemp_3,
- Prepare_FILWIDTH,
- Measure_FILWIDTH,
- StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
- };
-
- //
- // Timer 0 is shared with millies
- //
- ISR(TIMER0_COMPB_vect) {
- //these variables are only accesible from the ISR, but static, so they don't lose their value
- static unsigned char temp_count = 0;
- static unsigned long raw_temp_0_value = 0;
- static unsigned long raw_temp_1_value = 0;
- static unsigned long raw_temp_2_value = 0;
- static unsigned long raw_temp_3_value = 0;
- static unsigned long raw_temp_bed_value = 0;
- static TempState temp_state = StartupDelay;
- static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
-
- // Static members for each heater
- #ifdef SLOW_PWM_HEATERS
- static unsigned char slow_pwm_count = 0;
- #define ISR_STATICS(n) \
- static unsigned char soft_pwm_ ## n; \
- static unsigned char state_heater_ ## n = 0; \
- static unsigned char state_timer_heater_ ## n = 0
- #else
- #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
- #endif
-
- // Statics per heater
- ISR_STATICS(0);
- #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
- ISR_STATICS(1);
- #if EXTRUDERS > 2
- ISR_STATICS(2);
- #if EXTRUDERS > 3
- ISR_STATICS(3);
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- ISR_STATICS(BED);
- #endif
-
- #if HAS_FILAMENT_SENSOR
- static unsigned long raw_filwidth_value = 0;
- #endif
-
- #ifndef SLOW_PWM_HEATERS
- /**
- * standard PWM modulation
- */
- if (pwm_count == 0) {
- soft_pwm_0 = soft_pwm[0];
- if (soft_pwm_0 > 0) {
- WRITE_HEATER_0(1);
- }
- else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
-
- #if EXTRUDERS > 1
- soft_pwm_1 = soft_pwm[1];
- WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
- #if EXTRUDERS > 2
- soft_pwm_2 = soft_pwm[2];
- WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
- #if EXTRUDERS > 3
- soft_pwm_3 = soft_pwm[3];
- WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
- #endif
- #endif
- #endif
-
- #if HAS_HEATER_BED
- soft_pwm_BED = soft_pwm_bed;
- WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
- #endif
- #ifdef FAN_SOFT_PWM
- soft_pwm_fan = fanSpeedSoftPwm / 2;
- WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
- #endif
- }
-
- if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
- #if EXTRUDERS > 1
- if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
- #if EXTRUDERS > 2
- if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
- #if EXTRUDERS > 3
- if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
- #endif
- #endif
- #endif
-
- #if HAS_HEATER_BED
- if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
- #endif
-
- #ifdef FAN_SOFT_PWM
- if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
- #endif
-
- pwm_count += (1 << SOFT_PWM_SCALE);
- pwm_count &= 0x7f;
-
- #else // SLOW_PWM_HEATERS
- /*
- * SLOW PWM HEATERS
- *
- * for heaters drived by relay
- */
- #ifndef MIN_STATE_TIME
- #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
- #endif
-
- // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
- #define _SLOW_PWM_ROUTINE(NR, src) \
- soft_pwm_ ## NR = src; \
- if (soft_pwm_ ## NR > 0) { \
- if (state_timer_heater_ ## NR == 0) { \
- if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
- state_heater_ ## NR = 1; \
- WRITE_HEATER_ ## NR(1); \
- } \
- } \
- else { \
- if (state_timer_heater_ ## NR == 0) { \
- if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
- state_heater_ ## NR = 0; \
- WRITE_HEATER_ ## NR(0); \
- } \
- }
- #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
-
- #define PWM_OFF_ROUTINE(NR) \
- if (soft_pwm_ ## NR < slow_pwm_count) { \
- if (state_timer_heater_ ## NR == 0) { \
- if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
- state_heater_ ## NR = 0; \
- WRITE_HEATER_ ## NR (0); \
- } \
- }
-
- if (slow_pwm_count == 0) {
-
- SLOW_PWM_ROUTINE(0); // EXTRUDER 0
- #if EXTRUDERS > 1
- SLOW_PWM_ROUTINE(1); // EXTRUDER 1
- #if EXTRUDERS > 2
- SLOW_PWM_ROUTINE(2); // EXTRUDER 2
- #if EXTRUDERS > 3
- SLOW_PWM_ROUTINE(3); // EXTRUDER 3
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
- #endif
-
- } // slow_pwm_count == 0
-
- PWM_OFF_ROUTINE(0); // EXTRUDER 0
- #if EXTRUDERS > 1
- PWM_OFF_ROUTINE(1); // EXTRUDER 1
- #if EXTRUDERS > 2
- PWM_OFF_ROUTINE(2); // EXTRUDER 2
- #if EXTRUDERS > 3
- PWM_OFF_ROUTINE(3); // EXTRUDER 3
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- PWM_OFF_ROUTINE(BED); // BED
- #endif
-
- #ifdef FAN_SOFT_PWM
- if (pwm_count == 0) {
- soft_pwm_fan = fanSpeedSoftPwm / 2;
- WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
- }
- if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
- #endif //FAN_SOFT_PWM
-
- pwm_count += (1 << SOFT_PWM_SCALE);
- pwm_count &= 0x7f;
-
- // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
- if ((pwm_count % 64) == 0) {
- slow_pwm_count++;
- slow_pwm_count &= 0x7f;
-
- // EXTRUDER 0
- if (state_timer_heater_0 > 0) state_timer_heater_0--;
- #if EXTRUDERS > 1 // EXTRUDER 1
- if (state_timer_heater_1 > 0) state_timer_heater_1--;
- #if EXTRUDERS > 2 // EXTRUDER 2
- if (state_timer_heater_2 > 0) state_timer_heater_2--;
- #if EXTRUDERS > 3 // EXTRUDER 3
- if (state_timer_heater_3 > 0) state_timer_heater_3--;
- #endif
- #endif
- #endif
- #if HAS_HEATER_BED
- if (state_timer_heater_BED > 0) state_timer_heater_BED--;
- #endif
- } // (pwm_count % 64) == 0
-
- #endif // SLOW_PWM_HEATERS
-
- #define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
- #ifdef MUX5
- #define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
- #else
- #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
- #endif
-
- switch(temp_state) {
- case PrepareTemp_0:
- #if HAS_TEMP_0
- START_ADC(TEMP_0_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_0;
- break;
- case MeasureTemp_0:
- #if HAS_TEMP_0
- raw_temp_0_value += ADC;
- #endif
- temp_state = PrepareTemp_BED;
- break;
- case PrepareTemp_BED:
- #if HAS_TEMP_BED
- START_ADC(TEMP_BED_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_BED;
- break;
- case MeasureTemp_BED:
- #if HAS_TEMP_BED
- raw_temp_bed_value += ADC;
- #endif
- temp_state = PrepareTemp_1;
- break;
- case PrepareTemp_1:
- #if HAS_TEMP_1
- START_ADC(TEMP_1_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_1;
- break;
- case MeasureTemp_1:
- #if HAS_TEMP_1
- raw_temp_1_value += ADC;
- #endif
- temp_state = PrepareTemp_2;
- break;
- case PrepareTemp_2:
- #if HAS_TEMP_2
- START_ADC(TEMP_2_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_2;
- break;
- case MeasureTemp_2:
- #if HAS_TEMP_2
- raw_temp_2_value += ADC;
- #endif
- temp_state = PrepareTemp_3;
- break;
- case PrepareTemp_3:
- #if HAS_TEMP_3
- START_ADC(TEMP_3_PIN);
- #endif
- lcd_buttons_update();
- temp_state = MeasureTemp_3;
- break;
- case MeasureTemp_3:
- #if HAS_TEMP_3
- raw_temp_3_value += ADC;
- #endif
- temp_state = Prepare_FILWIDTH;
- break;
- case Prepare_FILWIDTH:
- #if HAS_FILAMENT_SENSOR
- START_ADC(FILWIDTH_PIN);
- #endif
- lcd_buttons_update();
- temp_state = Measure_FILWIDTH;
- break;
- case Measure_FILWIDTH:
- #if HAS_FILAMENT_SENSOR
- // raw_filwidth_value += ADC; //remove to use an IIR filter approach
- if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
- raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
- raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
- }
- #endif
- temp_state = PrepareTemp_0;
- temp_count++;
- break;
- case StartupDelay:
- temp_state = PrepareTemp_0;
- break;
-
- // default:
- // SERIAL_ERROR_START;
- // SERIAL_ERRORLNPGM("Temp measurement error!");
- // break;
- } // switch(temp_state)
-
- if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
- if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading.
- #ifndef HEATER_0_USES_MAX6675
- current_temperature_raw[0] = raw_temp_0_value;
- #endif
- #if EXTRUDERS > 1
- current_temperature_raw[1] = raw_temp_1_value;
- #if EXTRUDERS > 2
- current_temperature_raw[2] = raw_temp_2_value;
- #if EXTRUDERS > 3
- current_temperature_raw[3] = raw_temp_3_value;
- #endif
- #endif
- #endif
- #ifdef TEMP_SENSOR_1_AS_REDUNDANT
- redundant_temperature_raw = raw_temp_1_value;
- #endif
- current_temperature_bed_raw = raw_temp_bed_value;
- } //!temp_meas_ready
-
- // Filament Sensor - can be read any time since IIR filtering is used
- #if HAS_FILAMENT_SENSOR
- current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
- #endif
-
- temp_meas_ready = true;
- temp_count = 0;
- raw_temp_0_value = 0;
- raw_temp_1_value = 0;
- raw_temp_2_value = 0;
- raw_temp_3_value = 0;
- raw_temp_bed_value = 0;
-
- #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
- #define MAXTEST <=
- #define MINTEST >=
- #else
- #define MAXTEST >=
- #define MINTEST <=
- #endif
-
- for (int i=0; i<EXTRUDERS; i++) {
- if (current_temperature_raw[i] MAXTEST maxttemp_raw[i]) max_temp_error(i);
- else if (current_temperature_raw[i] MINTEST minttemp_raw[i]) min_temp_error(i);
- }
- /* No bed MINTEMP error? */
- #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
- if (current_temperature_bed_raw MAXTEST bed_maxttemp_raw) {
- target_temperature_bed = 0;
- bed_max_temp_error();
- }
- #endif
- } // temp_count >= OVERSAMPLENR
-
- #ifdef BABYSTEPPING
- for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
- int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
-
- if (curTodo > 0) {
- babystep(axis,/*fwd*/true);
- babystepsTodo[axis]--; //less to do next time
- }
- else if(curTodo < 0) {
- babystep(axis,/*fwd*/false);
- babystepsTodo[axis]++; //less to do next time
- }
- }
- #endif //BABYSTEPPING
- }
-
- #ifdef PIDTEMP
- // Apply the scale factors to the PID values
- float scalePID_i(float i) { return i * PID_dT; }
- float unscalePID_i(float i) { return i / PID_dT; }
- float scalePID_d(float d) { return d / PID_dT; }
- float unscalePID_d(float d) { return d * PID_dT; }
- #endif //PIDTEMP
|