My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin_main.cpp 188KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extrudemultiply = 100; //100->1 200->2
  193. int extruder_multiply[EXTRUDERS] = { 100
  194. #if EXTRUDERS > 1
  195. , 100
  196. #if EXTRUDERS > 2
  197. , 100
  198. #if EXTRUDERS > 3
  199. , 100
  200. #endif
  201. #endif
  202. #endif
  203. };
  204. bool volumetric_enabled = false;
  205. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  206. #if EXTRUDERS > 1
  207. , DEFAULT_NOMINAL_FILAMENT_DIA
  208. #if EXTRUDERS > 2
  209. , DEFAULT_NOMINAL_FILAMENT_DIA
  210. #if EXTRUDERS > 3
  211. , DEFAULT_NOMINAL_FILAMENT_DIA
  212. #endif
  213. #endif
  214. #endif
  215. };
  216. float volumetric_multiplier[EXTRUDERS] = {1.0
  217. #if EXTRUDERS > 1
  218. , 1.0
  219. #if EXTRUDERS > 2
  220. , 1.0
  221. #if EXTRUDERS > 3
  222. , 1.0
  223. #endif
  224. #endif
  225. #endif
  226. };
  227. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  228. float home_offset[3] = { 0, 0, 0 };
  229. #ifdef DELTA
  230. float endstop_adj[3] = { 0, 0, 0 };
  231. #elif defined(Z_DUAL_ENDSTOPS)
  232. float z_endstop_adj = 0;
  233. #endif
  234. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  235. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  236. bool axis_known_position[3] = { false, false, false };
  237. // Extruder offset
  238. #if EXTRUDERS > 1
  239. #ifndef DUAL_X_CARRIAGE
  240. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  241. #else
  242. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  243. #endif
  244. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  245. #if defined(EXTRUDER_OFFSET_X)
  246. EXTRUDER_OFFSET_X
  247. #else
  248. 0
  249. #endif
  250. ,
  251. #if defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_Y
  253. #else
  254. 0
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed = 0;
  260. #ifdef SERVO_ENDSTOPS
  261. int servo_endstops[] = SERVO_ENDSTOPS;
  262. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  263. #endif
  264. #ifdef BARICUDA
  265. int ValvePressure = 0;
  266. int EtoPPressure = 0;
  267. #endif
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled = false;
  270. bool retracted[EXTRUDERS] = { false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #if EXTRUDERS > 3
  276. , false
  277. #endif
  278. #endif
  279. #endif
  280. };
  281. bool retracted_swap[EXTRUDERS] = { false
  282. #if EXTRUDERS > 1
  283. , false
  284. #if EXTRUDERS > 2
  285. , false
  286. #if EXTRUDERS > 3
  287. , false
  288. #endif
  289. #endif
  290. #endif
  291. };
  292. float retract_length = RETRACT_LENGTH;
  293. float retract_length_swap = RETRACT_LENGTH_SWAP;
  294. float retract_feedrate = RETRACT_FEEDRATE;
  295. float retract_zlift = RETRACT_ZLIFT;
  296. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  297. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  298. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  299. #endif // FWRETRACT
  300. #ifdef ULTIPANEL
  301. bool powersupply =
  302. #ifdef PS_DEFAULT_OFF
  303. false
  304. #else
  305. true
  306. #endif
  307. ;
  308. #endif
  309. #ifdef DELTA
  310. float delta[3] = { 0, 0, 0 };
  311. #define SIN_60 0.8660254037844386
  312. #define COS_60 0.5
  313. // these are the default values, can be overriden with M665
  314. float delta_radius = DELTA_RADIUS;
  315. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  316. float delta_tower1_y = -COS_60 * delta_radius;
  317. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  318. float delta_tower2_y = -COS_60 * delta_radius;
  319. float delta_tower3_x = 0; // back middle tower
  320. float delta_tower3_y = delta_radius;
  321. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  322. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  323. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  324. #ifdef ENABLE_AUTO_BED_LEVELING
  325. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  326. #endif
  327. #endif
  328. #ifdef SCARA
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. static float delta[3] = { 0, 0, 0 };
  331. #endif
  332. bool cancel_heatup = false;
  333. #ifdef FILAMENT_SENSOR
  334. //Variables for Filament Sensor input
  335. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  336. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  337. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  338. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  339. int delay_index1=0; //index into ring buffer
  340. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  341. float delay_dist=0; //delay distance counter
  342. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  343. #endif
  344. #ifdef FILAMENT_RUNOUT_SENSOR
  345. static bool filrunoutEnqued = false;
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  350. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  351. static float offset[3] = { 0, 0, 0 };
  352. static bool home_all_axis = true;
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  355. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  356. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  357. #ifdef SDSUPPORT
  358. static bool fromsd[BUFSIZE];
  359. #endif //!SDSUPPORT
  360. static int bufindr = 0;
  361. static int bufindw = 0;
  362. static int buflen = 0;
  363. static char serial_char;
  364. static int serial_count = 0;
  365. static boolean comment_mode = false;
  366. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  367. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  368. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  369. // Inactivity shutdown
  370. static unsigned long previous_millis_cmd = 0;
  371. static unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime = 0; ///< Print job start time
  374. unsigned long stoptime = 0; ///< Print job stop time
  375. static uint8_t tmp_extruder;
  376. bool Stopped = false;
  377. #if NUM_SERVOS > 0
  378. Servo servos[NUM_SERVOS];
  379. #endif
  380. bool CooldownNoWait = true;
  381. bool target_direction;
  382. #ifdef CHDK
  383. unsigned long chdkHigh = 0;
  384. boolean chdkActive = false;
  385. #endif
  386. //===========================================================================
  387. //=============================Routines======================================
  388. //===========================================================================
  389. void get_arc_coordinates();
  390. bool setTargetedHotend(int code);
  391. void serial_echopair_P(const char *s_P, float v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, double v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, unsigned long v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. #ifdef SDSUPPORT
  398. #include "SdFatUtil.h"
  399. int freeMemory() { return SdFatUtil::FreeRam(); }
  400. #else
  401. extern "C" {
  402. extern unsigned int __bss_end;
  403. extern unsigned int __heap_start;
  404. extern void *__brkval;
  405. int freeMemory() {
  406. int free_memory;
  407. if ((int)__brkval == 0)
  408. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  409. else
  410. free_memory = ((int)&free_memory) - ((int)__brkval);
  411. return free_memory;
  412. }
  413. }
  414. #endif //!SDSUPPORT
  415. //Injects the next command from the pending sequence of commands, when possible
  416. //Return false if and only if no command was pending
  417. static bool drain_queued_commands_P()
  418. {
  419. char cmd[30];
  420. if(!queued_commands_P)
  421. return false;
  422. // Get the next 30 chars from the sequence of gcodes to run
  423. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  424. cmd[sizeof(cmd)-1]= 0;
  425. // Look for the end of line, or the end of sequence
  426. size_t i= 0;
  427. char c;
  428. while( (c= cmd[i]) && c!='\n' )
  429. ++i; // look for the end of this gcode command
  430. cmd[i]= 0;
  431. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  432. {
  433. if(c)
  434. queued_commands_P+= i+1; // move to next command
  435. else
  436. queued_commands_P= NULL; // will have no more commands in the sequence
  437. }
  438. return true;
  439. }
  440. //Record one or many commands to run from program memory.
  441. //Aborts the current queue, if any.
  442. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  443. void enquecommands_P(const char* pgcode)
  444. {
  445. queued_commands_P= pgcode;
  446. drain_queued_commands_P(); // first command exectuted asap (when possible)
  447. }
  448. //adds a single command to the main command buffer, from RAM
  449. //that is really done in a non-safe way.
  450. //needs overworking someday
  451. //Returns false if it failed to do so
  452. bool enquecommand(const char *cmd)
  453. {
  454. if(*cmd==';')
  455. return false;
  456. if(buflen >= BUFSIZE)
  457. return false;
  458. //this is dangerous if a mixing of serial and this happens
  459. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  460. SERIAL_ECHO_START;
  461. SERIAL_ECHOPGM(MSG_Enqueing);
  462. SERIAL_ECHO(cmdbuffer[bufindw]);
  463. SERIAL_ECHOLNPGM("\"");
  464. bufindw= (bufindw + 1)%BUFSIZE;
  465. buflen += 1;
  466. return true;
  467. }
  468. void setup_killpin()
  469. {
  470. #if defined(KILL_PIN) && KILL_PIN > -1
  471. SET_INPUT(KILL_PIN);
  472. WRITE(KILL_PIN,HIGH);
  473. #endif
  474. }
  475. void setup_filrunoutpin()
  476. {
  477. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  478. pinMode(FILRUNOUT_PIN,INPUT);
  479. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  480. WRITE(FILLRUNOUT_PIN,HIGH);
  481. #endif
  482. #endif
  483. }
  484. // Set home pin
  485. void setup_homepin(void)
  486. {
  487. #if defined(HOME_PIN) && HOME_PIN > -1
  488. SET_INPUT(HOME_PIN);
  489. WRITE(HOME_PIN,HIGH);
  490. #endif
  491. }
  492. void setup_photpin()
  493. {
  494. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  495. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  496. #endif
  497. }
  498. void setup_powerhold()
  499. {
  500. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  501. OUT_WRITE(SUICIDE_PIN, HIGH);
  502. #endif
  503. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  504. #if defined(PS_DEFAULT_OFF)
  505. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  506. #else
  507. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  508. #endif
  509. #endif
  510. }
  511. void suicide()
  512. {
  513. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  514. OUT_WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. // Set position of Servo Endstops that are defined
  535. #ifdef SERVO_ENDSTOPS
  536. for(int8_t i = 0; i < 3; i++)
  537. {
  538. if(servo_endstops[i] > -1) {
  539. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  540. }
  541. }
  542. #endif
  543. #if SERVO_LEVELING
  544. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  545. servos[servo_endstops[Z_AXIS]].detach();
  546. #endif
  547. }
  548. void setup()
  549. {
  550. setup_killpin();
  551. setup_filrunoutpin();
  552. setup_powerhold();
  553. MYSERIAL.begin(BAUDRATE);
  554. SERIAL_PROTOCOLLNPGM("start");
  555. SERIAL_ECHO_START;
  556. // Check startup - does nothing if bootloader sets MCUSR to 0
  557. byte mcu = MCUSR;
  558. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  559. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  560. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  561. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  562. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  563. MCUSR=0;
  564. SERIAL_ECHOPGM(MSG_MARLIN);
  565. SERIAL_ECHOLNPGM(STRING_VERSION);
  566. #ifdef STRING_VERSION_CONFIG_H
  567. #ifdef STRING_CONFIG_H_AUTHOR
  568. SERIAL_ECHO_START;
  569. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  570. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  571. SERIAL_ECHOPGM(MSG_AUTHOR);
  572. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  573. SERIAL_ECHOPGM("Compiled: ");
  574. SERIAL_ECHOLNPGM(__DATE__);
  575. #endif // STRING_CONFIG_H_AUTHOR
  576. #endif // STRING_VERSION_CONFIG_H
  577. SERIAL_ECHO_START;
  578. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  579. SERIAL_ECHO(freeMemory());
  580. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  581. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  582. #ifdef SDSUPPORT
  583. for(int8_t i = 0; i < BUFSIZE; i++)
  584. {
  585. fromsd[i] = false;
  586. }
  587. #endif //!SDSUPPORT
  588. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  589. Config_RetrieveSettings();
  590. tp_init(); // Initialize temperature loop
  591. plan_init(); // Initialize planner;
  592. watchdog_init();
  593. st_init(); // Initialize stepper, this enables interrupts!
  594. setup_photpin();
  595. servo_init();
  596. lcd_init();
  597. _delay_ms(1000); // wait 1sec to display the splash screen
  598. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  599. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  600. #endif
  601. #ifdef DIGIPOT_I2C
  602. digipot_i2c_init();
  603. #endif
  604. #ifdef Z_PROBE_SLED
  605. pinMode(SERVO0_PIN, OUTPUT);
  606. digitalWrite(SERVO0_PIN, LOW); // turn it off
  607. #endif // Z_PROBE_SLED
  608. setup_homepin();
  609. #ifdef STAT_LED_RED
  610. pinMode(STAT_LED_RED, OUTPUT);
  611. digitalWrite(STAT_LED_RED, LOW); // turn it off
  612. #endif
  613. #ifdef STAT_LED_BLUE
  614. pinMode(STAT_LED_BLUE, OUTPUT);
  615. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  616. #endif
  617. }
  618. void loop()
  619. {
  620. if(buflen < (BUFSIZE-1))
  621. get_command();
  622. #ifdef SDSUPPORT
  623. card.checkautostart(false);
  624. #endif
  625. if(buflen)
  626. {
  627. #ifdef SDSUPPORT
  628. if(card.saving)
  629. {
  630. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  631. {
  632. card.write_command(cmdbuffer[bufindr]);
  633. if(card.logging)
  634. {
  635. process_commands();
  636. }
  637. else
  638. {
  639. SERIAL_PROTOCOLLNPGM(MSG_OK);
  640. }
  641. }
  642. else
  643. {
  644. card.closefile();
  645. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  646. }
  647. }
  648. else
  649. {
  650. process_commands();
  651. }
  652. #else
  653. process_commands();
  654. #endif //SDSUPPORT
  655. buflen = (buflen-1);
  656. bufindr = (bufindr + 1)%BUFSIZE;
  657. }
  658. //check heater every n milliseconds
  659. manage_heater();
  660. manage_inactivity();
  661. checkHitEndstops();
  662. lcd_update();
  663. }
  664. void get_command()
  665. {
  666. if(drain_queued_commands_P()) // priority is given to non-serial commands
  667. return;
  668. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  669. serial_char = MYSERIAL.read();
  670. if(serial_char == '\n' ||
  671. serial_char == '\r' ||
  672. serial_count >= (MAX_CMD_SIZE - 1) )
  673. {
  674. // end of line == end of comment
  675. comment_mode = false;
  676. if(!serial_count) {
  677. // short cut for empty lines
  678. return;
  679. }
  680. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  681. #ifdef SDSUPPORT
  682. fromsd[bufindw] = false;
  683. #endif //!SDSUPPORT
  684. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  685. {
  686. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  687. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  688. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  689. SERIAL_ERROR_START;
  690. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  691. SERIAL_ERRORLN(gcode_LastN);
  692. //Serial.println(gcode_N);
  693. FlushSerialRequestResend();
  694. serial_count = 0;
  695. return;
  696. }
  697. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  698. {
  699. byte checksum = 0;
  700. byte count = 0;
  701. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  702. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  703. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. FlushSerialRequestResend();
  708. serial_count = 0;
  709. return;
  710. }
  711. //if no errors, continue parsing
  712. }
  713. else
  714. {
  715. SERIAL_ERROR_START;
  716. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  717. SERIAL_ERRORLN(gcode_LastN);
  718. FlushSerialRequestResend();
  719. serial_count = 0;
  720. return;
  721. }
  722. gcode_LastN = gcode_N;
  723. //if no errors, continue parsing
  724. }
  725. else // if we don't receive 'N' but still see '*'
  726. {
  727. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  728. {
  729. SERIAL_ERROR_START;
  730. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  731. SERIAL_ERRORLN(gcode_LastN);
  732. serial_count = 0;
  733. return;
  734. }
  735. }
  736. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  737. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  738. switch(strtol(strchr_pointer + 1, NULL, 10)){
  739. case 0:
  740. case 1:
  741. case 2:
  742. case 3:
  743. if (Stopped == true) {
  744. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  745. LCD_MESSAGEPGM(MSG_STOPPED);
  746. }
  747. break;
  748. default:
  749. break;
  750. }
  751. }
  752. //If command was e-stop process now
  753. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  754. kill();
  755. bufindw = (bufindw + 1)%BUFSIZE;
  756. buflen += 1;
  757. serial_count = 0; //clear buffer
  758. }
  759. else if(serial_char == '\\') { //Handle escapes
  760. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  761. // if we have one more character, copy it over
  762. serial_char = MYSERIAL.read();
  763. cmdbuffer[bufindw][serial_count++] = serial_char;
  764. }
  765. //otherwise do nothing
  766. }
  767. else { // its not a newline, carriage return or escape char
  768. if(serial_char == ';') comment_mode = true;
  769. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  770. }
  771. }
  772. #ifdef SDSUPPORT
  773. if(!card.sdprinting || serial_count!=0){
  774. return;
  775. }
  776. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  777. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  778. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  779. static bool stop_buffering=false;
  780. if(buflen==0) stop_buffering=false;
  781. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  782. int16_t n=card.get();
  783. serial_char = (char)n;
  784. if(serial_char == '\n' ||
  785. serial_char == '\r' ||
  786. (serial_char == '#' && comment_mode == false) ||
  787. (serial_char == ':' && comment_mode == false) ||
  788. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  789. {
  790. if(card.eof()){
  791. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  792. stoptime=millis();
  793. char time[30];
  794. unsigned long t=(stoptime-starttime)/1000;
  795. int hours, minutes;
  796. minutes=(t/60)%60;
  797. hours=t/60/60;
  798. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  799. SERIAL_ECHO_START;
  800. SERIAL_ECHOLN(time);
  801. lcd_setstatus(time);
  802. card.printingHasFinished();
  803. card.checkautostart(true);
  804. }
  805. if(serial_char=='#')
  806. stop_buffering=true;
  807. if(!serial_count)
  808. {
  809. comment_mode = false; //for new command
  810. return; //if empty line
  811. }
  812. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  813. // if(!comment_mode){
  814. fromsd[bufindw] = true;
  815. buflen += 1;
  816. bufindw = (bufindw + 1)%BUFSIZE;
  817. // }
  818. comment_mode = false; //for new command
  819. serial_count = 0; //clear buffer
  820. }
  821. else
  822. {
  823. if(serial_char == ';') comment_mode = true;
  824. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  825. }
  826. }
  827. #endif //SDSUPPORT
  828. }
  829. float code_value()
  830. {
  831. float ret;
  832. char *e = strchr(strchr_pointer, 'E');
  833. if (e != NULL) *e = 0;
  834. ret = strtod(strchr_pointer+1, NULL);
  835. if (e != NULL) *e = 'E';
  836. return ret;
  837. }
  838. long code_value_long()
  839. {
  840. return (strtol(strchr_pointer + 1, NULL, 10));
  841. }
  842. bool code_seen(char code)
  843. {
  844. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  845. return (strchr_pointer != NULL); //Return True if a character was found
  846. }
  847. #define DEFINE_PGM_READ_ANY(type, reader) \
  848. static inline type pgm_read_any(const type *p) \
  849. { return pgm_read_##reader##_near(p); }
  850. DEFINE_PGM_READ_ANY(float, float);
  851. DEFINE_PGM_READ_ANY(signed char, byte);
  852. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  853. static const PROGMEM type array##_P[3] = \
  854. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  855. static inline type array(int axis) \
  856. { return pgm_read_any(&array##_P[axis]); }
  857. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  858. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  859. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  860. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  861. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  862. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  863. #ifdef DUAL_X_CARRIAGE
  864. #define DXC_FULL_CONTROL_MODE 0
  865. #define DXC_AUTO_PARK_MODE 1
  866. #define DXC_DUPLICATION_MODE 2
  867. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  868. static float x_home_pos(int extruder) {
  869. if (extruder == 0)
  870. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  871. else
  872. // In dual carriage mode the extruder offset provides an override of the
  873. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  874. // This allow soft recalibration of the second extruder offset position without firmware reflash
  875. // (through the M218 command).
  876. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  877. }
  878. static int x_home_dir(int extruder) {
  879. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  880. }
  881. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  882. static bool active_extruder_parked = false; // used in mode 1 & 2
  883. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  884. static unsigned long delayed_move_time = 0; // used in mode 1
  885. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  886. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  887. bool extruder_duplication_enabled = false; // used in mode 2
  888. #endif //DUAL_X_CARRIAGE
  889. static void axis_is_at_home(int axis) {
  890. #ifdef DUAL_X_CARRIAGE
  891. if (axis == X_AXIS) {
  892. if (active_extruder != 0) {
  893. current_position[X_AXIS] = x_home_pos(active_extruder);
  894. min_pos[X_AXIS] = X2_MIN_POS;
  895. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  896. return;
  897. }
  898. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  899. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  900. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  901. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  902. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  903. return;
  904. }
  905. }
  906. #endif
  907. #ifdef SCARA
  908. float homeposition[3];
  909. char i;
  910. if (axis < 2)
  911. {
  912. for (i=0; i<3; i++)
  913. {
  914. homeposition[i] = base_home_pos(i);
  915. }
  916. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  917. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  918. // Works out real Homeposition angles using inverse kinematics,
  919. // and calculates homing offset using forward kinematics
  920. calculate_delta(homeposition);
  921. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  922. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  923. for (i=0; i<2; i++)
  924. {
  925. delta[i] -= home_offset[i];
  926. }
  927. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  928. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  929. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  930. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  931. calculate_SCARA_forward_Transform(delta);
  932. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  933. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  934. current_position[axis] = delta[axis];
  935. // SCARA home positions are based on configuration since the actual limits are determined by the
  936. // inverse kinematic transform.
  937. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  938. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  939. }
  940. else
  941. {
  942. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  943. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  944. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  945. }
  946. #else
  947. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  948. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  949. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  950. #endif
  951. }
  952. #ifdef ENABLE_AUTO_BED_LEVELING
  953. #ifdef AUTO_BED_LEVELING_GRID
  954. #ifndef DELTA
  955. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  956. {
  957. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  958. planeNormal.debug("planeNormal");
  959. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  960. //bedLevel.debug("bedLevel");
  961. //plan_bed_level_matrix.debug("bed level before");
  962. //vector_3 uncorrected_position = plan_get_position_mm();
  963. //uncorrected_position.debug("position before");
  964. vector_3 corrected_position = plan_get_position();
  965. // corrected_position.debug("position after");
  966. current_position[X_AXIS] = corrected_position.x;
  967. current_position[Y_AXIS] = corrected_position.y;
  968. current_position[Z_AXIS] = corrected_position.z;
  969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  970. }
  971. #endif
  972. #else // not AUTO_BED_LEVELING_GRID
  973. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  974. plan_bed_level_matrix.set_to_identity();
  975. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  976. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  977. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  978. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  979. if (planeNormal.z < 0) {
  980. planeNormal.x = -planeNormal.x;
  981. planeNormal.y = -planeNormal.y;
  982. planeNormal.z = -planeNormal.z;
  983. }
  984. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  985. vector_3 corrected_position = plan_get_position();
  986. current_position[X_AXIS] = corrected_position.x;
  987. current_position[Y_AXIS] = corrected_position.y;
  988. current_position[Z_AXIS] = corrected_position.z;
  989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  990. }
  991. #endif // AUTO_BED_LEVELING_GRID
  992. static void run_z_probe() {
  993. #ifdef DELTA
  994. float start_z = current_position[Z_AXIS];
  995. long start_steps = st_get_position(Z_AXIS);
  996. // move down slowly until you find the bed
  997. feedrate = homing_feedrate[Z_AXIS] / 4;
  998. destination[Z_AXIS] = -10;
  999. prepare_move_raw();
  1000. st_synchronize();
  1001. endstops_hit_on_purpose();
  1002. // we have to let the planner know where we are right now as it is not where we said to go.
  1003. long stop_steps = st_get_position(Z_AXIS);
  1004. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1005. current_position[Z_AXIS] = mm;
  1006. calculate_delta(current_position);
  1007. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1008. #else
  1009. plan_bed_level_matrix.set_to_identity();
  1010. feedrate = homing_feedrate[Z_AXIS];
  1011. // move down until you find the bed
  1012. float zPosition = -10;
  1013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1014. st_synchronize();
  1015. // we have to let the planner know where we are right now as it is not where we said to go.
  1016. zPosition = st_get_position_mm(Z_AXIS);
  1017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1018. // move up the retract distance
  1019. zPosition += home_retract_mm(Z_AXIS);
  1020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1021. st_synchronize();
  1022. endstops_hit_on_purpose();
  1023. // move back down slowly to find bed
  1024. if (homing_bump_divisor[Z_AXIS] >= 1)
  1025. {
  1026. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1027. }
  1028. else
  1029. {
  1030. feedrate = homing_feedrate[Z_AXIS]/10;
  1031. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1032. }
  1033. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1035. st_synchronize();
  1036. endstops_hit_on_purpose();
  1037. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1038. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1040. #endif
  1041. }
  1042. static void do_blocking_move_to(float x, float y, float z) {
  1043. float oldFeedRate = feedrate;
  1044. #ifdef DELTA
  1045. feedrate = XY_TRAVEL_SPEED;
  1046. destination[X_AXIS] = x;
  1047. destination[Y_AXIS] = y;
  1048. destination[Z_AXIS] = z;
  1049. prepare_move_raw();
  1050. st_synchronize();
  1051. #else
  1052. feedrate = homing_feedrate[Z_AXIS];
  1053. current_position[Z_AXIS] = z;
  1054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1055. st_synchronize();
  1056. feedrate = xy_travel_speed;
  1057. current_position[X_AXIS] = x;
  1058. current_position[Y_AXIS] = y;
  1059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1060. st_synchronize();
  1061. #endif
  1062. feedrate = oldFeedRate;
  1063. }
  1064. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1065. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1066. }
  1067. static void setup_for_endstop_move() {
  1068. saved_feedrate = feedrate;
  1069. saved_feedmultiply = feedmultiply;
  1070. feedmultiply = 100;
  1071. previous_millis_cmd = millis();
  1072. enable_endstops(true);
  1073. }
  1074. static void clean_up_after_endstop_move() {
  1075. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1076. enable_endstops(false);
  1077. #endif
  1078. feedrate = saved_feedrate;
  1079. feedmultiply = saved_feedmultiply;
  1080. previous_millis_cmd = millis();
  1081. }
  1082. static void engage_z_probe() {
  1083. // Engage Z Servo endstop if enabled
  1084. #ifdef SERVO_ENDSTOPS
  1085. if (servo_endstops[Z_AXIS] > -1) {
  1086. #if SERVO_LEVELING
  1087. servos[servo_endstops[Z_AXIS]].attach(0);
  1088. #endif
  1089. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1090. #if SERVO_LEVELING
  1091. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1092. servos[servo_endstops[Z_AXIS]].detach();
  1093. #endif
  1094. }
  1095. #elif defined(Z_PROBE_ALLEN_KEY)
  1096. feedrate = homing_feedrate[X_AXIS];
  1097. // Move to the start position to initiate deployment
  1098. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1099. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1100. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1101. prepare_move_raw();
  1102. // Home X to touch the belt
  1103. feedrate = homing_feedrate[X_AXIS]/10;
  1104. destination[X_AXIS] = 0;
  1105. prepare_move_raw();
  1106. // Home Y for safety
  1107. feedrate = homing_feedrate[X_AXIS]/2;
  1108. destination[Y_AXIS] = 0;
  1109. prepare_move_raw();
  1110. st_synchronize();
  1111. #if defined(Z_PROBE_AND_ENDSTOP)
  1112. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1113. if (z_probe_endstop)
  1114. #else
  1115. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1116. if (z_min_endstop)
  1117. #endif
  1118. {
  1119. if (!Stopped)
  1120. {
  1121. SERIAL_ERROR_START;
  1122. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1123. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1124. }
  1125. Stop();
  1126. }
  1127. #endif
  1128. }
  1129. static void retract_z_probe() {
  1130. // Retract Z Servo endstop if enabled
  1131. #ifdef SERVO_ENDSTOPS
  1132. if (servo_endstops[Z_AXIS] > -1)
  1133. {
  1134. #if Z_RAISE_AFTER_PROBING > 0
  1135. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1136. st_synchronize();
  1137. #endif
  1138. #if SERVO_LEVELING
  1139. servos[servo_endstops[Z_AXIS]].attach(0);
  1140. #endif
  1141. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1142. #if SERVO_LEVELING
  1143. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1144. servos[servo_endstops[Z_AXIS]].detach();
  1145. #endif
  1146. }
  1147. #elif defined(Z_PROBE_ALLEN_KEY)
  1148. // Move up for safety
  1149. feedrate = homing_feedrate[X_AXIS];
  1150. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1151. prepare_move_raw();
  1152. // Move to the start position to initiate retraction
  1153. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1154. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1155. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1156. prepare_move_raw();
  1157. // Move the nozzle down to push the probe into retracted position
  1158. feedrate = homing_feedrate[Z_AXIS]/10;
  1159. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1160. prepare_move_raw();
  1161. // Move up for safety
  1162. feedrate = homing_feedrate[Z_AXIS]/2;
  1163. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1164. prepare_move_raw();
  1165. // Home XY for safety
  1166. feedrate = homing_feedrate[X_AXIS]/2;
  1167. destination[X_AXIS] = 0;
  1168. destination[Y_AXIS] = 0;
  1169. prepare_move_raw();
  1170. st_synchronize();
  1171. #if defined(Z_PROBE_AND_ENDSTOP)
  1172. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1173. if (z_probe_endstop)
  1174. #else
  1175. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1176. if (z_min_endstop)
  1177. #endif
  1178. {
  1179. if (!Stopped)
  1180. {
  1181. SERIAL_ERROR_START;
  1182. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1183. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1184. }
  1185. Stop();
  1186. }
  1187. #endif
  1188. }
  1189. enum ProbeAction {
  1190. ProbeStay = 0,
  1191. ProbeEngage = BIT(0),
  1192. ProbeRetract = BIT(1),
  1193. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1194. };
  1195. /// Probe bed height at position (x,y), returns the measured z value
  1196. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1197. // move to right place
  1198. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1199. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1200. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1201. if (retract_action & ProbeEngage) engage_z_probe();
  1202. #endif
  1203. run_z_probe();
  1204. float measured_z = current_position[Z_AXIS];
  1205. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1206. if (retract_action & ProbeRetract) retract_z_probe();
  1207. #endif
  1208. if (verbose_level > 2) {
  1209. SERIAL_PROTOCOLPGM(MSG_BED);
  1210. SERIAL_PROTOCOLPGM(" X: ");
  1211. SERIAL_PROTOCOL_F(x, 3);
  1212. SERIAL_PROTOCOLPGM(" Y: ");
  1213. SERIAL_PROTOCOL_F(y, 3);
  1214. SERIAL_PROTOCOLPGM(" Z: ");
  1215. SERIAL_PROTOCOL_F(measured_z, 3);
  1216. SERIAL_EOL;
  1217. }
  1218. return measured_z;
  1219. }
  1220. #ifdef DELTA
  1221. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1222. if (bed_level[x][y] != 0.0) {
  1223. return; // Don't overwrite good values.
  1224. }
  1225. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1226. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1227. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1228. float median = c; // Median is robust (ignores outliers).
  1229. if (a < b) {
  1230. if (b < c) median = b;
  1231. if (c < a) median = a;
  1232. } else { // b <= a
  1233. if (c < b) median = b;
  1234. if (a < c) median = a;
  1235. }
  1236. bed_level[x][y] = median;
  1237. }
  1238. // Fill in the unprobed points (corners of circular print surface)
  1239. // using linear extrapolation, away from the center.
  1240. static void extrapolate_unprobed_bed_level() {
  1241. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1242. for (int y = 0; y <= half; y++) {
  1243. for (int x = 0; x <= half; x++) {
  1244. if (x + y < 3) continue;
  1245. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1246. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1247. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1248. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1249. }
  1250. }
  1251. }
  1252. // Print calibration results for plotting or manual frame adjustment.
  1253. static void print_bed_level() {
  1254. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1255. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1256. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1257. SERIAL_PROTOCOLPGM(" ");
  1258. }
  1259. SERIAL_ECHOLN("");
  1260. }
  1261. }
  1262. // Reset calibration results to zero.
  1263. void reset_bed_level() {
  1264. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1265. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1266. bed_level[x][y] = 0.0;
  1267. }
  1268. }
  1269. }
  1270. #endif // DELTA
  1271. #endif // ENABLE_AUTO_BED_LEVELING
  1272. static void homeaxis(int axis) {
  1273. #define HOMEAXIS_DO(LETTER) \
  1274. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1275. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1276. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1277. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1278. 0) {
  1279. int axis_home_dir = home_dir(axis);
  1280. #ifdef DUAL_X_CARRIAGE
  1281. if (axis == X_AXIS)
  1282. axis_home_dir = x_home_dir(active_extruder);
  1283. #endif
  1284. current_position[axis] = 0;
  1285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1286. #ifndef Z_PROBE_SLED
  1287. // Engage Servo endstop if enabled
  1288. #ifdef SERVO_ENDSTOPS
  1289. #if SERVO_LEVELING
  1290. if (axis==Z_AXIS) {
  1291. engage_z_probe();
  1292. }
  1293. else
  1294. #endif
  1295. if (servo_endstops[axis] > -1) {
  1296. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1297. }
  1298. #endif
  1299. #endif // Z_PROBE_SLED
  1300. #ifdef Z_DUAL_ENDSTOPS
  1301. if (axis==Z_AXIS) In_Homing_Process(true);
  1302. #endif
  1303. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1304. feedrate = homing_feedrate[axis];
  1305. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1306. st_synchronize();
  1307. current_position[axis] = 0;
  1308. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1309. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1310. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1311. st_synchronize();
  1312. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1313. if (homing_bump_divisor[axis] >= 1)
  1314. {
  1315. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1316. }
  1317. else
  1318. {
  1319. feedrate = homing_feedrate[axis]/10;
  1320. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1321. }
  1322. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1323. st_synchronize();
  1324. #ifdef Z_DUAL_ENDSTOPS
  1325. if (axis==Z_AXIS)
  1326. {
  1327. feedrate = homing_feedrate[axis];
  1328. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1329. if (axis_home_dir > 0)
  1330. {
  1331. destination[axis] = (-1) * fabs(z_endstop_adj);
  1332. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1333. } else {
  1334. destination[axis] = fabs(z_endstop_adj);
  1335. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1336. }
  1337. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1338. st_synchronize();
  1339. Lock_z_motor(false);
  1340. Lock_z2_motor(false);
  1341. In_Homing_Process(false);
  1342. }
  1343. #endif
  1344. #ifdef DELTA
  1345. // retrace by the amount specified in endstop_adj
  1346. if (endstop_adj[axis] * axis_home_dir < 0) {
  1347. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1348. destination[axis] = endstop_adj[axis];
  1349. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1350. st_synchronize();
  1351. }
  1352. #endif
  1353. axis_is_at_home(axis);
  1354. destination[axis] = current_position[axis];
  1355. feedrate = 0.0;
  1356. endstops_hit_on_purpose();
  1357. axis_known_position[axis] = true;
  1358. // Retract Servo endstop if enabled
  1359. #ifdef SERVO_ENDSTOPS
  1360. if (servo_endstops[axis] > -1) {
  1361. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1362. }
  1363. #endif
  1364. #if SERVO_LEVELING
  1365. #ifndef Z_PROBE_SLED
  1366. if (axis==Z_AXIS) retract_z_probe();
  1367. #endif
  1368. #endif
  1369. }
  1370. }
  1371. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1372. void refresh_cmd_timeout(void)
  1373. {
  1374. previous_millis_cmd = millis();
  1375. }
  1376. #ifdef FWRETRACT
  1377. void retract(bool retracting, bool swapretract = false) {
  1378. if(retracting && !retracted[active_extruder]) {
  1379. destination[X_AXIS]=current_position[X_AXIS];
  1380. destination[Y_AXIS]=current_position[Y_AXIS];
  1381. destination[Z_AXIS]=current_position[Z_AXIS];
  1382. destination[E_AXIS]=current_position[E_AXIS];
  1383. if (swapretract) {
  1384. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1385. } else {
  1386. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1387. }
  1388. plan_set_e_position(current_position[E_AXIS]);
  1389. float oldFeedrate = feedrate;
  1390. feedrate=retract_feedrate*60;
  1391. retracted[active_extruder]=true;
  1392. prepare_move();
  1393. if(retract_zlift > 0.01) {
  1394. current_position[Z_AXIS]-=retract_zlift;
  1395. #ifdef DELTA
  1396. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1397. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1398. #else
  1399. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1400. #endif
  1401. prepare_move();
  1402. }
  1403. feedrate = oldFeedrate;
  1404. } else if(!retracting && retracted[active_extruder]) {
  1405. destination[X_AXIS]=current_position[X_AXIS];
  1406. destination[Y_AXIS]=current_position[Y_AXIS];
  1407. destination[Z_AXIS]=current_position[Z_AXIS];
  1408. destination[E_AXIS]=current_position[E_AXIS];
  1409. if(retract_zlift > 0.01) {
  1410. current_position[Z_AXIS]+=retract_zlift;
  1411. #ifdef DELTA
  1412. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1413. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1414. #else
  1415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1416. #endif
  1417. //prepare_move();
  1418. }
  1419. if (swapretract) {
  1420. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1421. } else {
  1422. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1423. }
  1424. plan_set_e_position(current_position[E_AXIS]);
  1425. float oldFeedrate = feedrate;
  1426. feedrate=retract_recover_feedrate*60;
  1427. retracted[active_extruder]=false;
  1428. prepare_move();
  1429. feedrate = oldFeedrate;
  1430. }
  1431. } //retract
  1432. #endif //FWRETRACT
  1433. #ifdef Z_PROBE_SLED
  1434. #ifndef SLED_DOCKING_OFFSET
  1435. #define SLED_DOCKING_OFFSET 0
  1436. #endif
  1437. //
  1438. // Method to dock/undock a sled designed by Charles Bell.
  1439. //
  1440. // dock[in] If true, move to MAX_X and engage the electromagnet
  1441. // offset[in] The additional distance to move to adjust docking location
  1442. //
  1443. static void dock_sled(bool dock, int offset=0) {
  1444. int z_loc;
  1445. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1446. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1447. SERIAL_ECHO_START;
  1448. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1449. return;
  1450. }
  1451. if (dock) {
  1452. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1453. current_position[Y_AXIS],
  1454. current_position[Z_AXIS]);
  1455. // turn off magnet
  1456. digitalWrite(SERVO0_PIN, LOW);
  1457. } else {
  1458. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1459. z_loc = Z_RAISE_BEFORE_PROBING;
  1460. else
  1461. z_loc = current_position[Z_AXIS];
  1462. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1463. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1464. // turn on magnet
  1465. digitalWrite(SERVO0_PIN, HIGH);
  1466. }
  1467. }
  1468. #endif
  1469. /**
  1470. *
  1471. * G-Code Handler functions
  1472. *
  1473. */
  1474. /**
  1475. * G0, G1: Coordinated movement of X Y Z E axes
  1476. */
  1477. inline void gcode_G0_G1() {
  1478. if (!Stopped) {
  1479. get_coordinates(); // For X Y Z E F
  1480. #ifdef FWRETRACT
  1481. if (autoretract_enabled)
  1482. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1483. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1484. // Is this move an attempt to retract or recover?
  1485. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1486. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1487. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1488. retract(!retracted[active_extruder]);
  1489. return;
  1490. }
  1491. }
  1492. #endif //FWRETRACT
  1493. prepare_move();
  1494. //ClearToSend();
  1495. }
  1496. }
  1497. /**
  1498. * G2: Clockwise Arc
  1499. * G3: Counterclockwise Arc
  1500. */
  1501. inline void gcode_G2_G3(bool clockwise) {
  1502. if (!Stopped) {
  1503. get_arc_coordinates();
  1504. prepare_arc_move(clockwise);
  1505. }
  1506. }
  1507. /**
  1508. * G4: Dwell S<seconds> or P<milliseconds>
  1509. */
  1510. inline void gcode_G4() {
  1511. unsigned long codenum=0;
  1512. LCD_MESSAGEPGM(MSG_DWELL);
  1513. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1514. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1515. st_synchronize();
  1516. previous_millis_cmd = millis();
  1517. codenum += previous_millis_cmd; // keep track of when we started waiting
  1518. while(millis() < codenum) {
  1519. manage_heater();
  1520. manage_inactivity();
  1521. lcd_update();
  1522. }
  1523. }
  1524. #ifdef FWRETRACT
  1525. /**
  1526. * G10 - Retract filament according to settings of M207
  1527. * G11 - Recover filament according to settings of M208
  1528. */
  1529. inline void gcode_G10_G11(bool doRetract=false) {
  1530. #if EXTRUDERS > 1
  1531. if (doRetract) {
  1532. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1533. }
  1534. #endif
  1535. retract(doRetract
  1536. #if EXTRUDERS > 1
  1537. , retracted_swap[active_extruder]
  1538. #endif
  1539. );
  1540. }
  1541. #endif //FWRETRACT
  1542. /**
  1543. * G28: Home all axes, one at a time
  1544. */
  1545. inline void gcode_G28() {
  1546. #ifdef ENABLE_AUTO_BED_LEVELING
  1547. #ifdef DELTA
  1548. reset_bed_level();
  1549. #else
  1550. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1551. #endif
  1552. #endif
  1553. #if defined(MESH_BED_LEVELING)
  1554. uint8_t mbl_was_active = mbl.active;
  1555. mbl.active = 0;
  1556. #endif // MESH_BED_LEVELING
  1557. saved_feedrate = feedrate;
  1558. saved_feedmultiply = feedmultiply;
  1559. feedmultiply = 100;
  1560. previous_millis_cmd = millis();
  1561. enable_endstops(true);
  1562. for (int i = X_AXIS; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1563. feedrate = 0.0;
  1564. #ifdef DELTA
  1565. // A delta can only safely home all axis at the same time
  1566. // all axis have to home at the same time
  1567. // Move all carriages up together until the first endstop is hit.
  1568. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1570. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1571. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1573. st_synchronize();
  1574. endstops_hit_on_purpose();
  1575. // Destination reached
  1576. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1577. // take care of back off and rehome now we are all at the top
  1578. HOMEAXIS(X);
  1579. HOMEAXIS(Y);
  1580. HOMEAXIS(Z);
  1581. calculate_delta(current_position);
  1582. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1583. #else // NOT DELTA
  1584. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1585. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1586. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1587. HOMEAXIS(Z);
  1588. }
  1589. #endif
  1590. #ifdef QUICK_HOME
  1591. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1592. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1593. #ifndef DUAL_X_CARRIAGE
  1594. int x_axis_home_dir = home_dir(X_AXIS);
  1595. #else
  1596. int x_axis_home_dir = x_home_dir(active_extruder);
  1597. extruder_duplication_enabled = false;
  1598. #endif
  1599. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1600. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1601. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1602. feedrate = homing_feedrate[X_AXIS];
  1603. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1604. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1605. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1606. } else {
  1607. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1608. }
  1609. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1610. st_synchronize();
  1611. axis_is_at_home(X_AXIS);
  1612. axis_is_at_home(Y_AXIS);
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. destination[X_AXIS] = current_position[X_AXIS];
  1615. destination[Y_AXIS] = current_position[Y_AXIS];
  1616. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1617. feedrate = 0.0;
  1618. st_synchronize();
  1619. endstops_hit_on_purpose();
  1620. current_position[X_AXIS] = destination[X_AXIS];
  1621. current_position[Y_AXIS] = destination[Y_AXIS];
  1622. #ifndef SCARA
  1623. current_position[Z_AXIS] = destination[Z_AXIS];
  1624. #endif
  1625. }
  1626. #endif //QUICK_HOME
  1627. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1628. #ifdef DUAL_X_CARRIAGE
  1629. int tmp_extruder = active_extruder;
  1630. extruder_duplication_enabled = false;
  1631. active_extruder = !active_extruder;
  1632. HOMEAXIS(X);
  1633. inactive_extruder_x_pos = current_position[X_AXIS];
  1634. active_extruder = tmp_extruder;
  1635. HOMEAXIS(X);
  1636. // reset state used by the different modes
  1637. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1638. delayed_move_time = 0;
  1639. active_extruder_parked = true;
  1640. #else
  1641. HOMEAXIS(X);
  1642. #endif
  1643. }
  1644. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1645. if (code_seen(axis_codes[X_AXIS])) {
  1646. if (code_value_long() != 0) {
  1647. current_position[X_AXIS] = code_value()
  1648. #ifndef SCARA
  1649. + home_offset[X_AXIS]
  1650. #endif
  1651. ;
  1652. }
  1653. }
  1654. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1655. current_position[Y_AXIS] = code_value()
  1656. #ifndef SCARA
  1657. + home_offset[Y_AXIS]
  1658. #endif
  1659. ;
  1660. }
  1661. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1662. #ifndef Z_SAFE_HOMING
  1663. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1664. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1665. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1666. feedrate = max_feedrate[Z_AXIS];
  1667. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1668. st_synchronize();
  1669. #endif
  1670. HOMEAXIS(Z);
  1671. }
  1672. #else // Z_SAFE_HOMING
  1673. if (home_all_axis) {
  1674. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1675. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1676. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1677. feedrate = XY_TRAVEL_SPEED / 60;
  1678. current_position[Z_AXIS] = 0;
  1679. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1681. st_synchronize();
  1682. current_position[X_AXIS] = destination[X_AXIS];
  1683. current_position[Y_AXIS] = destination[Y_AXIS];
  1684. HOMEAXIS(Z);
  1685. }
  1686. // Let's see if X and Y are homed and probe is inside bed area.
  1687. if (code_seen(axis_codes[Z_AXIS])) {
  1688. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1689. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1690. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1691. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1692. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1693. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1694. current_position[Z_AXIS] = 0;
  1695. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1696. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1697. feedrate = max_feedrate[Z_AXIS];
  1698. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1699. st_synchronize();
  1700. HOMEAXIS(Z);
  1701. }
  1702. else {
  1703. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1704. SERIAL_ECHO_START;
  1705. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1706. }
  1707. }
  1708. else {
  1709. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1710. SERIAL_ECHO_START;
  1711. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1712. }
  1713. }
  1714. #endif // Z_SAFE_HOMING
  1715. #endif // Z_HOME_DIR < 0
  1716. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1717. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1718. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1719. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1720. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1721. #endif
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. #endif // else DELTA
  1724. #ifdef SCARA
  1725. calculate_delta(current_position);
  1726. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1727. #endif
  1728. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1729. enable_endstops(false);
  1730. #endif
  1731. #if defined(MESH_BED_LEVELING)
  1732. if (mbl_was_active) {
  1733. current_position[X_AXIS] = mbl.get_x(0);
  1734. current_position[Y_AXIS] = mbl.get_y(0);
  1735. destination[X_AXIS] = current_position[X_AXIS];
  1736. destination[Y_AXIS] = current_position[Y_AXIS];
  1737. destination[Z_AXIS] = current_position[Z_AXIS];
  1738. destination[E_AXIS] = current_position[E_AXIS];
  1739. feedrate = homing_feedrate[X_AXIS];
  1740. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1741. st_synchronize();
  1742. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1743. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1744. mbl.active = 1;
  1745. }
  1746. #endif
  1747. feedrate = saved_feedrate;
  1748. feedmultiply = saved_feedmultiply;
  1749. previous_millis_cmd = millis();
  1750. endstops_hit_on_purpose();
  1751. }
  1752. #ifdef MESH_BED_LEVELING
  1753. /**
  1754. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1755. * mesh to compensate for variable bed height
  1756. *
  1757. * Parameters With MESH_BED_LEVELING:
  1758. *
  1759. * S0 Produce a mesh report
  1760. * S1 Start probing mesh points
  1761. * S2 Probe the next mesh point
  1762. *
  1763. */
  1764. inline void gcode_G29() {
  1765. static int probe_point = -1;
  1766. int state = 0;
  1767. if (code_seen('S') || code_seen('s')) {
  1768. state = code_value_long();
  1769. if (state < 0 || state > 2) {
  1770. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1771. return;
  1772. }
  1773. }
  1774. if (state == 0) { // Dump mesh_bed_leveling
  1775. if (mbl.active) {
  1776. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1777. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1778. SERIAL_PROTOCOLPGM(",");
  1779. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1780. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1781. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1782. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1783. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1784. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1785. SERIAL_PROTOCOLPGM(" ");
  1786. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1787. }
  1788. SERIAL_EOL;
  1789. }
  1790. } else {
  1791. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1792. }
  1793. } else if (state == 1) { // Begin probing mesh points
  1794. mbl.reset();
  1795. probe_point = 0;
  1796. enquecommands_P(PSTR("G28"));
  1797. enquecommands_P(PSTR("G29 S2"));
  1798. } else if (state == 2) { // Goto next point
  1799. if (probe_point < 0) {
  1800. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1801. return;
  1802. }
  1803. int ix, iy;
  1804. if (probe_point == 0) {
  1805. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1806. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1807. } else {
  1808. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1809. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1810. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1811. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1812. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1814. st_synchronize();
  1815. }
  1816. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1817. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1818. probe_point = -1;
  1819. mbl.active = 1;
  1820. enquecommands_P(PSTR("G28"));
  1821. return;
  1822. }
  1823. ix = probe_point % MESH_NUM_X_POINTS;
  1824. iy = probe_point / MESH_NUM_X_POINTS;
  1825. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1826. current_position[X_AXIS] = mbl.get_x(ix);
  1827. current_position[Y_AXIS] = mbl.get_y(iy);
  1828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1829. st_synchronize();
  1830. probe_point++;
  1831. }
  1832. }
  1833. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1834. /**
  1835. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1836. * Will fail if the printer has not been homed with G28.
  1837. *
  1838. * Enhanced G29 Auto Bed Leveling Probe Routine
  1839. *
  1840. * Parameters With AUTO_BED_LEVELING_GRID:
  1841. *
  1842. * P Set the size of the grid that will be probed (P x P points).
  1843. * Not supported by non-linear delta printer bed leveling.
  1844. * Example: "G29 P4"
  1845. *
  1846. * S Set the XY travel speed between probe points (in mm/min)
  1847. *
  1848. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1849. * or clean the rotation Matrix. Useful to check the topology
  1850. * after a first run of G29.
  1851. *
  1852. * V Set the verbose level (0-4). Example: "G29 V3"
  1853. *
  1854. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1855. * This is useful for manual bed leveling and finding flaws in the bed (to
  1856. * assist with part placement).
  1857. * Not supported by non-linear delta printer bed leveling.
  1858. *
  1859. * F Set the Front limit of the probing grid
  1860. * B Set the Back limit of the probing grid
  1861. * L Set the Left limit of the probing grid
  1862. * R Set the Right limit of the probing grid
  1863. *
  1864. * Global Parameters:
  1865. *
  1866. * E/e By default G29 engages / disengages the probe for each point.
  1867. * Include "E" to engage and disengage the probe just once.
  1868. * There's no extra effect if you have a fixed probe.
  1869. * Usage: "G29 E" or "G29 e"
  1870. *
  1871. */
  1872. inline void gcode_G29() {
  1873. // Prevent user from running a G29 without first homing in X and Y
  1874. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1875. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1876. SERIAL_ECHO_START;
  1877. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1878. return;
  1879. }
  1880. int verbose_level = 1;
  1881. float x_tmp, y_tmp, z_tmp, real_z;
  1882. if (code_seen('V') || code_seen('v')) {
  1883. verbose_level = code_value_long();
  1884. if (verbose_level < 0 || verbose_level > 4) {
  1885. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1886. return;
  1887. }
  1888. }
  1889. bool dryrun = code_seen('D') || code_seen('d');
  1890. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1891. #ifdef AUTO_BED_LEVELING_GRID
  1892. #ifndef DELTA
  1893. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1894. #endif
  1895. if (verbose_level > 0)
  1896. {
  1897. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1898. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1899. }
  1900. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1901. #ifndef DELTA
  1902. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1903. if (auto_bed_leveling_grid_points < 2) {
  1904. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1905. return;
  1906. }
  1907. #endif
  1908. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1909. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1910. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1911. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1912. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1913. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1914. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1915. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1916. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1917. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1918. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1919. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1920. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1921. if (left_out || right_out || front_out || back_out) {
  1922. if (left_out) {
  1923. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1924. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1925. }
  1926. if (right_out) {
  1927. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1928. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1929. }
  1930. if (front_out) {
  1931. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1932. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1933. }
  1934. if (back_out) {
  1935. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1936. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1937. }
  1938. return;
  1939. }
  1940. #endif // AUTO_BED_LEVELING_GRID
  1941. #ifdef Z_PROBE_SLED
  1942. dock_sled(false); // engage (un-dock) the probe
  1943. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1944. engage_z_probe();
  1945. #endif
  1946. st_synchronize();
  1947. if (!dryrun)
  1948. {
  1949. #ifdef DELTA
  1950. reset_bed_level();
  1951. #else //!DELTA
  1952. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1953. //vector_3 corrected_position = plan_get_position_mm();
  1954. //corrected_position.debug("position before G29");
  1955. plan_bed_level_matrix.set_to_identity();
  1956. vector_3 uncorrected_position = plan_get_position();
  1957. //uncorrected_position.debug("position during G29");
  1958. current_position[X_AXIS] = uncorrected_position.x;
  1959. current_position[Y_AXIS] = uncorrected_position.y;
  1960. current_position[Z_AXIS] = uncorrected_position.z;
  1961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1962. #endif
  1963. }
  1964. setup_for_endstop_move();
  1965. feedrate = homing_feedrate[Z_AXIS];
  1966. #ifdef AUTO_BED_LEVELING_GRID
  1967. // probe at the points of a lattice grid
  1968. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1969. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1970. #ifdef DELTA
  1971. delta_grid_spacing[0] = xGridSpacing;
  1972. delta_grid_spacing[1] = yGridSpacing;
  1973. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1974. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1975. #else // !DELTA
  1976. // solve the plane equation ax + by + d = z
  1977. // A is the matrix with rows [x y 1] for all the probed points
  1978. // B is the vector of the Z positions
  1979. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1980. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1981. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1982. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1983. eqnBVector[abl2], // "B" vector of Z points
  1984. mean = 0.0;
  1985. #endif // !DELTA
  1986. int probePointCounter = 0;
  1987. bool zig = true;
  1988. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1989. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1990. int xStart, xStop, xInc;
  1991. if (zig) {
  1992. xStart = 0;
  1993. xStop = auto_bed_leveling_grid_points;
  1994. xInc = 1;
  1995. }
  1996. else {
  1997. xStart = auto_bed_leveling_grid_points - 1;
  1998. xStop = -1;
  1999. xInc = -1;
  2000. }
  2001. #ifndef DELTA
  2002. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2003. // This gets the probe points in more readable order.
  2004. if (!do_topography_map) zig = !zig;
  2005. #endif
  2006. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2007. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2008. // raise extruder
  2009. float measured_z,
  2010. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2011. #ifdef DELTA
  2012. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2013. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2014. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  2015. continue;
  2016. #endif //DELTA
  2017. // Enhanced G29 - Do not retract servo between probes
  2018. ProbeAction act;
  2019. if (enhanced_g29) {
  2020. if (yProbe == front_probe_bed_position && xCount == 0)
  2021. act = ProbeEngage;
  2022. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  2023. act = ProbeRetract;
  2024. else
  2025. act = ProbeStay;
  2026. }
  2027. else
  2028. act = ProbeEngageAndRetract;
  2029. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2030. #ifndef DELTA
  2031. mean += measured_z;
  2032. eqnBVector[probePointCounter] = measured_z;
  2033. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2034. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2035. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2036. #else
  2037. bed_level[xCount][yCount] = measured_z + z_offset;
  2038. #endif
  2039. probePointCounter++;
  2040. } //xProbe
  2041. } //yProbe
  2042. clean_up_after_endstop_move();
  2043. #ifdef DELTA
  2044. if (!dryrun) extrapolate_unprobed_bed_level();
  2045. print_bed_level();
  2046. #else // !DELTA
  2047. // solve lsq problem
  2048. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2049. mean /= abl2;
  2050. if (verbose_level) {
  2051. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2052. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2053. SERIAL_PROTOCOLPGM(" b: ");
  2054. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2055. SERIAL_PROTOCOLPGM(" d: ");
  2056. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2057. SERIAL_EOL;
  2058. if (verbose_level > 2) {
  2059. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2060. SERIAL_PROTOCOL_F(mean, 8);
  2061. SERIAL_EOL;
  2062. }
  2063. }
  2064. // Show the Topography map if enabled
  2065. if (do_topography_map) {
  2066. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2067. SERIAL_PROTOCOLPGM("+-----------+\n");
  2068. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2069. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2070. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2071. SERIAL_PROTOCOLPGM("+-----------+\n");
  2072. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2073. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2074. int ind = yy * auto_bed_leveling_grid_points + xx;
  2075. float diff = eqnBVector[ind] - mean;
  2076. if (diff >= 0.0)
  2077. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2078. else
  2079. SERIAL_PROTOCOLPGM(" ");
  2080. SERIAL_PROTOCOL_F(diff, 5);
  2081. } // xx
  2082. SERIAL_EOL;
  2083. } // yy
  2084. SERIAL_EOL;
  2085. } //do_topography_map
  2086. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2087. free(plane_equation_coefficients);
  2088. #endif //!DELTA
  2089. #else // !AUTO_BED_LEVELING_GRID
  2090. // Probe at 3 arbitrary points
  2091. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2092. if (enhanced_g29) {
  2093. // Basic Enhanced G29
  2094. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2095. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2096. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2097. }
  2098. else {
  2099. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
  2100. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2101. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2102. }
  2103. clean_up_after_endstop_move();
  2104. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2105. #endif // !AUTO_BED_LEVELING_GRID
  2106. #ifndef DELTA
  2107. if (verbose_level > 0)
  2108. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2109. // Correct the Z height difference from z-probe position and hotend tip position.
  2110. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2111. // When the bed is uneven, this height must be corrected.
  2112. if (!dryrun)
  2113. {
  2114. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2115. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2116. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2117. z_tmp = current_position[Z_AXIS];
  2118. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2119. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2120. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2121. }
  2122. #endif // !DELTA
  2123. #ifdef Z_PROBE_SLED
  2124. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2125. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2126. retract_z_probe();
  2127. #endif
  2128. #ifdef Z_PROBE_END_SCRIPT
  2129. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2130. st_synchronize();
  2131. #endif
  2132. }
  2133. #ifndef Z_PROBE_SLED
  2134. inline void gcode_G30() {
  2135. engage_z_probe(); // Engage Z Servo endstop if available
  2136. st_synchronize();
  2137. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2138. setup_for_endstop_move();
  2139. feedrate = homing_feedrate[Z_AXIS];
  2140. run_z_probe();
  2141. SERIAL_PROTOCOLPGM(MSG_BED);
  2142. SERIAL_PROTOCOLPGM(" X: ");
  2143. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2144. SERIAL_PROTOCOLPGM(" Y: ");
  2145. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2146. SERIAL_PROTOCOLPGM(" Z: ");
  2147. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2148. SERIAL_EOL;
  2149. clean_up_after_endstop_move();
  2150. retract_z_probe(); // Retract Z Servo endstop if available
  2151. }
  2152. #endif //!Z_PROBE_SLED
  2153. #endif //ENABLE_AUTO_BED_LEVELING
  2154. /**
  2155. * G92: Set current position to given X Y Z E
  2156. */
  2157. inline void gcode_G92() {
  2158. if (!code_seen(axis_codes[E_AXIS]))
  2159. st_synchronize();
  2160. for (int i = 0; i < NUM_AXIS; i++) {
  2161. if (code_seen(axis_codes[i])) {
  2162. current_position[i] = code_value();
  2163. if (i == E_AXIS)
  2164. plan_set_e_position(current_position[E_AXIS]);
  2165. else
  2166. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2167. }
  2168. }
  2169. }
  2170. #ifdef ULTIPANEL
  2171. /**
  2172. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2173. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2174. */
  2175. inline void gcode_M0_M1() {
  2176. char *src = strchr_pointer + 2;
  2177. unsigned long codenum = 0;
  2178. bool hasP = false, hasS = false;
  2179. if (code_seen('P')) {
  2180. codenum = code_value(); // milliseconds to wait
  2181. hasP = codenum > 0;
  2182. }
  2183. if (code_seen('S')) {
  2184. codenum = code_value() * 1000; // seconds to wait
  2185. hasS = codenum > 0;
  2186. }
  2187. char* starpos = strchr(src, '*');
  2188. if (starpos != NULL) *(starpos) = '\0';
  2189. while (*src == ' ') ++src;
  2190. if (!hasP && !hasS && *src != '\0')
  2191. lcd_setstatus(src);
  2192. else
  2193. LCD_MESSAGEPGM(MSG_USERWAIT);
  2194. lcd_ignore_click();
  2195. st_synchronize();
  2196. previous_millis_cmd = millis();
  2197. if (codenum > 0) {
  2198. codenum += previous_millis_cmd; // keep track of when we started waiting
  2199. while(millis() < codenum && !lcd_clicked()) {
  2200. manage_heater();
  2201. manage_inactivity();
  2202. lcd_update();
  2203. }
  2204. lcd_ignore_click(false);
  2205. }
  2206. else {
  2207. if (!lcd_detected()) return;
  2208. while (!lcd_clicked()) {
  2209. manage_heater();
  2210. manage_inactivity();
  2211. lcd_update();
  2212. }
  2213. }
  2214. if (IS_SD_PRINTING)
  2215. LCD_MESSAGEPGM(MSG_RESUMING);
  2216. else
  2217. LCD_MESSAGEPGM(WELCOME_MSG);
  2218. }
  2219. #endif // ULTIPANEL
  2220. /**
  2221. * M17: Enable power on all stepper motors
  2222. */
  2223. inline void gcode_M17() {
  2224. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2225. enable_x();
  2226. enable_y();
  2227. enable_z();
  2228. enable_e0();
  2229. enable_e1();
  2230. enable_e2();
  2231. enable_e3();
  2232. }
  2233. #ifdef SDSUPPORT
  2234. /**
  2235. * M20: List SD card to serial output
  2236. */
  2237. inline void gcode_M20() {
  2238. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2239. card.ls();
  2240. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2241. }
  2242. /**
  2243. * M21: Init SD Card
  2244. */
  2245. inline void gcode_M21() {
  2246. card.initsd();
  2247. }
  2248. /**
  2249. * M22: Release SD Card
  2250. */
  2251. inline void gcode_M22() {
  2252. card.release();
  2253. }
  2254. /**
  2255. * M23: Select a file
  2256. */
  2257. inline void gcode_M23() {
  2258. char* codepos = strchr_pointer + 4;
  2259. char* starpos = strchr(codepos, '*');
  2260. if (starpos) *starpos = '\0';
  2261. card.openFile(codepos, true);
  2262. }
  2263. /**
  2264. * M24: Start SD Print
  2265. */
  2266. inline void gcode_M24() {
  2267. card.startFileprint();
  2268. starttime = millis();
  2269. }
  2270. /**
  2271. * M25: Pause SD Print
  2272. */
  2273. inline void gcode_M25() {
  2274. card.pauseSDPrint();
  2275. }
  2276. /**
  2277. * M26: Set SD Card file index
  2278. */
  2279. inline void gcode_M26() {
  2280. if (card.cardOK && code_seen('S'))
  2281. card.setIndex(code_value_long());
  2282. }
  2283. /**
  2284. * M27: Get SD Card status
  2285. */
  2286. inline void gcode_M27() {
  2287. card.getStatus();
  2288. }
  2289. /**
  2290. * M28: Start SD Write
  2291. */
  2292. inline void gcode_M28() {
  2293. char* codepos = strchr_pointer + 4;
  2294. char* starpos = strchr(codepos, '*');
  2295. if (starpos) {
  2296. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2297. strchr_pointer = strchr(npos, ' ') + 1;
  2298. *(starpos) = '\0';
  2299. }
  2300. card.openFile(codepos, false);
  2301. }
  2302. /**
  2303. * M29: Stop SD Write
  2304. * Processed in write to file routine above
  2305. */
  2306. inline void gcode_M29() {
  2307. // card.saving = false;
  2308. }
  2309. /**
  2310. * M30 <filename>: Delete SD Card file
  2311. */
  2312. inline void gcode_M30() {
  2313. if (card.cardOK) {
  2314. card.closefile();
  2315. char* starpos = strchr(strchr_pointer + 4, '*');
  2316. if (starpos) {
  2317. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2318. strchr_pointer = strchr(npos, ' ') + 1;
  2319. *(starpos) = '\0';
  2320. }
  2321. card.removeFile(strchr_pointer + 4);
  2322. }
  2323. }
  2324. #endif
  2325. /**
  2326. * M31: Get the time since the start of SD Print (or last M109)
  2327. */
  2328. inline void gcode_M31() {
  2329. stoptime = millis();
  2330. unsigned long t = (stoptime - starttime) / 1000;
  2331. int min = t / 60, sec = t % 60;
  2332. char time[30];
  2333. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2334. SERIAL_ECHO_START;
  2335. SERIAL_ECHOLN(time);
  2336. lcd_setstatus(time);
  2337. autotempShutdown();
  2338. }
  2339. #ifdef SDSUPPORT
  2340. /**
  2341. * M32: Select file and start SD Print
  2342. */
  2343. inline void gcode_M32() {
  2344. if (card.sdprinting)
  2345. st_synchronize();
  2346. char* codepos = strchr_pointer + 4;
  2347. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2348. if (! namestartpos)
  2349. namestartpos = codepos; //default name position, 4 letters after the M
  2350. else
  2351. namestartpos++; //to skip the '!'
  2352. char* starpos = strchr(codepos, '*');
  2353. if (starpos) *(starpos) = '\0';
  2354. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2355. if (card.cardOK) {
  2356. card.openFile(namestartpos, true, !call_procedure);
  2357. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2358. card.setIndex(code_value_long());
  2359. card.startFileprint();
  2360. if (!call_procedure)
  2361. starttime = millis(); //procedure calls count as normal print time.
  2362. }
  2363. }
  2364. /**
  2365. * M928: Start SD Write
  2366. */
  2367. inline void gcode_M928() {
  2368. char* starpos = strchr(strchr_pointer + 5, '*');
  2369. if (starpos) {
  2370. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2371. strchr_pointer = strchr(npos, ' ') + 1;
  2372. *(starpos) = '\0';
  2373. }
  2374. card.openLogFile(strchr_pointer + 5);
  2375. }
  2376. #endif // SDSUPPORT
  2377. /**
  2378. * M42: Change pin status via GCode
  2379. */
  2380. inline void gcode_M42() {
  2381. if (code_seen('S')) {
  2382. int pin_status = code_value(),
  2383. pin_number = LED_PIN;
  2384. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2385. pin_number = code_value();
  2386. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2387. if (sensitive_pins[i] == pin_number) {
  2388. pin_number = -1;
  2389. break;
  2390. }
  2391. }
  2392. #if defined(FAN_PIN) && FAN_PIN > -1
  2393. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2394. #endif
  2395. if (pin_number > -1) {
  2396. pinMode(pin_number, OUTPUT);
  2397. digitalWrite(pin_number, pin_status);
  2398. analogWrite(pin_number, pin_status);
  2399. }
  2400. } // code_seen('S')
  2401. }
  2402. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2403. #if Z_MIN_PIN == -1
  2404. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2405. #endif
  2406. /**
  2407. * M48: Z-Probe repeatability measurement function.
  2408. *
  2409. * Usage:
  2410. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2411. * n = Number of samples (4-50, default 10)
  2412. * X = Sample X position
  2413. * Y = Sample Y position
  2414. * V = Verbose level (0-4, default=1)
  2415. * E = Engage probe for each reading
  2416. * L = Number of legs of movement before probe
  2417. *
  2418. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2419. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2420. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2421. * regenerated.
  2422. *
  2423. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2424. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2425. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2426. */
  2427. inline void gcode_M48() {
  2428. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2429. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2430. double X_current, Y_current, Z_current;
  2431. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2432. if (code_seen('V') || code_seen('v')) {
  2433. verbose_level = code_value();
  2434. if (verbose_level < 0 || verbose_level > 4 ) {
  2435. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2436. return;
  2437. }
  2438. }
  2439. if (verbose_level > 0)
  2440. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2441. if (code_seen('n')) {
  2442. n_samples = code_value();
  2443. if (n_samples < 4 || n_samples > 50) {
  2444. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2445. return;
  2446. }
  2447. }
  2448. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2449. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2450. Z_current = st_get_position_mm(Z_AXIS);
  2451. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2452. ext_position = st_get_position_mm(E_AXIS);
  2453. if (code_seen('E') || code_seen('e'))
  2454. engage_probe_for_each_reading++;
  2455. if (code_seen('X') || code_seen('x')) {
  2456. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2457. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2458. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2459. return;
  2460. }
  2461. }
  2462. if (code_seen('Y') || code_seen('y')) {
  2463. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2464. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2465. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2466. return;
  2467. }
  2468. }
  2469. if (code_seen('L') || code_seen('l')) {
  2470. n_legs = code_value();
  2471. if (n_legs == 1) n_legs = 2;
  2472. if (n_legs < 0 || n_legs > 15) {
  2473. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2474. return;
  2475. }
  2476. }
  2477. //
  2478. // Do all the preliminary setup work. First raise the probe.
  2479. //
  2480. st_synchronize();
  2481. plan_bed_level_matrix.set_to_identity();
  2482. plan_buffer_line(X_current, Y_current, Z_start_location,
  2483. ext_position,
  2484. homing_feedrate[Z_AXIS] / 60,
  2485. active_extruder);
  2486. st_synchronize();
  2487. //
  2488. // Now get everything to the specified probe point So we can safely do a probe to
  2489. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2490. // use that as a starting point for each probe.
  2491. //
  2492. if (verbose_level > 2)
  2493. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2494. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2495. ext_position,
  2496. homing_feedrate[X_AXIS]/60,
  2497. active_extruder);
  2498. st_synchronize();
  2499. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2500. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2501. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2502. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2503. //
  2504. // OK, do the inital probe to get us close to the bed.
  2505. // Then retrace the right amount and use that in subsequent probes
  2506. //
  2507. engage_z_probe();
  2508. setup_for_endstop_move();
  2509. run_z_probe();
  2510. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2511. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2512. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2513. ext_position,
  2514. homing_feedrate[X_AXIS]/60,
  2515. active_extruder);
  2516. st_synchronize();
  2517. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2518. if (engage_probe_for_each_reading) retract_z_probe();
  2519. for (n=0; n < n_samples; n++) {
  2520. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2521. if (n_legs) {
  2522. double radius=0.0, theta=0.0;
  2523. int l;
  2524. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2525. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2526. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2527. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2528. //SERIAL_ECHOPAIR(" theta: ",theta);
  2529. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2530. //SERIAL_PROTOCOLLNPGM("");
  2531. float dir = rotational_direction ? 1 : -1;
  2532. for (l = 0; l < n_legs - 1; l++) {
  2533. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2534. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2535. if (radius < 0.0) radius = -radius;
  2536. X_current = X_probe_location + cos(theta) * radius;
  2537. Y_current = Y_probe_location + sin(theta) * radius;
  2538. // Make sure our X & Y are sane
  2539. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2540. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2541. if (verbose_level > 3) {
  2542. SERIAL_ECHOPAIR("x: ", X_current);
  2543. SERIAL_ECHOPAIR("y: ", Y_current);
  2544. SERIAL_PROTOCOLLNPGM("");
  2545. }
  2546. do_blocking_move_to( X_current, Y_current, Z_current );
  2547. }
  2548. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2549. }
  2550. if (engage_probe_for_each_reading) {
  2551. engage_z_probe();
  2552. delay(1000);
  2553. }
  2554. setup_for_endstop_move();
  2555. run_z_probe();
  2556. sample_set[n] = current_position[Z_AXIS];
  2557. //
  2558. // Get the current mean for the data points we have so far
  2559. //
  2560. sum = 0.0;
  2561. for (j=0; j<=n; j++) sum += sample_set[j];
  2562. mean = sum / (double (n+1));
  2563. //
  2564. // Now, use that mean to calculate the standard deviation for the
  2565. // data points we have so far
  2566. //
  2567. sum = 0.0;
  2568. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2569. sigma = sqrt( sum / (double (n+1)) );
  2570. if (verbose_level > 1) {
  2571. SERIAL_PROTOCOL(n+1);
  2572. SERIAL_PROTOCOL(" of ");
  2573. SERIAL_PROTOCOL(n_samples);
  2574. SERIAL_PROTOCOLPGM(" z: ");
  2575. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2576. }
  2577. if (verbose_level > 2) {
  2578. SERIAL_PROTOCOL(" mean: ");
  2579. SERIAL_PROTOCOL_F(mean,6);
  2580. SERIAL_PROTOCOL(" sigma: ");
  2581. SERIAL_PROTOCOL_F(sigma,6);
  2582. }
  2583. if (verbose_level > 0) SERIAL_EOL;
  2584. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2585. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2586. st_synchronize();
  2587. if (engage_probe_for_each_reading) {
  2588. retract_z_probe();
  2589. delay(1000);
  2590. }
  2591. }
  2592. retract_z_probe();
  2593. delay(1000);
  2594. clean_up_after_endstop_move();
  2595. // enable_endstops(true);
  2596. if (verbose_level > 0) {
  2597. SERIAL_PROTOCOLPGM("Mean: ");
  2598. SERIAL_PROTOCOL_F(mean, 6);
  2599. SERIAL_EOL;
  2600. }
  2601. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2602. SERIAL_PROTOCOL_F(sigma, 6);
  2603. SERIAL_EOL; SERIAL_EOL;
  2604. }
  2605. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2606. /**
  2607. * M104: Set hot end temperature
  2608. */
  2609. inline void gcode_M104() {
  2610. if (setTargetedHotend(104)) return;
  2611. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2612. #ifdef DUAL_X_CARRIAGE
  2613. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2614. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2615. #endif
  2616. setWatch();
  2617. }
  2618. /**
  2619. * M105: Read hot end and bed temperature
  2620. */
  2621. inline void gcode_M105() {
  2622. if (setTargetedHotend(105)) return;
  2623. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2624. SERIAL_PROTOCOLPGM("ok T:");
  2625. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2626. SERIAL_PROTOCOLPGM(" /");
  2627. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2628. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2629. SERIAL_PROTOCOLPGM(" B:");
  2630. SERIAL_PROTOCOL_F(degBed(),1);
  2631. SERIAL_PROTOCOLPGM(" /");
  2632. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2633. #endif //TEMP_BED_PIN
  2634. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2635. SERIAL_PROTOCOLPGM(" T");
  2636. SERIAL_PROTOCOL(cur_extruder);
  2637. SERIAL_PROTOCOLPGM(":");
  2638. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2639. SERIAL_PROTOCOLPGM(" /");
  2640. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2641. }
  2642. #else
  2643. SERIAL_ERROR_START;
  2644. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2645. #endif
  2646. SERIAL_PROTOCOLPGM(" @:");
  2647. #ifdef EXTRUDER_WATTS
  2648. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2649. SERIAL_PROTOCOLPGM("W");
  2650. #else
  2651. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2652. #endif
  2653. SERIAL_PROTOCOLPGM(" B@:");
  2654. #ifdef BED_WATTS
  2655. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2656. SERIAL_PROTOCOLPGM("W");
  2657. #else
  2658. SERIAL_PROTOCOL(getHeaterPower(-1));
  2659. #endif
  2660. #ifdef SHOW_TEMP_ADC_VALUES
  2661. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2662. SERIAL_PROTOCOLPGM(" ADC B:");
  2663. SERIAL_PROTOCOL_F(degBed(),1);
  2664. SERIAL_PROTOCOLPGM("C->");
  2665. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2666. #endif
  2667. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2668. SERIAL_PROTOCOLPGM(" T");
  2669. SERIAL_PROTOCOL(cur_extruder);
  2670. SERIAL_PROTOCOLPGM(":");
  2671. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2672. SERIAL_PROTOCOLPGM("C->");
  2673. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2674. }
  2675. #endif
  2676. SERIAL_PROTOCOLLN("");
  2677. }
  2678. #if defined(FAN_PIN) && FAN_PIN > -1
  2679. /**
  2680. * M106: Set Fan Speed
  2681. */
  2682. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2683. /**
  2684. * M107: Fan Off
  2685. */
  2686. inline void gcode_M107() { fanSpeed = 0; }
  2687. #endif //FAN_PIN
  2688. /**
  2689. * M109: Wait for extruder(s) to reach temperature
  2690. */
  2691. inline void gcode_M109() {
  2692. if (setTargetedHotend(109)) return;
  2693. LCD_MESSAGEPGM(MSG_HEATING);
  2694. CooldownNoWait = code_seen('S');
  2695. if (CooldownNoWait || code_seen('R')) {
  2696. setTargetHotend(code_value(), tmp_extruder);
  2697. #ifdef DUAL_X_CARRIAGE
  2698. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2699. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2700. #endif
  2701. }
  2702. #ifdef AUTOTEMP
  2703. autotemp_enabled = code_seen('F');
  2704. if (autotemp_enabled) autotemp_factor = code_value();
  2705. if (code_seen('S')) autotemp_min = code_value();
  2706. if (code_seen('B')) autotemp_max = code_value();
  2707. #endif
  2708. setWatch();
  2709. unsigned long timetemp = millis();
  2710. /* See if we are heating up or cooling down */
  2711. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2712. cancel_heatup = false;
  2713. #ifdef TEMP_RESIDENCY_TIME
  2714. long residencyStart = -1;
  2715. /* continue to loop until we have reached the target temp
  2716. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2717. while((!cancel_heatup)&&((residencyStart == -1) ||
  2718. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2719. #else
  2720. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2721. #endif //TEMP_RESIDENCY_TIME
  2722. { // while loop
  2723. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2724. SERIAL_PROTOCOLPGM("T:");
  2725. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2726. SERIAL_PROTOCOLPGM(" E:");
  2727. SERIAL_PROTOCOL((int)tmp_extruder);
  2728. #ifdef TEMP_RESIDENCY_TIME
  2729. SERIAL_PROTOCOLPGM(" W:");
  2730. if (residencyStart > -1) {
  2731. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2732. SERIAL_PROTOCOLLN( timetemp );
  2733. }
  2734. else {
  2735. SERIAL_PROTOCOLLN( "?" );
  2736. }
  2737. #else
  2738. SERIAL_PROTOCOLLN("");
  2739. #endif
  2740. timetemp = millis();
  2741. }
  2742. manage_heater();
  2743. manage_inactivity();
  2744. lcd_update();
  2745. #ifdef TEMP_RESIDENCY_TIME
  2746. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2747. // or when current temp falls outside the hysteresis after target temp was reached
  2748. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2749. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2750. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2751. {
  2752. residencyStart = millis();
  2753. }
  2754. #endif //TEMP_RESIDENCY_TIME
  2755. }
  2756. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2757. starttime = previous_millis_cmd = millis();
  2758. }
  2759. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2760. /**
  2761. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2762. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2763. */
  2764. inline void gcode_M190() {
  2765. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2766. CooldownNoWait = code_seen('S');
  2767. if (CooldownNoWait || code_seen('R'))
  2768. setTargetBed(code_value());
  2769. unsigned long timetemp = millis();
  2770. cancel_heatup = false;
  2771. target_direction = isHeatingBed(); // true if heating, false if cooling
  2772. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2773. unsigned long ms = millis();
  2774. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2775. timetemp = ms;
  2776. float tt = degHotend(active_extruder);
  2777. SERIAL_PROTOCOLPGM("T:");
  2778. SERIAL_PROTOCOL(tt);
  2779. SERIAL_PROTOCOLPGM(" E:");
  2780. SERIAL_PROTOCOL((int)active_extruder);
  2781. SERIAL_PROTOCOLPGM(" B:");
  2782. SERIAL_PROTOCOL_F(degBed(), 1);
  2783. SERIAL_PROTOCOLLN("");
  2784. }
  2785. manage_heater();
  2786. manage_inactivity();
  2787. lcd_update();
  2788. }
  2789. LCD_MESSAGEPGM(MSG_BED_DONE);
  2790. previous_millis_cmd = millis();
  2791. }
  2792. #endif // TEMP_BED_PIN > -1
  2793. /**
  2794. * M112: Emergency Stop
  2795. */
  2796. inline void gcode_M112() {
  2797. kill();
  2798. }
  2799. #ifdef BARICUDA
  2800. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2801. /**
  2802. * M126: Heater 1 valve open
  2803. */
  2804. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2805. /**
  2806. * M127: Heater 1 valve close
  2807. */
  2808. inline void gcode_M127() { ValvePressure = 0; }
  2809. #endif
  2810. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2811. /**
  2812. * M128: Heater 2 valve open
  2813. */
  2814. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2815. /**
  2816. * M129: Heater 2 valve close
  2817. */
  2818. inline void gcode_M129() { EtoPPressure = 0; }
  2819. #endif
  2820. #endif //BARICUDA
  2821. /**
  2822. * M140: Set bed temperature
  2823. */
  2824. inline void gcode_M140() {
  2825. if (code_seen('S')) setTargetBed(code_value());
  2826. }
  2827. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2828. /**
  2829. * M80: Turn on Power Supply
  2830. */
  2831. inline void gcode_M80() {
  2832. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2833. // If you have a switch on suicide pin, this is useful
  2834. // if you want to start another print with suicide feature after
  2835. // a print without suicide...
  2836. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2837. OUT_WRITE(SUICIDE_PIN, HIGH);
  2838. #endif
  2839. #ifdef ULTIPANEL
  2840. powersupply = true;
  2841. LCD_MESSAGEPGM(WELCOME_MSG);
  2842. lcd_update();
  2843. #endif
  2844. }
  2845. #endif // PS_ON_PIN
  2846. /**
  2847. * M81: Turn off Power Supply
  2848. */
  2849. inline void gcode_M81() {
  2850. disable_heater();
  2851. st_synchronize();
  2852. disable_e0();
  2853. disable_e1();
  2854. disable_e2();
  2855. disable_e3();
  2856. finishAndDisableSteppers();
  2857. fanSpeed = 0;
  2858. delay(1000); // Wait 1 second before switching off
  2859. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2860. st_synchronize();
  2861. suicide();
  2862. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2863. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2864. #endif
  2865. #ifdef ULTIPANEL
  2866. powersupply = false;
  2867. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2868. lcd_update();
  2869. #endif
  2870. }
  2871. /**
  2872. * M82: Set E codes absolute (default)
  2873. */
  2874. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2875. /**
  2876. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2877. */
  2878. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2879. /**
  2880. * M18, M84: Disable all stepper motors
  2881. */
  2882. inline void gcode_M18_M84() {
  2883. if (code_seen('S')) {
  2884. stepper_inactive_time = code_value() * 1000;
  2885. }
  2886. else {
  2887. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2888. if (all_axis) {
  2889. st_synchronize();
  2890. disable_e0();
  2891. disable_e1();
  2892. disable_e2();
  2893. disable_e3();
  2894. finishAndDisableSteppers();
  2895. }
  2896. else {
  2897. st_synchronize();
  2898. if (code_seen('X')) disable_x();
  2899. if (code_seen('Y')) disable_y();
  2900. if (code_seen('Z')) disable_z();
  2901. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2902. if (code_seen('E')) {
  2903. disable_e0();
  2904. disable_e1();
  2905. disable_e2();
  2906. disable_e3();
  2907. }
  2908. #endif
  2909. }
  2910. }
  2911. }
  2912. /**
  2913. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2914. */
  2915. inline void gcode_M85() {
  2916. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2917. }
  2918. /**
  2919. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2920. */
  2921. inline void gcode_M92() {
  2922. for(int8_t i=0; i < NUM_AXIS; i++) {
  2923. if (code_seen(axis_codes[i])) {
  2924. if (i == E_AXIS) {
  2925. float value = code_value();
  2926. if (value < 20.0) {
  2927. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2928. max_e_jerk *= factor;
  2929. max_feedrate[i] *= factor;
  2930. axis_steps_per_sqr_second[i] *= factor;
  2931. }
  2932. axis_steps_per_unit[i] = value;
  2933. }
  2934. else {
  2935. axis_steps_per_unit[i] = code_value();
  2936. }
  2937. }
  2938. }
  2939. }
  2940. /**
  2941. * M114: Output current position to serial port
  2942. */
  2943. inline void gcode_M114() {
  2944. SERIAL_PROTOCOLPGM("X:");
  2945. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2946. SERIAL_PROTOCOLPGM(" Y:");
  2947. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2948. SERIAL_PROTOCOLPGM(" Z:");
  2949. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2950. SERIAL_PROTOCOLPGM(" E:");
  2951. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2952. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2953. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2954. SERIAL_PROTOCOLPGM(" Y:");
  2955. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2956. SERIAL_PROTOCOLPGM(" Z:");
  2957. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2958. SERIAL_PROTOCOLLN("");
  2959. #ifdef SCARA
  2960. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2961. SERIAL_PROTOCOL(delta[X_AXIS]);
  2962. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2963. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2964. SERIAL_PROTOCOLLN("");
  2965. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2966. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2967. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2968. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2969. SERIAL_PROTOCOLLN("");
  2970. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2971. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2972. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2973. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2974. SERIAL_PROTOCOLLN("");
  2975. SERIAL_PROTOCOLLN("");
  2976. #endif
  2977. }
  2978. /**
  2979. * M115: Capabilities string
  2980. */
  2981. inline void gcode_M115() {
  2982. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2983. }
  2984. /**
  2985. * M117: Set LCD Status Message
  2986. */
  2987. inline void gcode_M117() {
  2988. char* codepos = strchr_pointer + 5;
  2989. char* starpos = strchr(codepos, '*');
  2990. if (starpos) *starpos = '\0';
  2991. lcd_setstatus(codepos);
  2992. }
  2993. /**
  2994. * M119: Output endstop states to serial output
  2995. */
  2996. inline void gcode_M119() {
  2997. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2998. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2999. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3000. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3001. #endif
  3002. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3003. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3004. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3005. #endif
  3006. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3007. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3008. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3009. #endif
  3010. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3011. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3012. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3013. #endif
  3014. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3015. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3016. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3017. #endif
  3018. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3019. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3020. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3021. #endif
  3022. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  3023. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3024. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3025. #endif
  3026. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN >-1
  3027. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3028. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3029. #endif
  3030. }
  3031. /**
  3032. * M120: Enable endstops
  3033. */
  3034. inline void gcode_M120() { enable_endstops(false); }
  3035. /**
  3036. * M121: Disable endstops
  3037. */
  3038. inline void gcode_M121() { enable_endstops(true); }
  3039. #ifdef BLINKM
  3040. /**
  3041. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3042. */
  3043. inline void gcode_M150() {
  3044. SendColors(
  3045. code_seen('R') ? (byte)code_value() : 0,
  3046. code_seen('U') ? (byte)code_value() : 0,
  3047. code_seen('B') ? (byte)code_value() : 0
  3048. );
  3049. }
  3050. #endif // BLINKM
  3051. /**
  3052. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3053. * T<extruder>
  3054. * D<millimeters>
  3055. */
  3056. inline void gcode_M200() {
  3057. tmp_extruder = active_extruder;
  3058. if (code_seen('T')) {
  3059. tmp_extruder = code_value();
  3060. if (tmp_extruder >= EXTRUDERS) {
  3061. SERIAL_ECHO_START;
  3062. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3063. return;
  3064. }
  3065. }
  3066. if (code_seen('D')) {
  3067. float diameter = code_value();
  3068. // setting any extruder filament size disables volumetric on the assumption that
  3069. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3070. // for all extruders
  3071. volumetric_enabled = (diameter != 0.0);
  3072. if (volumetric_enabled) {
  3073. filament_size[tmp_extruder] = diameter;
  3074. // make sure all extruders have some sane value for the filament size
  3075. for (int i=0; i<EXTRUDERS; i++)
  3076. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3077. }
  3078. }
  3079. else {
  3080. //reserved for setting filament diameter via UFID or filament measuring device
  3081. return;
  3082. }
  3083. calculate_volumetric_multipliers();
  3084. }
  3085. /**
  3086. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3087. */
  3088. inline void gcode_M201() {
  3089. for (int8_t i=0; i < NUM_AXIS; i++) {
  3090. if (code_seen(axis_codes[i])) {
  3091. max_acceleration_units_per_sq_second[i] = code_value();
  3092. }
  3093. }
  3094. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3095. reset_acceleration_rates();
  3096. }
  3097. #if 0 // Not used for Sprinter/grbl gen6
  3098. inline void gcode_M202() {
  3099. for(int8_t i=0; i < NUM_AXIS; i++) {
  3100. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3101. }
  3102. }
  3103. #endif
  3104. /**
  3105. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3106. */
  3107. inline void gcode_M203() {
  3108. for (int8_t i=0; i < NUM_AXIS; i++) {
  3109. if (code_seen(axis_codes[i])) {
  3110. max_feedrate[i] = code_value();
  3111. }
  3112. }
  3113. }
  3114. /**
  3115. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3116. *
  3117. * P = Printing moves
  3118. * R = Retract only (no X, Y, Z) moves
  3119. * T = Travel (non printing) moves
  3120. *
  3121. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3122. */
  3123. inline void gcode_M204() {
  3124. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3125. {
  3126. acceleration = code_value();
  3127. travel_acceleration = acceleration;
  3128. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3129. SERIAL_EOL;
  3130. }
  3131. if (code_seen('P'))
  3132. {
  3133. acceleration = code_value();
  3134. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3135. SERIAL_EOL;
  3136. }
  3137. if (code_seen('R'))
  3138. {
  3139. retract_acceleration = code_value();
  3140. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3141. SERIAL_EOL;
  3142. }
  3143. if (code_seen('T'))
  3144. {
  3145. travel_acceleration = code_value();
  3146. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3147. SERIAL_EOL;
  3148. }
  3149. }
  3150. /**
  3151. * M205: Set Advanced Settings
  3152. *
  3153. * S = Min Feed Rate (mm/s)
  3154. * T = Min Travel Feed Rate (mm/s)
  3155. * B = Min Segment Time (µs)
  3156. * X = Max XY Jerk (mm/s/s)
  3157. * Z = Max Z Jerk (mm/s/s)
  3158. * E = Max E Jerk (mm/s/s)
  3159. */
  3160. inline void gcode_M205() {
  3161. if (code_seen('S')) minimumfeedrate = code_value();
  3162. if (code_seen('T')) mintravelfeedrate = code_value();
  3163. if (code_seen('B')) minsegmenttime = code_value();
  3164. if (code_seen('X')) max_xy_jerk = code_value();
  3165. if (code_seen('Z')) max_z_jerk = code_value();
  3166. if (code_seen('E')) max_e_jerk = code_value();
  3167. }
  3168. /**
  3169. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3170. */
  3171. inline void gcode_M206() {
  3172. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3173. if (code_seen(axis_codes[i])) {
  3174. home_offset[i] = code_value();
  3175. }
  3176. }
  3177. #ifdef SCARA
  3178. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3179. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3180. #endif
  3181. }
  3182. #ifdef DELTA
  3183. /**
  3184. * M665: Set delta configurations
  3185. *
  3186. * L = diagonal rod
  3187. * R = delta radius
  3188. * S = segments per second
  3189. */
  3190. inline void gcode_M665() {
  3191. if (code_seen('L')) delta_diagonal_rod = code_value();
  3192. if (code_seen('R')) delta_radius = code_value();
  3193. if (code_seen('S')) delta_segments_per_second = code_value();
  3194. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3195. }
  3196. /**
  3197. * M666: Set delta endstop adjustment
  3198. */
  3199. inline void gcode_M666() {
  3200. for (int8_t i = 0; i < 3; i++) {
  3201. if (code_seen(axis_codes[i])) {
  3202. endstop_adj[i] = code_value();
  3203. }
  3204. }
  3205. }
  3206. #elif defined(Z_DUAL_ENDSTOPS)
  3207. /**
  3208. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3209. */
  3210. inline void gcode_M666() {
  3211. if (code_seen('Z')) z_endstop_adj = code_value();
  3212. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3213. SERIAL_EOL;
  3214. }
  3215. #endif // DELTA
  3216. #ifdef FWRETRACT
  3217. /**
  3218. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3219. */
  3220. inline void gcode_M207() {
  3221. if (code_seen('S')) retract_length = code_value();
  3222. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3223. if (code_seen('Z')) retract_zlift = code_value();
  3224. }
  3225. /**
  3226. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3227. */
  3228. inline void gcode_M208() {
  3229. if (code_seen('S')) retract_recover_length = code_value();
  3230. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3231. }
  3232. /**
  3233. * M209: Enable automatic retract (M209 S1)
  3234. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3235. */
  3236. inline void gcode_M209() {
  3237. if (code_seen('S')) {
  3238. int t = code_value();
  3239. switch(t) {
  3240. case 0:
  3241. autoretract_enabled = false;
  3242. break;
  3243. case 1:
  3244. autoretract_enabled = true;
  3245. break;
  3246. default:
  3247. SERIAL_ECHO_START;
  3248. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3249. SERIAL_ECHO(cmdbuffer[bufindr]);
  3250. SERIAL_ECHOLNPGM("\"");
  3251. return;
  3252. }
  3253. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3254. }
  3255. }
  3256. #endif // FWRETRACT
  3257. #if EXTRUDERS > 1
  3258. /**
  3259. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3260. */
  3261. inline void gcode_M218() {
  3262. if (setTargetedHotend(218)) return;
  3263. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3264. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3265. #ifdef DUAL_X_CARRIAGE
  3266. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3267. #endif
  3268. SERIAL_ECHO_START;
  3269. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3270. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3271. SERIAL_ECHO(" ");
  3272. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3273. SERIAL_ECHO(",");
  3274. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3275. #ifdef DUAL_X_CARRIAGE
  3276. SERIAL_ECHO(",");
  3277. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3278. #endif
  3279. }
  3280. SERIAL_EOL;
  3281. }
  3282. #endif // EXTRUDERS > 1
  3283. /**
  3284. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3285. */
  3286. inline void gcode_M220() {
  3287. if (code_seen('S')) feedmultiply = code_value();
  3288. }
  3289. /**
  3290. * M221: Set extrusion percentage (M221 T0 S95)
  3291. */
  3292. inline void gcode_M221() {
  3293. if (code_seen('S')) {
  3294. int sval = code_value();
  3295. if (code_seen('T')) {
  3296. if (setTargetedHotend(221)) return;
  3297. extruder_multiply[tmp_extruder] = sval;
  3298. }
  3299. else {
  3300. extrudemultiply = sval;
  3301. }
  3302. }
  3303. }
  3304. /**
  3305. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3306. */
  3307. inline void gcode_M226() {
  3308. if (code_seen('P')) {
  3309. int pin_number = code_value();
  3310. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3311. if (pin_state >= -1 && pin_state <= 1) {
  3312. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3313. if (sensitive_pins[i] == pin_number) {
  3314. pin_number = -1;
  3315. break;
  3316. }
  3317. }
  3318. if (pin_number > -1) {
  3319. int target = LOW;
  3320. st_synchronize();
  3321. pinMode(pin_number, INPUT);
  3322. switch(pin_state){
  3323. case 1:
  3324. target = HIGH;
  3325. break;
  3326. case 0:
  3327. target = LOW;
  3328. break;
  3329. case -1:
  3330. target = !digitalRead(pin_number);
  3331. break;
  3332. }
  3333. while(digitalRead(pin_number) != target) {
  3334. manage_heater();
  3335. manage_inactivity();
  3336. lcd_update();
  3337. }
  3338. } // pin_number > -1
  3339. } // pin_state -1 0 1
  3340. } // code_seen('P')
  3341. }
  3342. #if NUM_SERVOS > 0
  3343. /**
  3344. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3345. */
  3346. inline void gcode_M280() {
  3347. int servo_index = code_seen('P') ? code_value() : -1;
  3348. int servo_position = 0;
  3349. if (code_seen('S')) {
  3350. servo_position = code_value();
  3351. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3352. #if SERVO_LEVELING
  3353. servos[servo_index].attach(0);
  3354. #endif
  3355. servos[servo_index].write(servo_position);
  3356. #if SERVO_LEVELING
  3357. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3358. servos[servo_index].detach();
  3359. #endif
  3360. }
  3361. else {
  3362. SERIAL_ECHO_START;
  3363. SERIAL_ECHO("Servo ");
  3364. SERIAL_ECHO(servo_index);
  3365. SERIAL_ECHOLN(" out of range");
  3366. }
  3367. }
  3368. else if (servo_index >= 0) {
  3369. SERIAL_PROTOCOL(MSG_OK);
  3370. SERIAL_PROTOCOL(" Servo ");
  3371. SERIAL_PROTOCOL(servo_index);
  3372. SERIAL_PROTOCOL(": ");
  3373. SERIAL_PROTOCOL(servos[servo_index].read());
  3374. SERIAL_PROTOCOLLN("");
  3375. }
  3376. }
  3377. #endif // NUM_SERVOS > 0
  3378. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3379. /**
  3380. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3381. */
  3382. inline void gcode_M300() {
  3383. int beepS = code_seen('S') ? code_value() : 110;
  3384. int beepP = code_seen('P') ? code_value() : 1000;
  3385. if (beepS > 0) {
  3386. #if BEEPER > 0
  3387. tone(BEEPER, beepS);
  3388. delay(beepP);
  3389. noTone(BEEPER);
  3390. #elif defined(ULTRALCD)
  3391. lcd_buzz(beepS, beepP);
  3392. #elif defined(LCD_USE_I2C_BUZZER)
  3393. lcd_buzz(beepP, beepS);
  3394. #endif
  3395. }
  3396. else {
  3397. delay(beepP);
  3398. }
  3399. }
  3400. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3401. #ifdef PIDTEMP
  3402. /**
  3403. * M301: Set PID parameters P I D (and optionally C)
  3404. */
  3405. inline void gcode_M301() {
  3406. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3407. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3408. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3409. if (e < EXTRUDERS) { // catch bad input value
  3410. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3411. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3412. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3413. #ifdef PID_ADD_EXTRUSION_RATE
  3414. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3415. #endif
  3416. updatePID();
  3417. SERIAL_PROTOCOL(MSG_OK);
  3418. #ifdef PID_PARAMS_PER_EXTRUDER
  3419. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3420. SERIAL_PROTOCOL(e);
  3421. #endif // PID_PARAMS_PER_EXTRUDER
  3422. SERIAL_PROTOCOL(" p:");
  3423. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3424. SERIAL_PROTOCOL(" i:");
  3425. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3426. SERIAL_PROTOCOL(" d:");
  3427. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3428. #ifdef PID_ADD_EXTRUSION_RATE
  3429. SERIAL_PROTOCOL(" c:");
  3430. //Kc does not have scaling applied above, or in resetting defaults
  3431. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3432. #endif
  3433. SERIAL_PROTOCOLLN("");
  3434. }
  3435. else {
  3436. SERIAL_ECHO_START;
  3437. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3438. }
  3439. }
  3440. #endif // PIDTEMP
  3441. #ifdef PIDTEMPBED
  3442. inline void gcode_M304() {
  3443. if (code_seen('P')) bedKp = code_value();
  3444. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3445. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3446. updatePID();
  3447. SERIAL_PROTOCOL(MSG_OK);
  3448. SERIAL_PROTOCOL(" p:");
  3449. SERIAL_PROTOCOL(bedKp);
  3450. SERIAL_PROTOCOL(" i:");
  3451. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3452. SERIAL_PROTOCOL(" d:");
  3453. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3454. SERIAL_PROTOCOLLN("");
  3455. }
  3456. #endif // PIDTEMPBED
  3457. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3458. /**
  3459. * M240: Trigger a camera by emulating a Canon RC-1
  3460. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3461. */
  3462. inline void gcode_M240() {
  3463. #ifdef CHDK
  3464. OUT_WRITE(CHDK, HIGH);
  3465. chdkHigh = millis();
  3466. chdkActive = true;
  3467. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3468. const uint8_t NUM_PULSES = 16;
  3469. const float PULSE_LENGTH = 0.01524;
  3470. for (int i = 0; i < NUM_PULSES; i++) {
  3471. WRITE(PHOTOGRAPH_PIN, HIGH);
  3472. _delay_ms(PULSE_LENGTH);
  3473. WRITE(PHOTOGRAPH_PIN, LOW);
  3474. _delay_ms(PULSE_LENGTH);
  3475. }
  3476. delay(7.33);
  3477. for (int i = 0; i < NUM_PULSES; i++) {
  3478. WRITE(PHOTOGRAPH_PIN, HIGH);
  3479. _delay_ms(PULSE_LENGTH);
  3480. WRITE(PHOTOGRAPH_PIN, LOW);
  3481. _delay_ms(PULSE_LENGTH);
  3482. }
  3483. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3484. }
  3485. #endif // CHDK || PHOTOGRAPH_PIN
  3486. #ifdef DOGLCD
  3487. /**
  3488. * M250: Read and optionally set the LCD contrast
  3489. */
  3490. inline void gcode_M250() {
  3491. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3492. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3493. SERIAL_PROTOCOL(lcd_contrast);
  3494. SERIAL_PROTOCOLLN("");
  3495. }
  3496. #endif // DOGLCD
  3497. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3498. /**
  3499. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3500. */
  3501. inline void gcode_M302() {
  3502. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3503. }
  3504. #endif // PREVENT_DANGEROUS_EXTRUDE
  3505. /**
  3506. * M303: PID relay autotune
  3507. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3508. * E<extruder> (-1 for the bed)
  3509. * C<cycles>
  3510. */
  3511. inline void gcode_M303() {
  3512. int e = code_seen('E') ? code_value_long() : 0;
  3513. int c = code_seen('C') ? code_value_long() : 5;
  3514. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3515. PID_autotune(temp, e, c);
  3516. }
  3517. #ifdef SCARA
  3518. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3519. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3520. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3521. if (! Stopped) {
  3522. //get_coordinates(); // For X Y Z E F
  3523. delta[X_AXIS] = delta_x;
  3524. delta[Y_AXIS] = delta_y;
  3525. calculate_SCARA_forward_Transform(delta);
  3526. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3527. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3528. prepare_move();
  3529. //ClearToSend();
  3530. return true;
  3531. }
  3532. return false;
  3533. }
  3534. /**
  3535. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3536. */
  3537. inline bool gcode_M360() {
  3538. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3539. return SCARA_move_to_cal(0, 120);
  3540. }
  3541. /**
  3542. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3543. */
  3544. inline bool gcode_M361() {
  3545. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3546. return SCARA_move_to_cal(90, 130);
  3547. }
  3548. /**
  3549. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3550. */
  3551. inline bool gcode_M362() {
  3552. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3553. return SCARA_move_to_cal(60, 180);
  3554. }
  3555. /**
  3556. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3557. */
  3558. inline bool gcode_M363() {
  3559. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3560. return SCARA_move_to_cal(50, 90);
  3561. }
  3562. /**
  3563. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3564. */
  3565. inline bool gcode_M364() {
  3566. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3567. return SCARA_move_to_cal(45, 135);
  3568. }
  3569. /**
  3570. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3571. */
  3572. inline void gcode_M365() {
  3573. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3574. if (code_seen(axis_codes[i])) {
  3575. axis_scaling[i] = code_value();
  3576. }
  3577. }
  3578. }
  3579. #endif // SCARA
  3580. #ifdef EXT_SOLENOID
  3581. void enable_solenoid(uint8_t num) {
  3582. switch(num) {
  3583. case 0:
  3584. OUT_WRITE(SOL0_PIN, HIGH);
  3585. break;
  3586. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3587. case 1:
  3588. OUT_WRITE(SOL1_PIN, HIGH);
  3589. break;
  3590. #endif
  3591. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3592. case 2:
  3593. OUT_WRITE(SOL2_PIN, HIGH);
  3594. break;
  3595. #endif
  3596. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3597. case 3:
  3598. OUT_WRITE(SOL3_PIN, HIGH);
  3599. break;
  3600. #endif
  3601. default:
  3602. SERIAL_ECHO_START;
  3603. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3604. break;
  3605. }
  3606. }
  3607. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3608. void disable_all_solenoids() {
  3609. OUT_WRITE(SOL0_PIN, LOW);
  3610. OUT_WRITE(SOL1_PIN, LOW);
  3611. OUT_WRITE(SOL2_PIN, LOW);
  3612. OUT_WRITE(SOL3_PIN, LOW);
  3613. }
  3614. /**
  3615. * M380: Enable solenoid on the active extruder
  3616. */
  3617. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3618. /**
  3619. * M381: Disable all solenoids
  3620. */
  3621. inline void gcode_M381() { disable_all_solenoids(); }
  3622. #endif // EXT_SOLENOID
  3623. /**
  3624. * M400: Finish all moves
  3625. */
  3626. inline void gcode_M400() { st_synchronize(); }
  3627. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3628. /**
  3629. * M401: Engage Z Servo endstop if available
  3630. */
  3631. inline void gcode_M401() { engage_z_probe(); }
  3632. /**
  3633. * M402: Retract Z Servo endstop if enabled
  3634. */
  3635. inline void gcode_M402() { retract_z_probe(); }
  3636. #endif
  3637. #ifdef FILAMENT_SENSOR
  3638. /**
  3639. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3640. */
  3641. inline void gcode_M404() {
  3642. #if FILWIDTH_PIN > -1
  3643. if (code_seen('W')) {
  3644. filament_width_nominal = code_value();
  3645. }
  3646. else {
  3647. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3648. SERIAL_PROTOCOLLN(filament_width_nominal);
  3649. }
  3650. #endif
  3651. }
  3652. /**
  3653. * M405: Turn on filament sensor for control
  3654. */
  3655. inline void gcode_M405() {
  3656. if (code_seen('D')) meas_delay_cm = code_value();
  3657. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3658. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3659. int temp_ratio = widthFil_to_size_ratio();
  3660. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3661. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3662. delay_index1 = delay_index2 = 0;
  3663. }
  3664. filament_sensor = true;
  3665. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3666. //SERIAL_PROTOCOL(filament_width_meas);
  3667. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3668. //SERIAL_PROTOCOL(extrudemultiply);
  3669. }
  3670. /**
  3671. * M406: Turn off filament sensor for control
  3672. */
  3673. inline void gcode_M406() { filament_sensor = false; }
  3674. /**
  3675. * M407: Get measured filament diameter on serial output
  3676. */
  3677. inline void gcode_M407() {
  3678. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3679. SERIAL_PROTOCOLLN(filament_width_meas);
  3680. }
  3681. #endif // FILAMENT_SENSOR
  3682. /**
  3683. * M500: Store settings in EEPROM
  3684. */
  3685. inline void gcode_M500() {
  3686. Config_StoreSettings();
  3687. }
  3688. /**
  3689. * M501: Read settings from EEPROM
  3690. */
  3691. inline void gcode_M501() {
  3692. Config_RetrieveSettings();
  3693. }
  3694. /**
  3695. * M502: Revert to default settings
  3696. */
  3697. inline void gcode_M502() {
  3698. Config_ResetDefault();
  3699. }
  3700. /**
  3701. * M503: print settings currently in memory
  3702. */
  3703. inline void gcode_M503() {
  3704. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3705. }
  3706. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3707. /**
  3708. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3709. */
  3710. inline void gcode_M540() {
  3711. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3712. }
  3713. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3714. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3715. inline void gcode_SET_Z_PROBE_OFFSET() {
  3716. float value;
  3717. if (code_seen('Z')) {
  3718. value = code_value();
  3719. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3720. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3721. SERIAL_ECHO_START;
  3722. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3723. SERIAL_PROTOCOLLN("");
  3724. }
  3725. else {
  3726. SERIAL_ECHO_START;
  3727. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3728. SERIAL_ECHOPGM(MSG_Z_MIN);
  3729. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3730. SERIAL_ECHOPGM(MSG_Z_MAX);
  3731. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3732. SERIAL_PROTOCOLLN("");
  3733. }
  3734. }
  3735. else {
  3736. SERIAL_ECHO_START;
  3737. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3738. SERIAL_ECHO(-zprobe_zoffset);
  3739. SERIAL_PROTOCOLLN("");
  3740. }
  3741. }
  3742. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3743. #ifdef FILAMENTCHANGEENABLE
  3744. /**
  3745. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3746. */
  3747. inline void gcode_M600() {
  3748. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3749. for (int i=0; i<NUM_AXIS; i++)
  3750. target[i] = lastpos[i] = current_position[i];
  3751. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3752. #ifdef DELTA
  3753. #define RUNPLAN calculate_delta(target); BASICPLAN
  3754. #else
  3755. #define RUNPLAN BASICPLAN
  3756. #endif
  3757. //retract by E
  3758. if (code_seen('E')) target[E_AXIS] += code_value();
  3759. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3760. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3761. #endif
  3762. RUNPLAN;
  3763. //lift Z
  3764. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3765. #ifdef FILAMENTCHANGE_ZADD
  3766. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3767. #endif
  3768. RUNPLAN;
  3769. //move xy
  3770. if (code_seen('X')) target[X_AXIS] = code_value();
  3771. #ifdef FILAMENTCHANGE_XPOS
  3772. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3773. #endif
  3774. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3775. #ifdef FILAMENTCHANGE_YPOS
  3776. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3777. #endif
  3778. RUNPLAN;
  3779. if (code_seen('L')) target[E_AXIS] += code_value();
  3780. #ifdef FILAMENTCHANGE_FINALRETRACT
  3781. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3782. #endif
  3783. RUNPLAN;
  3784. //finish moves
  3785. st_synchronize();
  3786. //disable extruder steppers so filament can be removed
  3787. disable_e0();
  3788. disable_e1();
  3789. disable_e2();
  3790. disable_e3();
  3791. delay(100);
  3792. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3793. uint8_t cnt = 0;
  3794. while (!lcd_clicked()) {
  3795. cnt++;
  3796. manage_heater();
  3797. manage_inactivity(true);
  3798. lcd_update();
  3799. if (cnt == 0) {
  3800. #if BEEPER > 0
  3801. OUT_WRITE(BEEPER,HIGH);
  3802. delay(3);
  3803. WRITE(BEEPER,LOW);
  3804. delay(3);
  3805. #else
  3806. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3807. lcd_buzz(1000/6, 100);
  3808. #else
  3809. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3810. #endif
  3811. #endif
  3812. }
  3813. } // while(!lcd_clicked)
  3814. //return to normal
  3815. if (code_seen('L')) target[E_AXIS] -= code_value();
  3816. #ifdef FILAMENTCHANGE_FINALRETRACT
  3817. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3818. #endif
  3819. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3820. plan_set_e_position(current_position[E_AXIS]);
  3821. RUNPLAN; //should do nothing
  3822. lcd_reset_alert_level();
  3823. #ifdef DELTA
  3824. calculate_delta(lastpos);
  3825. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3826. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3827. #else
  3828. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3829. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3830. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3831. #endif
  3832. #ifdef FILAMENT_RUNOUT_SENSOR
  3833. filrunoutEnqued = false;
  3834. #endif
  3835. }
  3836. #endif // FILAMENTCHANGEENABLE
  3837. #ifdef DUAL_X_CARRIAGE
  3838. /**
  3839. * M605: Set dual x-carriage movement mode
  3840. *
  3841. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3842. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3843. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3844. * millimeters x-offset and an optional differential hotend temperature of
  3845. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3846. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3847. *
  3848. * Note: the X axis should be homed after changing dual x-carriage mode.
  3849. */
  3850. inline void gcode_M605() {
  3851. st_synchronize();
  3852. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3853. switch(dual_x_carriage_mode) {
  3854. case DXC_DUPLICATION_MODE:
  3855. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3856. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3857. SERIAL_ECHO_START;
  3858. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3859. SERIAL_ECHO(" ");
  3860. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3861. SERIAL_ECHO(",");
  3862. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3863. SERIAL_ECHO(" ");
  3864. SERIAL_ECHO(duplicate_extruder_x_offset);
  3865. SERIAL_ECHO(",");
  3866. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3867. break;
  3868. case DXC_FULL_CONTROL_MODE:
  3869. case DXC_AUTO_PARK_MODE:
  3870. break;
  3871. default:
  3872. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3873. break;
  3874. }
  3875. active_extruder_parked = false;
  3876. extruder_duplication_enabled = false;
  3877. delayed_move_time = 0;
  3878. }
  3879. #endif // DUAL_X_CARRIAGE
  3880. /**
  3881. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3882. */
  3883. inline void gcode_M907() {
  3884. #if HAS_DIGIPOTSS
  3885. for (int i=0;i<NUM_AXIS;i++)
  3886. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3887. if (code_seen('B')) digipot_current(4, code_value());
  3888. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3889. #endif
  3890. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3891. if (code_seen('X')) digipot_current(0, code_value());
  3892. #endif
  3893. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3894. if (code_seen('Z')) digipot_current(1, code_value());
  3895. #endif
  3896. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3897. if (code_seen('E')) digipot_current(2, code_value());
  3898. #endif
  3899. #ifdef DIGIPOT_I2C
  3900. // this one uses actual amps in floating point
  3901. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3902. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3903. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3904. #endif
  3905. }
  3906. #if HAS_DIGIPOTSS
  3907. /**
  3908. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3909. */
  3910. inline void gcode_M908() {
  3911. digitalPotWrite(
  3912. code_seen('P') ? code_value() : 0,
  3913. code_seen('S') ? code_value() : 0
  3914. );
  3915. }
  3916. #endif // HAS_DIGIPOTSS
  3917. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3918. inline void gcode_M350() {
  3919. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3920. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3921. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3922. if(code_seen('B')) microstep_mode(4,code_value());
  3923. microstep_readings();
  3924. #endif
  3925. }
  3926. /**
  3927. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3928. * S# determines MS1 or MS2, X# sets the pin high/low.
  3929. */
  3930. inline void gcode_M351() {
  3931. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3932. if (code_seen('S')) switch(code_value_long()) {
  3933. case 1:
  3934. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3935. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3936. break;
  3937. case 2:
  3938. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3939. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3940. break;
  3941. }
  3942. microstep_readings();
  3943. #endif
  3944. }
  3945. /**
  3946. * M999: Restart after being stopped
  3947. */
  3948. inline void gcode_M999() {
  3949. Stopped = false;
  3950. lcd_reset_alert_level();
  3951. gcode_LastN = Stopped_gcode_LastN;
  3952. FlushSerialRequestResend();
  3953. }
  3954. inline void gcode_T() {
  3955. tmp_extruder = code_value();
  3956. if (tmp_extruder >= EXTRUDERS) {
  3957. SERIAL_ECHO_START;
  3958. SERIAL_ECHO("T");
  3959. SERIAL_ECHO(tmp_extruder);
  3960. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3961. }
  3962. else {
  3963. #if EXTRUDERS > 1
  3964. bool make_move = false;
  3965. #endif
  3966. if (code_seen('F')) {
  3967. #if EXTRUDERS > 1
  3968. make_move = true;
  3969. #endif
  3970. next_feedrate = code_value();
  3971. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3972. }
  3973. #if EXTRUDERS > 1
  3974. if (tmp_extruder != active_extruder) {
  3975. // Save current position to return to after applying extruder offset
  3976. memcpy(destination, current_position, sizeof(destination));
  3977. #ifdef DUAL_X_CARRIAGE
  3978. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3979. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3980. // Park old head: 1) raise 2) move to park position 3) lower
  3981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3982. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3983. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3984. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3985. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3986. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3987. st_synchronize();
  3988. }
  3989. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3990. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3991. extruder_offset[Y_AXIS][active_extruder] +
  3992. extruder_offset[Y_AXIS][tmp_extruder];
  3993. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3994. extruder_offset[Z_AXIS][active_extruder] +
  3995. extruder_offset[Z_AXIS][tmp_extruder];
  3996. active_extruder = tmp_extruder;
  3997. // This function resets the max/min values - the current position may be overwritten below.
  3998. axis_is_at_home(X_AXIS);
  3999. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4000. current_position[X_AXIS] = inactive_extruder_x_pos;
  4001. inactive_extruder_x_pos = destination[X_AXIS];
  4002. }
  4003. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4004. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4005. if (active_extruder == 0 || active_extruder_parked)
  4006. current_position[X_AXIS] = inactive_extruder_x_pos;
  4007. else
  4008. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4009. inactive_extruder_x_pos = destination[X_AXIS];
  4010. extruder_duplication_enabled = false;
  4011. }
  4012. else {
  4013. // record raised toolhead position for use by unpark
  4014. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4015. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4016. active_extruder_parked = true;
  4017. delayed_move_time = 0;
  4018. }
  4019. #else // !DUAL_X_CARRIAGE
  4020. // Offset extruder (only by XY)
  4021. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4022. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4023. // Set the new active extruder and position
  4024. active_extruder = tmp_extruder;
  4025. #endif // !DUAL_X_CARRIAGE
  4026. #ifdef DELTA
  4027. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  4028. //sent position to plan_set_position();
  4029. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  4030. #else
  4031. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4032. #endif
  4033. // Move to the old position if 'F' was in the parameters
  4034. if (make_move && !Stopped) prepare_move();
  4035. }
  4036. #ifdef EXT_SOLENOID
  4037. st_synchronize();
  4038. disable_all_solenoids();
  4039. enable_solenoid_on_active_extruder();
  4040. #endif // EXT_SOLENOID
  4041. #endif // EXTRUDERS > 1
  4042. SERIAL_ECHO_START;
  4043. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4044. SERIAL_PROTOCOLLN((int)active_extruder);
  4045. }
  4046. }
  4047. /**
  4048. * Process Commands and dispatch them to handlers
  4049. */
  4050. void process_commands() {
  4051. if (code_seen('G')) {
  4052. int gCode = code_value_long();
  4053. switch(gCode) {
  4054. // G0, G1
  4055. case 0:
  4056. case 1:
  4057. gcode_G0_G1();
  4058. break;
  4059. // G2, G3
  4060. #ifndef SCARA
  4061. case 2: // G2 - CW ARC
  4062. case 3: // G3 - CCW ARC
  4063. gcode_G2_G3(gCode == 2);
  4064. break;
  4065. #endif
  4066. // G4 Dwell
  4067. case 4:
  4068. gcode_G4();
  4069. break;
  4070. #ifdef FWRETRACT
  4071. case 10: // G10: retract
  4072. case 11: // G11: retract_recover
  4073. gcode_G10_G11(gCode == 10);
  4074. break;
  4075. #endif //FWRETRACT
  4076. case 28: // G28: Home all axes, one at a time
  4077. gcode_G28();
  4078. break;
  4079. #if defined(MESH_BED_LEVELING)
  4080. case 29: // G29 Handle mesh based leveling
  4081. gcode_G29();
  4082. break;
  4083. #endif
  4084. #ifdef ENABLE_AUTO_BED_LEVELING
  4085. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4086. gcode_G29();
  4087. break;
  4088. #ifndef Z_PROBE_SLED
  4089. case 30: // G30 Single Z Probe
  4090. gcode_G30();
  4091. break;
  4092. #else // Z_PROBE_SLED
  4093. case 31: // G31: dock the sled
  4094. case 32: // G32: undock the sled
  4095. dock_sled(gCode == 31);
  4096. break;
  4097. #endif // Z_PROBE_SLED
  4098. #endif // ENABLE_AUTO_BED_LEVELING
  4099. case 90: // G90
  4100. relative_mode = false;
  4101. break;
  4102. case 91: // G91
  4103. relative_mode = true;
  4104. break;
  4105. case 92: // G92
  4106. gcode_G92();
  4107. break;
  4108. }
  4109. }
  4110. else if (code_seen('M')) {
  4111. switch( code_value_long() ) {
  4112. #ifdef ULTIPANEL
  4113. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4114. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4115. gcode_M0_M1();
  4116. break;
  4117. #endif // ULTIPANEL
  4118. case 17:
  4119. gcode_M17();
  4120. break;
  4121. #ifdef SDSUPPORT
  4122. case 20: // M20 - list SD card
  4123. gcode_M20(); break;
  4124. case 21: // M21 - init SD card
  4125. gcode_M21(); break;
  4126. case 22: //M22 - release SD card
  4127. gcode_M22(); break;
  4128. case 23: //M23 - Select file
  4129. gcode_M23(); break;
  4130. case 24: //M24 - Start SD print
  4131. gcode_M24(); break;
  4132. case 25: //M25 - Pause SD print
  4133. gcode_M25(); break;
  4134. case 26: //M26 - Set SD index
  4135. gcode_M26(); break;
  4136. case 27: //M27 - Get SD status
  4137. gcode_M27(); break;
  4138. case 28: //M28 - Start SD write
  4139. gcode_M28(); break;
  4140. case 29: //M29 - Stop SD write
  4141. gcode_M29(); break;
  4142. case 30: //M30 <filename> Delete File
  4143. gcode_M30(); break;
  4144. case 32: //M32 - Select file and start SD print
  4145. gcode_M32(); break;
  4146. case 928: //M928 - Start SD write
  4147. gcode_M928(); break;
  4148. #endif //SDSUPPORT
  4149. case 31: //M31 take time since the start of the SD print or an M109 command
  4150. gcode_M31();
  4151. break;
  4152. case 42: //M42 -Change pin status via gcode
  4153. gcode_M42();
  4154. break;
  4155. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4156. case 48: // M48 Z-Probe repeatability
  4157. gcode_M48();
  4158. break;
  4159. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4160. case 104: // M104
  4161. gcode_M104();
  4162. break;
  4163. case 112: // M112 Emergency Stop
  4164. gcode_M112();
  4165. break;
  4166. case 140: // M140 Set bed temp
  4167. gcode_M140();
  4168. break;
  4169. case 105: // M105 Read current temperature
  4170. gcode_M105();
  4171. return;
  4172. break;
  4173. case 109: // M109 Wait for temperature
  4174. gcode_M109();
  4175. break;
  4176. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4177. case 190: // M190 - Wait for bed heater to reach target.
  4178. gcode_M190();
  4179. break;
  4180. #endif //TEMP_BED_PIN
  4181. #if defined(FAN_PIN) && FAN_PIN > -1
  4182. case 106: //M106 Fan On
  4183. gcode_M106();
  4184. break;
  4185. case 107: //M107 Fan Off
  4186. gcode_M107();
  4187. break;
  4188. #endif //FAN_PIN
  4189. #ifdef BARICUDA
  4190. // PWM for HEATER_1_PIN
  4191. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4192. case 126: // M126 valve open
  4193. gcode_M126();
  4194. break;
  4195. case 127: // M127 valve closed
  4196. gcode_M127();
  4197. break;
  4198. #endif //HEATER_1_PIN
  4199. // PWM for HEATER_2_PIN
  4200. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4201. case 128: // M128 valve open
  4202. gcode_M128();
  4203. break;
  4204. case 129: // M129 valve closed
  4205. gcode_M129();
  4206. break;
  4207. #endif //HEATER_2_PIN
  4208. #endif //BARICUDA
  4209. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4210. case 80: // M80 - Turn on Power Supply
  4211. gcode_M80();
  4212. break;
  4213. #endif // PS_ON_PIN
  4214. case 81: // M81 - Turn off Power Supply
  4215. gcode_M81();
  4216. break;
  4217. case 82:
  4218. gcode_M82();
  4219. break;
  4220. case 83:
  4221. gcode_M83();
  4222. break;
  4223. case 18: //compatibility
  4224. case 84: // M84
  4225. gcode_M18_M84();
  4226. break;
  4227. case 85: // M85
  4228. gcode_M85();
  4229. break;
  4230. case 92: // M92
  4231. gcode_M92();
  4232. break;
  4233. case 115: // M115
  4234. gcode_M115();
  4235. break;
  4236. case 117: // M117 display message
  4237. gcode_M117();
  4238. break;
  4239. case 114: // M114
  4240. gcode_M114();
  4241. break;
  4242. case 120: // M120
  4243. gcode_M120();
  4244. break;
  4245. case 121: // M121
  4246. gcode_M121();
  4247. break;
  4248. case 119: // M119
  4249. gcode_M119();
  4250. break;
  4251. //TODO: update for all axis, use for loop
  4252. #ifdef BLINKM
  4253. case 150: // M150
  4254. gcode_M150();
  4255. break;
  4256. #endif //BLINKM
  4257. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4258. gcode_M200();
  4259. break;
  4260. case 201: // M201
  4261. gcode_M201();
  4262. break;
  4263. #if 0 // Not used for Sprinter/grbl gen6
  4264. case 202: // M202
  4265. gcode_M202();
  4266. break;
  4267. #endif
  4268. case 203: // M203 max feedrate mm/sec
  4269. gcode_M203();
  4270. break;
  4271. case 204: // M204 acclereration S normal moves T filmanent only moves
  4272. gcode_M204();
  4273. break;
  4274. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4275. gcode_M205();
  4276. break;
  4277. case 206: // M206 additional homing offset
  4278. gcode_M206();
  4279. break;
  4280. #ifdef DELTA
  4281. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4282. gcode_M665();
  4283. break;
  4284. case 666: // M666 set delta endstop adjustment
  4285. gcode_M666();
  4286. break;
  4287. #elif defined(Z_DUAL_ENDSTOPS)
  4288. case 666: // M666 set delta endstop adjustment
  4289. gcode_M666();
  4290. break;
  4291. #endif // DELTA
  4292. #ifdef FWRETRACT
  4293. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4294. gcode_M207();
  4295. break;
  4296. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4297. gcode_M208();
  4298. break;
  4299. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4300. gcode_M209();
  4301. break;
  4302. #endif // FWRETRACT
  4303. #if EXTRUDERS > 1
  4304. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4305. gcode_M218();
  4306. break;
  4307. #endif
  4308. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4309. gcode_M220();
  4310. break;
  4311. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4312. gcode_M221();
  4313. break;
  4314. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4315. gcode_M226();
  4316. break;
  4317. #if NUM_SERVOS > 0
  4318. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4319. gcode_M280();
  4320. break;
  4321. #endif // NUM_SERVOS > 0
  4322. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4323. case 300: // M300 - Play beep tone
  4324. gcode_M300();
  4325. break;
  4326. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4327. #ifdef PIDTEMP
  4328. case 301: // M301
  4329. gcode_M301();
  4330. break;
  4331. #endif // PIDTEMP
  4332. #ifdef PIDTEMPBED
  4333. case 304: // M304
  4334. gcode_M304();
  4335. break;
  4336. #endif // PIDTEMPBED
  4337. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4338. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4339. gcode_M240();
  4340. break;
  4341. #endif // CHDK || PHOTOGRAPH_PIN
  4342. #ifdef DOGLCD
  4343. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4344. gcode_M250();
  4345. break;
  4346. #endif // DOGLCD
  4347. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4348. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4349. gcode_M302();
  4350. break;
  4351. #endif // PREVENT_DANGEROUS_EXTRUDE
  4352. case 303: // M303 PID autotune
  4353. gcode_M303();
  4354. break;
  4355. #ifdef SCARA
  4356. case 360: // M360 SCARA Theta pos1
  4357. if (gcode_M360()) return;
  4358. break;
  4359. case 361: // M361 SCARA Theta pos2
  4360. if (gcode_M361()) return;
  4361. break;
  4362. case 362: // M362 SCARA Psi pos1
  4363. if (gcode_M362()) return;
  4364. break;
  4365. case 363: // M363 SCARA Psi pos2
  4366. if (gcode_M363()) return;
  4367. break;
  4368. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4369. if (gcode_M364()) return;
  4370. break;
  4371. case 365: // M365 Set SCARA scaling for X Y Z
  4372. gcode_M365();
  4373. break;
  4374. #endif // SCARA
  4375. case 400: // M400 finish all moves
  4376. gcode_M400();
  4377. break;
  4378. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4379. case 401:
  4380. gcode_M401();
  4381. break;
  4382. case 402:
  4383. gcode_M402();
  4384. break;
  4385. #endif
  4386. #ifdef FILAMENT_SENSOR
  4387. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4388. gcode_M404();
  4389. break;
  4390. case 405: //M405 Turn on filament sensor for control
  4391. gcode_M405();
  4392. break;
  4393. case 406: //M406 Turn off filament sensor for control
  4394. gcode_M406();
  4395. break;
  4396. case 407: //M407 Display measured filament diameter
  4397. gcode_M407();
  4398. break;
  4399. #endif // FILAMENT_SENSOR
  4400. case 500: // M500 Store settings in EEPROM
  4401. gcode_M500();
  4402. break;
  4403. case 501: // M501 Read settings from EEPROM
  4404. gcode_M501();
  4405. break;
  4406. case 502: // M502 Revert to default settings
  4407. gcode_M502();
  4408. break;
  4409. case 503: // M503 print settings currently in memory
  4410. gcode_M503();
  4411. break;
  4412. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4413. case 540:
  4414. gcode_M540();
  4415. break;
  4416. #endif
  4417. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4418. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4419. gcode_SET_Z_PROBE_OFFSET();
  4420. break;
  4421. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4422. #ifdef FILAMENTCHANGEENABLE
  4423. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4424. gcode_M600();
  4425. break;
  4426. #endif // FILAMENTCHANGEENABLE
  4427. #ifdef DUAL_X_CARRIAGE
  4428. case 605:
  4429. gcode_M605();
  4430. break;
  4431. #endif // DUAL_X_CARRIAGE
  4432. case 907: // M907 Set digital trimpot motor current using axis codes.
  4433. gcode_M907();
  4434. break;
  4435. #if HAS_DIGIPOTSS
  4436. case 908: // M908 Control digital trimpot directly.
  4437. gcode_M908();
  4438. break;
  4439. #endif // HAS_DIGIPOTSS
  4440. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4441. gcode_M350();
  4442. break;
  4443. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4444. gcode_M351();
  4445. break;
  4446. case 999: // M999: Restart after being Stopped
  4447. gcode_M999();
  4448. break;
  4449. }
  4450. }
  4451. else if (code_seen('T')) {
  4452. gcode_T();
  4453. }
  4454. else {
  4455. SERIAL_ECHO_START;
  4456. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4457. SERIAL_ECHO(cmdbuffer[bufindr]);
  4458. SERIAL_ECHOLNPGM("\"");
  4459. }
  4460. ClearToSend();
  4461. }
  4462. void FlushSerialRequestResend()
  4463. {
  4464. //char cmdbuffer[bufindr][100]="Resend:";
  4465. MYSERIAL.flush();
  4466. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4467. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4468. ClearToSend();
  4469. }
  4470. void ClearToSend()
  4471. {
  4472. previous_millis_cmd = millis();
  4473. #ifdef SDSUPPORT
  4474. if(fromsd[bufindr])
  4475. return;
  4476. #endif //SDSUPPORT
  4477. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4478. }
  4479. void get_coordinates() {
  4480. for (int i = 0; i < NUM_AXIS; i++) {
  4481. float dest;
  4482. if (code_seen(axis_codes[i])) {
  4483. dest = code_value();
  4484. if (axis_relative_modes[i] || relative_mode)
  4485. dest += current_position[i];
  4486. }
  4487. else
  4488. dest = current_position[i];
  4489. destination[i] = dest;
  4490. }
  4491. if (code_seen('F')) {
  4492. next_feedrate = code_value();
  4493. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4494. }
  4495. }
  4496. void get_arc_coordinates()
  4497. {
  4498. #ifdef SF_ARC_FIX
  4499. bool relative_mode_backup = relative_mode;
  4500. relative_mode = true;
  4501. #endif
  4502. get_coordinates();
  4503. #ifdef SF_ARC_FIX
  4504. relative_mode=relative_mode_backup;
  4505. #endif
  4506. if(code_seen('I')) {
  4507. offset[0] = code_value();
  4508. }
  4509. else {
  4510. offset[0] = 0.0;
  4511. }
  4512. if(code_seen('J')) {
  4513. offset[1] = code_value();
  4514. }
  4515. else {
  4516. offset[1] = 0.0;
  4517. }
  4518. }
  4519. void clamp_to_software_endstops(float target[3])
  4520. {
  4521. if (min_software_endstops) {
  4522. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4523. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4524. float negative_z_offset = 0;
  4525. #ifdef ENABLE_AUTO_BED_LEVELING
  4526. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4527. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4528. #endif
  4529. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4530. }
  4531. if (max_software_endstops) {
  4532. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4533. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4534. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4535. }
  4536. }
  4537. #ifdef DELTA
  4538. void recalc_delta_settings(float radius, float diagonal_rod)
  4539. {
  4540. delta_tower1_x= -SIN_60*radius; // front left tower
  4541. delta_tower1_y= -COS_60*radius;
  4542. delta_tower2_x= SIN_60*radius; // front right tower
  4543. delta_tower2_y= -COS_60*radius;
  4544. delta_tower3_x= 0.0; // back middle tower
  4545. delta_tower3_y= radius;
  4546. delta_diagonal_rod_2= sq(diagonal_rod);
  4547. }
  4548. void calculate_delta(float cartesian[3])
  4549. {
  4550. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4551. - sq(delta_tower1_x-cartesian[X_AXIS])
  4552. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4553. ) + cartesian[Z_AXIS];
  4554. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4555. - sq(delta_tower2_x-cartesian[X_AXIS])
  4556. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4557. ) + cartesian[Z_AXIS];
  4558. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4559. - sq(delta_tower3_x-cartesian[X_AXIS])
  4560. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4561. ) + cartesian[Z_AXIS];
  4562. /*
  4563. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4564. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4565. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4566. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4567. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4568. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4569. */
  4570. }
  4571. #ifdef ENABLE_AUTO_BED_LEVELING
  4572. // Adjust print surface height by linear interpolation over the bed_level array.
  4573. int delta_grid_spacing[2] = { 0, 0 };
  4574. void adjust_delta(float cartesian[3])
  4575. {
  4576. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4577. return; // G29 not done
  4578. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4579. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4580. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4581. int floor_x = floor(grid_x);
  4582. int floor_y = floor(grid_y);
  4583. float ratio_x = grid_x - floor_x;
  4584. float ratio_y = grid_y - floor_y;
  4585. float z1 = bed_level[floor_x+half][floor_y+half];
  4586. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4587. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4588. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4589. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4590. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4591. float offset = (1-ratio_x)*left + ratio_x*right;
  4592. delta[X_AXIS] += offset;
  4593. delta[Y_AXIS] += offset;
  4594. delta[Z_AXIS] += offset;
  4595. /*
  4596. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4597. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4598. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4599. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4600. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4601. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4602. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4603. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4604. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4605. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4606. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4607. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4608. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4609. */
  4610. }
  4611. #endif //ENABLE_AUTO_BED_LEVELING
  4612. void prepare_move_raw()
  4613. {
  4614. previous_millis_cmd = millis();
  4615. calculate_delta(destination);
  4616. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4617. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4618. active_extruder);
  4619. for(int8_t i=0; i < NUM_AXIS; i++) {
  4620. current_position[i] = destination[i];
  4621. }
  4622. }
  4623. #endif //DELTA
  4624. #if defined(MESH_BED_LEVELING)
  4625. #if !defined(MIN)
  4626. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4627. #endif // ! MIN
  4628. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4629. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4630. {
  4631. if (!mbl.active) {
  4632. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4633. for(int8_t i=0; i < NUM_AXIS; i++) {
  4634. current_position[i] = destination[i];
  4635. }
  4636. return;
  4637. }
  4638. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4639. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4640. int ix = mbl.select_x_index(x);
  4641. int iy = mbl.select_y_index(y);
  4642. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4643. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4644. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4645. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4646. if (pix == ix && piy == iy) {
  4647. // Start and end on same mesh square
  4648. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4649. for(int8_t i=0; i < NUM_AXIS; i++) {
  4650. current_position[i] = destination[i];
  4651. }
  4652. return;
  4653. }
  4654. float nx, ny, ne, normalized_dist;
  4655. if (ix > pix && (x_splits) & BIT(ix)) {
  4656. nx = mbl.get_x(ix);
  4657. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4658. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4659. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4660. x_splits ^= BIT(ix);
  4661. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4662. nx = mbl.get_x(pix);
  4663. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4664. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4665. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4666. x_splits ^= BIT(pix);
  4667. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4668. ny = mbl.get_y(iy);
  4669. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4670. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4671. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4672. y_splits ^= BIT(iy);
  4673. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4674. ny = mbl.get_y(piy);
  4675. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4676. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4677. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4678. y_splits ^= BIT(piy);
  4679. } else {
  4680. // Already split on a border
  4681. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4682. for(int8_t i=0; i < NUM_AXIS; i++) {
  4683. current_position[i] = destination[i];
  4684. }
  4685. return;
  4686. }
  4687. // Do the split and look for more borders
  4688. destination[X_AXIS] = nx;
  4689. destination[Y_AXIS] = ny;
  4690. destination[E_AXIS] = ne;
  4691. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4692. destination[X_AXIS] = x;
  4693. destination[Y_AXIS] = y;
  4694. destination[E_AXIS] = e;
  4695. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4696. }
  4697. #endif // MESH_BED_LEVELING
  4698. void prepare_move()
  4699. {
  4700. clamp_to_software_endstops(destination);
  4701. previous_millis_cmd = millis();
  4702. #ifdef SCARA //for now same as delta-code
  4703. float difference[NUM_AXIS];
  4704. for (int8_t i=0; i < NUM_AXIS; i++) {
  4705. difference[i] = destination[i] - current_position[i];
  4706. }
  4707. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4708. sq(difference[Y_AXIS]) +
  4709. sq(difference[Z_AXIS]));
  4710. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4711. if (cartesian_mm < 0.000001) { return; }
  4712. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4713. int steps = max(1, int(scara_segments_per_second * seconds));
  4714. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4715. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4716. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4717. for (int s = 1; s <= steps; s++) {
  4718. float fraction = float(s) / float(steps);
  4719. for(int8_t i=0; i < NUM_AXIS; i++) {
  4720. destination[i] = current_position[i] + difference[i] * fraction;
  4721. }
  4722. calculate_delta(destination);
  4723. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4724. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4725. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4726. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4727. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4728. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4729. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4730. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4731. active_extruder);
  4732. }
  4733. #endif // SCARA
  4734. #ifdef DELTA
  4735. float difference[NUM_AXIS];
  4736. for (int8_t i=0; i < NUM_AXIS; i++) {
  4737. difference[i] = destination[i] - current_position[i];
  4738. }
  4739. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4740. sq(difference[Y_AXIS]) +
  4741. sq(difference[Z_AXIS]));
  4742. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4743. if (cartesian_mm < 0.000001) { return; }
  4744. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4745. int steps = max(1, int(delta_segments_per_second * seconds));
  4746. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4747. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4748. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4749. for (int s = 1; s <= steps; s++) {
  4750. float fraction = float(s) / float(steps);
  4751. for(int8_t i=0; i < NUM_AXIS; i++) {
  4752. destination[i] = current_position[i] + difference[i] * fraction;
  4753. }
  4754. calculate_delta(destination);
  4755. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4756. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4757. active_extruder);
  4758. }
  4759. #endif // DELTA
  4760. #ifdef DUAL_X_CARRIAGE
  4761. if (active_extruder_parked)
  4762. {
  4763. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4764. {
  4765. // move duplicate extruder into correct duplication position.
  4766. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4767. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4768. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4770. st_synchronize();
  4771. extruder_duplication_enabled = true;
  4772. active_extruder_parked = false;
  4773. }
  4774. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4775. {
  4776. if (current_position[E_AXIS] == destination[E_AXIS])
  4777. {
  4778. // this is a travel move - skit it but keep track of current position (so that it can later
  4779. // be used as start of first non-travel move)
  4780. if (delayed_move_time != 0xFFFFFFFFUL)
  4781. {
  4782. memcpy(current_position, destination, sizeof(current_position));
  4783. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4784. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4785. delayed_move_time = millis();
  4786. return;
  4787. }
  4788. }
  4789. delayed_move_time = 0;
  4790. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4791. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4793. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4795. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4796. active_extruder_parked = false;
  4797. }
  4798. }
  4799. #endif //DUAL_X_CARRIAGE
  4800. #if ! (defined DELTA || defined SCARA)
  4801. // Do not use feedmultiply for E or Z only moves
  4802. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4803. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4804. } else {
  4805. #if defined(MESH_BED_LEVELING)
  4806. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4807. return;
  4808. #else
  4809. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4810. #endif // MESH_BED_LEVELING
  4811. }
  4812. #endif // !(DELTA || SCARA)
  4813. for(int8_t i=0; i < NUM_AXIS; i++) {
  4814. current_position[i] = destination[i];
  4815. }
  4816. }
  4817. void prepare_arc_move(char isclockwise) {
  4818. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4819. // Trace the arc
  4820. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4821. // As far as the parser is concerned, the position is now == target. In reality the
  4822. // motion control system might still be processing the action and the real tool position
  4823. // in any intermediate location.
  4824. for(int8_t i=0; i < NUM_AXIS; i++) {
  4825. current_position[i] = destination[i];
  4826. }
  4827. previous_millis_cmd = millis();
  4828. }
  4829. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4830. #if defined(FAN_PIN)
  4831. #if CONTROLLERFAN_PIN == FAN_PIN
  4832. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4833. #endif
  4834. #endif
  4835. unsigned long lastMotor = 0; // Last time a motor was turned on
  4836. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4837. void controllerFan() {
  4838. uint32_t ms = millis();
  4839. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4840. lastMotorCheck = ms;
  4841. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4842. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4843. #if EXTRUDERS > 1
  4844. || E1_ENABLE_READ == E_ENABLE_ON
  4845. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4846. || X2_ENABLE_READ == X_ENABLE_ON
  4847. #endif
  4848. #if EXTRUDERS > 2
  4849. || E2_ENABLE_READ == E_ENABLE_ON
  4850. #if EXTRUDERS > 3
  4851. || E3_ENABLE_READ == E_ENABLE_ON
  4852. #endif
  4853. #endif
  4854. #endif
  4855. ) {
  4856. lastMotor = ms; //... set time to NOW so the fan will turn on
  4857. }
  4858. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4859. // allows digital or PWM fan output to be used (see M42 handling)
  4860. digitalWrite(CONTROLLERFAN_PIN, speed);
  4861. analogWrite(CONTROLLERFAN_PIN, speed);
  4862. }
  4863. }
  4864. #endif
  4865. #ifdef SCARA
  4866. void calculate_SCARA_forward_Transform(float f_scara[3])
  4867. {
  4868. // Perform forward kinematics, and place results in delta[3]
  4869. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4870. float x_sin, x_cos, y_sin, y_cos;
  4871. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4872. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4873. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4874. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4875. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4876. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4877. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4878. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4879. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4880. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4881. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4882. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4883. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4884. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4885. }
  4886. void calculate_delta(float cartesian[3]){
  4887. //reverse kinematics.
  4888. // Perform reversed kinematics, and place results in delta[3]
  4889. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4890. float SCARA_pos[2];
  4891. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4892. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4893. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4894. #if (Linkage_1 == Linkage_2)
  4895. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4896. #else
  4897. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4898. #endif
  4899. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4900. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4901. SCARA_K2 = Linkage_2 * SCARA_S2;
  4902. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4903. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4904. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4905. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4906. delta[Z_AXIS] = cartesian[Z_AXIS];
  4907. /*
  4908. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4909. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4910. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4911. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4912. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4913. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4914. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4915. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4916. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4917. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4918. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4919. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4920. SERIAL_ECHOLN(" ");*/
  4921. }
  4922. #endif
  4923. #ifdef TEMP_STAT_LEDS
  4924. static bool blue_led = false;
  4925. static bool red_led = false;
  4926. static uint32_t stat_update = 0;
  4927. void handle_status_leds(void) {
  4928. float max_temp = 0.0;
  4929. if(millis() > stat_update) {
  4930. stat_update += 500; // Update every 0.5s
  4931. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4932. max_temp = max(max_temp, degHotend(cur_extruder));
  4933. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4934. }
  4935. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4936. max_temp = max(max_temp, degTargetBed());
  4937. max_temp = max(max_temp, degBed());
  4938. #endif
  4939. if((max_temp > 55.0) && (red_led == false)) {
  4940. digitalWrite(STAT_LED_RED, 1);
  4941. digitalWrite(STAT_LED_BLUE, 0);
  4942. red_led = true;
  4943. blue_led = false;
  4944. }
  4945. if((max_temp < 54.0) && (blue_led == false)) {
  4946. digitalWrite(STAT_LED_RED, 0);
  4947. digitalWrite(STAT_LED_BLUE, 1);
  4948. red_led = false;
  4949. blue_led = true;
  4950. }
  4951. }
  4952. }
  4953. #endif
  4954. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4955. {
  4956. #if defined(KILL_PIN) && KILL_PIN > -1
  4957. static int killCount = 0; // make the inactivity button a bit less responsive
  4958. const int KILL_DELAY = 750;
  4959. #endif
  4960. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4961. if(card.sdprinting) {
  4962. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4963. filrunout(); }
  4964. #endif
  4965. #if defined(HOME_PIN) && HOME_PIN > -1
  4966. static int homeDebounceCount = 0; // poor man's debouncing count
  4967. const int HOME_DEBOUNCE_DELAY = 750;
  4968. #endif
  4969. if(buflen < (BUFSIZE-1))
  4970. get_command();
  4971. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4972. if(max_inactive_time)
  4973. kill();
  4974. if(stepper_inactive_time) {
  4975. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4976. {
  4977. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4978. disable_x();
  4979. disable_y();
  4980. disable_z();
  4981. disable_e0();
  4982. disable_e1();
  4983. disable_e2();
  4984. disable_e3();
  4985. }
  4986. }
  4987. }
  4988. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4989. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4990. {
  4991. chdkActive = false;
  4992. WRITE(CHDK, LOW);
  4993. }
  4994. #endif
  4995. #if defined(KILL_PIN) && KILL_PIN > -1
  4996. // Check if the kill button was pressed and wait just in case it was an accidental
  4997. // key kill key press
  4998. // -------------------------------------------------------------------------------
  4999. if( 0 == READ(KILL_PIN) )
  5000. {
  5001. killCount++;
  5002. }
  5003. else if (killCount > 0)
  5004. {
  5005. killCount--;
  5006. }
  5007. // Exceeded threshold and we can confirm that it was not accidental
  5008. // KILL the machine
  5009. // ----------------------------------------------------------------
  5010. if ( killCount >= KILL_DELAY)
  5011. {
  5012. kill();
  5013. }
  5014. #endif
  5015. #if defined(HOME_PIN) && HOME_PIN > -1
  5016. // Check to see if we have to home, use poor man's debouncer
  5017. // ---------------------------------------------------------
  5018. if ( 0 == READ(HOME_PIN) )
  5019. {
  5020. if (homeDebounceCount == 0)
  5021. {
  5022. enquecommands_P((PSTR("G28")));
  5023. homeDebounceCount++;
  5024. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5025. }
  5026. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5027. {
  5028. homeDebounceCount++;
  5029. }
  5030. else
  5031. {
  5032. homeDebounceCount = 0;
  5033. }
  5034. }
  5035. #endif
  5036. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5037. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5038. #endif
  5039. #ifdef EXTRUDER_RUNOUT_PREVENT
  5040. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5041. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5042. {
  5043. bool oldstatus=E0_ENABLE_READ;
  5044. enable_e0();
  5045. float oldepos=current_position[E_AXIS];
  5046. float oldedes=destination[E_AXIS];
  5047. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5048. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5049. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5050. current_position[E_AXIS]=oldepos;
  5051. destination[E_AXIS]=oldedes;
  5052. plan_set_e_position(oldepos);
  5053. previous_millis_cmd=millis();
  5054. st_synchronize();
  5055. E0_ENABLE_WRITE(oldstatus);
  5056. }
  5057. #endif
  5058. #if defined(DUAL_X_CARRIAGE)
  5059. // handle delayed move timeout
  5060. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5061. {
  5062. // travel moves have been received so enact them
  5063. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5064. memcpy(destination,current_position,sizeof(destination));
  5065. prepare_move();
  5066. }
  5067. #endif
  5068. #ifdef TEMP_STAT_LEDS
  5069. handle_status_leds();
  5070. #endif
  5071. check_axes_activity();
  5072. }
  5073. void kill()
  5074. {
  5075. cli(); // Stop interrupts
  5076. disable_heater();
  5077. disable_x();
  5078. disable_y();
  5079. disable_z();
  5080. disable_e0();
  5081. disable_e1();
  5082. disable_e2();
  5083. disable_e3();
  5084. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5085. pinMode(PS_ON_PIN,INPUT);
  5086. #endif
  5087. SERIAL_ERROR_START;
  5088. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5089. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5090. // FMC small patch to update the LCD before ending
  5091. sei(); // enable interrupts
  5092. for ( int i=5; i--; lcd_update())
  5093. {
  5094. delay(200);
  5095. }
  5096. cli(); // disable interrupts
  5097. suicide();
  5098. while(1) { /* Intentionally left empty */ } // Wait for reset
  5099. }
  5100. #ifdef FILAMENT_RUNOUT_SENSOR
  5101. void filrunout()
  5102. {
  5103. if filrunoutEnqued == false {
  5104. filrunoutEnqued = true;
  5105. enquecommand("M600");
  5106. }
  5107. }
  5108. #endif
  5109. void Stop()
  5110. {
  5111. disable_heater();
  5112. if(Stopped == false) {
  5113. Stopped = true;
  5114. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5115. SERIAL_ERROR_START;
  5116. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5117. LCD_MESSAGEPGM(MSG_STOPPED);
  5118. }
  5119. }
  5120. bool IsStopped() { return Stopped; };
  5121. #ifdef FAST_PWM_FAN
  5122. void setPwmFrequency(uint8_t pin, int val)
  5123. {
  5124. val &= 0x07;
  5125. switch(digitalPinToTimer(pin))
  5126. {
  5127. #if defined(TCCR0A)
  5128. case TIMER0A:
  5129. case TIMER0B:
  5130. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5131. // TCCR0B |= val;
  5132. break;
  5133. #endif
  5134. #if defined(TCCR1A)
  5135. case TIMER1A:
  5136. case TIMER1B:
  5137. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5138. // TCCR1B |= val;
  5139. break;
  5140. #endif
  5141. #if defined(TCCR2)
  5142. case TIMER2:
  5143. case TIMER2:
  5144. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5145. TCCR2 |= val;
  5146. break;
  5147. #endif
  5148. #if defined(TCCR2A)
  5149. case TIMER2A:
  5150. case TIMER2B:
  5151. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5152. TCCR2B |= val;
  5153. break;
  5154. #endif
  5155. #if defined(TCCR3A)
  5156. case TIMER3A:
  5157. case TIMER3B:
  5158. case TIMER3C:
  5159. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5160. TCCR3B |= val;
  5161. break;
  5162. #endif
  5163. #if defined(TCCR4A)
  5164. case TIMER4A:
  5165. case TIMER4B:
  5166. case TIMER4C:
  5167. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5168. TCCR4B |= val;
  5169. break;
  5170. #endif
  5171. #if defined(TCCR5A)
  5172. case TIMER5A:
  5173. case TIMER5B:
  5174. case TIMER5C:
  5175. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5176. TCCR5B |= val;
  5177. break;
  5178. #endif
  5179. }
  5180. }
  5181. #endif //FAST_PWM_FAN
  5182. bool setTargetedHotend(int code){
  5183. tmp_extruder = active_extruder;
  5184. if(code_seen('T')) {
  5185. tmp_extruder = code_value();
  5186. if(tmp_extruder >= EXTRUDERS) {
  5187. SERIAL_ECHO_START;
  5188. switch(code){
  5189. case 104:
  5190. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5191. break;
  5192. case 105:
  5193. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5194. break;
  5195. case 109:
  5196. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5197. break;
  5198. case 218:
  5199. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5200. break;
  5201. case 221:
  5202. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5203. break;
  5204. }
  5205. SERIAL_ECHOLN(tmp_extruder);
  5206. return true;
  5207. }
  5208. }
  5209. return false;
  5210. }
  5211. float calculate_volumetric_multiplier(float diameter) {
  5212. if (!volumetric_enabled || diameter == 0) return 1.0;
  5213. float d2 = diameter * 0.5;
  5214. return 1.0 / (M_PI * d2 * d2);
  5215. }
  5216. void calculate_volumetric_multipliers() {
  5217. for (int i=0; i<EXTRUDERS; i++)
  5218. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5219. }