My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

configuration_store.cpp 101KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V74"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../core/language.h"
  50. #include "../libs/vector_3.h" // for matrix_3x3
  51. #include "../gcode/gcode.h"
  52. #include "../MarlinCore.h"
  53. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  54. #include "../HAL/shared/persistent_store_api.h"
  55. #endif
  56. #include "probe.h"
  57. #if HAS_LEVELING
  58. #include "../feature/bedlevel/bedlevel.h"
  59. #endif
  60. #if ENABLED(EXTENSIBLE_UI)
  61. #include "../lcd/extensible_ui/ui_api.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_SERVOS && HAS_SERVO_ANGLES
  67. #define EEPROM_NUM_SERVOS NUM_SERVOS
  68. #else
  69. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  70. #endif
  71. #include "../feature/fwretract.h"
  72. #if ENABLED(POWER_LOSS_RECOVERY)
  73. #include "../feature/power_loss_recovery.h"
  74. #endif
  75. #include "../feature/pause.h"
  76. #if ENABLED(BACKLASH_COMPENSATION)
  77. #include "../feature/backlash.h"
  78. #endif
  79. #if HAS_FILAMENT_SENSOR
  80. #include "../feature/runout.h"
  81. #endif
  82. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  83. extern float saved_extruder_advance_K[EXTRUDERS];
  84. #endif
  85. #if EXTRUDERS > 1
  86. #include "tool_change.h"
  87. void M217_report(const bool eeprom);
  88. #endif
  89. #if ENABLED(BLTOUCH)
  90. #include "../feature/bltouch.h"
  91. #endif
  92. #if HAS_TRINAMIC
  93. #include "stepper/indirection.h"
  94. #include "../feature/tmc_util.h"
  95. #endif
  96. #if ENABLED(PROBE_TEMP_COMPENSATION)
  97. #include "../feature/probe_temp_compensation.h"
  98. #endif
  99. #pragma pack(push, 1) // No padding between variables
  100. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  101. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  102. typedef struct { int16_t X, Y, Z, X2; } tmc_sgt_t;
  103. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t;
  104. // Limit an index to an array size
  105. #define ALIM(I,ARR) _MIN(I, COUNT(ARR) - 1)
  106. // Defaults for reset / fill in on load
  107. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  108. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  109. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  110. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  111. /**
  112. * Current EEPROM Layout
  113. *
  114. * Keep this data structure up to date so
  115. * EEPROM size is known at compile time!
  116. */
  117. typedef struct SettingsDataStruct {
  118. char version[4]; // Vnn\0
  119. uint16_t crc; // Data Checksum
  120. //
  121. // DISTINCT_E_FACTORS
  122. //
  123. uint8_t esteppers; // XYZE_N - XYZ
  124. planner_settings_t planner_settings;
  125. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  126. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  127. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  128. #if HAS_HOTEND_OFFSET
  129. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  130. #endif
  131. //
  132. // FILAMENT_RUNOUT_SENSOR
  133. //
  134. bool runout_sensor_enabled; // M412 S
  135. float runout_distance_mm; // M412 D
  136. //
  137. // ENABLE_LEVELING_FADE_HEIGHT
  138. //
  139. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  140. //
  141. // MESH_BED_LEVELING
  142. //
  143. float mbl_z_offset; // mbl.z_offset
  144. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  145. #if ENABLED(MESH_BED_LEVELING)
  146. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  147. #else
  148. float mbl_z_values[3][3];
  149. #endif
  150. //
  151. // HAS_BED_PROBE
  152. //
  153. xyz_pos_t probe_offset;
  154. //
  155. // ABL_PLANAR
  156. //
  157. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  158. //
  159. // AUTO_BED_LEVELING_BILINEAR
  160. //
  161. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  162. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  163. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  164. bed_mesh_t z_values; // G29
  165. #else
  166. float z_values[3][3];
  167. #endif
  168. //
  169. // AUTO_BED_LEVELING_UBL
  170. //
  171. bool planner_leveling_active; // M420 S planner.leveling_active
  172. int8_t ubl_storage_slot; // ubl.storage_slot
  173. //
  174. // SERVO_ANGLES
  175. //
  176. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  177. //
  178. // Temperature first layer compensation values
  179. //
  180. #if ENABLED(PROBE_TEMP_COMPENSATION)
  181. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  182. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  183. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  184. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  185. #endif
  186. ;
  187. #endif
  188. //
  189. // BLTOUCH
  190. //
  191. bool bltouch_last_written_mode;
  192. //
  193. // DELTA / [XYZ]_DUAL_ENDSTOPS
  194. //
  195. #if ENABLED(DELTA)
  196. float delta_height; // M666 H
  197. abc_float_t delta_endstop_adj; // M666 XYZ
  198. float delta_radius, // M665 R
  199. delta_diagonal_rod, // M665 L
  200. delta_segments_per_second; // M665 S
  201. abc_float_t delta_tower_angle_trim; // M665 XYZ
  202. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  203. float x2_endstop_adj, // M666 X
  204. y2_endstop_adj, // M666 Y
  205. z2_endstop_adj, // M666 Z (S2)
  206. z3_endstop_adj; // M666 Z (S3)
  207. #endif
  208. //
  209. // ULTIPANEL
  210. //
  211. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  212. ui_preheat_bed_temp[2]; // M145 S0 B
  213. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  214. //
  215. // PIDTEMP
  216. //
  217. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  218. int16_t lpq_len; // M301 L
  219. //
  220. // PIDTEMPBED
  221. //
  222. PID_t bedPID; // M304 PID / M303 E-1 U
  223. //
  224. // User-defined Thermistors
  225. //
  226. #if HAS_USER_THERMISTORS
  227. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  228. #endif
  229. //
  230. // HAS_LCD_CONTRAST
  231. //
  232. int16_t lcd_contrast; // M250 C
  233. //
  234. // POWER_LOSS_RECOVERY
  235. //
  236. bool recovery_enabled; // M413 S
  237. //
  238. // FWRETRACT
  239. //
  240. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  241. bool autoretract_enabled; // M209 S
  242. //
  243. // !NO_VOLUMETRIC
  244. //
  245. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  246. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  247. //
  248. // HAS_TRINAMIC
  249. //
  250. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  251. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  252. tmc_sgt_t tmc_sgt; // M914 X Y Z X2
  253. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  254. //
  255. // LIN_ADVANCE
  256. //
  257. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  258. //
  259. // HAS_MOTOR_CURRENT_PWM
  260. //
  261. uint32_t motor_current_setting[3]; // M907 X Z E
  262. //
  263. // CNC_COORDINATE_SYSTEMS
  264. //
  265. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  266. //
  267. // SKEW_CORRECTION
  268. //
  269. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  270. //
  271. // ADVANCED_PAUSE_FEATURE
  272. //
  273. #if EXTRUDERS
  274. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  275. #endif
  276. //
  277. // Tool-change settings
  278. //
  279. #if EXTRUDERS > 1
  280. toolchange_settings_t toolchange_settings; // M217 S P R
  281. #endif
  282. //
  283. // BACKLASH_COMPENSATION
  284. //
  285. xyz_float_t backlash_distance_mm; // M425 X Y Z
  286. uint8_t backlash_correction; // M425 F
  287. float backlash_smoothing_mm; // M425 S
  288. //
  289. // EXTENSIBLE_UI
  290. //
  291. #if ENABLED(EXTENSIBLE_UI)
  292. // This is a significant hardware change; don't reserve space when not present
  293. uint8_t extui_data[ExtUI::eeprom_data_size];
  294. #endif
  295. } SettingsData;
  296. //static_assert(sizeof(SettingsData) <= E2END + 1, "EEPROM too small to contain SettingsData!");
  297. MarlinSettings settings;
  298. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  299. /**
  300. * Post-process after Retrieve or Reset
  301. */
  302. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  303. float new_z_fade_height;
  304. #endif
  305. void MarlinSettings::postprocess() {
  306. xyze_pos_t oldpos = current_position;
  307. // steps per s2 needs to be updated to agree with units per s2
  308. planner.reset_acceleration_rates();
  309. // Make sure delta kinematics are updated before refreshing the
  310. // planner position so the stepper counts will be set correctly.
  311. #if ENABLED(DELTA)
  312. recalc_delta_settings();
  313. #endif
  314. #if ENABLED(PIDTEMP)
  315. thermalManager.updatePID();
  316. #endif
  317. #if DISABLED(NO_VOLUMETRICS)
  318. planner.calculate_volumetric_multipliers();
  319. #elif EXTRUDERS
  320. for (uint8_t i = COUNT(planner.e_factor); i--;)
  321. planner.refresh_e_factor(i);
  322. #endif
  323. // Software endstops depend on home_offset
  324. LOOP_XYZ(i) {
  325. update_workspace_offset((AxisEnum)i);
  326. update_software_endstops((AxisEnum)i);
  327. }
  328. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  329. set_z_fade_height(new_z_fade_height, false); // false = no report
  330. #endif
  331. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  332. refresh_bed_level();
  333. #endif
  334. #if HAS_MOTOR_CURRENT_PWM
  335. stepper.refresh_motor_power();
  336. #endif
  337. #if ENABLED(FWRETRACT)
  338. fwretract.refresh_autoretract();
  339. #endif
  340. #if HAS_LINEAR_E_JERK
  341. planner.recalculate_max_e_jerk();
  342. #endif
  343. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  344. // and init stepper.count[], planner.position[] with current_position
  345. planner.refresh_positioning();
  346. // Various factors can change the current position
  347. if (oldpos != current_position)
  348. report_current_position();
  349. }
  350. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  351. #include "printcounter.h"
  352. static_assert(
  353. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  354. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  355. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  356. );
  357. #endif
  358. #if ENABLED(SD_FIRMWARE_UPDATE)
  359. #if ENABLED(EEPROM_SETTINGS)
  360. static_assert(
  361. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  362. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  363. );
  364. #endif
  365. bool MarlinSettings::sd_update_status() {
  366. uint8_t val;
  367. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  368. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  369. }
  370. bool MarlinSettings::set_sd_update_status(const bool enable) {
  371. if (enable != sd_update_status())
  372. persistentStore.write_data(
  373. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  374. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  375. );
  376. return true;
  377. }
  378. #endif // SD_FIRMWARE_UPDATE
  379. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  380. static_assert(
  381. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  382. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  383. );
  384. #endif
  385. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  386. #include "../core/debug_out.h"
  387. #if ENABLED(EEPROM_SETTINGS)
  388. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  389. int eeprom_index = EEPROM_OFFSET
  390. #define EEPROM_FINISH() persistentStore.access_finish()
  391. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  392. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  393. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  394. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  395. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  396. #if ENABLED(DEBUG_EEPROM_READWRITE)
  397. #define _FIELD_TEST(FIELD) \
  398. EEPROM_ASSERT( \
  399. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  400. "Field " STRINGIFY(FIELD) " mismatch." \
  401. )
  402. #else
  403. #define _FIELD_TEST(FIELD) NOOP
  404. #endif
  405. const char version[4] = EEPROM_VERSION;
  406. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  407. bool MarlinSettings::size_error(const uint16_t size) {
  408. if (size != datasize()) {
  409. DEBUG_ERROR_MSG("EEPROM datasize error.");
  410. return true;
  411. }
  412. return false;
  413. }
  414. /**
  415. * M500 - Store Configuration
  416. */
  417. bool MarlinSettings::save() {
  418. float dummy = 0;
  419. char ver[4] = "ERR";
  420. uint16_t working_crc = 0;
  421. EEPROM_START();
  422. eeprom_error = false;
  423. #if ENABLED(FLASH_EEPROM_EMULATION)
  424. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  425. #else
  426. EEPROM_WRITE(ver); // invalidate data first
  427. #endif
  428. EEPROM_SKIP(working_crc); // Skip the checksum slot
  429. working_crc = 0; // clear before first "real data"
  430. _FIELD_TEST(esteppers);
  431. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  432. EEPROM_WRITE(esteppers);
  433. //
  434. // Planner Motion
  435. //
  436. {
  437. EEPROM_WRITE(planner.settings);
  438. #if HAS_CLASSIC_JERK
  439. EEPROM_WRITE(planner.max_jerk);
  440. #if HAS_LINEAR_E_JERK
  441. dummy = float(DEFAULT_EJERK);
  442. EEPROM_WRITE(dummy);
  443. #endif
  444. #else
  445. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  446. EEPROM_WRITE(planner_max_jerk);
  447. #endif
  448. #if DISABLED(CLASSIC_JERK)
  449. EEPROM_WRITE(planner.junction_deviation_mm);
  450. #else
  451. dummy = 0.02f;
  452. EEPROM_WRITE(dummy);
  453. #endif
  454. }
  455. //
  456. // Home Offset
  457. //
  458. {
  459. _FIELD_TEST(home_offset);
  460. #if HAS_SCARA_OFFSET
  461. EEPROM_WRITE(scara_home_offset);
  462. #else
  463. #if !HAS_HOME_OFFSET
  464. const xyz_pos_t home_offset{0};
  465. #endif
  466. EEPROM_WRITE(home_offset);
  467. #endif
  468. #if HAS_HOTEND_OFFSET
  469. // Skip hotend 0 which must be 0
  470. for (uint8_t e = 1; e < HOTENDS; e++)
  471. EEPROM_WRITE(hotend_offset[e]);
  472. #endif
  473. }
  474. //
  475. // Filament Runout Sensor
  476. //
  477. {
  478. #if HAS_FILAMENT_SENSOR
  479. const bool &runout_sensor_enabled = runout.enabled;
  480. #else
  481. const bool runout_sensor_enabled = true;
  482. #endif
  483. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  484. const float &runout_distance_mm = runout.runout_distance();
  485. #else
  486. const float runout_distance_mm = 0;
  487. #endif
  488. _FIELD_TEST(runout_sensor_enabled);
  489. EEPROM_WRITE(runout_sensor_enabled);
  490. EEPROM_WRITE(runout_distance_mm);
  491. }
  492. //
  493. // Global Leveling
  494. //
  495. {
  496. const float zfh = (
  497. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  498. planner.z_fade_height
  499. #else
  500. 10.0
  501. #endif
  502. );
  503. EEPROM_WRITE(zfh);
  504. }
  505. //
  506. // Mesh Bed Leveling
  507. //
  508. {
  509. #if ENABLED(MESH_BED_LEVELING)
  510. // Compile time test that sizeof(mbl.z_values) is as expected
  511. static_assert(
  512. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  513. "MBL Z array is the wrong size."
  514. );
  515. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  516. EEPROM_WRITE(mbl.z_offset);
  517. EEPROM_WRITE(mesh_num_x);
  518. EEPROM_WRITE(mesh_num_y);
  519. EEPROM_WRITE(mbl.z_values);
  520. #else // For disabled MBL write a default mesh
  521. dummy = 0;
  522. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  523. EEPROM_WRITE(dummy); // z_offset
  524. EEPROM_WRITE(mesh_num_x);
  525. EEPROM_WRITE(mesh_num_y);
  526. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  527. #endif
  528. }
  529. //
  530. // Probe XYZ Offsets
  531. //
  532. {
  533. _FIELD_TEST(probe_offset);
  534. EEPROM_WRITE(probe_offset);
  535. }
  536. //
  537. // Planar Bed Leveling matrix
  538. //
  539. {
  540. #if ABL_PLANAR
  541. EEPROM_WRITE(planner.bed_level_matrix);
  542. #else
  543. dummy = 0;
  544. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  545. #endif
  546. }
  547. //
  548. // Bilinear Auto Bed Leveling
  549. //
  550. {
  551. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  552. // Compile time test that sizeof(z_values) is as expected
  553. static_assert(
  554. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  555. "Bilinear Z array is the wrong size."
  556. );
  557. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  558. EEPROM_WRITE(grid_max_x); // 1 byte
  559. EEPROM_WRITE(grid_max_y); // 1 byte
  560. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  561. EEPROM_WRITE(bilinear_start); // 2 ints
  562. EEPROM_WRITE(z_values); // 9-256 floats
  563. #else
  564. // For disabled Bilinear Grid write an empty 3x3 grid
  565. const uint8_t grid_max_x = 3, grid_max_y = 3;
  566. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  567. dummy = 0;
  568. EEPROM_WRITE(grid_max_x);
  569. EEPROM_WRITE(grid_max_y);
  570. EEPROM_WRITE(bilinear_grid_spacing);
  571. EEPROM_WRITE(bilinear_start);
  572. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  573. #endif
  574. }
  575. //
  576. // Unified Bed Leveling
  577. //
  578. {
  579. _FIELD_TEST(planner_leveling_active);
  580. #if ENABLED(AUTO_BED_LEVELING_UBL)
  581. EEPROM_WRITE(planner.leveling_active);
  582. EEPROM_WRITE(ubl.storage_slot);
  583. #else
  584. const bool ubl_active = false;
  585. const int8_t storage_slot = -1;
  586. EEPROM_WRITE(ubl_active);
  587. EEPROM_WRITE(storage_slot);
  588. #endif // AUTO_BED_LEVELING_UBL
  589. }
  590. //
  591. // Servo Angles
  592. //
  593. {
  594. _FIELD_TEST(servo_angles);
  595. #if !HAS_SERVO_ANGLES
  596. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  597. #endif
  598. EEPROM_WRITE(servo_angles);
  599. }
  600. //
  601. // Thermal first layer compensation values
  602. //
  603. #if ENABLED(PROBE_TEMP_COMPENSATION)
  604. EEPROM_WRITE(temp_comp.z_offsets_probe);
  605. EEPROM_WRITE(temp_comp.z_offsets_bed);
  606. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  607. EEPROM_WRITE(temp_comp.z_offsets_ext);
  608. #endif
  609. #else
  610. // No placeholder data for this feature
  611. #endif
  612. //
  613. // BLTOUCH
  614. //
  615. {
  616. _FIELD_TEST(bltouch_last_written_mode);
  617. #if ENABLED(BLTOUCH)
  618. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  619. #else
  620. constexpr bool bltouch_last_written_mode = false;
  621. #endif
  622. EEPROM_WRITE(bltouch_last_written_mode);
  623. }
  624. //
  625. // DELTA Geometry or Dual Endstops offsets
  626. //
  627. {
  628. #if ENABLED(DELTA)
  629. _FIELD_TEST(delta_height);
  630. EEPROM_WRITE(delta_height); // 1 float
  631. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  632. EEPROM_WRITE(delta_radius); // 1 float
  633. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  634. EEPROM_WRITE(delta_segments_per_second); // 1 float
  635. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  636. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  637. _FIELD_TEST(x2_endstop_adj);
  638. // Write dual endstops in X, Y, Z order. Unused = 0.0
  639. dummy = 0;
  640. #if ENABLED(X_DUAL_ENDSTOPS)
  641. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  642. #else
  643. EEPROM_WRITE(dummy);
  644. #endif
  645. #if ENABLED(Y_DUAL_ENDSTOPS)
  646. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  647. #else
  648. EEPROM_WRITE(dummy);
  649. #endif
  650. #if Z_MULTI_ENDSTOPS
  651. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  652. #else
  653. EEPROM_WRITE(dummy);
  654. #endif
  655. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  656. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  657. #else
  658. EEPROM_WRITE(dummy);
  659. #endif
  660. #endif
  661. }
  662. //
  663. // LCD Preheat settings
  664. //
  665. {
  666. _FIELD_TEST(ui_preheat_hotend_temp);
  667. #if HOTENDS && HAS_LCD_MENU
  668. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  669. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  670. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  671. #else
  672. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  673. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  674. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  675. #endif
  676. EEPROM_WRITE(ui_preheat_hotend_temp);
  677. EEPROM_WRITE(ui_preheat_bed_temp);
  678. EEPROM_WRITE(ui_preheat_fan_speed);
  679. }
  680. //
  681. // PIDTEMP
  682. //
  683. {
  684. _FIELD_TEST(hotendPID);
  685. HOTEND_LOOP() {
  686. PIDCF_t pidcf = {
  687. #if DISABLED(PIDTEMP)
  688. DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE,
  689. DUMMY_PID_VALUE, DUMMY_PID_VALUE
  690. #else
  691. PID_PARAM(Kp, e),
  692. unscalePID_i(PID_PARAM(Ki, e)),
  693. unscalePID_d(PID_PARAM(Kd, e)),
  694. PID_PARAM(Kc, e),
  695. PID_PARAM(Kf, e)
  696. #endif
  697. };
  698. EEPROM_WRITE(pidcf);
  699. }
  700. _FIELD_TEST(lpq_len);
  701. #if ENABLED(PID_EXTRUSION_SCALING)
  702. EEPROM_WRITE(thermalManager.lpq_len);
  703. #else
  704. const int16_t lpq_len = 20;
  705. EEPROM_WRITE(lpq_len);
  706. #endif
  707. }
  708. //
  709. // PIDTEMPBED
  710. //
  711. {
  712. _FIELD_TEST(bedPID);
  713. const PID_t bed_pid = {
  714. #if DISABLED(PIDTEMPBED)
  715. DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE
  716. #else
  717. // Store the unscaled PID values
  718. thermalManager.temp_bed.pid.Kp,
  719. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  720. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  721. #endif
  722. };
  723. EEPROM_WRITE(bed_pid);
  724. }
  725. //
  726. // User-defined Thermistors
  727. //
  728. #if HAS_USER_THERMISTORS
  729. {
  730. _FIELD_TEST(user_thermistor);
  731. EEPROM_WRITE(thermalManager.user_thermistor);
  732. }
  733. #endif
  734. //
  735. // LCD Contrast
  736. //
  737. {
  738. _FIELD_TEST(lcd_contrast);
  739. const int16_t lcd_contrast =
  740. #if HAS_LCD_CONTRAST
  741. ui.contrast
  742. #elif defined(DEFAULT_LCD_CONTRAST)
  743. DEFAULT_LCD_CONTRAST
  744. #else
  745. 127
  746. #endif
  747. ;
  748. EEPROM_WRITE(lcd_contrast);
  749. }
  750. //
  751. // Power-Loss Recovery
  752. //
  753. {
  754. _FIELD_TEST(recovery_enabled);
  755. const bool recovery_enabled =
  756. #if ENABLED(POWER_LOSS_RECOVERY)
  757. recovery.enabled
  758. #else
  759. true
  760. #endif
  761. ;
  762. EEPROM_WRITE(recovery_enabled);
  763. }
  764. //
  765. // Firmware Retraction
  766. //
  767. {
  768. _FIELD_TEST(fwretract_settings);
  769. #if ENABLED(FWRETRACT)
  770. EEPROM_WRITE(fwretract.settings);
  771. #else
  772. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  773. EEPROM_WRITE(autoretract_defaults);
  774. #endif
  775. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  776. EEPROM_WRITE(fwretract.autoretract_enabled);
  777. #else
  778. const bool autoretract_enabled = false;
  779. EEPROM_WRITE(autoretract_enabled);
  780. #endif
  781. }
  782. //
  783. // Volumetric & Filament Size
  784. //
  785. {
  786. _FIELD_TEST(parser_volumetric_enabled);
  787. #if DISABLED(NO_VOLUMETRICS)
  788. EEPROM_WRITE(parser.volumetric_enabled);
  789. EEPROM_WRITE(planner.filament_size);
  790. #else
  791. const bool volumetric_enabled = false;
  792. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  793. EEPROM_WRITE(volumetric_enabled);
  794. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  795. #endif
  796. }
  797. //
  798. // TMC Configuration
  799. //
  800. {
  801. _FIELD_TEST(tmc_stepper_current);
  802. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  803. #if HAS_TRINAMIC
  804. #if AXIS_IS_TMC(X)
  805. tmc_stepper_current.X = stepperX.getMilliamps();
  806. #endif
  807. #if AXIS_IS_TMC(Y)
  808. tmc_stepper_current.Y = stepperY.getMilliamps();
  809. #endif
  810. #if AXIS_IS_TMC(Z)
  811. tmc_stepper_current.Z = stepperZ.getMilliamps();
  812. #endif
  813. #if AXIS_IS_TMC(X2)
  814. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  815. #endif
  816. #if AXIS_IS_TMC(Y2)
  817. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  818. #endif
  819. #if AXIS_IS_TMC(Z2)
  820. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  821. #endif
  822. #if AXIS_IS_TMC(Z3)
  823. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  824. #endif
  825. #if MAX_EXTRUDERS
  826. #if AXIS_IS_TMC(E0)
  827. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  828. #endif
  829. #if MAX_EXTRUDERS > 1
  830. #if AXIS_IS_TMC(E1)
  831. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  832. #endif
  833. #if MAX_EXTRUDERS > 2
  834. #if AXIS_IS_TMC(E2)
  835. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  836. #endif
  837. #if MAX_EXTRUDERS > 3
  838. #if AXIS_IS_TMC(E3)
  839. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  840. #endif
  841. #if MAX_EXTRUDERS > 4
  842. #if AXIS_IS_TMC(E4)
  843. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  844. #endif
  845. #if MAX_EXTRUDERS > 5
  846. #if AXIS_IS_TMC(E5)
  847. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  848. #endif
  849. #endif // MAX_EXTRUDERS > 5
  850. #endif // MAX_EXTRUDERS > 4
  851. #endif // MAX_EXTRUDERS > 3
  852. #endif // MAX_EXTRUDERS > 2
  853. #endif // MAX_EXTRUDERS > 1
  854. #endif // MAX_EXTRUDERS
  855. #endif
  856. EEPROM_WRITE(tmc_stepper_current);
  857. }
  858. //
  859. // TMC Hybrid Threshold, and placeholder values
  860. //
  861. {
  862. _FIELD_TEST(tmc_hybrid_threshold);
  863. #if ENABLED(HYBRID_THRESHOLD)
  864. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  865. #if AXIS_HAS_STEALTHCHOP(X)
  866. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  867. #endif
  868. #if AXIS_HAS_STEALTHCHOP(Y)
  869. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  870. #endif
  871. #if AXIS_HAS_STEALTHCHOP(Z)
  872. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  873. #endif
  874. #if AXIS_HAS_STEALTHCHOP(X2)
  875. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  876. #endif
  877. #if AXIS_HAS_STEALTHCHOP(Y2)
  878. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  879. #endif
  880. #if AXIS_HAS_STEALTHCHOP(Z2)
  881. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  882. #endif
  883. #if AXIS_HAS_STEALTHCHOP(Z3)
  884. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  885. #endif
  886. #if MAX_EXTRUDERS
  887. #if AXIS_HAS_STEALTHCHOP(E0)
  888. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  889. #endif
  890. #if MAX_EXTRUDERS > 1
  891. #if AXIS_HAS_STEALTHCHOP(E1)
  892. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  893. #endif
  894. #if MAX_EXTRUDERS > 2
  895. #if AXIS_HAS_STEALTHCHOP(E2)
  896. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  897. #endif
  898. #if MAX_EXTRUDERS > 3
  899. #if AXIS_HAS_STEALTHCHOP(E3)
  900. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  901. #endif
  902. #if MAX_EXTRUDERS > 4
  903. #if AXIS_HAS_STEALTHCHOP(E4)
  904. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  905. #endif
  906. #if MAX_EXTRUDERS > 5
  907. #if AXIS_HAS_STEALTHCHOP(E5)
  908. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  909. #endif
  910. #endif // MAX_EXTRUDERS > 5
  911. #endif // MAX_EXTRUDERS > 4
  912. #endif // MAX_EXTRUDERS > 3
  913. #endif // MAX_EXTRUDERS > 2
  914. #endif // MAX_EXTRUDERS > 1
  915. #endif // MAX_EXTRUDERS
  916. #else
  917. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  918. .X = 100, .Y = 100, .Z = 3,
  919. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  920. .E0 = 30, .E1 = 30, .E2 = 30,
  921. .E3 = 30, .E4 = 30, .E5 = 30
  922. };
  923. #endif
  924. EEPROM_WRITE(tmc_hybrid_threshold);
  925. }
  926. //
  927. // TMC StallGuard threshold
  928. //
  929. {
  930. tmc_sgt_t tmc_sgt{0};
  931. #if USE_SENSORLESS
  932. #if X_SENSORLESS
  933. tmc_sgt.X = stepperX.homing_threshold();
  934. #endif
  935. #if X2_SENSORLESS
  936. tmc_sgt.X2 = stepperX2.homing_threshold();
  937. #endif
  938. #if Y_SENSORLESS
  939. tmc_sgt.Y = stepperY.homing_threshold();
  940. #endif
  941. #if Z_SENSORLESS
  942. tmc_sgt.Z = stepperZ.homing_threshold();
  943. #endif
  944. #endif
  945. EEPROM_WRITE(tmc_sgt);
  946. }
  947. //
  948. // TMC stepping mode
  949. //
  950. {
  951. _FIELD_TEST(tmc_stealth_enabled);
  952. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  953. #if HAS_STEALTHCHOP
  954. #if AXIS_HAS_STEALTHCHOP(X)
  955. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  956. #endif
  957. #if AXIS_HAS_STEALTHCHOP(Y)
  958. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  959. #endif
  960. #if AXIS_HAS_STEALTHCHOP(Z)
  961. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  962. #endif
  963. #if AXIS_HAS_STEALTHCHOP(X2)
  964. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  965. #endif
  966. #if AXIS_HAS_STEALTHCHOP(Y2)
  967. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  968. #endif
  969. #if AXIS_HAS_STEALTHCHOP(Z2)
  970. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  971. #endif
  972. #if AXIS_HAS_STEALTHCHOP(Z3)
  973. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  974. #endif
  975. #if MAX_EXTRUDERS
  976. #if AXIS_HAS_STEALTHCHOP(E0)
  977. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  978. #endif
  979. #if MAX_EXTRUDERS > 1
  980. #if AXIS_HAS_STEALTHCHOP(E1)
  981. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  982. #endif
  983. #if MAX_EXTRUDERS > 2
  984. #if AXIS_HAS_STEALTHCHOP(E2)
  985. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  986. #endif
  987. #if MAX_EXTRUDERS > 3
  988. #if AXIS_HAS_STEALTHCHOP(E3)
  989. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  990. #endif
  991. #if MAX_EXTRUDERS > 4
  992. #if AXIS_HAS_STEALTHCHOP(E4)
  993. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  994. #endif
  995. #if MAX_EXTRUDERS > 5
  996. #if AXIS_HAS_STEALTHCHOP(E5)
  997. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  998. #endif
  999. #endif // MAX_EXTRUDERS > 5
  1000. #endif // MAX_EXTRUDERS > 4
  1001. #endif // MAX_EXTRUDERS > 3
  1002. #endif // MAX_EXTRUDERS > 2
  1003. #endif // MAX_EXTRUDERS > 1
  1004. #endif // MAX_EXTRUDERS
  1005. #endif
  1006. EEPROM_WRITE(tmc_stealth_enabled);
  1007. }
  1008. //
  1009. // Linear Advance
  1010. //
  1011. {
  1012. _FIELD_TEST(planner_extruder_advance_K);
  1013. #if ENABLED(LIN_ADVANCE)
  1014. EEPROM_WRITE(planner.extruder_advance_K);
  1015. #else
  1016. dummy = 0;
  1017. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummy);
  1018. #endif
  1019. }
  1020. //
  1021. // Motor Current PWM
  1022. //
  1023. {
  1024. _FIELD_TEST(motor_current_setting);
  1025. #if HAS_MOTOR_CURRENT_PWM
  1026. EEPROM_WRITE(stepper.motor_current_setting);
  1027. #else
  1028. const xyz_ulong_t no_current{0};
  1029. EEPROM_WRITE(no_current);
  1030. #endif
  1031. }
  1032. //
  1033. // CNC Coordinate Systems
  1034. //
  1035. _FIELD_TEST(coordinate_system);
  1036. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1037. EEPROM_WRITE(gcode.coordinate_system);
  1038. #else
  1039. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1040. EEPROM_WRITE(coordinate_system);
  1041. #endif
  1042. //
  1043. // Skew correction factors
  1044. //
  1045. _FIELD_TEST(planner_skew_factor);
  1046. EEPROM_WRITE(planner.skew_factor);
  1047. //
  1048. // Advanced Pause filament load & unload lengths
  1049. //
  1050. #if EXTRUDERS
  1051. {
  1052. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1053. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1054. #endif
  1055. _FIELD_TEST(fc_settings);
  1056. EEPROM_WRITE(fc_settings);
  1057. }
  1058. #endif
  1059. //
  1060. // Multiple Extruders
  1061. //
  1062. #if EXTRUDERS > 1
  1063. _FIELD_TEST(toolchange_settings);
  1064. EEPROM_WRITE(toolchange_settings);
  1065. #endif
  1066. //
  1067. // Backlash Compensation
  1068. //
  1069. {
  1070. #if ENABLED(BACKLASH_GCODE)
  1071. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1072. const uint8_t &backlash_correction = backlash.correction;
  1073. #else
  1074. const xyz_float_t backlash_distance_mm{0};
  1075. const uint8_t backlash_correction = 0;
  1076. #endif
  1077. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1078. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1079. #else
  1080. const float backlash_smoothing_mm = 3;
  1081. #endif
  1082. _FIELD_TEST(backlash_distance_mm);
  1083. EEPROM_WRITE(backlash_distance_mm);
  1084. EEPROM_WRITE(backlash_correction);
  1085. EEPROM_WRITE(backlash_smoothing_mm);
  1086. }
  1087. //
  1088. // Extensible UI User Data
  1089. //
  1090. #if ENABLED(EXTENSIBLE_UI)
  1091. {
  1092. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1093. ExtUI::onStoreSettings(extui_data);
  1094. _FIELD_TEST(extui_data);
  1095. EEPROM_WRITE(extui_data);
  1096. }
  1097. #endif
  1098. //
  1099. // Validate CRC and Data Size
  1100. //
  1101. if (!eeprom_error) {
  1102. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1103. final_crc = working_crc;
  1104. // Write the EEPROM header
  1105. eeprom_index = EEPROM_OFFSET;
  1106. EEPROM_WRITE(version);
  1107. EEPROM_WRITE(final_crc);
  1108. // Report storage size
  1109. DEBUG_ECHO_START();
  1110. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1111. eeprom_error |= size_error(eeprom_size);
  1112. }
  1113. EEPROM_FINISH();
  1114. //
  1115. // UBL Mesh
  1116. //
  1117. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1118. if (ubl.storage_slot >= 0)
  1119. store_mesh(ubl.storage_slot);
  1120. #endif
  1121. #if ENABLED(EXTENSIBLE_UI)
  1122. ExtUI::onConfigurationStoreWritten(!eeprom_error);
  1123. #endif
  1124. return !eeprom_error;
  1125. }
  1126. /**
  1127. * M501 - Retrieve Configuration
  1128. */
  1129. bool MarlinSettings::_load() {
  1130. uint16_t working_crc = 0;
  1131. EEPROM_START();
  1132. char stored_ver[4];
  1133. EEPROM_READ_ALWAYS(stored_ver);
  1134. uint16_t stored_crc;
  1135. EEPROM_READ_ALWAYS(stored_crc);
  1136. // Version has to match or defaults are used
  1137. if (strncmp(version, stored_ver, 3) != 0) {
  1138. if (stored_ver[3] != '\0') {
  1139. stored_ver[0] = '?';
  1140. stored_ver[1] = '\0';
  1141. }
  1142. DEBUG_ECHO_START();
  1143. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1144. eeprom_error = true;
  1145. }
  1146. else {
  1147. float dummy = 0;
  1148. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1149. _FIELD_TEST(esteppers);
  1150. // Number of esteppers may change
  1151. uint8_t esteppers;
  1152. EEPROM_READ_ALWAYS(esteppers);
  1153. //
  1154. // Planner Motion
  1155. //
  1156. {
  1157. // Get only the number of E stepper parameters previously stored
  1158. // Any steppers added later are set to their defaults
  1159. uint32_t tmp1[XYZ + esteppers];
  1160. float tmp2[XYZ + esteppers];
  1161. feedRate_t tmp3[XYZ + esteppers];
  1162. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1163. EEPROM_READ(planner.settings.min_segment_time_us);
  1164. EEPROM_READ(tmp2); // axis_steps_per_mm
  1165. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1166. if (!validating) LOOP_XYZE_N(i) {
  1167. const bool in = (i < esteppers + XYZ);
  1168. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1169. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1170. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1171. }
  1172. EEPROM_READ(planner.settings.acceleration);
  1173. EEPROM_READ(planner.settings.retract_acceleration);
  1174. EEPROM_READ(planner.settings.travel_acceleration);
  1175. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1176. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1177. #if HAS_CLASSIC_JERK
  1178. EEPROM_READ(planner.max_jerk);
  1179. #if HAS_LINEAR_E_JERK
  1180. EEPROM_READ(dummy);
  1181. #endif
  1182. #else
  1183. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  1184. #endif
  1185. #if DISABLED(CLASSIC_JERK)
  1186. EEPROM_READ(planner.junction_deviation_mm);
  1187. #else
  1188. EEPROM_READ(dummy);
  1189. #endif
  1190. }
  1191. //
  1192. // Home Offset (M206 / M665)
  1193. //
  1194. {
  1195. _FIELD_TEST(home_offset);
  1196. #if HAS_SCARA_OFFSET
  1197. EEPROM_READ(scara_home_offset);
  1198. #else
  1199. #if !HAS_HOME_OFFSET
  1200. xyz_pos_t home_offset;
  1201. #endif
  1202. EEPROM_READ(home_offset);
  1203. #endif
  1204. }
  1205. //
  1206. // Hotend Offsets, if any
  1207. //
  1208. {
  1209. #if HAS_HOTEND_OFFSET
  1210. // Skip hotend 0 which must be 0
  1211. for (uint8_t e = 1; e < HOTENDS; e++)
  1212. EEPROM_READ(hotend_offset[e]);
  1213. #endif
  1214. }
  1215. //
  1216. // Filament Runout Sensor
  1217. //
  1218. {
  1219. #if HAS_FILAMENT_SENSOR
  1220. bool &runout_sensor_enabled = runout.enabled;
  1221. #else
  1222. bool runout_sensor_enabled;
  1223. #endif
  1224. _FIELD_TEST(runout_sensor_enabled);
  1225. EEPROM_READ(runout_sensor_enabled);
  1226. float runout_distance_mm;
  1227. EEPROM_READ(runout_distance_mm);
  1228. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  1229. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1230. #endif
  1231. }
  1232. //
  1233. // Global Leveling
  1234. //
  1235. {
  1236. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1237. EEPROM_READ(new_z_fade_height);
  1238. #else
  1239. EEPROM_READ(dummy);
  1240. #endif
  1241. }
  1242. //
  1243. // Mesh (Manual) Bed Leveling
  1244. //
  1245. {
  1246. uint8_t mesh_num_x, mesh_num_y;
  1247. EEPROM_READ(dummy);
  1248. EEPROM_READ_ALWAYS(mesh_num_x);
  1249. EEPROM_READ_ALWAYS(mesh_num_y);
  1250. #if ENABLED(MESH_BED_LEVELING)
  1251. if (!validating) mbl.z_offset = dummy;
  1252. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1253. // EEPROM data fits the current mesh
  1254. EEPROM_READ(mbl.z_values);
  1255. }
  1256. else {
  1257. // EEPROM data is stale
  1258. if (!validating) mbl.reset();
  1259. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1260. }
  1261. #else
  1262. // MBL is disabled - skip the stored data
  1263. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1264. #endif // MESH_BED_LEVELING
  1265. }
  1266. //
  1267. // Probe Z Offset
  1268. //
  1269. {
  1270. _FIELD_TEST(probe_offset);
  1271. #if HAS_BED_PROBE
  1272. xyz_pos_t &zpo = probe_offset;
  1273. #else
  1274. xyz_pos_t zpo;
  1275. #endif
  1276. EEPROM_READ(zpo);
  1277. }
  1278. //
  1279. // Planar Bed Leveling matrix
  1280. //
  1281. {
  1282. #if ABL_PLANAR
  1283. EEPROM_READ(planner.bed_level_matrix);
  1284. #else
  1285. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1286. #endif
  1287. }
  1288. //
  1289. // Bilinear Auto Bed Leveling
  1290. //
  1291. {
  1292. uint8_t grid_max_x, grid_max_y;
  1293. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1294. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1295. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1296. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1297. if (!validating) set_bed_leveling_enabled(false);
  1298. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1299. EEPROM_READ(bilinear_start); // 2 ints
  1300. EEPROM_READ(z_values); // 9 to 256 floats
  1301. }
  1302. else // EEPROM data is stale
  1303. #endif // AUTO_BED_LEVELING_BILINEAR
  1304. {
  1305. // Skip past disabled (or stale) Bilinear Grid data
  1306. xy_pos_t bgs, bs;
  1307. EEPROM_READ(bgs);
  1308. EEPROM_READ(bs);
  1309. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1310. }
  1311. }
  1312. //
  1313. // Unified Bed Leveling active state
  1314. //
  1315. {
  1316. _FIELD_TEST(planner_leveling_active);
  1317. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1318. EEPROM_READ(planner.leveling_active);
  1319. EEPROM_READ(ubl.storage_slot);
  1320. #else
  1321. bool planner_leveling_active;
  1322. uint8_t ubl_storage_slot;
  1323. EEPROM_READ(planner_leveling_active);
  1324. EEPROM_READ(ubl_storage_slot);
  1325. #endif
  1326. }
  1327. //
  1328. // SERVO_ANGLES
  1329. //
  1330. {
  1331. _FIELD_TEST(servo_angles);
  1332. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1333. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1334. #else
  1335. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1336. #endif
  1337. EEPROM_READ(servo_angles_arr);
  1338. }
  1339. //
  1340. // Thermal first layer compensation values
  1341. //
  1342. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1343. EEPROM_READ(temp_comp.z_offsets_probe);
  1344. EEPROM_READ(temp_comp.z_offsets_bed);
  1345. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1346. EEPROM_READ(temp_comp.z_offsets_ext);
  1347. #endif
  1348. temp_comp.reset_index();
  1349. #else
  1350. // No placeholder data for this feature
  1351. #endif
  1352. //
  1353. // BLTOUCH
  1354. //
  1355. {
  1356. _FIELD_TEST(bltouch_last_written_mode);
  1357. #if ENABLED(BLTOUCH)
  1358. bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1359. #else
  1360. bool bltouch_last_written_mode;
  1361. #endif
  1362. EEPROM_READ(bltouch_last_written_mode);
  1363. }
  1364. //
  1365. // DELTA Geometry or Dual Endstops offsets
  1366. //
  1367. {
  1368. #if ENABLED(DELTA)
  1369. _FIELD_TEST(delta_height);
  1370. EEPROM_READ(delta_height); // 1 float
  1371. EEPROM_READ(delta_endstop_adj); // 3 floats
  1372. EEPROM_READ(delta_radius); // 1 float
  1373. EEPROM_READ(delta_diagonal_rod); // 1 float
  1374. EEPROM_READ(delta_segments_per_second); // 1 float
  1375. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1376. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1377. _FIELD_TEST(x2_endstop_adj);
  1378. #if ENABLED(X_DUAL_ENDSTOPS)
  1379. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1380. #else
  1381. EEPROM_READ(dummy);
  1382. #endif
  1383. #if ENABLED(Y_DUAL_ENDSTOPS)
  1384. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1385. #else
  1386. EEPROM_READ(dummy);
  1387. #endif
  1388. #if Z_MULTI_ENDSTOPS
  1389. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1390. #else
  1391. EEPROM_READ(dummy);
  1392. #endif
  1393. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1394. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1395. #else
  1396. EEPROM_READ(dummy);
  1397. #endif
  1398. #endif
  1399. }
  1400. //
  1401. // LCD Preheat settings
  1402. //
  1403. {
  1404. _FIELD_TEST(ui_preheat_hotend_temp);
  1405. #if HOTENDS && HAS_LCD_MENU
  1406. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1407. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1408. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1409. #else
  1410. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1411. uint8_t ui_preheat_fan_speed[2];
  1412. #endif
  1413. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1414. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1415. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1416. }
  1417. //
  1418. // Hotend PID
  1419. //
  1420. {
  1421. HOTEND_LOOP() {
  1422. PIDCF_t pidcf;
  1423. EEPROM_READ(pidcf);
  1424. #if ENABLED(PIDTEMP)
  1425. if (!validating && pidcf.Kp != DUMMY_PID_VALUE) {
  1426. // Scale PID values since EEPROM values are unscaled
  1427. PID_PARAM(Kp, e) = pidcf.Kp;
  1428. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1429. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1430. #if ENABLED(PID_EXTRUSION_SCALING)
  1431. PID_PARAM(Kc, e) = pidcf.Kc;
  1432. #endif
  1433. #if ENABLED(PID_FAN_SCALING)
  1434. PID_PARAM(Kf, e) = pidcf.Kf;
  1435. #endif
  1436. }
  1437. #endif
  1438. }
  1439. }
  1440. //
  1441. // PID Extrusion Scaling
  1442. //
  1443. {
  1444. _FIELD_TEST(lpq_len);
  1445. #if ENABLED(PID_EXTRUSION_SCALING)
  1446. EEPROM_READ(thermalManager.lpq_len);
  1447. #else
  1448. int16_t lpq_len;
  1449. EEPROM_READ(lpq_len);
  1450. #endif
  1451. }
  1452. //
  1453. // Heated Bed PID
  1454. //
  1455. {
  1456. PID_t pid;
  1457. EEPROM_READ(pid);
  1458. #if ENABLED(PIDTEMPBED)
  1459. if (!validating && pid.Kp != DUMMY_PID_VALUE) {
  1460. // Scale PID values since EEPROM values are unscaled
  1461. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1462. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1463. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1464. }
  1465. #endif
  1466. }
  1467. //
  1468. // User-defined Thermistors
  1469. //
  1470. #if HAS_USER_THERMISTORS
  1471. {
  1472. _FIELD_TEST(user_thermistor);
  1473. EEPROM_READ(thermalManager.user_thermistor);
  1474. }
  1475. #endif
  1476. //
  1477. // LCD Contrast
  1478. //
  1479. {
  1480. _FIELD_TEST(lcd_contrast);
  1481. int16_t lcd_contrast;
  1482. EEPROM_READ(lcd_contrast);
  1483. #if HAS_LCD_CONTRAST
  1484. ui.set_contrast(lcd_contrast);
  1485. #endif
  1486. }
  1487. //
  1488. // Power-Loss Recovery
  1489. //
  1490. {
  1491. _FIELD_TEST(recovery_enabled);
  1492. #if ENABLED(POWER_LOSS_RECOVERY)
  1493. EEPROM_READ(recovery.enabled);
  1494. #else
  1495. bool recovery_enabled;
  1496. EEPROM_READ(recovery_enabled);
  1497. #endif
  1498. }
  1499. //
  1500. // Firmware Retraction
  1501. //
  1502. {
  1503. _FIELD_TEST(fwretract_settings);
  1504. #if ENABLED(FWRETRACT)
  1505. EEPROM_READ(fwretract.settings);
  1506. #else
  1507. fwretract_settings_t fwretract_settings;
  1508. EEPROM_READ(fwretract_settings);
  1509. #endif
  1510. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1511. EEPROM_READ(fwretract.autoretract_enabled);
  1512. #else
  1513. bool autoretract_enabled;
  1514. EEPROM_READ(autoretract_enabled);
  1515. #endif
  1516. }
  1517. //
  1518. // Volumetric & Filament Size
  1519. //
  1520. {
  1521. struct {
  1522. bool volumetric_enabled;
  1523. float filament_size[EXTRUDERS];
  1524. } storage;
  1525. _FIELD_TEST(parser_volumetric_enabled);
  1526. EEPROM_READ(storage);
  1527. #if DISABLED(NO_VOLUMETRICS)
  1528. if (!validating) {
  1529. parser.volumetric_enabled = storage.volumetric_enabled;
  1530. COPY(planner.filament_size, storage.filament_size);
  1531. }
  1532. #endif
  1533. }
  1534. //
  1535. // TMC Stepper Settings
  1536. //
  1537. if (!validating) reset_stepper_drivers();
  1538. // TMC Stepper Current
  1539. {
  1540. _FIELD_TEST(tmc_stepper_current);
  1541. tmc_stepper_current_t currents;
  1542. EEPROM_READ(currents);
  1543. #if HAS_TRINAMIC
  1544. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1545. if (!validating) {
  1546. #if AXIS_IS_TMC(X)
  1547. SET_CURR(X);
  1548. #endif
  1549. #if AXIS_IS_TMC(Y)
  1550. SET_CURR(Y);
  1551. #endif
  1552. #if AXIS_IS_TMC(Z)
  1553. SET_CURR(Z);
  1554. #endif
  1555. #if AXIS_IS_TMC(X2)
  1556. SET_CURR(X2);
  1557. #endif
  1558. #if AXIS_IS_TMC(Y2)
  1559. SET_CURR(Y2);
  1560. #endif
  1561. #if AXIS_IS_TMC(Z2)
  1562. SET_CURR(Z2);
  1563. #endif
  1564. #if AXIS_IS_TMC(Z3)
  1565. SET_CURR(Z3);
  1566. #endif
  1567. #if AXIS_IS_TMC(E0)
  1568. SET_CURR(E0);
  1569. #endif
  1570. #if AXIS_IS_TMC(E1)
  1571. SET_CURR(E1);
  1572. #endif
  1573. #if AXIS_IS_TMC(E2)
  1574. SET_CURR(E2);
  1575. #endif
  1576. #if AXIS_IS_TMC(E3)
  1577. SET_CURR(E3);
  1578. #endif
  1579. #if AXIS_IS_TMC(E4)
  1580. SET_CURR(E4);
  1581. #endif
  1582. #if AXIS_IS_TMC(E5)
  1583. SET_CURR(E5);
  1584. #endif
  1585. }
  1586. #endif
  1587. }
  1588. // TMC Hybrid Threshold
  1589. {
  1590. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1591. _FIELD_TEST(tmc_hybrid_threshold);
  1592. EEPROM_READ(tmc_hybrid_threshold);
  1593. #if ENABLED(HYBRID_THRESHOLD)
  1594. if (!validating) {
  1595. #if AXIS_HAS_STEALTHCHOP(X)
  1596. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1597. #endif
  1598. #if AXIS_HAS_STEALTHCHOP(Y)
  1599. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1600. #endif
  1601. #if AXIS_HAS_STEALTHCHOP(Z)
  1602. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1603. #endif
  1604. #if AXIS_HAS_STEALTHCHOP(X2)
  1605. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1606. #endif
  1607. #if AXIS_HAS_STEALTHCHOP(Y2)
  1608. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1609. #endif
  1610. #if AXIS_HAS_STEALTHCHOP(Z2)
  1611. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1612. #endif
  1613. #if AXIS_HAS_STEALTHCHOP(Z3)
  1614. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1615. #endif
  1616. #if AXIS_HAS_STEALTHCHOP(E0)
  1617. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1618. #endif
  1619. #if AXIS_HAS_STEALTHCHOP(E1)
  1620. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1621. #endif
  1622. #if AXIS_HAS_STEALTHCHOP(E2)
  1623. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1624. #endif
  1625. #if AXIS_HAS_STEALTHCHOP(E3)
  1626. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1627. #endif
  1628. #if AXIS_HAS_STEALTHCHOP(E4)
  1629. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1630. #endif
  1631. #if AXIS_HAS_STEALTHCHOP(E5)
  1632. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1633. #endif
  1634. }
  1635. #endif
  1636. }
  1637. //
  1638. // TMC StallGuard threshold.
  1639. // X and X2 use the same value
  1640. // Y and Y2 use the same value
  1641. // Z, Z2 and Z3 use the same value
  1642. //
  1643. {
  1644. tmc_sgt_t tmc_sgt;
  1645. _FIELD_TEST(tmc_sgt);
  1646. EEPROM_READ(tmc_sgt);
  1647. #if USE_SENSORLESS
  1648. if (!validating) {
  1649. #ifdef X_STALL_SENSITIVITY
  1650. #if AXIS_HAS_STALLGUARD(X)
  1651. stepperX.homing_threshold(tmc_sgt.X);
  1652. #endif
  1653. #if AXIS_HAS_STALLGUARD(X2) && !X2_SENSORLESS
  1654. stepperX2.homing_threshold(tmc_sgt.X);
  1655. #endif
  1656. #endif
  1657. #if X2_SENSORLESS
  1658. stepperX2.homing_threshold(tmc_sgt.X2);
  1659. #endif
  1660. #ifdef Y_STALL_SENSITIVITY
  1661. #if AXIS_HAS_STALLGUARD(Y)
  1662. stepperY.homing_threshold(tmc_sgt.Y);
  1663. #endif
  1664. #if AXIS_HAS_STALLGUARD(Y2)
  1665. stepperY2.homing_threshold(tmc_sgt.Y);
  1666. #endif
  1667. #endif
  1668. #ifdef Z_STALL_SENSITIVITY
  1669. #if AXIS_HAS_STALLGUARD(Z)
  1670. stepperZ.homing_threshold(tmc_sgt.Z);
  1671. #endif
  1672. #if AXIS_HAS_STALLGUARD(Z2)
  1673. stepperZ2.homing_threshold(tmc_sgt.Z);
  1674. #endif
  1675. #if AXIS_HAS_STALLGUARD(Z3)
  1676. stepperZ3.homing_threshold(tmc_sgt.Z);
  1677. #endif
  1678. #endif
  1679. }
  1680. #endif
  1681. }
  1682. // TMC stepping mode
  1683. {
  1684. _FIELD_TEST(tmc_stealth_enabled);
  1685. tmc_stealth_enabled_t tmc_stealth_enabled;
  1686. EEPROM_READ(tmc_stealth_enabled);
  1687. #if HAS_TRINAMIC
  1688. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1689. if (!validating) {
  1690. #if AXIS_HAS_STEALTHCHOP(X)
  1691. SET_STEPPING_MODE(X);
  1692. #endif
  1693. #if AXIS_HAS_STEALTHCHOP(Y)
  1694. SET_STEPPING_MODE(Y);
  1695. #endif
  1696. #if AXIS_HAS_STEALTHCHOP(Z)
  1697. SET_STEPPING_MODE(Z);
  1698. #endif
  1699. #if AXIS_HAS_STEALTHCHOP(X2)
  1700. SET_STEPPING_MODE(X2);
  1701. #endif
  1702. #if AXIS_HAS_STEALTHCHOP(Y2)
  1703. SET_STEPPING_MODE(Y2);
  1704. #endif
  1705. #if AXIS_HAS_STEALTHCHOP(Z2)
  1706. SET_STEPPING_MODE(Z2);
  1707. #endif
  1708. #if AXIS_HAS_STEALTHCHOP(Z3)
  1709. SET_STEPPING_MODE(Z3);
  1710. #endif
  1711. #if AXIS_HAS_STEALTHCHOP(E0)
  1712. SET_STEPPING_MODE(E0);
  1713. #endif
  1714. #if AXIS_HAS_STEALTHCHOP(E1)
  1715. SET_STEPPING_MODE(E1);
  1716. #endif
  1717. #if AXIS_HAS_STEALTHCHOP(E2)
  1718. SET_STEPPING_MODE(E2);
  1719. #endif
  1720. #if AXIS_HAS_STEALTHCHOP(E3)
  1721. SET_STEPPING_MODE(E3);
  1722. #endif
  1723. #if AXIS_HAS_STEALTHCHOP(E4)
  1724. SET_STEPPING_MODE(E4);
  1725. #endif
  1726. #if AXIS_HAS_STEALTHCHOP(E5)
  1727. SET_STEPPING_MODE(E5);
  1728. #endif
  1729. }
  1730. #endif
  1731. }
  1732. //
  1733. // Linear Advance
  1734. //
  1735. {
  1736. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1737. _FIELD_TEST(planner_extruder_advance_K);
  1738. EEPROM_READ(extruder_advance_K);
  1739. #if ENABLED(LIN_ADVANCE)
  1740. if (!validating)
  1741. COPY(planner.extruder_advance_K, extruder_advance_K);
  1742. #endif
  1743. }
  1744. //
  1745. // Motor Current PWM
  1746. //
  1747. {
  1748. uint32_t motor_current_setting[3];
  1749. _FIELD_TEST(motor_current_setting);
  1750. EEPROM_READ(motor_current_setting);
  1751. #if HAS_MOTOR_CURRENT_PWM
  1752. if (!validating)
  1753. COPY(stepper.motor_current_setting, motor_current_setting);
  1754. #endif
  1755. }
  1756. //
  1757. // CNC Coordinate System
  1758. //
  1759. {
  1760. _FIELD_TEST(coordinate_system);
  1761. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1762. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1763. EEPROM_READ(gcode.coordinate_system);
  1764. #else
  1765. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1766. EEPROM_READ(coordinate_system);
  1767. #endif
  1768. }
  1769. //
  1770. // Skew correction factors
  1771. //
  1772. {
  1773. skew_factor_t skew_factor;
  1774. _FIELD_TEST(planner_skew_factor);
  1775. EEPROM_READ(skew_factor);
  1776. #if ENABLED(SKEW_CORRECTION_GCODE)
  1777. if (!validating) {
  1778. planner.skew_factor.xy = skew_factor.xy;
  1779. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1780. planner.skew_factor.xz = skew_factor.xz;
  1781. planner.skew_factor.yz = skew_factor.yz;
  1782. #endif
  1783. }
  1784. #endif
  1785. }
  1786. //
  1787. // Advanced Pause filament load & unload lengths
  1788. //
  1789. #if EXTRUDERS
  1790. {
  1791. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1792. fil_change_settings_t fc_settings[EXTRUDERS];
  1793. #endif
  1794. _FIELD_TEST(fc_settings);
  1795. EEPROM_READ(fc_settings);
  1796. }
  1797. #endif
  1798. //
  1799. // Tool-change settings
  1800. //
  1801. #if EXTRUDERS > 1
  1802. _FIELD_TEST(toolchange_settings);
  1803. EEPROM_READ(toolchange_settings);
  1804. #endif
  1805. //
  1806. // Backlash Compensation
  1807. //
  1808. {
  1809. #if ENABLED(BACKLASH_GCODE)
  1810. xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1811. uint8_t &backlash_correction = backlash.correction;
  1812. #else
  1813. float backlash_distance_mm[XYZ];
  1814. uint8_t backlash_correction;
  1815. #endif
  1816. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1817. float &backlash_smoothing_mm = backlash.smoothing_mm;
  1818. #else
  1819. float backlash_smoothing_mm;
  1820. #endif
  1821. _FIELD_TEST(backlash_distance_mm);
  1822. EEPROM_READ(backlash_distance_mm);
  1823. EEPROM_READ(backlash_correction);
  1824. EEPROM_READ(backlash_smoothing_mm);
  1825. }
  1826. //
  1827. // Extensible UI User Data
  1828. //
  1829. #if ENABLED(EXTENSIBLE_UI)
  1830. // This is a significant hardware change; don't reserve EEPROM space when not present
  1831. {
  1832. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1833. _FIELD_TEST(extui_data);
  1834. EEPROM_READ(extui_data);
  1835. if (!validating) ExtUI::onLoadSettings(extui_data);
  1836. }
  1837. #endif
  1838. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1839. if (eeprom_error) {
  1840. DEBUG_ECHO_START();
  1841. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1842. }
  1843. else if (working_crc != stored_crc) {
  1844. eeprom_error = true;
  1845. DEBUG_ERROR_START();
  1846. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1847. }
  1848. else if (!validating) {
  1849. DEBUG_ECHO_START();
  1850. DEBUG_ECHO(version);
  1851. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1852. }
  1853. if (!validating && !eeprom_error) postprocess();
  1854. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1855. if (!validating) {
  1856. ubl.report_state();
  1857. if (!ubl.sanity_check()) {
  1858. SERIAL_EOL();
  1859. #if ENABLED(EEPROM_CHITCHAT)
  1860. ubl.echo_name();
  1861. DEBUG_ECHOLNPGM(" initialized.\n");
  1862. #endif
  1863. }
  1864. else {
  1865. eeprom_error = true;
  1866. #if ENABLED(EEPROM_CHITCHAT)
  1867. DEBUG_ECHOPGM("?Can't enable ");
  1868. ubl.echo_name();
  1869. DEBUG_ECHOLNPGM(".");
  1870. #endif
  1871. ubl.reset();
  1872. }
  1873. if (ubl.storage_slot >= 0) {
  1874. load_mesh(ubl.storage_slot);
  1875. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1876. }
  1877. else {
  1878. ubl.reset();
  1879. DEBUG_ECHOLNPGM("UBL reset");
  1880. }
  1881. }
  1882. #endif
  1883. }
  1884. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1885. if (!validating) report();
  1886. #endif
  1887. EEPROM_FINISH();
  1888. return !eeprom_error;
  1889. }
  1890. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1891. extern bool restoreEEPROM();
  1892. #endif
  1893. bool MarlinSettings::validate() {
  1894. validating = true;
  1895. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1896. bool success = _load();
  1897. if (!success && restoreEEPROM()) {
  1898. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  1899. success = _load();
  1900. }
  1901. #else
  1902. const bool success = _load();
  1903. #endif
  1904. validating = false;
  1905. return success;
  1906. }
  1907. bool MarlinSettings::load() {
  1908. if (validate()) {
  1909. const bool success = _load();
  1910. #if ENABLED(EXTENSIBLE_UI)
  1911. ExtUI::onConfigurationStoreRead(success);
  1912. #endif
  1913. return success;
  1914. }
  1915. reset();
  1916. #if ENABLED(EEPROM_AUTO_INIT)
  1917. (void)save();
  1918. SERIAL_ECHO_MSG("EEPROM Initialized");
  1919. #endif
  1920. return false;
  1921. }
  1922. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1923. inline void ubl_invalid_slot(const int s) {
  1924. #if ENABLED(EEPROM_CHITCHAT)
  1925. DEBUG_ECHOLNPGM("?Invalid slot.");
  1926. DEBUG_ECHO(s);
  1927. DEBUG_ECHOLNPGM(" mesh slots available.");
  1928. #else
  1929. UNUSED(s);
  1930. #endif
  1931. }
  1932. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1933. // is a placeholder for the size of the MAT; the MAT will always
  1934. // live at the very end of the eeprom
  1935. uint16_t MarlinSettings::meshes_start_index() {
  1936. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1937. // or down a little bit without disrupting the mesh data
  1938. }
  1939. uint16_t MarlinSettings::calc_num_meshes() {
  1940. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1941. }
  1942. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1943. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1944. }
  1945. void MarlinSettings::store_mesh(const int8_t slot) {
  1946. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1947. const int16_t a = calc_num_meshes();
  1948. if (!WITHIN(slot, 0, a - 1)) {
  1949. ubl_invalid_slot(a);
  1950. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  1951. DEBUG_EOL();
  1952. return;
  1953. }
  1954. int pos = mesh_slot_offset(slot);
  1955. uint16_t crc = 0;
  1956. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1957. persistentStore.access_start();
  1958. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1959. persistentStore.access_finish();
  1960. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1961. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  1962. #else
  1963. // Other mesh types
  1964. #endif
  1965. }
  1966. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  1967. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1968. const int16_t a = settings.calc_num_meshes();
  1969. if (!WITHIN(slot, 0, a - 1)) {
  1970. ubl_invalid_slot(a);
  1971. return;
  1972. }
  1973. int pos = mesh_slot_offset(slot);
  1974. uint16_t crc = 0;
  1975. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1976. persistentStore.access_start();
  1977. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1978. persistentStore.access_finish();
  1979. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  1980. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  1981. EEPROM_FINISH();
  1982. #else
  1983. // Other mesh types
  1984. #endif
  1985. }
  1986. //void MarlinSettings::delete_mesh() { return; }
  1987. //void MarlinSettings::defrag_meshes() { return; }
  1988. #endif // AUTO_BED_LEVELING_UBL
  1989. #else // !EEPROM_SETTINGS
  1990. bool MarlinSettings::save() {
  1991. DEBUG_ERROR_MSG("EEPROM disabled");
  1992. return false;
  1993. }
  1994. #endif // !EEPROM_SETTINGS
  1995. /**
  1996. * M502 - Reset Configuration
  1997. */
  1998. void MarlinSettings::reset() {
  1999. LOOP_XYZE_N(i) {
  2000. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2001. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2002. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2003. }
  2004. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2005. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2006. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2007. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2008. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2009. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2010. #if HAS_CLASSIC_JERK
  2011. #ifndef DEFAULT_XJERK
  2012. #define DEFAULT_XJERK 0
  2013. #endif
  2014. #ifndef DEFAULT_YJERK
  2015. #define DEFAULT_YJERK 0
  2016. #endif
  2017. #ifndef DEFAULT_ZJERK
  2018. #define DEFAULT_ZJERK 0
  2019. #endif
  2020. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2021. #if HAS_CLASSIC_E_JERK
  2022. planner.max_jerk.e = DEFAULT_EJERK;
  2023. #endif
  2024. #endif
  2025. #if DISABLED(CLASSIC_JERK)
  2026. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2027. #endif
  2028. #if HAS_SCARA_OFFSET
  2029. scara_home_offset.reset();
  2030. #elif HAS_HOME_OFFSET
  2031. home_offset.reset();
  2032. #endif
  2033. #if HAS_HOTEND_OFFSET
  2034. reset_hotend_offsets();
  2035. #endif
  2036. //
  2037. // Filament Runout Sensor
  2038. //
  2039. #if HAS_FILAMENT_SENSOR
  2040. runout.enabled = true;
  2041. runout.reset();
  2042. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  2043. runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM);
  2044. #endif
  2045. #endif
  2046. //
  2047. // Tool-change Settings
  2048. //
  2049. #if EXTRUDERS > 1
  2050. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2051. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  2052. toolchange_settings.extra_prime = TOOLCHANGE_FIL_EXTRA_PRIME;
  2053. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  2054. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  2055. #endif
  2056. #if ENABLED(TOOLCHANGE_PARK)
  2057. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2058. toolchange_settings.change_point = tpxy;
  2059. #endif
  2060. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2061. #endif
  2062. #if ENABLED(BACKLASH_GCODE)
  2063. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2064. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2065. backlash.distance_mm = tmp;
  2066. #ifdef BACKLASH_SMOOTHING_MM
  2067. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2068. #endif
  2069. #endif
  2070. #if ENABLED(EXTENSIBLE_UI)
  2071. ExtUI::onFactoryReset();
  2072. #endif
  2073. //
  2074. // Magnetic Parking Extruder
  2075. //
  2076. #if ENABLED(MAGNETIC_PARKING_EXTRUDER)
  2077. mpe_settings_init();
  2078. #endif
  2079. //
  2080. // Global Leveling
  2081. //
  2082. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2083. new_z_fade_height = 0.0;
  2084. #endif
  2085. #if HAS_LEVELING
  2086. reset_bed_level();
  2087. #endif
  2088. #if HAS_BED_PROBE
  2089. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2090. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2091. #if HAS_PROBE_XY_OFFSET
  2092. LOOP_XYZ(a) probe_offset[a] = dpo[a];
  2093. #else
  2094. probe_offset.x = probe_offset.y = 0;
  2095. probe_offset.z = dpo[Z_AXIS];
  2096. #endif
  2097. #endif
  2098. //
  2099. // Servo Angles
  2100. //
  2101. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2102. COPY(servo_angles, base_servo_angles);
  2103. #endif
  2104. //
  2105. // BLTOUCH
  2106. //
  2107. //#if ENABLED(BLTOUCH)
  2108. // bltouch.last_written_mode;
  2109. //#endif
  2110. //
  2111. // Endstop Adjustments
  2112. //
  2113. #if ENABLED(DELTA)
  2114. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM;
  2115. delta_height = DELTA_HEIGHT;
  2116. delta_endstop_adj = adj;
  2117. delta_radius = DELTA_RADIUS;
  2118. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2119. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2120. delta_tower_angle_trim = dta;
  2121. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2122. #if ENABLED(X_DUAL_ENDSTOPS)
  2123. endstops.x2_endstop_adj = (
  2124. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  2125. X_DUAL_ENDSTOPS_ADJUSTMENT
  2126. #else
  2127. 0
  2128. #endif
  2129. );
  2130. #endif
  2131. #if ENABLED(Y_DUAL_ENDSTOPS)
  2132. endstops.y2_endstop_adj = (
  2133. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  2134. Y_DUAL_ENDSTOPS_ADJUSTMENT
  2135. #else
  2136. 0
  2137. #endif
  2138. );
  2139. #endif
  2140. #if ENABLED(Z_DUAL_ENDSTOPS)
  2141. endstops.z2_endstop_adj = (
  2142. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  2143. Z_DUAL_ENDSTOPS_ADJUSTMENT
  2144. #else
  2145. 0
  2146. #endif
  2147. );
  2148. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  2149. endstops.z2_endstop_adj = (
  2150. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  2151. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  2152. #else
  2153. 0
  2154. #endif
  2155. );
  2156. endstops.z3_endstop_adj = (
  2157. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  2158. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  2159. #else
  2160. 0
  2161. #endif
  2162. );
  2163. #endif
  2164. #endif
  2165. //
  2166. // Preheat parameters
  2167. //
  2168. #if HOTENDS && HAS_LCD_MENU
  2169. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  2170. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  2171. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  2172. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  2173. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  2174. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  2175. #endif
  2176. //
  2177. // Hotend PID
  2178. //
  2179. #if ENABLED(PIDTEMP)
  2180. HOTEND_LOOP() {
  2181. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  2182. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  2183. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  2184. #if ENABLED(PID_EXTRUSION_SCALING)
  2185. PID_PARAM(Kc, e) = DEFAULT_Kc;
  2186. #endif
  2187. #if ENABLED(PID_FAN_SCALING)
  2188. PID_PARAM(Kf, e) = DEFAULT_Kf;
  2189. #endif
  2190. }
  2191. #endif
  2192. //
  2193. // PID Extrusion Scaling
  2194. //
  2195. #if ENABLED(PID_EXTRUSION_SCALING)
  2196. thermalManager.lpq_len = 20; // Default last-position-queue size
  2197. #endif
  2198. //
  2199. // Heated Bed PID
  2200. //
  2201. #if ENABLED(PIDTEMPBED)
  2202. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2203. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2204. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2205. #endif
  2206. //
  2207. // User-Defined Thermistors
  2208. //
  2209. #if HAS_USER_THERMISTORS
  2210. thermalManager.reset_user_thermistors();
  2211. #endif
  2212. //
  2213. // LCD Contrast
  2214. //
  2215. #if HAS_LCD_CONTRAST
  2216. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  2217. #endif
  2218. //
  2219. // Power-Loss Recovery
  2220. //
  2221. #if ENABLED(POWER_LOSS_RECOVERY)
  2222. recovery.enable(true);
  2223. #endif
  2224. //
  2225. // Firmware Retraction
  2226. //
  2227. #if ENABLED(FWRETRACT)
  2228. fwretract.reset();
  2229. #endif
  2230. //
  2231. // Volumetric & Filament Size
  2232. //
  2233. #if DISABLED(NO_VOLUMETRICS)
  2234. parser.volumetric_enabled =
  2235. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  2236. true
  2237. #else
  2238. false
  2239. #endif
  2240. ;
  2241. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  2242. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2243. #endif
  2244. endstops.enable_globally(
  2245. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  2246. true
  2247. #else
  2248. false
  2249. #endif
  2250. );
  2251. reset_stepper_drivers();
  2252. //
  2253. // Linear Advance
  2254. //
  2255. #if ENABLED(LIN_ADVANCE)
  2256. LOOP_L_N(i, EXTRUDERS) {
  2257. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2258. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  2259. saved_extruder_advance_K[i] = LIN_ADVANCE_K;
  2260. #endif
  2261. }
  2262. #endif
  2263. //
  2264. // Motor Current PWM
  2265. //
  2266. #if HAS_MOTOR_CURRENT_PWM
  2267. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2268. for (uint8_t q = 3; q--;)
  2269. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2270. #endif
  2271. //
  2272. // CNC Coordinate System
  2273. //
  2274. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  2275. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  2276. #endif
  2277. //
  2278. // Skew Correction
  2279. //
  2280. #if ENABLED(SKEW_CORRECTION_GCODE)
  2281. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2282. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2283. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2284. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2285. #endif
  2286. #endif
  2287. //
  2288. // Advanced Pause filament load & unload lengths
  2289. //
  2290. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2291. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  2292. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2293. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2294. }
  2295. #endif
  2296. postprocess();
  2297. DEBUG_ECHO_START();
  2298. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2299. #if ENABLED(EXTENSIBLE_UI)
  2300. ExtUI::onFactoryReset();
  2301. #endif
  2302. }
  2303. #if DISABLED(DISABLE_M503)
  2304. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2305. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2306. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0)
  2307. #if HAS_TRINAMIC
  2308. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2309. #if HAS_STEALTHCHOP
  2310. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2311. CONFIG_ECHO_START();
  2312. SERIAL_ECHOPGM(" M569 S1");
  2313. if (etc) {
  2314. SERIAL_CHAR(' ');
  2315. serialprintPGM(etc);
  2316. }
  2317. if (newLine) SERIAL_EOL();
  2318. }
  2319. #endif
  2320. #if ENABLED(HYBRID_THRESHOLD)
  2321. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2322. #endif
  2323. #if USE_SENSORLESS
  2324. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2325. #endif
  2326. #endif
  2327. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2328. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2329. #endif
  2330. inline void say_units(const bool colon) {
  2331. serialprintPGM(
  2332. #if ENABLED(INCH_MODE_SUPPORT)
  2333. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2334. #endif
  2335. PSTR(" (mm)")
  2336. );
  2337. if (colon) SERIAL_ECHOLNPGM(":");
  2338. }
  2339. void report_M92(const bool echo=true, const int8_t e=-1);
  2340. /**
  2341. * M503 - Report current settings in RAM
  2342. *
  2343. * Unless specifically disabled, M503 is available even without EEPROM
  2344. */
  2345. void MarlinSettings::report(const bool forReplay) {
  2346. /**
  2347. * Announce current units, in case inches are being displayed
  2348. */
  2349. CONFIG_ECHO_START();
  2350. #if ENABLED(INCH_MODE_SUPPORT)
  2351. SERIAL_ECHOPGM(" G2");
  2352. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2353. SERIAL_ECHOPGM(" ;");
  2354. say_units(false);
  2355. #else
  2356. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2357. say_units(false);
  2358. #endif
  2359. SERIAL_EOL();
  2360. #if HAS_LCD_MENU
  2361. // Temperature units - for Ultipanel temperature options
  2362. CONFIG_ECHO_START();
  2363. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2364. SERIAL_ECHOPGM(" M149 ");
  2365. SERIAL_CHAR(parser.temp_units_code());
  2366. SERIAL_ECHOPGM(" ; Units in ");
  2367. serialprintPGM(parser.temp_units_name());
  2368. #else
  2369. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2370. #endif
  2371. #endif
  2372. SERIAL_EOL();
  2373. #if DISABLED(NO_VOLUMETRICS)
  2374. /**
  2375. * Volumetric extrusion M200
  2376. */
  2377. if (!forReplay) {
  2378. CONFIG_ECHO_START();
  2379. SERIAL_ECHOPGM("Filament settings:");
  2380. if (parser.volumetric_enabled)
  2381. SERIAL_EOL();
  2382. else
  2383. SERIAL_ECHOLNPGM(" Disabled");
  2384. }
  2385. CONFIG_ECHO_START();
  2386. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2387. #if EXTRUDERS > 1
  2388. CONFIG_ECHO_START();
  2389. SERIAL_ECHOLNPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  2390. #if EXTRUDERS > 2
  2391. CONFIG_ECHO_START();
  2392. SERIAL_ECHOLNPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  2393. #if EXTRUDERS > 3
  2394. CONFIG_ECHO_START();
  2395. SERIAL_ECHOLNPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  2396. #if EXTRUDERS > 4
  2397. CONFIG_ECHO_START();
  2398. SERIAL_ECHOLNPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  2399. #if EXTRUDERS > 5
  2400. CONFIG_ECHO_START();
  2401. SERIAL_ECHOLNPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  2402. #endif // EXTRUDERS > 5
  2403. #endif // EXTRUDERS > 4
  2404. #endif // EXTRUDERS > 3
  2405. #endif // EXTRUDERS > 2
  2406. #endif // EXTRUDERS > 1
  2407. if (!parser.volumetric_enabled)
  2408. CONFIG_ECHO_MSG(" M200 D0");
  2409. #endif // !NO_VOLUMETRICS
  2410. CONFIG_ECHO_HEADING("Steps per unit:");
  2411. report_M92(!forReplay);
  2412. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2413. CONFIG_ECHO_START();
  2414. SERIAL_ECHOLNPAIR_P(
  2415. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2416. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2417. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2418. #if DISABLED(DISTINCT_E_FACTORS)
  2419. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2420. #endif
  2421. );
  2422. #if ENABLED(DISTINCT_E_FACTORS)
  2423. CONFIG_ECHO_START();
  2424. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2425. SERIAL_ECHOLNPAIR_P(
  2426. PSTR(" M203 T"), (int)i
  2427. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2428. );
  2429. }
  2430. #endif
  2431. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2432. CONFIG_ECHO_START();
  2433. SERIAL_ECHOLNPAIR_P(
  2434. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2435. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2436. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2437. #if DISABLED(DISTINCT_E_FACTORS)
  2438. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2439. #endif
  2440. );
  2441. #if ENABLED(DISTINCT_E_FACTORS)
  2442. CONFIG_ECHO_START();
  2443. for (uint8_t i = 0; i < E_STEPPERS; i++)
  2444. SERIAL_ECHOLNPAIR_P(
  2445. PSTR(" M201 T"), (int)i
  2446. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2447. );
  2448. #endif
  2449. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2450. CONFIG_ECHO_START();
  2451. SERIAL_ECHOLNPAIR(
  2452. " M204 P", LINEAR_UNIT(planner.settings.acceleration)
  2453. , " R", LINEAR_UNIT(planner.settings.retract_acceleration)
  2454. , " T", LINEAR_UNIT(planner.settings.travel_acceleration)
  2455. );
  2456. if (!forReplay) {
  2457. CONFIG_ECHO_START();
  2458. SERIAL_ECHOPGM("Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2459. #if DISABLED(CLASSIC_JERK)
  2460. SERIAL_ECHOPGM(" J<junc_dev>");
  2461. #endif
  2462. #if HAS_CLASSIC_JERK
  2463. SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2464. #if HAS_CLASSIC_E_JERK
  2465. SERIAL_ECHOPGM(" E<max_e_jerk>");
  2466. #endif
  2467. #endif
  2468. SERIAL_EOL();
  2469. }
  2470. CONFIG_ECHO_START();
  2471. SERIAL_ECHOLNPAIR_P(
  2472. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2473. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2474. , PSTR(" T"), LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2475. #if DISABLED(CLASSIC_JERK)
  2476. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2477. #endif
  2478. #if HAS_CLASSIC_JERK
  2479. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2480. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2481. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2482. #if HAS_CLASSIC_E_JERK
  2483. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2484. #endif
  2485. #endif
  2486. );
  2487. #if HAS_M206_COMMAND
  2488. CONFIG_ECHO_HEADING("Home offset:");
  2489. CONFIG_ECHO_START();
  2490. SERIAL_ECHOLNPAIR_P(
  2491. #if IS_CARTESIAN
  2492. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2493. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2494. , SP_Z_STR
  2495. #else
  2496. PSTR(" M206 Z")
  2497. #endif
  2498. , LINEAR_UNIT(home_offset.z)
  2499. );
  2500. #endif
  2501. #if HAS_HOTEND_OFFSET
  2502. CONFIG_ECHO_HEADING("Hotend offsets:");
  2503. CONFIG_ECHO_START();
  2504. for (uint8_t e = 1; e < HOTENDS; e++) {
  2505. SERIAL_ECHOPAIR_P(
  2506. PSTR(" M218 T"), (int)e,
  2507. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2508. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2509. );
  2510. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2511. }
  2512. #endif
  2513. /**
  2514. * Bed Leveling
  2515. */
  2516. #if HAS_LEVELING
  2517. #if ENABLED(MESH_BED_LEVELING)
  2518. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2519. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2520. if (!forReplay) {
  2521. CONFIG_ECHO_START();
  2522. ubl.echo_name();
  2523. SERIAL_ECHOLNPGM(":");
  2524. }
  2525. #elif HAS_ABL_OR_UBL
  2526. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2527. #endif
  2528. CONFIG_ECHO_START();
  2529. SERIAL_ECHOLNPAIR_P(
  2530. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2531. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2532. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2533. #endif
  2534. );
  2535. #if ENABLED(MESH_BED_LEVELING)
  2536. if (leveling_is_valid()) {
  2537. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2538. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2539. CONFIG_ECHO_START();
  2540. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2541. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2542. }
  2543. }
  2544. CONFIG_ECHO_START();
  2545. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2546. }
  2547. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2548. if (!forReplay) {
  2549. SERIAL_EOL();
  2550. ubl.report_state();
  2551. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  2552. SERIAL_ECHOLNPAIR("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
  2553. }
  2554. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2555. // solution needs to be found.
  2556. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2557. if (leveling_is_valid()) {
  2558. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2559. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2560. CONFIG_ECHO_START();
  2561. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2562. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2563. }
  2564. }
  2565. }
  2566. #endif
  2567. #endif // HAS_LEVELING
  2568. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2569. CONFIG_ECHO_HEADING("Servo Angles:");
  2570. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2571. switch (i) {
  2572. #if ENABLED(SWITCHING_EXTRUDER)
  2573. case SWITCHING_EXTRUDER_SERVO_NR:
  2574. #if EXTRUDERS > 3
  2575. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2576. #endif
  2577. #elif ENABLED(SWITCHING_NOZZLE)
  2578. case SWITCHING_NOZZLE_SERVO_NR:
  2579. #elif (ENABLED(BLTOUCH) && defined(BLTOUCH_ANGLES)) || (defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR))
  2580. case Z_PROBE_SERVO_NR:
  2581. #endif
  2582. CONFIG_ECHO_START();
  2583. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2584. default: break;
  2585. }
  2586. }
  2587. #endif // EDITABLE_SERVO_ANGLES
  2588. #if HAS_SCARA_OFFSET
  2589. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2590. CONFIG_ECHO_START();
  2591. SERIAL_ECHOLNPAIR_P(
  2592. PSTR(" M665 S"), delta_segments_per_second
  2593. , PSTR(" P"), scara_home_offset.a
  2594. , PSTR(" T"), scara_home_offset.b
  2595. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2596. );
  2597. #elif ENABLED(DELTA)
  2598. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2599. CONFIG_ECHO_START();
  2600. SERIAL_ECHOLNPAIR_P(
  2601. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2602. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2603. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2604. );
  2605. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> XYZ<tower angle corrections>");
  2606. CONFIG_ECHO_START();
  2607. SERIAL_ECHOLNPAIR_P(
  2608. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2609. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2610. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2611. , PSTR(" S"), delta_segments_per_second
  2612. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2613. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2614. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2615. );
  2616. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2617. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2618. CONFIG_ECHO_START();
  2619. SERIAL_ECHOPGM(" M666");
  2620. #if ENABLED(X_DUAL_ENDSTOPS)
  2621. SERIAL_ECHOPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2622. #endif
  2623. #if ENABLED(Y_DUAL_ENDSTOPS)
  2624. SERIAL_ECHOPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2625. #endif
  2626. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2627. SERIAL_ECHOLNPAIR("S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2628. CONFIG_ECHO_START();
  2629. SERIAL_ECHOPAIR(" M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2630. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2631. SERIAL_ECHOPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2632. #endif
  2633. SERIAL_EOL();
  2634. #endif // [XYZ]_DUAL_ENDSTOPS
  2635. #if HOTENDS && HAS_LCD_MENU
  2636. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2637. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2638. CONFIG_ECHO_START();
  2639. SERIAL_ECHOLNPAIR(
  2640. " M145 S", (int)i
  2641. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2642. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2643. , " F", int(ui.preheat_fan_speed[i])
  2644. );
  2645. }
  2646. #endif
  2647. #if HAS_PID_HEATING
  2648. CONFIG_ECHO_HEADING("PID settings:");
  2649. #if ENABLED(PIDTEMP)
  2650. HOTEND_LOOP() {
  2651. CONFIG_ECHO_START();
  2652. SERIAL_ECHOPAIR_P(
  2653. #if HOTENDS > 1 && ENABLED(PID_PARAMS_PER_HOTEND)
  2654. PSTR(" M301 E"), e,
  2655. PSTR(" P")
  2656. #else
  2657. PSTR(" M301 P")
  2658. #endif
  2659. , PID_PARAM(Kp, e)
  2660. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2661. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2662. );
  2663. #if ENABLED(PID_EXTRUSION_SCALING)
  2664. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2665. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2666. #endif
  2667. #if ENABLED(PID_FAN_SCALING)
  2668. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2669. #endif
  2670. SERIAL_EOL();
  2671. }
  2672. #endif // PIDTEMP
  2673. #if ENABLED(PIDTEMPBED)
  2674. CONFIG_ECHO_START();
  2675. SERIAL_ECHOLNPAIR(
  2676. " M304 P", thermalManager.temp_bed.pid.Kp
  2677. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2678. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2679. );
  2680. #endif
  2681. #endif // PIDTEMP || PIDTEMPBED
  2682. #if HAS_USER_THERMISTORS
  2683. CONFIG_ECHO_HEADING("User thermistors:");
  2684. for (uint8_t i = 0; i < USER_THERMISTORS; i++)
  2685. thermalManager.log_user_thermistor(i, true);
  2686. #endif
  2687. #if HAS_LCD_CONTRAST
  2688. CONFIG_ECHO_HEADING("LCD Contrast:");
  2689. CONFIG_ECHO_START();
  2690. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2691. #endif
  2692. #if ENABLED(POWER_LOSS_RECOVERY)
  2693. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2694. CONFIG_ECHO_START();
  2695. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2696. #endif
  2697. #if ENABLED(FWRETRACT)
  2698. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2699. CONFIG_ECHO_START();
  2700. SERIAL_ECHOLNPAIR_P(
  2701. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2702. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2703. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2704. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2705. );
  2706. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2707. CONFIG_ECHO_START();
  2708. SERIAL_ECHOLNPAIR(
  2709. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2710. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2711. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2712. );
  2713. #if ENABLED(FWRETRACT_AUTORETRACT)
  2714. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2715. CONFIG_ECHO_START();
  2716. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2717. #endif // FWRETRACT_AUTORETRACT
  2718. #endif // FWRETRACT
  2719. /**
  2720. * Probe Offset
  2721. */
  2722. #if HAS_BED_PROBE
  2723. if (!forReplay) {
  2724. CONFIG_ECHO_START();
  2725. SERIAL_ECHOPGM("Z-Probe Offset");
  2726. say_units(true);
  2727. }
  2728. CONFIG_ECHO_START();
  2729. SERIAL_ECHOLNPAIR_P(
  2730. #if HAS_PROBE_XY_OFFSET
  2731. PSTR(" M851 X"), LINEAR_UNIT(probe_offset_xy.x),
  2732. SP_Y_STR, LINEAR_UNIT(probe_offset_xy.y),
  2733. SP_Z_STR
  2734. #else
  2735. PSTR(" M851 X0 Y0 Z")
  2736. #endif
  2737. , LINEAR_UNIT(probe_offset.z)
  2738. );
  2739. #endif
  2740. /**
  2741. * Bed Skew Correction
  2742. */
  2743. #if ENABLED(SKEW_CORRECTION_GCODE)
  2744. CONFIG_ECHO_HEADING("Skew Factor: ");
  2745. CONFIG_ECHO_START();
  2746. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2747. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2748. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2749. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2750. #else
  2751. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2752. #endif
  2753. #endif
  2754. #if HAS_TRINAMIC
  2755. /**
  2756. * TMC stepper driver current
  2757. */
  2758. CONFIG_ECHO_HEADING("Stepper driver current:");
  2759. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2760. say_M906(forReplay);
  2761. #if AXIS_IS_TMC(X)
  2762. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2763. #endif
  2764. #if AXIS_IS_TMC(Y)
  2765. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2766. #endif
  2767. #if AXIS_IS_TMC(Z)
  2768. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2769. #endif
  2770. SERIAL_EOL();
  2771. #endif
  2772. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2773. say_M906(forReplay);
  2774. SERIAL_ECHOPGM(" I1");
  2775. #if AXIS_IS_TMC(X2)
  2776. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2777. #endif
  2778. #if AXIS_IS_TMC(Y2)
  2779. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2780. #endif
  2781. #if AXIS_IS_TMC(Z2)
  2782. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2783. #endif
  2784. SERIAL_EOL();
  2785. #endif
  2786. #if AXIS_IS_TMC(Z3)
  2787. say_M906(forReplay);
  2788. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2789. #endif
  2790. #if AXIS_IS_TMC(E0)
  2791. say_M906(forReplay);
  2792. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2793. #endif
  2794. #if AXIS_IS_TMC(E1)
  2795. say_M906(forReplay);
  2796. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2797. #endif
  2798. #if AXIS_IS_TMC(E2)
  2799. say_M906(forReplay);
  2800. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2801. #endif
  2802. #if AXIS_IS_TMC(E3)
  2803. say_M906(forReplay);
  2804. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2805. #endif
  2806. #if AXIS_IS_TMC(E4)
  2807. say_M906(forReplay);
  2808. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2809. #endif
  2810. #if AXIS_IS_TMC(E5)
  2811. say_M906(forReplay);
  2812. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2813. #endif
  2814. SERIAL_EOL();
  2815. /**
  2816. * TMC Hybrid Threshold
  2817. */
  2818. #if ENABLED(HYBRID_THRESHOLD)
  2819. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2820. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2821. say_M913(forReplay);
  2822. #endif
  2823. #if AXIS_HAS_STEALTHCHOP(X)
  2824. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  2825. #endif
  2826. #if AXIS_HAS_STEALTHCHOP(Y)
  2827. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  2828. #endif
  2829. #if AXIS_HAS_STEALTHCHOP(Z)
  2830. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  2831. #endif
  2832. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2833. SERIAL_EOL();
  2834. #endif
  2835. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2836. say_M913(forReplay);
  2837. SERIAL_ECHOPGM(" I1");
  2838. #endif
  2839. #if AXIS_HAS_STEALTHCHOP(X2)
  2840. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  2841. #endif
  2842. #if AXIS_HAS_STEALTHCHOP(Y2)
  2843. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  2844. #endif
  2845. #if AXIS_HAS_STEALTHCHOP(Z2)
  2846. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  2847. #endif
  2848. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2849. SERIAL_EOL();
  2850. #endif
  2851. #if AXIS_HAS_STEALTHCHOP(Z3)
  2852. say_M913(forReplay);
  2853. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  2854. #endif
  2855. #if AXIS_HAS_STEALTHCHOP(E0)
  2856. say_M913(forReplay);
  2857. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  2858. #endif
  2859. #if AXIS_HAS_STEALTHCHOP(E1)
  2860. say_M913(forReplay);
  2861. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  2862. #endif
  2863. #if AXIS_HAS_STEALTHCHOP(E2)
  2864. say_M913(forReplay);
  2865. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  2866. #endif
  2867. #if AXIS_HAS_STEALTHCHOP(E3)
  2868. say_M913(forReplay);
  2869. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  2870. #endif
  2871. #if AXIS_HAS_STEALTHCHOP(E4)
  2872. say_M913(forReplay);
  2873. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  2874. #endif
  2875. #if AXIS_HAS_STEALTHCHOP(E5)
  2876. say_M913(forReplay);
  2877. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  2878. #endif
  2879. SERIAL_EOL();
  2880. #endif // HYBRID_THRESHOLD
  2881. /**
  2882. * TMC Sensorless homing thresholds
  2883. */
  2884. #if USE_SENSORLESS
  2885. CONFIG_ECHO_HEADING("StallGuard threshold:");
  2886. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2887. CONFIG_ECHO_START();
  2888. say_M914();
  2889. #if X_SENSORLESS
  2890. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  2891. #endif
  2892. #if Y_SENSORLESS
  2893. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  2894. #endif
  2895. #if Z_SENSORLESS
  2896. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  2897. #endif
  2898. SERIAL_EOL();
  2899. #endif
  2900. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  2901. CONFIG_ECHO_START();
  2902. say_M914();
  2903. SERIAL_ECHOPGM(" I1");
  2904. #if X2_SENSORLESS
  2905. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  2906. #endif
  2907. #if Y2_SENSORLESS
  2908. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  2909. #endif
  2910. #if Z2_SENSORLESS
  2911. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  2912. #endif
  2913. SERIAL_EOL();
  2914. #endif
  2915. #if Z3_SENSORLESS
  2916. CONFIG_ECHO_START();
  2917. say_M914();
  2918. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  2919. #endif
  2920. #endif // USE_SENSORLESS
  2921. /**
  2922. * TMC stepping mode
  2923. */
  2924. #if HAS_STEALTHCHOP
  2925. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2926. #if AXIS_HAS_STEALTHCHOP(X)
  2927. const bool chop_x = stepperX.get_stealthChop_status();
  2928. #else
  2929. constexpr bool chop_x = false;
  2930. #endif
  2931. #if AXIS_HAS_STEALTHCHOP(Y)
  2932. const bool chop_y = stepperY.get_stealthChop_status();
  2933. #else
  2934. constexpr bool chop_y = false;
  2935. #endif
  2936. #if AXIS_HAS_STEALTHCHOP(Z)
  2937. const bool chop_z = stepperZ.get_stealthChop_status();
  2938. #else
  2939. constexpr bool chop_z = false;
  2940. #endif
  2941. if (chop_x || chop_y || chop_z) {
  2942. say_M569(forReplay);
  2943. if (chop_x) SERIAL_ECHO_P(SP_X_STR);
  2944. if (chop_y) SERIAL_ECHO_P(SP_Y_STR);
  2945. if (chop_z) SERIAL_ECHO_P(SP_Z_STR);
  2946. SERIAL_EOL();
  2947. }
  2948. #if AXIS_HAS_STEALTHCHOP(X2)
  2949. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2950. #else
  2951. constexpr bool chop_x2 = false;
  2952. #endif
  2953. #if AXIS_HAS_STEALTHCHOP(Y2)
  2954. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2955. #else
  2956. constexpr bool chop_y2 = false;
  2957. #endif
  2958. #if AXIS_HAS_STEALTHCHOP(Z2)
  2959. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2960. #else
  2961. constexpr bool chop_z2 = false;
  2962. #endif
  2963. if (chop_x2 || chop_y2 || chop_z2) {
  2964. say_M569(forReplay, PSTR("I1"));
  2965. if (chop_x2) SERIAL_ECHO_P(SP_X_STR);
  2966. if (chop_y2) SERIAL_ECHO_P(SP_Y_STR);
  2967. if (chop_z2) SERIAL_ECHO_P(SP_Z_STR);
  2968. SERIAL_EOL();
  2969. }
  2970. #if AXIS_HAS_STEALTHCHOP(Z3)
  2971. if (stepperZ3.get_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  2972. #endif
  2973. #if AXIS_HAS_STEALTHCHOP(E0)
  2974. if (stepperE0.get_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  2975. #endif
  2976. #if AXIS_HAS_STEALTHCHOP(E1)
  2977. if (stepperE1.get_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  2978. #endif
  2979. #if AXIS_HAS_STEALTHCHOP(E2)
  2980. if (stepperE2.get_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  2981. #endif
  2982. #if AXIS_HAS_STEALTHCHOP(E3)
  2983. if (stepperE3.get_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  2984. #endif
  2985. #if AXIS_HAS_STEALTHCHOP(E4)
  2986. if (stepperE4.get_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  2987. #endif
  2988. #if AXIS_HAS_STEALTHCHOP(E5)
  2989. if (stepperE5.get_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  2990. #endif
  2991. #endif // HAS_STEALTHCHOP
  2992. #endif // HAS_TRINAMIC
  2993. /**
  2994. * Linear Advance
  2995. */
  2996. #if ENABLED(LIN_ADVANCE)
  2997. CONFIG_ECHO_HEADING("Linear Advance:");
  2998. CONFIG_ECHO_START();
  2999. #if EXTRUDERS < 2
  3000. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3001. #else
  3002. LOOP_L_N(i, EXTRUDERS)
  3003. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3004. #endif
  3005. #endif
  3006. #if HAS_MOTOR_CURRENT_PWM
  3007. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3008. CONFIG_ECHO_START();
  3009. SERIAL_ECHOLNPAIR_P(
  3010. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3011. , SP_Z_STR, stepper.motor_current_setting[1]
  3012. , SP_E_STR, stepper.motor_current_setting[2]
  3013. );
  3014. #endif
  3015. /**
  3016. * Advanced Pause filament load & unload lengths
  3017. */
  3018. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3019. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3020. #if EXTRUDERS == 1
  3021. say_M603(forReplay);
  3022. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3023. #else
  3024. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0)
  3025. _ECHO_603(0);
  3026. _ECHO_603(1);
  3027. #if EXTRUDERS > 2
  3028. _ECHO_603(2);
  3029. #if EXTRUDERS > 3
  3030. _ECHO_603(3);
  3031. #if EXTRUDERS > 4
  3032. _ECHO_603(4);
  3033. #if EXTRUDERS > 5
  3034. _ECHO_603(5);
  3035. #endif // EXTRUDERS > 5
  3036. #endif // EXTRUDERS > 4
  3037. #endif // EXTRUDERS > 3
  3038. #endif // EXTRUDERS > 2
  3039. #endif // EXTRUDERS == 1
  3040. #endif // ADVANCED_PAUSE_FEATURE
  3041. #if EXTRUDERS > 1
  3042. CONFIG_ECHO_HEADING("Tool-changing:");
  3043. CONFIG_ECHO_START();
  3044. M217_report(true);
  3045. #endif
  3046. #if ENABLED(BACKLASH_GCODE)
  3047. CONFIG_ECHO_HEADING("Backlash compensation:");
  3048. CONFIG_ECHO_START();
  3049. SERIAL_ECHOLNPAIR_P(
  3050. PSTR(" M425 F"), backlash.get_correction()
  3051. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3052. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3053. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3054. #ifdef BACKLASH_SMOOTHING_MM
  3055. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3056. #endif
  3057. );
  3058. #endif
  3059. #if HAS_FILAMENT_SENSOR
  3060. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3061. CONFIG_ECHO_START();
  3062. SERIAL_ECHOLNPAIR(
  3063. " M412 S", int(runout.enabled)
  3064. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  3065. , " D", LINEAR_UNIT(runout.runout_distance())
  3066. #endif
  3067. );
  3068. #endif
  3069. }
  3070. #endif // !DISABLE_M503
  3071. #pragma pack(pop)