My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 141KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * Ring buffer gleaned from wiring_serial library by David A. Mellis.
  31. *
  32. * Fast inverse function needed for Bézier interpolation for AVR
  33. * was designed, written and tested by Eduardo José Tagle, April 2018.
  34. *
  35. * Planner mathematics (Mathematica-style):
  36. *
  37. * Where: s == speed, a == acceleration, t == time, d == distance
  38. *
  39. * Basic definitions:
  40. * Speed[s_, a_, t_] := s + (a*t)
  41. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  42. *
  43. * Distance to reach a specific speed with a constant acceleration:
  44. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  45. * d -> (m^2 - s^2) / (2 a)
  46. *
  47. * Speed after a given distance of travel with constant acceleration:
  48. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  49. * m -> Sqrt[2 a d + s^2]
  50. *
  51. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  52. *
  53. * When to start braking (di) to reach a specified destination speed (s2) after
  54. * acceleration from initial speed s1 without ever reaching a plateau:
  55. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  56. * di -> (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. * We note, as an optimization, that if we have already calculated an
  59. * acceleration distance d1 from s1 to m and a deceration distance d2
  60. * from m to s2 then
  61. *
  62. * d1 -> (m^2 - s1^2) / (2 a)
  63. * d2 -> (m^2 - s2^2) / (2 a)
  64. * di -> (d + d1 - d2) / 2
  65. */
  66. #include "planner.h"
  67. #include "stepper.h"
  68. #include "motion.h"
  69. #include "temperature.h"
  70. #include "../lcd/marlinui.h"
  71. #include "../gcode/parser.h"
  72. #include "../MarlinCore.h"
  73. #if HAS_LEVELING
  74. #include "../feature/bedlevel/bedlevel.h"
  75. #endif
  76. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  77. #include "../feature/filwidth.h"
  78. #endif
  79. #if ENABLED(BARICUDA)
  80. #include "../feature/baricuda.h"
  81. #endif
  82. #if ENABLED(MIXING_EXTRUDER)
  83. #include "../feature/mixing.h"
  84. #endif
  85. #if ENABLED(AUTO_POWER_CONTROL)
  86. #include "../feature/power.h"
  87. #endif
  88. #if ENABLED(BACKLASH_COMPENSATION)
  89. #include "../feature/backlash.h"
  90. #endif
  91. #if ENABLED(CANCEL_OBJECTS)
  92. #include "../feature/cancel_object.h"
  93. #endif
  94. #if ENABLED(POWER_LOSS_RECOVERY)
  95. #include "../feature/powerloss.h"
  96. #endif
  97. #if HAS_CUTTER
  98. #include "../feature/spindle_laser.h"
  99. #endif
  100. // Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
  101. // fewer movements. The delay is measured in milliseconds, and must be less than 250ms
  102. #define BLOCK_DELAY_FOR_1ST_MOVE 100
  103. Planner planner;
  104. // public:
  105. /**
  106. * A ring buffer of moves described in steps
  107. */
  108. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  109. volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
  110. Planner::block_buffer_nonbusy, // Index of the first non-busy block
  111. Planner::block_buffer_planned, // Index of the optimally planned block
  112. Planner::block_buffer_tail; // Index of the busy block, if any
  113. uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
  114. uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
  115. planner_settings_t Planner::settings; // Initialized by settings.load()
  116. /**
  117. * Set up inline block variables
  118. * Set laser_power_floor based on SPEED_POWER_MIN to pevent a zero power output state with LASER_POWER_TRAP
  119. */
  120. #if ENABLED(LASER_FEATURE)
  121. laser_state_t Planner::laser_inline; // Current state for blocks
  122. const uint8_t laser_power_floor = cutter.pct_to_ocr(SPEED_POWER_MIN);
  123. #endif
  124. uint32_t Planner::max_acceleration_steps_per_s2[DISTINCT_AXES]; // (steps/s^2) Derived from mm_per_s2
  125. float Planner::mm_per_step[DISTINCT_AXES]; // (mm) Millimeters per step
  126. #if HAS_JUNCTION_DEVIATION
  127. float Planner::junction_deviation_mm; // (mm) M205 J
  128. #if HAS_LINEAR_E_JERK
  129. float Planner::max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm
  130. #endif
  131. #endif
  132. #if HAS_CLASSIC_JERK
  133. TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) Planner::max_jerk;
  134. #endif
  135. #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
  136. bool Planner::abort_on_endstop_hit = false;
  137. #endif
  138. #if ENABLED(DISTINCT_E_FACTORS)
  139. uint8_t Planner::last_extruder = 0; // Respond to extruder change
  140. #endif
  141. #if ENABLED(DIRECT_STEPPING)
  142. uint32_t Planner::last_page_step_rate = 0;
  143. xyze_bool_t Planner::last_page_dir{0};
  144. #endif
  145. #if HAS_EXTRUDERS
  146. int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
  147. float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
  148. #endif
  149. #if DISABLED(NO_VOLUMETRICS)
  150. float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  151. Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
  152. Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  153. #endif
  154. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  155. float Planner::volumetric_extruder_limit[EXTRUDERS], // max mm^3/sec the extruder is able to handle
  156. Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner
  157. #endif
  158. #if HAS_LEVELING
  159. bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
  160. #if ABL_PLANAR
  161. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  162. #endif
  163. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  164. float Planner::z_fade_height, // Initialized by settings.load()
  165. Planner::inverse_z_fade_height,
  166. Planner::last_fade_z;
  167. #endif
  168. #else
  169. constexpr bool Planner::leveling_active;
  170. #endif
  171. skew_factor_t Planner::skew_factor; // Initialized by settings.load()
  172. #if ENABLED(AUTOTEMP)
  173. celsius_t Planner::autotemp_max = 250,
  174. Planner::autotemp_min = 210;
  175. float Planner::autotemp_factor = 0.1f;
  176. bool Planner::autotemp_enabled = false;
  177. #endif
  178. // private:
  179. xyze_long_t Planner::position{0};
  180. uint32_t Planner::acceleration_long_cutoff;
  181. xyze_float_t Planner::previous_speed;
  182. float Planner::previous_nominal_speed;
  183. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  184. last_move_t Planner::g_uc_extruder_last_move[E_STEPPERS] = { 0 };
  185. #endif
  186. #ifdef XY_FREQUENCY_LIMIT
  187. int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT;
  188. float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f;
  189. int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0f / (XY_FREQUENCY_LIMIT));
  190. #endif
  191. #if ENABLED(LIN_ADVANCE)
  192. float Planner::extruder_advance_K[DISTINCT_E]; // Initialized by settings.load()
  193. #endif
  194. #if HAS_POSITION_FLOAT
  195. xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used!
  196. #endif
  197. #if IS_KINEMATIC
  198. xyze_pos_t Planner::position_cart;
  199. #endif
  200. #if HAS_WIRED_LCD
  201. volatile uint32_t Planner::block_buffer_runtime_us = 0;
  202. #endif
  203. /**
  204. * Class and Instance Methods
  205. */
  206. Planner::Planner() { init(); }
  207. void Planner::init() {
  208. position.reset();
  209. TERN_(HAS_POSITION_FLOAT, position_float.reset());
  210. TERN_(IS_KINEMATIC, position_cart.reset());
  211. previous_speed.reset();
  212. previous_nominal_speed = 0;
  213. TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity());
  214. clear_block_buffer();
  215. delay_before_delivering = 0;
  216. #if ENABLED(DIRECT_STEPPING)
  217. last_page_step_rate = 0;
  218. last_page_dir.reset();
  219. #endif
  220. }
  221. #if ENABLED(S_CURVE_ACCELERATION)
  222. #ifdef __AVR__
  223. /**
  224. * This routine returns 0x1000000 / d, getting the inverse as fast as possible.
  225. * A fast-converging iterative Newton-Raphson method can reach full precision in
  226. * just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
  227. * to 30 cycles for small divisors), instead of the 500 cycles a normal division
  228. * would take.
  229. *
  230. * Inspired by the following page:
  231. * https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
  232. *
  233. * Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
  234. * Then, B must be <= 2^k, otherwise, the quotient is 0.
  235. *
  236. * The Newton - Raphson iteration for x = B / 2 ^ k yields:
  237. * q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
  238. *
  239. * This can be rearranged to:
  240. * q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
  241. *
  242. * Each iteration requires only integer multiplications and bit shifts.
  243. * It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
  244. * it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
  245. * So it checks for this case and extracts floor(2 ^ k / B).
  246. *
  247. * A simple but important optimization for this approach is to truncate
  248. * multiplications (i.e., calculate only the higher bits of the product) in the
  249. * early iterations of the Newton - Raphson method. This is done so the results
  250. * of the early iterations are far from the quotient. Then it doesn't matter if
  251. * they are done inaccurately.
  252. * It's important to pick a good starting value for x. Knowing how many
  253. * digits the divisor has, it can be estimated:
  254. *
  255. * 2^k / x = 2 ^ log2(2^k / x)
  256. * 2^k / x = 2 ^(log2(2^k)-log2(x))
  257. * 2^k / x = 2 ^(k*log2(2)-log2(x))
  258. * 2^k / x = 2 ^ (k-log2(x))
  259. * 2^k / x >= 2 ^ (k-floor(log2(x)))
  260. * floor(log2(x)) is simply the index of the most significant bit set.
  261. *
  262. * If this estimation can be improved even further the number of iterations can be
  263. * reduced a lot, saving valuable execution time.
  264. * The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
  265. * Research, Silicon Valley,August 26, 2008, available at
  266. * https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
  267. * suggests, for its integer division algorithm, using a table to supply the first
  268. * 8 bits of precision, then, due to the quadratic convergence nature of the
  269. * Newton-Raphon iteration, just 2 iterations should be enough to get maximum
  270. * precision of the division.
  271. * By precomputing values of inverses for small denominator values, just one
  272. * Newton-Raphson iteration is enough to reach full precision.
  273. * This code uses the top 9 bits of the denominator as index.
  274. *
  275. * The AVR assembly function implements this C code using the data below:
  276. *
  277. * // For small divisors, it is best to directly retrieve the results
  278. * if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
  279. *
  280. * // Compute initial estimation of 0x1000000/x -
  281. * // Get most significant bit set on divider
  282. * uint8_t idx = 0;
  283. * uint32_t nr = d;
  284. * if (!(nr & 0xFF0000)) {
  285. * nr <<= 8; idx += 8;
  286. * if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
  287. * }
  288. * if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
  289. * if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
  290. * if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
  291. *
  292. * // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
  293. * uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
  294. * ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
  295. * x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
  296. *
  297. * x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
  298. * const uint32_t r = _BV(24) - x * d; // Estimate remainder
  299. * if (r >= d) x++; // Check whether to adjust result
  300. * return uint32_t(x); // x holds the proper estimation
  301. */
  302. static uint32_t get_period_inverse(uint32_t d) {
  303. static const uint8_t inv_tab[256] PROGMEM = {
  304. 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
  305. 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
  306. 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
  307. 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
  308. 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
  309. 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
  310. 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
  311. 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
  312. 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
  313. 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
  314. 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
  315. 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
  316. 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
  317. 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
  318. 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
  319. 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
  320. };
  321. // For small denominators, it is cheaper to directly store the result.
  322. // For bigger ones, just ONE Newton-Raphson iteration is enough to get
  323. // maximum precision we need
  324. static const uint32_t small_inv_tab[111] PROGMEM = {
  325. 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
  326. 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
  327. 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
  328. 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
  329. 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
  330. 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
  331. 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
  332. };
  333. // For small divisors, it is best to directly retrieve the results
  334. if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
  335. uint8_t r8 = d & 0xFF,
  336. r9 = (d >> 8) & 0xFF,
  337. r10 = (d >> 16) & 0xFF,
  338. r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
  339. const uint8_t *ptab = inv_tab;
  340. __asm__ __volatile__(
  341. // %8:%7:%6 = interval
  342. // r31:r30: MUST be those registers, and they must point to the inv_tab
  343. A("clr %13") // %13 = 0
  344. // Now we must compute
  345. // result = 0xFFFFFF / d
  346. // %8:%7:%6 = interval
  347. // %16:%15:%14 = nr
  348. // %13 = 0
  349. // A plain division of 24x24 bits should take 388 cycles to complete. We will
  350. // use Newton-Raphson for the calculation, and will strive to get way less cycles
  351. // for the same result - Using C division, it takes 500cycles to complete .
  352. A("clr %3") // idx = 0
  353. A("mov %14,%6")
  354. A("mov %15,%7")
  355. A("mov %16,%8") // nr = interval
  356. A("tst %16") // nr & 0xFF0000 == 0 ?
  357. A("brne 2f") // No, skip this
  358. A("mov %16,%15")
  359. A("mov %15,%14") // nr <<= 8, %14 not needed
  360. A("subi %3,-8") // idx += 8
  361. A("tst %16") // nr & 0xFF0000 == 0 ?
  362. A("brne 2f") // No, skip this
  363. A("mov %16,%15") // nr <<= 8, %14 not needed
  364. A("clr %15") // We clear %14
  365. A("subi %3,-8") // idx += 8
  366. // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
  367. L("2")
  368. A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
  369. A("brcc 3f") // No, skip this
  370. A("swap %15") // Swap nybbles
  371. A("swap %16") // Swap nybbles. Low nybble is 0
  372. A("mov %14, %15")
  373. A("andi %14,0x0F") // Isolate low nybble
  374. A("andi %15,0xF0") // Keep proper nybble in %15
  375. A("or %16, %14") // %16:%15 <<= 4
  376. A("subi %3,-4") // idx += 4
  377. L("3")
  378. A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
  379. A("brcc 4f") // No, skip this
  380. A("add %15,%15")
  381. A("adc %16,%16")
  382. A("add %15,%15")
  383. A("adc %16,%16") // %16:%15 <<= 2
  384. A("subi %3,-2") // idx += 2
  385. L("4")
  386. A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
  387. A("brcc 5f") // No, skip this
  388. A("add %15,%15")
  389. A("adc %16,%16") // %16:%15 <<= 1
  390. A("inc %3") // idx += 1
  391. // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
  392. // we have at least 9 MSBits available to enter the initial estimation table
  393. L("5")
  394. A("add %15,%15")
  395. A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
  396. A("add r30,%16") // Only use top 8 bits
  397. A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
  398. A("lpm %14, Z") // %14 = inv_tab[tidx]
  399. A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
  400. // We must scale the approximation to the proper place
  401. A("clr %16") // %16 will always be 0 here
  402. A("subi %3,8") // idx == 8 ?
  403. A("breq 6f") // yes, no need to scale
  404. A("brcs 7f") // If C=1, means idx < 8, result was negative!
  405. // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
  406. A("sbrs %3,0") // shift by 1bit position?
  407. A("rjmp 8f") // No
  408. A("add %14,%14")
  409. A("adc %15,%15") // %15:16 <<= 1
  410. L("8")
  411. A("sbrs %3,1") // shift by 2bit position?
  412. A("rjmp 9f") // No
  413. A("add %14,%14")
  414. A("adc %15,%15")
  415. A("add %14,%14")
  416. A("adc %15,%15") // %15:16 <<= 1
  417. L("9")
  418. A("sbrs %3,2") // shift by 4bits position?
  419. A("rjmp 16f") // No
  420. A("swap %15") // Swap nybbles. lo nybble of %15 will always be 0
  421. A("swap %14") // Swap nybbles
  422. A("mov %12,%14")
  423. A("andi %12,0x0F") // isolate low nybble
  424. A("andi %14,0xF0") // and clear it
  425. A("or %15,%12") // %15:%16 <<= 4
  426. L("16")
  427. A("sbrs %3,3") // shift by 8bits position?
  428. A("rjmp 6f") // No, we are done
  429. A("mov %16,%15")
  430. A("mov %15,%14")
  431. A("clr %14")
  432. A("jmp 6f")
  433. // idx < 8, now %3 = idx - 8. Get the count of bits
  434. L("7")
  435. A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
  436. A("sbrs %3,0") // shift by 1 bit position ?
  437. A("rjmp 10f") // No, skip it
  438. A("asr %15") // (bit7 is always 0 here)
  439. A("ror %14")
  440. L("10")
  441. A("sbrs %3,1") // shift by 2 bit position ?
  442. A("rjmp 11f") // No, skip it
  443. A("asr %15") // (bit7 is always 0 here)
  444. A("ror %14")
  445. A("asr %15") // (bit7 is always 0 here)
  446. A("ror %14")
  447. L("11")
  448. A("sbrs %3,2") // shift by 4 bit position ?
  449. A("rjmp 12f") // No, skip it
  450. A("swap %15") // Swap nybbles
  451. A("andi %14, 0xF0") // Lose the lowest nybble
  452. A("swap %14") // Swap nybbles. Upper nybble is 0
  453. A("or %14,%15") // Pass nybble from upper byte
  454. A("andi %15, 0x0F") // And get rid of that nybble
  455. L("12")
  456. A("sbrs %3,3") // shift by 8 bit position ?
  457. A("rjmp 6f") // No, skip it
  458. A("mov %14,%15")
  459. A("clr %15")
  460. L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
  461. // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
  462. // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
  463. // to get more than 18bits of precision (the initial table lookup gives 9 bits of
  464. // precision to start from). 18bits of precision is all what is needed here for result
  465. // %8:%7:%6 = d = interval
  466. // %16:%15:%14 = x = initial estimation of 0x1000000 / d
  467. // %13 = 0
  468. // %3:%2:%1:%0 = working accumulator
  469. // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
  470. A("clr %0")
  471. A("clr %1")
  472. A("clr %2")
  473. A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
  474. A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
  475. A("sub %0,r0")
  476. A("sbc %1,r1")
  477. A("sbc %2,%13")
  478. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
  479. A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
  480. A("sub %1,r0")
  481. A("sbc %2,r1" )
  482. A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
  483. A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
  484. A("sub %2,r0")
  485. A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
  486. A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
  487. A("sub %1,r0")
  488. A("sbc %2,r1")
  489. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
  490. A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
  491. A("sub %2,r0")
  492. A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
  493. A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
  494. A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
  495. A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
  496. A("sub %2,r0")
  497. A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
  498. A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
  499. A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
  500. // %3:%2:%1:%0 = (1<<25) - x*d [169]
  501. // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
  502. // %16:%15:%14 = x = initial estimation of 0x1000000 / d
  503. // %3:%2:%1:%0 = (1<<25) - x*d = acc
  504. // %13 = 0
  505. // result = %11:%10:%9:%5:%4
  506. A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
  507. A("mov %4,r1")
  508. A("clr %5")
  509. A("clr %9")
  510. A("clr %10")
  511. A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
  512. A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
  513. A("add %4,r0")
  514. A("adc %5,r1")
  515. A("adc %9,%13")
  516. A("adc %10,%13")
  517. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
  518. A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
  519. A("add %5,r0")
  520. A("adc %9,r1")
  521. A("adc %10,%13")
  522. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
  523. A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
  524. A("add %4,r0")
  525. A("adc %5,r1")
  526. A("adc %9,%13")
  527. A("adc %10,%13")
  528. A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
  529. A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
  530. A("add %5,r0")
  531. A("adc %9,r1")
  532. A("adc %10,%13")
  533. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
  534. A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
  535. A("add %9,r0")
  536. A("adc %10,r1")
  537. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
  538. A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
  539. A("add %5,r0")
  540. A("adc %9,r1")
  541. A("adc %10,%13")
  542. A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
  543. A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
  544. A("add %9,r0")
  545. A("adc %10,r1")
  546. A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
  547. A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
  548. A("add %10,r0")
  549. A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
  550. A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
  551. A("add %9,r0")
  552. A("adc %10,r1")
  553. A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
  554. A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
  555. A("add %10,r0")
  556. A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
  557. A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
  558. A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
  559. // At this point, %11:%10:%9 contains the new estimation of x.
  560. // Finally, we must correct the result. Estimate remainder as
  561. // (1<<24) - x*d
  562. // %11:%10:%9 = x
  563. // %8:%7:%6 = d = interval" "\n\t"
  564. A("ldi %3,1")
  565. A("clr %2")
  566. A("clr %1")
  567. A("clr %0") // %3:%2:%1:%0 = 0x1000000
  568. A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
  569. A("sub %0,r0")
  570. A("sbc %1,r1")
  571. A("sbc %2,%13")
  572. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
  573. A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
  574. A("sub %1,r0")
  575. A("sbc %2,r1")
  576. A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
  577. A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
  578. A("sub %2,r0")
  579. A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
  580. A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
  581. A("sub %1,r0")
  582. A("sbc %2,r1")
  583. A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
  584. A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
  585. A("sub %2,r0")
  586. A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
  587. A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
  588. A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
  589. A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
  590. A("sub %2,r0")
  591. A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
  592. A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
  593. A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
  594. // %3:%2:%1:%0 = r = (1<<24) - x*d
  595. // %8:%7:%6 = d = interval
  596. // Perform the final correction
  597. A("sub %0,%6")
  598. A("sbc %1,%7")
  599. A("sbc %2,%8") // r -= d
  600. A("brcs 14f") // if ( r >= d)
  601. // %11:%10:%9 = x
  602. A("ldi %3,1")
  603. A("add %9,%3")
  604. A("adc %10,%13")
  605. A("adc %11,%13") // x++
  606. L("14")
  607. // Estimation is done. %11:%10:%9 = x
  608. A("clr __zero_reg__") // Make C runtime happy
  609. // [211 cycles total]
  610. : "=r" (r2),
  611. "=r" (r3),
  612. "=r" (r4),
  613. "=d" (r5),
  614. "=r" (r6),
  615. "=r" (r7),
  616. "+r" (r8),
  617. "+r" (r9),
  618. "+r" (r10),
  619. "=d" (r11),
  620. "=r" (r12),
  621. "=r" (r13),
  622. "=d" (r14),
  623. "=d" (r15),
  624. "=d" (r16),
  625. "=d" (r17),
  626. "=d" (r18),
  627. "+z" (ptab)
  628. :
  629. : "r0", "r1", "cc"
  630. );
  631. // Return the result
  632. return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
  633. }
  634. #else
  635. // All other 32-bit MPUs can easily do inverse using hardware division,
  636. // so we don't need to reduce precision or to use assembly language at all.
  637. // This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
  638. FORCE_INLINE static uint32_t get_period_inverse(const uint32_t d) {
  639. return d ? 0xFFFFFFFF / d : 0xFFFFFFFF;
  640. }
  641. #endif
  642. #endif
  643. #define MINIMAL_STEP_RATE 120
  644. /**
  645. * Get the current block for processing
  646. * and mark the block as busy.
  647. * Return nullptr if the buffer is empty
  648. * or if there is a first-block delay.
  649. *
  650. * WARNING: Called from Stepper ISR context!
  651. */
  652. block_t* Planner::get_current_block() {
  653. // Get the number of moves in the planner queue so far
  654. const uint8_t nr_moves = movesplanned();
  655. // If there are any moves queued ...
  656. if (nr_moves) {
  657. // If there is still delay of delivery of blocks running, decrement it
  658. if (delay_before_delivering) {
  659. --delay_before_delivering;
  660. // If the number of movements queued is less than 3, and there is still time
  661. // to wait, do not deliver anything
  662. if (nr_moves < 3 && delay_before_delivering) return nullptr;
  663. delay_before_delivering = 0;
  664. }
  665. // If we are here, there is no excuse to deliver the block
  666. block_t * const block = &block_buffer[block_buffer_tail];
  667. // No trapezoid calculated? Don't execute yet.
  668. if (block->flag.recalculate) return nullptr;
  669. // We can't be sure how long an active block will take, so don't count it.
  670. TERN_(HAS_WIRED_LCD, block_buffer_runtime_us -= block->segment_time_us);
  671. // As this block is busy, advance the nonbusy block pointer
  672. block_buffer_nonbusy = next_block_index(block_buffer_tail);
  673. // Push block_buffer_planned pointer, if encountered.
  674. if (block_buffer_tail == block_buffer_planned)
  675. block_buffer_planned = block_buffer_nonbusy;
  676. // Return the block
  677. return block;
  678. }
  679. // The queue became empty
  680. TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  681. return nullptr;
  682. }
  683. /**
  684. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  685. * by the provided factors.
  686. **
  687. * ############ VERY IMPORTANT ############
  688. * NOTE that the PRECONDITION to call this function is that the block is
  689. * NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
  690. * is not and will not use the block while we modify it, so it is safe to
  691. * alter its values.
  692. */
  693. void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t entry_factor, const_float_t exit_factor) {
  694. uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
  695. final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
  696. // Limit minimal step rate (Otherwise the timer will overflow.)
  697. NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
  698. NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
  699. #if EITHER(S_CURVE_ACCELERATION, LIN_ADVANCE)
  700. // If we have some plateau time, the cruise rate will be the nominal rate
  701. uint32_t cruise_rate = block->nominal_rate;
  702. #endif
  703. // Steps for acceleration, plateau and deceleration
  704. int32_t plateau_steps = block->step_event_count;
  705. uint32_t accelerate_steps = 0,
  706. decelerate_steps = 0;
  707. const int32_t accel = block->acceleration_steps_per_s2;
  708. float inverse_accel = 0.0f;
  709. if (accel != 0) {
  710. inverse_accel = 1.0f / accel;
  711. const float half_inverse_accel = 0.5f * inverse_accel,
  712. nominal_rate_sq = sq(float(block->nominal_rate)),
  713. // Steps required for acceleration, deceleration to/from nominal rate
  714. decelerate_steps_float = half_inverse_accel * (nominal_rate_sq - sq(float(final_rate)));
  715. float accelerate_steps_float = half_inverse_accel * (nominal_rate_sq - sq(float(initial_rate)));
  716. accelerate_steps = CEIL(accelerate_steps_float);
  717. decelerate_steps = FLOOR(decelerate_steps_float);
  718. // Steps between acceleration and deceleration, if any
  719. plateau_steps -= accelerate_steps + decelerate_steps;
  720. // Does accelerate_steps + decelerate_steps exceed step_event_count?
  721. // Then we can't possibly reach the nominal rate, there will be no cruising.
  722. // Calculate accel / braking time in order to reach the final_rate exactly
  723. // at the end of this block.
  724. if (plateau_steps < 0) {
  725. accelerate_steps_float = CEIL((block->step_event_count + accelerate_steps_float - decelerate_steps_float) * 0.5f);
  726. accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count);
  727. decelerate_steps = block->step_event_count - accelerate_steps;
  728. #if EITHER(S_CURVE_ACCELERATION, LIN_ADVANCE)
  729. // We won't reach the cruising rate. Let's calculate the speed we will reach
  730. cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
  731. #endif
  732. }
  733. }
  734. #if ENABLED(S_CURVE_ACCELERATION)
  735. const float rate_factor = inverse_accel * (STEPPER_TIMER_RATE);
  736. // Jerk controlled speed requires to express speed versus time, NOT steps
  737. uint32_t acceleration_time = rate_factor * float(cruise_rate - initial_rate),
  738. deceleration_time = rate_factor * float(cruise_rate - final_rate),
  739. // And to offload calculations from the ISR, we also calculate the inverse of those times here
  740. acceleration_time_inverse = get_period_inverse(acceleration_time),
  741. deceleration_time_inverse = get_period_inverse(deceleration_time);
  742. #endif
  743. // Store new block parameters
  744. block->accelerate_until = accelerate_steps;
  745. block->decelerate_after = block->step_event_count - decelerate_steps;
  746. block->initial_rate = initial_rate;
  747. #if ENABLED(S_CURVE_ACCELERATION)
  748. block->acceleration_time = acceleration_time;
  749. block->deceleration_time = deceleration_time;
  750. block->acceleration_time_inverse = acceleration_time_inverse;
  751. block->deceleration_time_inverse = deceleration_time_inverse;
  752. block->cruise_rate = cruise_rate;
  753. #endif
  754. block->final_rate = final_rate;
  755. #if ENABLED(LIN_ADVANCE)
  756. if (block->la_advance_rate) {
  757. const float comp = extruder_advance_K[E_INDEX_N(block->extruder)] * block->steps.e / block->step_event_count;
  758. block->max_adv_steps = cruise_rate * comp;
  759. block->final_adv_steps = final_rate * comp;
  760. }
  761. #endif
  762. #if ENABLED(LASER_POWER_TRAP)
  763. /**
  764. * Laser Trapezoid Calculations
  765. *
  766. * Approximate the trapezoid with the laser, incrementing the power every `trap_ramp_entry_incr`
  767. * steps while accelerating, and decrementing the power every `trap_ramp_exit_decr` while decelerating,
  768. * to keep power proportional to feedrate. Laser power trap will reduce the initial power to no less
  769. * than the laser_power_floor value. Based on the number of calculated accel/decel steps the power is
  770. * distributed over the trapezoid entry- and exit-ramp steps.
  771. *
  772. * trap_ramp_active_pwr - The active power is initially set at a reduced level factor of initial
  773. * power / accel steps and will be additively incremented using a trap_ramp_entry_incr value for each
  774. * accel step processed later in the stepper code. The trap_ramp_exit_decr value is calculated as
  775. * power / decel steps and is also adjusted to no less than the power floor.
  776. *
  777. * If the power == 0 the inline mode variables need to be set to zero to prevent stepper processing.
  778. * The method allows for simpler non-powered moves like G0 or G28.
  779. *
  780. * Laser Trap Power works for all Jerk and Curve modes; however Arc-based moves will have issues since
  781. * the segments are usually too small.
  782. */
  783. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  784. if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
  785. if (block->laser.power > 0) {
  786. NOLESS(block->laser.power, laser_power_floor);
  787. block->laser.trap_ramp_active_pwr = (block->laser.power - laser_power_floor) * (initial_rate / float(block->nominal_rate)) + laser_power_floor;
  788. block->laser.trap_ramp_entry_incr = (block->laser.power - block->laser.trap_ramp_active_pwr) / accelerate_steps;
  789. float laser_pwr = block->laser.power * (final_rate / float(block->nominal_rate));
  790. NOLESS(laser_pwr, laser_power_floor);
  791. block->laser.trap_ramp_exit_decr = (block->laser.power - laser_pwr) / decelerate_steps;
  792. #if ENABLED(DEBUG_LASER_TRAP)
  793. SERIAL_ECHO_MSG("lp:",block->laser.power);
  794. SERIAL_ECHO_MSG("as:",accelerate_steps);
  795. SERIAL_ECHO_MSG("ds:",decelerate_steps);
  796. SERIAL_ECHO_MSG("p.trap:",block->laser.trap_ramp_active_pwr);
  797. SERIAL_ECHO_MSG("p.incr:",block->laser.trap_ramp_entry_incr);
  798. SERIAL_ECHO_MSG("p.decr:",block->laser.trap_ramp_exit_decr);
  799. #endif
  800. }
  801. else {
  802. block->laser.trap_ramp_active_pwr = 0;
  803. block->laser.trap_ramp_entry_incr = 0;
  804. block->laser.trap_ramp_exit_decr = 0;
  805. }
  806. }
  807. }
  808. #endif // LASER_POWER_TRAP
  809. }
  810. /**
  811. * PLANNER SPEED DEFINITION
  812. * +--------+ <- current->nominal_speed
  813. * / \
  814. * current->entry_speed -> + \
  815. * | + <- next->entry_speed (aka exit speed)
  816. * +-------------+
  817. * time -->
  818. *
  819. * Recalculates the motion plan according to the following basic guidelines:
  820. *
  821. * 1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
  822. * (i.e. current->entry_speed) such that:
  823. * a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
  824. * neighboring blocks.
  825. * b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
  826. * with a maximum allowable deceleration over the block travel distance.
  827. * c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
  828. * 2. Go over every block in chronological (forward) order and dial down junction speed values if
  829. * a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
  830. * acceleration over the block travel distance.
  831. *
  832. * When these stages are complete, the planner will have maximized the velocity profiles throughout the all
  833. * of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
  834. * other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
  835. * are possible. If a new block is added to the buffer, the plan is recomputed according to the said
  836. * guidelines for a new optimal plan.
  837. *
  838. * To increase computational efficiency of these guidelines, a set of planner block pointers have been
  839. * created to indicate stop-compute points for when the planner guidelines cannot logically make any further
  840. * changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
  841. * planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
  842. * bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
  843. * added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
  844. * them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
  845. * point) are all accelerating, they are all optimal and can not be altered by a new block added to the
  846. * planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
  847. * junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
  848. * used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
  849. * recomputed as stated in the general guidelines.
  850. *
  851. * Planner buffer index mapping:
  852. * - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
  853. * - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
  854. * the buffer is full or empty. As described for standard ring buffers, this block is always empty.
  855. * - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
  856. * streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
  857. * planner buffer that don't change with the addition of a new block, as describe above. In addition,
  858. * this block can never be less than block_buffer_tail and will always be pushed forward and maintain
  859. * this requirement when encountered by the Planner::release_current_block() routine during a cycle.
  860. *
  861. * NOTE: Since the planner only computes on what's in the planner buffer, some motions with many short
  862. * segments (e.g., complex curves) may seem to move slowly. This is because there simply isn't
  863. * enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and
  864. * then decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this
  865. * happens and becomes an annoyance, there are a few simple solutions:
  866. *
  867. * - Maximize the machine acceleration. The planner will be able to compute higher velocity profiles
  868. * within the same combined distance.
  869. *
  870. * - Maximize line motion(s) distance per block to a desired tolerance. The more combined distance the
  871. * planner has to use, the faster it can go.
  872. *
  873. * - Maximize the planner buffer size. This also will increase the combined distance for the planner to
  874. * compute over. It also increases the number of computations the planner has to perform to compute an
  875. * optimal plan, so select carefully.
  876. *
  877. * - Use G2/G3 arcs instead of many short segments. Arcs inform the planner of a safe exit speed at the
  878. * end of the last segment, which alleviates this problem.
  879. */
  880. // The kernel called by recalculate() when scanning the plan from last to first entry.
  881. void Planner::reverse_pass_kernel(block_t * const current, const block_t * const next
  882. OPTARG(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)
  883. ) {
  884. if (current) {
  885. // If entry speed is already at the maximum entry speed, and there was no change of speed
  886. // in the next block, there is no need to recheck. Block is cruising and there is no need to
  887. // compute anything for this block,
  888. // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
  889. const float max_entry_speed_sqr = current->max_entry_speed_sqr;
  890. // Compute maximum entry speed decelerating over the current block from its exit speed.
  891. // If not at the maximum entry speed, or the previous block entry speed changed
  892. if (current->entry_speed_sqr != max_entry_speed_sqr || (next && next->flag.recalculate)) {
  893. // If nominal length true, max junction speed is guaranteed to be reached.
  894. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  895. // the current block and next block junction speeds are guaranteed to always be at their maximum
  896. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  897. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  898. // the reverse and forward planners, the corresponding block junction speed will always be at the
  899. // the maximum junction speed and may always be ignored for any speed reduction checks.
  900. const float next_entry_speed_sqr = next ? next->entry_speed_sqr : _MAX(TERN0(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr), sq(float(MINIMUM_PLANNER_SPEED))),
  901. new_entry_speed_sqr = current->flag.nominal_length
  902. ? max_entry_speed_sqr
  903. : _MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next_entry_speed_sqr, current->millimeters));
  904. if (current->entry_speed_sqr != new_entry_speed_sqr) {
  905. // Need to recalculate the block speed - Mark it now, so the stepper
  906. // ISR does not consume the block before being recalculated
  907. current->flag.recalculate = true;
  908. // But there is an inherent race condition here, as the block may have
  909. // become BUSY just before being marked RECALCULATE, so check for that!
  910. if (stepper.is_block_busy(current)) {
  911. // Block became busy. Clear the RECALCULATE flag (no point in
  912. // recalculating BUSY blocks). And don't set its speed, as it can't
  913. // be updated at this time.
  914. current->flag.recalculate = false;
  915. }
  916. else {
  917. // Block is not BUSY so this is ahead of the Stepper ISR:
  918. // Just Set the new entry speed.
  919. current->entry_speed_sqr = new_entry_speed_sqr;
  920. }
  921. }
  922. }
  923. }
  924. }
  925. /**
  926. * recalculate() needs to go over the current plan twice.
  927. * Once in reverse and once forward. This implements the reverse pass.
  928. */
  929. void Planner::reverse_pass(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)) {
  930. // Initialize block index to the last block in the planner buffer.
  931. uint8_t block_index = prev_block_index(block_buffer_head);
  932. // Read the index of the last buffer planned block.
  933. // The ISR may change it so get a stable local copy.
  934. uint8_t planned_block_index = block_buffer_planned;
  935. // If there was a race condition and block_buffer_planned was incremented
  936. // or was pointing at the head (queue empty) break loop now and avoid
  937. // planning already consumed blocks
  938. if (planned_block_index == block_buffer_head) return;
  939. // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last
  940. // block in buffer. Cease planning when the last optimal planned or tail pointer is reached.
  941. // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan.
  942. const block_t *next = nullptr;
  943. while (block_index != planned_block_index) {
  944. // Perform the reverse pass
  945. block_t *current = &block_buffer[block_index];
  946. // Only process movement blocks
  947. if (current->is_move()) {
  948. reverse_pass_kernel(current, next OPTARG(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr));
  949. next = current;
  950. }
  951. // Advance to the next
  952. block_index = prev_block_index(block_index);
  953. // The ISR could advance the block_buffer_planned while we were doing the reverse pass.
  954. // We must try to avoid using an already consumed block as the last one - So follow
  955. // changes to the pointer and make sure to limit the loop to the currently busy block
  956. while (planned_block_index != block_buffer_planned) {
  957. // If we reached the busy block or an already processed block, break the loop now
  958. if (block_index == planned_block_index) return;
  959. // Advance the pointer, following the busy block
  960. planned_block_index = next_block_index(planned_block_index);
  961. }
  962. }
  963. }
  964. // The kernel called by recalculate() when scanning the plan from first to last entry.
  965. void Planner::forward_pass_kernel(const block_t * const previous, block_t * const current, const uint8_t block_index) {
  966. if (previous) {
  967. // If the previous block is an acceleration block, too short to complete the full speed
  968. // change, adjust the entry speed accordingly. Entry speeds have already been reset,
  969. // maximized, and reverse-planned. If nominal length is set, max junction speed is
  970. // guaranteed to be reached. No need to recheck.
  971. if (!previous->flag.nominal_length && previous->entry_speed_sqr < current->entry_speed_sqr) {
  972. // Compute the maximum allowable speed
  973. const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);
  974. // If true, current block is full-acceleration and we can move the planned pointer forward.
  975. if (new_entry_speed_sqr < current->entry_speed_sqr) {
  976. // Mark we need to recompute the trapezoidal shape, and do it now,
  977. // so the stepper ISR does not consume the block before being recalculated
  978. current->flag.recalculate = true;
  979. // But there is an inherent race condition here, as the block maybe
  980. // became BUSY, just before it was marked as RECALCULATE, so check
  981. // if that is the case!
  982. if (stepper.is_block_busy(current)) {
  983. // Block became busy. Clear the RECALCULATE flag (no point in
  984. // recalculating BUSY blocks and don't set its speed, as it can't
  985. // be updated at this time.
  986. current->flag.recalculate = false;
  987. }
  988. else {
  989. // Block is not BUSY, we won the race against the Stepper ISR:
  990. // Always <= max_entry_speed_sqr. Backward pass sets this.
  991. current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this.
  992. // Set optimal plan pointer.
  993. block_buffer_planned = block_index;
  994. }
  995. }
  996. }
  997. // Any block set at its maximum entry speed also creates an optimal plan up to this
  998. // point in the buffer. When the plan is bracketed by either the beginning of the
  999. // buffer and a maximum entry speed or two maximum entry speeds, every block in between
  1000. // cannot logically be further improved. Hence, we don't have to recompute them anymore.
  1001. if (current->entry_speed_sqr == current->max_entry_speed_sqr)
  1002. block_buffer_planned = block_index;
  1003. }
  1004. }
  1005. /**
  1006. * recalculate() needs to go over the current plan twice.
  1007. * Once in reverse and once forward. This implements the forward pass.
  1008. */
  1009. void Planner::forward_pass() {
  1010. // Forward Pass: Forward plan the acceleration curve from the planned pointer onward.
  1011. // Also scans for optimal plan breakpoints and appropriately updates the planned pointer.
  1012. // Begin at buffer planned pointer. Note that block_buffer_planned can be modified
  1013. // by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned
  1014. // will never lead head, so the loop is safe to execute. Also note that the forward
  1015. // pass will never modify the values at the tail.
  1016. uint8_t block_index = block_buffer_planned;
  1017. block_t *block;
  1018. const block_t * previous = nullptr;
  1019. while (block_index != block_buffer_head) {
  1020. // Perform the forward pass
  1021. block = &block_buffer[block_index];
  1022. // Only process movement blocks
  1023. if (block->is_move()) {
  1024. // If there's no previous block or the previous block is not
  1025. // BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise,
  1026. // the previous block became BUSY, so assume the current block's
  1027. // entry speed can't be altered (since that would also require
  1028. // updating the exit speed of the previous block).
  1029. if (!previous || !stepper.is_block_busy(previous))
  1030. forward_pass_kernel(previous, block, block_index);
  1031. previous = block;
  1032. }
  1033. // Advance to the previous
  1034. block_index = next_block_index(block_index);
  1035. }
  1036. }
  1037. /**
  1038. * Recalculate the trapezoid speed profiles for all blocks in the plan
  1039. * according to the entry_factor for each junction. Must be called by
  1040. * recalculate() after updating the blocks.
  1041. */
  1042. void Planner::recalculate_trapezoids(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)) {
  1043. // The tail may be changed by the ISR so get a local copy.
  1044. uint8_t block_index = block_buffer_tail,
  1045. head_block_index = block_buffer_head;
  1046. // Since there could be a sync block in the head of the queue, and the
  1047. // next loop must not recalculate the head block (as it needs to be
  1048. // specially handled), scan backwards to the first non-SYNC block.
  1049. while (head_block_index != block_index) {
  1050. // Go back (head always point to the first free block)
  1051. const uint8_t prev_index = prev_block_index(head_block_index);
  1052. // Get the pointer to the block
  1053. block_t *prev = &block_buffer[prev_index];
  1054. // It the block is a move, we're done with this loop
  1055. if (prev->is_move()) break;
  1056. // Examine the previous block. This and all following are SYNC blocks
  1057. head_block_index = prev_index;
  1058. }
  1059. // Go from the tail (currently executed block) to the first block, without including it)
  1060. block_t *block = nullptr, *next = nullptr;
  1061. float current_entry_speed = 0.0f, next_entry_speed = 0.0f;
  1062. while (block_index != head_block_index) {
  1063. next = &block_buffer[block_index];
  1064. // Only process movement blocks
  1065. if (next->is_move()) {
  1066. next_entry_speed = SQRT(next->entry_speed_sqr);
  1067. if (block) {
  1068. // If the next block is marked to RECALCULATE, also mark the previously-fetched one
  1069. if (next->flag.recalculate) block->flag.recalculate = true;
  1070. // Recalculate if current block entry or exit junction speed has changed.
  1071. if (block->flag.recalculate) {
  1072. // But there is an inherent race condition here, as the block maybe
  1073. // became BUSY, just before it was marked as RECALCULATE, so check
  1074. // if that is the case!
  1075. if (!stepper.is_block_busy(block)) {
  1076. // Block is not BUSY, we won the race against the Stepper ISR:
  1077. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  1078. const float nomr = 1.0f / block->nominal_speed;
  1079. calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr);
  1080. }
  1081. // Reset current only to ensure next trapezoid is computed - The
  1082. // stepper is free to use the block from now on.
  1083. block->flag.recalculate = false;
  1084. }
  1085. }
  1086. block = next;
  1087. current_entry_speed = next_entry_speed;
  1088. }
  1089. block_index = next_block_index(block_index);
  1090. }
  1091. // Last/newest block in buffer. Always recalculated.
  1092. if (block) {
  1093. // Exit speed is set with MINIMUM_PLANNER_SPEED unless some code higher up knows better.
  1094. next_entry_speed = _MAX(TERN0(HINTS_SAFE_EXIT_SPEED, SQRT(safe_exit_speed_sqr)), float(MINIMUM_PLANNER_SPEED));
  1095. // Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
  1096. // As the last block is always recalculated here, there is a chance the block isn't
  1097. // marked as RECALCULATE yet. That's the reason for the following line.
  1098. block->flag.recalculate = true;
  1099. // But there is an inherent race condition here, as the block maybe
  1100. // became BUSY, just before it was marked as RECALCULATE, so check
  1101. // if that is the case!
  1102. if (!stepper.is_block_busy(block)) {
  1103. // Block is not BUSY, we won the race against the Stepper ISR:
  1104. const float nomr = 1.0f / block->nominal_speed;
  1105. calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr);
  1106. }
  1107. // Reset block to ensure its trapezoid is computed - The stepper is free to use
  1108. // the block from now on.
  1109. block->flag.recalculate = false;
  1110. }
  1111. }
  1112. void Planner::recalculate(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)) {
  1113. // Initialize block index to the last block in the planner buffer.
  1114. const uint8_t block_index = prev_block_index(block_buffer_head);
  1115. // If there is just one block, no planning can be done. Avoid it!
  1116. if (block_index != block_buffer_planned) {
  1117. reverse_pass(TERN_(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr));
  1118. forward_pass();
  1119. }
  1120. recalculate_trapezoids(TERN_(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr));
  1121. }
  1122. /**
  1123. * Apply fan speeds
  1124. */
  1125. #if HAS_FAN
  1126. void Planner::sync_fan_speeds(uint8_t (&fan_speed)[FAN_COUNT]) {
  1127. #if ENABLED(FAN_SOFT_PWM)
  1128. #define _FAN_SET(F) thermalManager.soft_pwm_amount_fan[F] = CALC_FAN_SPEED(fan_speed[F]);
  1129. #else
  1130. #define _FAN_SET(F) hal.set_pwm_duty(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(fan_speed[F]));
  1131. #endif
  1132. #define FAN_SET(F) do{ kickstart_fan(fan_speed, ms, F); _FAN_SET(F); }while(0)
  1133. const millis_t ms = millis();
  1134. TERN_(HAS_FAN0, FAN_SET(0)); TERN_(HAS_FAN1, FAN_SET(1));
  1135. TERN_(HAS_FAN2, FAN_SET(2)); TERN_(HAS_FAN3, FAN_SET(3));
  1136. TERN_(HAS_FAN4, FAN_SET(4)); TERN_(HAS_FAN5, FAN_SET(5));
  1137. TERN_(HAS_FAN6, FAN_SET(6)); TERN_(HAS_FAN7, FAN_SET(7));
  1138. }
  1139. #if FAN_KICKSTART_TIME
  1140. void Planner::kickstart_fan(uint8_t (&fan_speed)[FAN_COUNT], const millis_t &ms, const uint8_t f) {
  1141. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  1142. if (fan_speed[f] > FAN_OFF_PWM) {
  1143. if (fan_kick_end[f] == 0) {
  1144. fan_kick_end[f] = ms + FAN_KICKSTART_TIME;
  1145. fan_speed[f] = FAN_KICKSTART_POWER;
  1146. }
  1147. else if (PENDING(ms, fan_kick_end[f]))
  1148. fan_speed[f] = FAN_KICKSTART_POWER;
  1149. }
  1150. else
  1151. fan_kick_end[f] = 0;
  1152. }
  1153. #endif
  1154. #endif // HAS_FAN
  1155. /**
  1156. * Maintain fans, paste extruder pressure, spindle/laser power
  1157. */
  1158. void Planner::check_axes_activity() {
  1159. #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_I, DISABLE_J, DISABLE_K, DISABLE_U, DISABLE_V, DISABLE_W, DISABLE_E)
  1160. xyze_bool_t axis_active = { false };
  1161. #endif
  1162. #if HAS_FAN && DISABLED(LASER_SYNCHRONOUS_M106_M107)
  1163. #define HAS_TAIL_FAN_SPEED 1
  1164. static uint8_t tail_fan_speed[FAN_COUNT] = ARRAY_N_1(FAN_COUNT, 13);
  1165. bool fans_need_update = false;
  1166. #endif
  1167. #if ENABLED(BARICUDA)
  1168. #if HAS_HEATER_1
  1169. uint8_t tail_valve_pressure;
  1170. #endif
  1171. #if HAS_HEATER_2
  1172. uint8_t tail_e_to_p_pressure;
  1173. #endif
  1174. #endif
  1175. if (has_blocks_queued()) {
  1176. #if EITHER(HAS_TAIL_FAN_SPEED, BARICUDA)
  1177. block_t *block = &block_buffer[block_buffer_tail];
  1178. #endif
  1179. #if HAS_TAIL_FAN_SPEED
  1180. FANS_LOOP(i) {
  1181. const uint8_t spd = thermalManager.scaledFanSpeed(i, block->fan_speed[i]);
  1182. if (tail_fan_speed[i] != spd) {
  1183. fans_need_update = true;
  1184. tail_fan_speed[i] = spd;
  1185. }
  1186. }
  1187. #endif
  1188. #if ENABLED(BARICUDA)
  1189. TERN_(HAS_HEATER_1, tail_valve_pressure = block->valve_pressure);
  1190. TERN_(HAS_HEATER_2, tail_e_to_p_pressure = block->e_to_p_pressure);
  1191. #endif
  1192. #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_I, DISABLE_J, DISABLE_K, DISABLE_E)
  1193. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  1194. block_t * const bnext = &block_buffer[b];
  1195. LOGICAL_AXIS_CODE(
  1196. if (TERN0(DISABLE_E, bnext->steps.e)) axis_active.e = true,
  1197. if (TERN0(DISABLE_X, bnext->steps.x)) axis_active.x = true,
  1198. if (TERN0(DISABLE_Y, bnext->steps.y)) axis_active.y = true,
  1199. if (TERN0(DISABLE_Z, bnext->steps.z)) axis_active.z = true,
  1200. if (TERN0(DISABLE_I, bnext->steps.i)) axis_active.i = true,
  1201. if (TERN0(DISABLE_J, bnext->steps.j)) axis_active.j = true,
  1202. if (TERN0(DISABLE_K, bnext->steps.k)) axis_active.k = true,
  1203. if (TERN0(DISABLE_U, bnext->steps.u)) axis_active.u = true,
  1204. if (TERN0(DISABLE_V, bnext->steps.v)) axis_active.v = true,
  1205. if (TERN0(DISABLE_W, bnext->steps.w)) axis_active.w = true
  1206. );
  1207. }
  1208. #endif
  1209. }
  1210. else {
  1211. TERN_(HAS_CUTTER, if (cutter.cutter_mode == CUTTER_MODE_STANDARD) cutter.refresh());
  1212. #if HAS_TAIL_FAN_SPEED
  1213. FANS_LOOP(i) {
  1214. const uint8_t spd = thermalManager.scaledFanSpeed(i);
  1215. if (tail_fan_speed[i] != spd) {
  1216. fans_need_update = true;
  1217. tail_fan_speed[i] = spd;
  1218. }
  1219. }
  1220. #endif
  1221. #if ENABLED(BARICUDA)
  1222. TERN_(HAS_HEATER_1, tail_valve_pressure = baricuda_valve_pressure);
  1223. TERN_(HAS_HEATER_2, tail_e_to_p_pressure = baricuda_e_to_p_pressure);
  1224. #endif
  1225. }
  1226. //
  1227. // Disable inactive axes
  1228. //
  1229. LOGICAL_AXIS_CODE(
  1230. if (TERN0(DISABLE_E, !axis_active.e)) stepper.disable_e_steppers(),
  1231. if (TERN0(DISABLE_X, !axis_active.x)) stepper.disable_axis(X_AXIS),
  1232. if (TERN0(DISABLE_Y, !axis_active.y)) stepper.disable_axis(Y_AXIS),
  1233. if (TERN0(DISABLE_Z, !axis_active.z)) stepper.disable_axis(Z_AXIS),
  1234. if (TERN0(DISABLE_I, !axis_active.i)) stepper.disable_axis(I_AXIS),
  1235. if (TERN0(DISABLE_J, !axis_active.j)) stepper.disable_axis(J_AXIS),
  1236. if (TERN0(DISABLE_K, !axis_active.k)) stepper.disable_axis(K_AXIS),
  1237. if (TERN0(DISABLE_U, !axis_active.u)) stepper.disable_axis(U_AXIS),
  1238. if (TERN0(DISABLE_V, !axis_active.v)) stepper.disable_axis(V_AXIS),
  1239. if (TERN0(DISABLE_W, !axis_active.w)) stepper.disable_axis(W_AXIS)
  1240. );
  1241. //
  1242. // Update Fan speeds
  1243. // Only if synchronous M106/M107 is disabled
  1244. //
  1245. TERN_(HAS_TAIL_FAN_SPEED, if (fans_need_update) sync_fan_speeds(tail_fan_speed));
  1246. TERN_(AUTOTEMP, autotemp_task());
  1247. #if ENABLED(BARICUDA)
  1248. TERN_(HAS_HEATER_1, hal.set_pwm_duty(pin_t(HEATER_1_PIN), tail_valve_pressure));
  1249. TERN_(HAS_HEATER_2, hal.set_pwm_duty(pin_t(HEATER_2_PIN), tail_e_to_p_pressure));
  1250. #endif
  1251. }
  1252. #if ENABLED(AUTOTEMP)
  1253. #if ENABLED(AUTOTEMP_PROPORTIONAL)
  1254. void Planner::_autotemp_update_from_hotend() {
  1255. const celsius_t target = thermalManager.degTargetHotend(active_extruder);
  1256. autotemp_min = target + AUTOTEMP_MIN_P;
  1257. autotemp_max = target + AUTOTEMP_MAX_P;
  1258. }
  1259. #endif
  1260. /**
  1261. * Called after changing tools to:
  1262. * - Reset or re-apply the default proportional autotemp factor.
  1263. * - Enable autotemp if the factor is non-zero.
  1264. */
  1265. void Planner::autotemp_update() {
  1266. _autotemp_update_from_hotend();
  1267. autotemp_factor = TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0);
  1268. autotemp_enabled = autotemp_factor != 0;
  1269. }
  1270. /**
  1271. * Called by the M104/M109 commands after setting Hotend Temperature
  1272. *
  1273. */
  1274. void Planner::autotemp_M104_M109() {
  1275. _autotemp_update_from_hotend();
  1276. if (parser.seenval('S')) autotemp_min = parser.value_celsius();
  1277. if (parser.seenval('B')) autotemp_max = parser.value_celsius();
  1278. // When AUTOTEMP_PROPORTIONAL is enabled, F0 disables autotemp.
  1279. // Normally, leaving off F also disables autotemp.
  1280. autotemp_factor = parser.seen('F') ? parser.value_float() : TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0);
  1281. autotemp_enabled = autotemp_factor != 0;
  1282. }
  1283. /**
  1284. * Called every so often to adjust the hotend target temperature
  1285. * based on the extrusion speed, which is calculated from the blocks
  1286. * currently in the planner.
  1287. */
  1288. void Planner::autotemp_task() {
  1289. static float oldt = 0.0f;
  1290. if (!autotemp_enabled) return;
  1291. if (thermalManager.degTargetHotend(active_extruder) < autotemp_min - 2) return; // Below the min?
  1292. float high = 0.0f;
  1293. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  1294. const block_t * const block = &block_buffer[b];
  1295. if (NUM_AXIS_GANG(block->steps.x, || block->steps.y, || block->steps.z, || block->steps.i, || block->steps.j, || block->steps.k, || block->steps.u, || block->steps.v, || block->steps.w)) {
  1296. const float se = float(block->steps.e) / block->step_event_count * block->nominal_speed; // mm/sec
  1297. NOLESS(high, se);
  1298. }
  1299. }
  1300. float t = autotemp_min + high * autotemp_factor;
  1301. LIMIT(t, autotemp_min, autotemp_max);
  1302. if (t < oldt) t = t * (1.0f - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT);
  1303. oldt = t;
  1304. thermalManager.setTargetHotend(t, active_extruder);
  1305. }
  1306. #endif
  1307. #if DISABLED(NO_VOLUMETRICS)
  1308. /**
  1309. * Get a volumetric multiplier from a filament diameter.
  1310. * This is the reciprocal of the circular cross-section area.
  1311. * Return 1.0 with volumetric off or a diameter of 0.0.
  1312. */
  1313. inline float calculate_volumetric_multiplier(const_float_t diameter) {
  1314. return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1;
  1315. }
  1316. /**
  1317. * Convert the filament sizes into volumetric multipliers.
  1318. * The multiplier converts a given E value into a length.
  1319. */
  1320. void Planner::calculate_volumetric_multipliers() {
  1321. LOOP_L_N(i, COUNT(filament_size)) {
  1322. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  1323. refresh_e_factor(i);
  1324. }
  1325. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1326. calculate_volumetric_extruder_limits(); // update volumetric_extruder_limits as well.
  1327. #endif
  1328. }
  1329. #endif // !NO_VOLUMETRICS
  1330. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1331. /**
  1332. * Convert volumetric based limits into pre calculated extruder feedrate limits.
  1333. */
  1334. void Planner::calculate_volumetric_extruder_limit(const uint8_t e) {
  1335. const float &lim = volumetric_extruder_limit[e], &siz = filament_size[e];
  1336. volumetric_extruder_feedrate_limit[e] = (lim && siz) ? lim / CIRCLE_AREA(siz * 0.5f) : 0;
  1337. }
  1338. void Planner::calculate_volumetric_extruder_limits() {
  1339. EXTRUDER_LOOP() calculate_volumetric_extruder_limit(e);
  1340. }
  1341. #endif
  1342. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1343. /**
  1344. * Convert the ratio value given by the filament width sensor
  1345. * into a volumetric multiplier. Conversion differs when using
  1346. * linear extrusion vs volumetric extrusion.
  1347. */
  1348. void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) {
  1349. // Reconstitute the nominal/measured ratio
  1350. const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
  1351. ratio_2 = sq(nom_meas_ratio);
  1352. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
  1353. ? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier
  1354. : ratio_2; // Linear squares the ratio, which scales the volume
  1355. refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
  1356. }
  1357. #endif
  1358. #if ENABLED(IMPROVE_HOMING_RELIABILITY)
  1359. void Planner::enable_stall_prevention(const bool onoff) {
  1360. static motion_state_t saved_motion_state;
  1361. if (onoff) {
  1362. saved_motion_state.acceleration.x = settings.max_acceleration_mm_per_s2[X_AXIS];
  1363. saved_motion_state.acceleration.y = settings.max_acceleration_mm_per_s2[Y_AXIS];
  1364. settings.max_acceleration_mm_per_s2[X_AXIS] = settings.max_acceleration_mm_per_s2[Y_AXIS] = 100;
  1365. #if ENABLED(DELTA)
  1366. saved_motion_state.acceleration.z = settings.max_acceleration_mm_per_s2[Z_AXIS];
  1367. settings.max_acceleration_mm_per_s2[Z_AXIS] = 100;
  1368. #endif
  1369. #if HAS_CLASSIC_JERK
  1370. saved_motion_state.jerk_state = max_jerk;
  1371. max_jerk.set(0, 0 OPTARG(DELTA, 0));
  1372. #endif
  1373. }
  1374. else {
  1375. settings.max_acceleration_mm_per_s2[X_AXIS] = saved_motion_state.acceleration.x;
  1376. settings.max_acceleration_mm_per_s2[Y_AXIS] = saved_motion_state.acceleration.y;
  1377. TERN_(DELTA, settings.max_acceleration_mm_per_s2[Z_AXIS] = saved_motion_state.acceleration.z);
  1378. TERN_(HAS_CLASSIC_JERK, max_jerk = saved_motion_state.jerk_state);
  1379. }
  1380. refresh_acceleration_rates();
  1381. }
  1382. #endif
  1383. #if HAS_LEVELING
  1384. constexpr xy_pos_t level_fulcrum = {
  1385. TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_X_POINT, X_HOME_POS),
  1386. TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_Y_POINT, Y_HOME_POS)
  1387. };
  1388. /**
  1389. * rx, ry, rz - Cartesian positions in mm
  1390. * Leveled XYZ on completion
  1391. */
  1392. void Planner::apply_leveling(xyz_pos_t &raw) {
  1393. if (!leveling_active) return;
  1394. #if ABL_PLANAR
  1395. xy_pos_t d = raw - level_fulcrum;
  1396. bed_level_matrix.apply_rotation_xyz(d.x, d.y, raw.z);
  1397. raw = d + level_fulcrum;
  1398. #elif HAS_MESH
  1399. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1400. const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
  1401. if (fade_scaling_factor) raw.z += fade_scaling_factor * bedlevel.get_z_correction(raw);
  1402. #else
  1403. raw.z += bedlevel.get_z_correction(raw);
  1404. #endif
  1405. TERN_(MESH_BED_LEVELING, raw.z += bedlevel.get_z_offset());
  1406. #endif
  1407. }
  1408. void Planner::unapply_leveling(xyz_pos_t &raw) {
  1409. if (!leveling_active) return;
  1410. #if ABL_PLANAR
  1411. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  1412. xy_pos_t d = raw - level_fulcrum;
  1413. inverse.apply_rotation_xyz(d.x, d.y, raw.z);
  1414. raw = d + level_fulcrum;
  1415. #elif HAS_MESH
  1416. const float z_correction = bedlevel.get_z_correction(raw),
  1417. z_full_fade = DIFF_TERN(MESH_BED_LEVELING, raw.z, bedlevel.get_z_offset()),
  1418. z_no_fade = z_full_fade - z_correction;
  1419. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1420. if (!z_fade_height || z_no_fade <= 0.0f) // Not fading or at bed level?
  1421. raw.z = z_no_fade; // Unapply full mesh Z.
  1422. else if (z_full_fade >= z_fade_height) // Above the fade height?
  1423. raw.z = z_full_fade; // Nothing more to unapply.
  1424. else // Within the fade zone?
  1425. raw.z = z_no_fade / (1.0f - z_correction * inverse_z_fade_height); // Unapply the faded Z offset
  1426. #else
  1427. raw.z = z_no_fade;
  1428. #endif
  1429. #endif
  1430. }
  1431. #endif // HAS_LEVELING
  1432. #if ENABLED(FWRETRACT)
  1433. /**
  1434. * rz, e - Cartesian positions in mm
  1435. */
  1436. void Planner::apply_retract(float &rz, float &e) {
  1437. rz += fwretract.current_hop;
  1438. e -= fwretract.current_retract[active_extruder];
  1439. }
  1440. void Planner::unapply_retract(float &rz, float &e) {
  1441. rz -= fwretract.current_hop;
  1442. e += fwretract.current_retract[active_extruder];
  1443. }
  1444. #endif
  1445. void Planner::quick_stop() {
  1446. // Remove all the queued blocks. Note that this function is NOT
  1447. // called from the Stepper ISR, so we must consider tail as readonly!
  1448. // that is why we set head to tail - But there is a race condition that
  1449. // must be handled: The tail could change between the read and the assignment
  1450. // so this must be enclosed in a critical section
  1451. const bool was_enabled = stepper.suspend();
  1452. // Drop all queue entries
  1453. block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail;
  1454. // Restart the block delay for the first movement - As the queue was
  1455. // forced to empty, there's no risk the ISR will touch this.
  1456. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  1457. TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // Clear the accumulated runtime
  1458. // Make sure to drop any attempt of queuing moves for 1 second
  1459. cleaning_buffer_counter = TEMP_TIMER_FREQUENCY;
  1460. // Reenable Stepper ISR
  1461. if (was_enabled) stepper.wake_up();
  1462. // And stop the stepper ISR
  1463. stepper.quick_stop();
  1464. }
  1465. #if ENABLED(REALTIME_REPORTING_COMMANDS)
  1466. void Planner::quick_pause() {
  1467. // Suspend until quick_resume is called
  1468. // Don't empty buffers or queues
  1469. const bool did_suspend = stepper.suspend();
  1470. if (did_suspend)
  1471. TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_HOLD));
  1472. }
  1473. // Resume if suspended
  1474. void Planner::quick_resume() {
  1475. TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(grbl_state_for_marlin_state()));
  1476. stepper.wake_up();
  1477. }
  1478. #endif
  1479. void Planner::endstop_triggered(const AxisEnum axis) {
  1480. // Record stepper position and discard the current block
  1481. stepper.endstop_triggered(axis);
  1482. }
  1483. float Planner::triggered_position_mm(const AxisEnum axis) {
  1484. const float result = DIFF_TERN(BACKLASH_COMPENSATION, stepper.triggered_position(axis), backlash.get_applied_steps(axis));
  1485. return result * mm_per_step[axis];
  1486. }
  1487. void Planner::finish_and_disable() {
  1488. while (has_blocks_queued() || cleaning_buffer_counter) idle();
  1489. stepper.disable_all_steppers();
  1490. }
  1491. /**
  1492. * Get an axis position according to stepper position(s)
  1493. * For CORE machines apply translation from ABC to XYZ.
  1494. */
  1495. float Planner::get_axis_position_mm(const AxisEnum axis) {
  1496. float axis_steps;
  1497. #if IS_CORE
  1498. // Requesting one of the "core" axes?
  1499. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1500. // Protect the access to the position.
  1501. const bool was_enabled = stepper.suspend();
  1502. const int32_t p1 = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(CORE_AXIS_1), backlash.get_applied_steps(CORE_AXIS_1)),
  1503. p2 = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(CORE_AXIS_2), backlash.get_applied_steps(CORE_AXIS_2));
  1504. if (was_enabled) stepper.wake_up();
  1505. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1506. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1507. axis_steps = (axis == CORE_AXIS_2 ? CORESIGN(p1 - p2) : p1 + p2) * 0.5f;
  1508. }
  1509. else
  1510. axis_steps = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(axis), backlash.get_applied_steps(axis));
  1511. #elif EITHER(MARKFORGED_XY, MARKFORGED_YX)
  1512. // Requesting one of the joined axes?
  1513. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1514. // Protect the access to the position.
  1515. const bool was_enabled = stepper.suspend();
  1516. const int32_t p1 = stepper.position(CORE_AXIS_1),
  1517. p2 = stepper.position(CORE_AXIS_2);
  1518. if (was_enabled) stepper.wake_up();
  1519. axis_steps = ((axis == CORE_AXIS_1) ? p1 - p2 : p2);
  1520. }
  1521. else
  1522. axis_steps = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(axis), backlash.get_applied_steps(axis));
  1523. #else
  1524. axis_steps = stepper.position(axis);
  1525. TERN_(BACKLASH_COMPENSATION, axis_steps -= backlash.get_applied_steps(axis));
  1526. #endif
  1527. return axis_steps * mm_per_step[axis];
  1528. }
  1529. /**
  1530. * Block until the planner is finished processing
  1531. */
  1532. void Planner::synchronize() { while (busy()) idle(); }
  1533. /**
  1534. * @brief Add a new linear movement to the planner queue (in terms of steps).
  1535. *
  1536. * @param target Target position in steps units
  1537. * @param target_float Target position in direct (mm, degrees) units.
  1538. * @param cart_dist_mm The pre-calculated move lengths for all axes, in mm
  1539. * @param fr_mm_s (target) speed of the move
  1540. * @param extruder target extruder
  1541. * @param hints parameters to aid planner calculations
  1542. *
  1543. * @return true if movement was properly queued, false otherwise (if cleaning)
  1544. */
  1545. bool Planner::_buffer_steps(const xyze_long_t &target
  1546. OPTARG(HAS_POSITION_FLOAT, const xyze_pos_t &target_float)
  1547. OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm)
  1548. , feedRate_t fr_mm_s, const uint8_t extruder, const PlannerHints &hints
  1549. ) {
  1550. // Wait for the next available block
  1551. uint8_t next_buffer_head;
  1552. block_t * const block = get_next_free_block(next_buffer_head);
  1553. // If we are cleaning, do not accept queuing of movements
  1554. // This must be after get_next_free_block() because it calls idle()
  1555. // where cleaning_buffer_counter can be changed
  1556. if (cleaning_buffer_counter) return false;
  1557. // Fill the block with the specified movement
  1558. if (!_populate_block(block, target
  1559. OPTARG(HAS_POSITION_FLOAT, target_float)
  1560. OPTARG(HAS_DIST_MM_ARG, cart_dist_mm)
  1561. , fr_mm_s, extruder, hints
  1562. )
  1563. ) {
  1564. // Movement was not queued, probably because it was too short.
  1565. // Simply accept that as movement queued and done
  1566. return true;
  1567. }
  1568. // If this is the first added movement, reload the delay, otherwise, cancel it.
  1569. if (block_buffer_head == block_buffer_tail) {
  1570. // If it was the first queued block, restart the 1st block delivery delay, to
  1571. // give the planner an opportunity to queue more movements and plan them
  1572. // As there are no queued movements, the Stepper ISR will not touch this
  1573. // variable, so there is no risk setting this here (but it MUST be done
  1574. // before the following line!!)
  1575. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  1576. }
  1577. // Move buffer head
  1578. block_buffer_head = next_buffer_head;
  1579. // Recalculate and optimize trapezoidal speed profiles
  1580. recalculate(TERN_(HINTS_SAFE_EXIT_SPEED, hints.safe_exit_speed_sqr));
  1581. // Movement successfully queued!
  1582. return true;
  1583. }
  1584. /**
  1585. * @brief Populate a block in preparation for insertion
  1586. * @details Populate the fields of a new linear movement block
  1587. * that will be added to the queue and processed soon
  1588. * by the Stepper ISR.
  1589. *
  1590. * @param block A block to populate
  1591. * @param target Target position in steps units
  1592. * @param target_float Target position in native mm
  1593. * @param cart_dist_mm The pre-calculated move lengths for all axes, in mm
  1594. * @param fr_mm_s (target) speed of the move
  1595. * @param extruder target extruder
  1596. * @param hints parameters to aid planner calculations
  1597. *
  1598. * @return true if movement is acceptable, false otherwise
  1599. */
  1600. bool Planner::_populate_block(
  1601. block_t * const block,
  1602. const abce_long_t &target
  1603. OPTARG(HAS_POSITION_FLOAT, const xyze_pos_t &target_float)
  1604. OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm)
  1605. , feedRate_t fr_mm_s, const uint8_t extruder, const PlannerHints &hints
  1606. ) {
  1607. int32_t LOGICAL_AXIS_LIST(
  1608. de = target.e - position.e,
  1609. da = target.a - position.a,
  1610. db = target.b - position.b,
  1611. dc = target.c - position.c,
  1612. di = target.i - position.i,
  1613. dj = target.j - position.j,
  1614. dk = target.k - position.k,
  1615. du = target.u - position.u,
  1616. dv = target.v - position.v,
  1617. dw = target.w - position.w
  1618. );
  1619. /* <-- add a slash to enable
  1620. SERIAL_ECHOLNPGM(
  1621. " _populate_block FR:", fr_mm_s,
  1622. " A:", target.a, " (", da, " steps)"
  1623. #if HAS_Y_AXIS
  1624. " B:", target.b, " (", db, " steps)"
  1625. #endif
  1626. #if HAS_Z_AXIS
  1627. " C:", target.c, " (", dc, " steps)"
  1628. #endif
  1629. #if HAS_I_AXIS
  1630. " " STR_I ":", target.i, " (", di, " steps)"
  1631. #endif
  1632. #if HAS_J_AXIS
  1633. " " STR_J ":", target.j, " (", dj, " steps)"
  1634. #endif
  1635. #if HAS_K_AXIS
  1636. " " STR_K ":", target.k, " (", dk, " steps)"
  1637. #endif
  1638. #if HAS_U_AXIS
  1639. " " STR_U ":", target.u, " (", du, " steps)"
  1640. #endif
  1641. #if HAS_V_AXIS
  1642. " " STR_V ":", target.v, " (", dv, " steps)"
  1643. #endif
  1644. #if HAS_W_AXIS
  1645. " " STR_W ":", target.w, " (", dw, " steps)"
  1646. #if HAS_EXTRUDERS
  1647. " E:", target.e, " (", de, " steps)"
  1648. #endif
  1649. );
  1650. //*/
  1651. #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
  1652. if (de) {
  1653. #if ENABLED(PREVENT_COLD_EXTRUSION)
  1654. if (thermalManager.tooColdToExtrude(extruder)) {
  1655. position.e = target.e; // Behave as if the move really took place, but ignore E part
  1656. TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
  1657. de = 0; // no difference
  1658. SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
  1659. }
  1660. #endif // PREVENT_COLD_EXTRUSION
  1661. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  1662. const float e_steps = ABS(de * e_factor[extruder]);
  1663. const float max_e_steps = settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH);
  1664. if (e_steps > max_e_steps) {
  1665. #if ENABLED(MIXING_EXTRUDER)
  1666. bool ignore_e = false;
  1667. float collector[MIXING_STEPPERS];
  1668. mixer.refresh_collector(1.0f, mixer.get_current_vtool(), collector);
  1669. MIXER_STEPPER_LOOP(e)
  1670. if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; }
  1671. #else
  1672. constexpr bool ignore_e = true;
  1673. #endif
  1674. if (ignore_e) {
  1675. position.e = target.e; // Behave as if the move really took place, but ignore E part
  1676. TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
  1677. de = 0; // no difference
  1678. SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
  1679. }
  1680. }
  1681. #endif // PREVENT_LENGTHY_EXTRUDE
  1682. }
  1683. #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
  1684. // Compute direction bit-mask for this block
  1685. axis_bits_t dm = 0;
  1686. #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
  1687. if (da < 0) SBI(dm, X_HEAD); // Save the toolhead's true direction in X
  1688. if (db < 0) SBI(dm, Y_HEAD); // ...and Y
  1689. if (dc < 0) SBI(dm, Z_AXIS);
  1690. #endif
  1691. #if IS_CORE
  1692. #if CORE_IS_XY
  1693. if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
  1694. if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
  1695. #elif CORE_IS_XZ
  1696. if (da < 0) SBI(dm, X_HEAD); // Save the toolhead's true direction in X
  1697. if (db < 0) SBI(dm, Y_AXIS);
  1698. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  1699. if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
  1700. if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  1701. #elif CORE_IS_YZ
  1702. if (da < 0) SBI(dm, X_AXIS);
  1703. if (db < 0) SBI(dm, Y_HEAD); // Save the toolhead's true direction in Y
  1704. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  1705. if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
  1706. if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  1707. #endif
  1708. #elif ENABLED(MARKFORGED_XY)
  1709. if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
  1710. if (db < 0) SBI(dm, B_AXIS); // Motor B direction
  1711. #elif ENABLED(MARKFORGED_YX)
  1712. if (da < 0) SBI(dm, A_AXIS); // Motor A direction
  1713. if (db + da < 0) SBI(dm, B_AXIS); // Motor B direction
  1714. #else
  1715. XYZ_CODE(
  1716. if (da < 0) SBI(dm, X_AXIS),
  1717. if (db < 0) SBI(dm, Y_AXIS),
  1718. if (dc < 0) SBI(dm, Z_AXIS)
  1719. );
  1720. #endif
  1721. SECONDARY_AXIS_CODE(
  1722. if (di < 0) SBI(dm, I_AXIS),
  1723. if (dj < 0) SBI(dm, J_AXIS),
  1724. if (dk < 0) SBI(dm, K_AXIS),
  1725. if (du < 0) SBI(dm, U_AXIS),
  1726. if (dv < 0) SBI(dm, V_AXIS),
  1727. if (dw < 0) SBI(dm, W_AXIS)
  1728. );
  1729. #if HAS_EXTRUDERS
  1730. if (de < 0) SBI(dm, E_AXIS);
  1731. const float esteps_float = de * e_factor[extruder];
  1732. const uint32_t esteps = ABS(esteps_float) + 0.5f;
  1733. #else
  1734. constexpr uint32_t esteps = 0;
  1735. #endif
  1736. // Clear all flags, including the "busy" bit
  1737. block->flag.clear();
  1738. // Set direction bits
  1739. block->direction_bits = dm;
  1740. /**
  1741. * Update block laser power
  1742. * For standard mode get the cutter.power value for processing, since it's
  1743. * only set by apply_power().
  1744. */
  1745. #if HAS_CUTTER
  1746. switch (cutter.cutter_mode) {
  1747. default: break;
  1748. case CUTTER_MODE_STANDARD: block->cutter_power = cutter.power; break;
  1749. #if ENABLED(LASER_FEATURE)
  1750. /**
  1751. * For inline mode get the laser_inline variables, including power and status.
  1752. * Dynamic mode only needs to update if the feedrate has changed, since it's
  1753. * calculated from the current feedrate and power level.
  1754. */
  1755. case CUTTER_MODE_CONTINUOUS:
  1756. block->laser.power = laser_inline.power;
  1757. block->laser.status = laser_inline.status;
  1758. break;
  1759. case CUTTER_MODE_DYNAMIC:
  1760. if (cutter.laser_feedrate_changed()) // Only process changes in rate
  1761. block->laser.power = laser_inline.power = cutter.calc_dynamic_power();
  1762. break;
  1763. #endif
  1764. }
  1765. #endif
  1766. // Number of steps for each axis
  1767. // See https://www.corexy.com/theory.html
  1768. block->steps.set(NUM_AXIS_LIST(
  1769. #if CORE_IS_XY
  1770. ABS(da + db), ABS(da - db), ABS(dc)
  1771. #elif CORE_IS_XZ
  1772. ABS(da + dc), ABS(db), ABS(da - dc)
  1773. #elif CORE_IS_YZ
  1774. ABS(da), ABS(db + dc), ABS(db - dc)
  1775. #elif ENABLED(MARKFORGED_XY)
  1776. ABS(da + db), ABS(db), ABS(dc)
  1777. #elif ENABLED(MARKFORGED_YX)
  1778. ABS(da), ABS(db + da), ABS(dc)
  1779. #elif IS_SCARA
  1780. ABS(da), ABS(db), ABS(dc)
  1781. #else // default non-h-bot planning
  1782. ABS(da), ABS(db), ABS(dc)
  1783. #endif
  1784. , ABS(di), ABS(dj), ABS(dk), ABS(du), ABS(dv), ABS(dw)
  1785. ));
  1786. /**
  1787. * This part of the code calculates the total length of the movement.
  1788. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  1789. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  1790. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  1791. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  1792. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  1793. */
  1794. struct DistanceMM : abce_float_t {
  1795. #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
  1796. struct { float x, y, z; } head;
  1797. #endif
  1798. } steps_dist_mm;
  1799. #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
  1800. steps_dist_mm.head.x = da * mm_per_step[A_AXIS];
  1801. steps_dist_mm.head.y = db * mm_per_step[B_AXIS];
  1802. steps_dist_mm.z = dc * mm_per_step[Z_AXIS];
  1803. #endif
  1804. #if IS_CORE
  1805. #if CORE_IS_XY
  1806. steps_dist_mm.a = (da + db) * mm_per_step[A_AXIS];
  1807. steps_dist_mm.b = CORESIGN(da - db) * mm_per_step[B_AXIS];
  1808. #elif CORE_IS_XZ
  1809. steps_dist_mm.head.x = da * mm_per_step[A_AXIS];
  1810. steps_dist_mm.y = db * mm_per_step[Y_AXIS];
  1811. steps_dist_mm.head.z = dc * mm_per_step[C_AXIS];
  1812. steps_dist_mm.a = (da + dc) * mm_per_step[A_AXIS];
  1813. steps_dist_mm.c = CORESIGN(da - dc) * mm_per_step[C_AXIS];
  1814. #elif CORE_IS_YZ
  1815. steps_dist_mm.x = da * mm_per_step[X_AXIS];
  1816. steps_dist_mm.head.y = db * mm_per_step[B_AXIS];
  1817. steps_dist_mm.head.z = dc * mm_per_step[C_AXIS];
  1818. steps_dist_mm.b = (db + dc) * mm_per_step[B_AXIS];
  1819. steps_dist_mm.c = CORESIGN(db - dc) * mm_per_step[C_AXIS];
  1820. #endif
  1821. #elif ENABLED(MARKFORGED_XY)
  1822. steps_dist_mm.a = (da - db) * mm_per_step[A_AXIS];
  1823. steps_dist_mm.b = db * mm_per_step[B_AXIS];
  1824. #elif ENABLED(MARKFORGED_YX)
  1825. steps_dist_mm.a = da * mm_per_step[A_AXIS];
  1826. steps_dist_mm.b = (db - da) * mm_per_step[B_AXIS];
  1827. #else
  1828. XYZ_CODE(
  1829. steps_dist_mm.a = da * mm_per_step[A_AXIS],
  1830. steps_dist_mm.b = db * mm_per_step[B_AXIS],
  1831. steps_dist_mm.c = dc * mm_per_step[C_AXIS]
  1832. );
  1833. #endif
  1834. SECONDARY_AXIS_CODE(
  1835. steps_dist_mm.i = di * mm_per_step[I_AXIS],
  1836. steps_dist_mm.j = dj * mm_per_step[J_AXIS],
  1837. steps_dist_mm.k = dk * mm_per_step[K_AXIS],
  1838. steps_dist_mm.u = du * mm_per_step[U_AXIS],
  1839. steps_dist_mm.v = dv * mm_per_step[V_AXIS],
  1840. steps_dist_mm.w = dw * mm_per_step[W_AXIS]
  1841. );
  1842. TERN_(HAS_EXTRUDERS, steps_dist_mm.e = esteps_float * mm_per_step[E_AXIS_N(extruder)]);
  1843. TERN_(LCD_SHOW_E_TOTAL, e_move_accumulator += steps_dist_mm.e);
  1844. #if BOTH(HAS_ROTATIONAL_AXES, INCH_MODE_SUPPORT)
  1845. bool cartesian_move = true;
  1846. #endif
  1847. if (true NUM_AXIS_GANG(
  1848. && block->steps.a < MIN_STEPS_PER_SEGMENT,
  1849. && block->steps.b < MIN_STEPS_PER_SEGMENT,
  1850. && block->steps.c < MIN_STEPS_PER_SEGMENT,
  1851. && block->steps.i < MIN_STEPS_PER_SEGMENT,
  1852. && block->steps.j < MIN_STEPS_PER_SEGMENT,
  1853. && block->steps.k < MIN_STEPS_PER_SEGMENT,
  1854. && block->steps.u < MIN_STEPS_PER_SEGMENT,
  1855. && block->steps.v < MIN_STEPS_PER_SEGMENT,
  1856. && block->steps.w < MIN_STEPS_PER_SEGMENT
  1857. )
  1858. ) {
  1859. block->millimeters = TERN0(HAS_EXTRUDERS, ABS(steps_dist_mm.e));
  1860. }
  1861. else {
  1862. if (hints.millimeters)
  1863. block->millimeters = hints.millimeters;
  1864. else {
  1865. /**
  1866. * Distance for interpretation of feedrate in accordance with LinuxCNC (the successor of NIST
  1867. * RS274NGC interpreter - version 3) and its default CANON_XYZ feed reference mode.
  1868. * Assume that X, Y, Z are the primary linear axes and U, V, W are secondary linear axes and A, B, C are
  1869. * rotational axes. Then dX, dY, dZ are the displacements of the primary linear axes and dU, dV, dW are the displacements of linear axes and
  1870. * dA, dB, dC are the displacements of rotational axes.
  1871. * The time it takes to execute move command with feedrate F is t = D/F, where D is the total distance, calculated as follows:
  1872. * D^2 = dX^2 + dY^2 + dZ^2
  1873. * if D^2 == 0 (none of XYZ move but any secondary linear axes move, whether other axes are moved or not):
  1874. * D^2 = dU^2 + dV^2 + dW^2
  1875. * if D^2 == 0 (only rotational axes are moved):
  1876. * D^2 = dA^2 + dB^2 + dC^2
  1877. */
  1878. float distance_sqr = (
  1879. #if ENABLED(ARTICULATED_ROBOT_ARM)
  1880. // For articulated robots, interpreting feedrate like LinuxCNC would require inverse kinematics. As a workaround, pretend that motors sit on n mutually orthogonal
  1881. // axes and assume that we could think of distance as magnitude of an n-vector in an n-dimensional Euclidian space.
  1882. NUM_AXIS_GANG(
  1883. sq(steps_dist_mm.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.z),
  1884. + sq(steps_dist_mm.i), + sq(steps_dist_mm.j), + sq(steps_dist_mm.k),
  1885. + sq(steps_dist_mm.u), + sq(steps_dist_mm.v), + sq(steps_dist_mm.w)
  1886. );
  1887. #elif ENABLED(FOAMCUTTER_XYUV)
  1888. #if HAS_J_AXIS
  1889. // Special 5 axis kinematics. Return the largest distance move from either X/Y or I/J plane
  1890. _MAX(sq(steps_dist_mm.x) + sq(steps_dist_mm.y), sq(steps_dist_mm.i) + sq(steps_dist_mm.j))
  1891. #else // Foamcutter with only two axes (XY)
  1892. sq(steps_dist_mm.x) + sq(steps_dist_mm.y)
  1893. #endif
  1894. #elif ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
  1895. XYZ_GANG(sq(steps_dist_mm.head.x), + sq(steps_dist_mm.head.y), + sq(steps_dist_mm.z))
  1896. #elif CORE_IS_XZ
  1897. XYZ_GANG(sq(steps_dist_mm.head.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.head.z))
  1898. #elif CORE_IS_YZ
  1899. XYZ_GANG(sq(steps_dist_mm.x), + sq(steps_dist_mm.head.y), + sq(steps_dist_mm.head.z))
  1900. #else
  1901. XYZ_GANG(sq(steps_dist_mm.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.z))
  1902. #endif
  1903. );
  1904. #if SECONDARY_LINEAR_AXES >= 1 && NONE(FOAMCUTTER_XYUV, ARTICULATED_ROBOT_ARM)
  1905. if (UNEAR_ZERO(distance_sqr)) {
  1906. // Move does not involve any primary linear axes (xyz) but might involve secondary linear axes
  1907. distance_sqr = (0.0f
  1908. SECONDARY_AXIS_GANG(
  1909. IF_DISABLED(AXIS4_ROTATES, + sq(steps_dist_mm.i)),
  1910. IF_DISABLED(AXIS5_ROTATES, + sq(steps_dist_mm.j)),
  1911. IF_DISABLED(AXIS6_ROTATES, + sq(steps_dist_mm.k)),
  1912. IF_DISABLED(AXIS7_ROTATES, + sq(steps_dist_mm.u)),
  1913. IF_DISABLED(AXIS8_ROTATES, + sq(steps_dist_mm.v)),
  1914. IF_DISABLED(AXIS9_ROTATES, + sq(steps_dist_mm.w))
  1915. )
  1916. );
  1917. }
  1918. #endif
  1919. #if HAS_ROTATIONAL_AXES && NONE(FOAMCUTTER_XYUV, ARTICULATED_ROBOT_ARM)
  1920. if (UNEAR_ZERO(distance_sqr)) {
  1921. // Move involves only rotational axes. Calculate angular distance in accordance with LinuxCNC
  1922. TERN_(INCH_MODE_SUPPORT, cartesian_move = false);
  1923. distance_sqr = ROTATIONAL_AXIS_GANG(sq(steps_dist_mm.i), + sq(steps_dist_mm.j), + sq(steps_dist_mm.k), + sq(steps_dist_mm.u), + sq(steps_dist_mm.v), + sq(steps_dist_mm.w));
  1924. }
  1925. #endif
  1926. block->millimeters = SQRT(distance_sqr);
  1927. }
  1928. /**
  1929. * At this point at least one of the axes has more steps than
  1930. * MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as
  1931. * zero-length. It's important to not apply corrections
  1932. * to blocks that would get dropped!
  1933. *
  1934. * A correction function is permitted to add steps to an axis, it
  1935. * should *never* remove steps!
  1936. */
  1937. TERN_(BACKLASH_COMPENSATION, backlash.add_correction_steps(da, db, dc, dm, block));
  1938. }
  1939. TERN_(HAS_EXTRUDERS, block->steps.e = esteps);
  1940. block->step_event_count = _MAX(LOGICAL_AXIS_LIST(esteps,
  1941. block->steps.a, block->steps.b, block->steps.c,
  1942. block->steps.i, block->steps.j, block->steps.k,
  1943. block->steps.u, block->steps.v, block->steps.w
  1944. ));
  1945. // Bail if this is a zero-length block
  1946. if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;
  1947. TERN_(MIXING_EXTRUDER, mixer.populate_block(block->b_color));
  1948. #if HAS_FAN
  1949. FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
  1950. #endif
  1951. #if ENABLED(BARICUDA)
  1952. block->valve_pressure = baricuda_valve_pressure;
  1953. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  1954. #endif
  1955. E_TERN_(block->extruder = extruder);
  1956. #if ENABLED(AUTO_POWER_CONTROL)
  1957. if (NUM_AXIS_GANG(
  1958. block->steps.x, || block->steps.y, || block->steps.z,
  1959. || block->steps.i, || block->steps.j, || block->steps.k,
  1960. || block->steps.u, || block->steps.v, || block->steps.w
  1961. )) powerManager.power_on();
  1962. #endif
  1963. // Enable active axes
  1964. #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
  1965. if (block->steps.a || block->steps.b) {
  1966. stepper.enable_axis(X_AXIS);
  1967. stepper.enable_axis(Y_AXIS);
  1968. }
  1969. #if DISABLED(Z_LATE_ENABLE)
  1970. if (block->steps.z) stepper.enable_axis(Z_AXIS);
  1971. #endif
  1972. #elif CORE_IS_XZ
  1973. if (block->steps.a || block->steps.c) {
  1974. stepper.enable_axis(X_AXIS);
  1975. stepper.enable_axis(Z_AXIS);
  1976. }
  1977. if (block->steps.y) stepper.enable_axis(Y_AXIS);
  1978. #elif CORE_IS_YZ
  1979. if (block->steps.b || block->steps.c) {
  1980. stepper.enable_axis(Y_AXIS);
  1981. stepper.enable_axis(Z_AXIS);
  1982. }
  1983. if (block->steps.x) stepper.enable_axis(X_AXIS);
  1984. #else
  1985. NUM_AXIS_CODE(
  1986. if (block->steps.x) stepper.enable_axis(X_AXIS),
  1987. if (block->steps.y) stepper.enable_axis(Y_AXIS),
  1988. if (TERN(Z_LATE_ENABLE, 0, block->steps.z)) stepper.enable_axis(Z_AXIS),
  1989. if (block->steps.i) stepper.enable_axis(I_AXIS),
  1990. if (block->steps.j) stepper.enable_axis(J_AXIS),
  1991. if (block->steps.k) stepper.enable_axis(K_AXIS),
  1992. if (block->steps.u) stepper.enable_axis(U_AXIS),
  1993. if (block->steps.v) stepper.enable_axis(V_AXIS),
  1994. if (block->steps.w) stepper.enable_axis(W_AXIS)
  1995. );
  1996. #endif
  1997. #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
  1998. SECONDARY_AXIS_CODE(
  1999. if (block->steps.i) stepper.enable_axis(I_AXIS),
  2000. if (block->steps.j) stepper.enable_axis(J_AXIS),
  2001. if (block->steps.k) stepper.enable_axis(K_AXIS),
  2002. if (block->steps.u) stepper.enable_axis(U_AXIS),
  2003. if (block->steps.v) stepper.enable_axis(V_AXIS),
  2004. if (block->steps.w) stepper.enable_axis(W_AXIS)
  2005. );
  2006. #endif
  2007. // Enable extruder(s)
  2008. #if HAS_EXTRUDERS
  2009. if (esteps) {
  2010. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  2011. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  2012. // Count down all steppers that were recently moved
  2013. LOOP_L_N(i, E_STEPPERS)
  2014. if (g_uc_extruder_last_move[i]) g_uc_extruder_last_move[i]--;
  2015. // Switching Extruder uses one E stepper motor per two nozzles
  2016. #define E_STEPPER_INDEX(E) TERN(SWITCHING_EXTRUDER, (E) / 2, E)
  2017. // Enable all (i.e., both) E steppers for IDEX-style duplication, but only active E steppers for multi-nozzle (i.e., single wide X carriage) duplication
  2018. #define _IS_DUPE(N) TERN0(HAS_DUPLICATION_MODE, (extruder_duplication_enabled && TERN1(MULTI_NOZZLE_DUPLICATION, TEST(duplication_e_mask, N))))
  2019. #define ENABLE_ONE_E(N) do{ \
  2020. if (N == E_STEPPER_INDEX(extruder) || _IS_DUPE(N)) { /* N is 'extruder', or N is duplicating */ \
  2021. stepper.ENABLE_EXTRUDER(N); /* Enable the relevant E stepper... */ \
  2022. g_uc_extruder_last_move[N] = (BLOCK_BUFFER_SIZE) * 2; /* ...and reset its counter */ \
  2023. } \
  2024. else if (!g_uc_extruder_last_move[N]) /* Counter expired since last E stepper enable */ \
  2025. stepper.DISABLE_EXTRUDER(N); /* Disable the E stepper */ \
  2026. }while(0);
  2027. #else
  2028. #define ENABLE_ONE_E(N) stepper.ENABLE_EXTRUDER(N);
  2029. #endif
  2030. REPEAT(E_STEPPERS, ENABLE_ONE_E); // (ENABLE_ONE_E must end with semicolon)
  2031. }
  2032. #endif // HAS_EXTRUDERS
  2033. if (esteps)
  2034. NOLESS(fr_mm_s, settings.min_feedrate_mm_s);
  2035. else
  2036. NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s);
  2037. const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides
  2038. // Calculate inverse time for this move. No divide by zero due to previous checks.
  2039. // Example: At 120mm/s a 60mm move involving XYZ axes takes 0.5s. So this will give 2.0.
  2040. // Example 2: At 120°/s a 60° move involving only rotational axes takes 0.5s. So this will give 2.0.
  2041. float inverse_secs;
  2042. #if BOTH(HAS_ROTATIONAL_AXES, INCH_MODE_SUPPORT)
  2043. inverse_secs = inverse_millimeters * (cartesian_move ? fr_mm_s : LINEAR_UNIT(fr_mm_s));
  2044. #else
  2045. inverse_secs = fr_mm_s * inverse_millimeters;
  2046. #endif
  2047. // Get the number of non busy movements in queue (non busy means that they can be altered)
  2048. const uint8_t moves_queued = nonbusy_movesplanned();
  2049. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  2050. #if EITHER(SLOWDOWN, HAS_WIRED_LCD) || defined(XY_FREQUENCY_LIMIT)
  2051. // Segment time in microseconds
  2052. int32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
  2053. #endif
  2054. #if ENABLED(SLOWDOWN)
  2055. #ifndef SLOWDOWN_DIVISOR
  2056. #define SLOWDOWN_DIVISOR 2
  2057. #endif
  2058. if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / (SLOWDOWN_DIVISOR) - 1)) {
  2059. const int32_t time_diff = settings.min_segment_time_us - segment_time_us;
  2060. if (time_diff > 0) {
  2061. // Buffer is draining so add extra time. The amount of time added increases if the buffer is still emptied more.
  2062. const int32_t nst = segment_time_us + LROUND(2 * time_diff / moves_queued);
  2063. inverse_secs = 1000000.0f / nst;
  2064. #if defined(XY_FREQUENCY_LIMIT) || HAS_WIRED_LCD
  2065. segment_time_us = nst;
  2066. #endif
  2067. }
  2068. }
  2069. #endif
  2070. #if HAS_WIRED_LCD
  2071. // Protect the access to the position.
  2072. const bool was_enabled = stepper.suspend();
  2073. block_buffer_runtime_us += segment_time_us;
  2074. block->segment_time_us = segment_time_us;
  2075. if (was_enabled) stepper.wake_up();
  2076. #endif
  2077. block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
  2078. block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
  2079. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  2080. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor
  2081. filwidth.advance_e(steps_dist_mm.e);
  2082. #endif
  2083. // Calculate and limit speed in mm/sec (linear) or degrees/sec (rotational)
  2084. xyze_float_t current_speed;
  2085. float speed_factor = 1.0f; // factor <1 decreases speed
  2086. // Linear axes first with less logic
  2087. LOOP_NUM_AXES(i) {
  2088. current_speed[i] = steps_dist_mm[i] * inverse_secs;
  2089. const feedRate_t cs = ABS(current_speed[i]),
  2090. max_fr = settings.max_feedrate_mm_s[i];
  2091. if (cs > max_fr) NOMORE(speed_factor, max_fr / cs);
  2092. }
  2093. // Limit speed on extruders, if any
  2094. #if HAS_EXTRUDERS
  2095. {
  2096. current_speed.e = steps_dist_mm.e * inverse_secs;
  2097. #if HAS_MIXER_SYNC_CHANNEL
  2098. // Move all mixing extruders at the specified rate
  2099. if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL)
  2100. current_speed.e *= MIXING_STEPPERS;
  2101. #endif
  2102. const feedRate_t cs = ABS(current_speed.e),
  2103. max_fr = settings.max_feedrate_mm_s[E_AXIS_N(extruder)]
  2104. * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);
  2105. if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); //respect max feedrate on any movement (doesn't matter if E axes only or not)
  2106. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2107. const feedRate_t max_vfr = volumetric_extruder_feedrate_limit[extruder]
  2108. * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);
  2109. // TODO: Doesn't work properly for joined segments. Set MIN_STEPS_PER_SEGMENT 1 as workaround.
  2110. if (block->steps.a || block->steps.b || block->steps.c) {
  2111. if (max_vfr > 0 && cs > max_vfr) {
  2112. NOMORE(speed_factor, max_vfr / cs); // respect volumetric extruder limit (if any)
  2113. /* <-- add a slash to enable
  2114. SERIAL_ECHOPGM("volumetric extruder limit enforced: ", (cs * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
  2115. SERIAL_ECHOPGM(" mm^3/s (", cs);
  2116. SERIAL_ECHOPGM(" mm/s) limited to ", (max_vfr * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
  2117. SERIAL_ECHOPGM(" mm^3/s (", max_vfr);
  2118. SERIAL_ECHOLNPGM(" mm/s)");
  2119. //*/
  2120. }
  2121. }
  2122. #endif
  2123. }
  2124. #endif
  2125. #ifdef XY_FREQUENCY_LIMIT
  2126. static axis_bits_t old_direction_bits; // = 0
  2127. if (xy_freq_limit_hz) {
  2128. // Check and limit the xy direction change frequency
  2129. const axis_bits_t direction_change = block->direction_bits ^ old_direction_bits;
  2130. old_direction_bits = block->direction_bits;
  2131. segment_time_us = LROUND(float(segment_time_us) / speed_factor);
  2132. static int32_t xs0, xs1, xs2, ys0, ys1, ys2;
  2133. if (segment_time_us > xy_freq_min_interval_us)
  2134. xs2 = xs1 = ys2 = ys1 = xy_freq_min_interval_us;
  2135. else {
  2136. xs2 = xs1; xs1 = xs0;
  2137. ys2 = ys1; ys1 = ys0;
  2138. }
  2139. xs0 = TEST(direction_change, X_AXIS) ? segment_time_us : xy_freq_min_interval_us;
  2140. ys0 = TEST(direction_change, Y_AXIS) ? segment_time_us : xy_freq_min_interval_us;
  2141. if (segment_time_us < xy_freq_min_interval_us) {
  2142. const int32_t least_xy_segment_time = _MIN(_MAX(xs0, xs1, xs2), _MAX(ys0, ys1, ys2));
  2143. if (least_xy_segment_time < xy_freq_min_interval_us) {
  2144. float freq_xy_feedrate = (speed_factor * least_xy_segment_time) / xy_freq_min_interval_us;
  2145. NOLESS(freq_xy_feedrate, xy_freq_min_speed_factor);
  2146. NOMORE(speed_factor, freq_xy_feedrate);
  2147. }
  2148. }
  2149. }
  2150. #endif // XY_FREQUENCY_LIMIT
  2151. #if ENABLED(INPUT_SHAPING)
  2152. const float top_freq = _MIN(float(0x7FFFFFFFL)
  2153. OPTARG(HAS_SHAPING_X, stepper.get_shaping_frequency(X_AXIS))
  2154. OPTARG(HAS_SHAPING_Y, stepper.get_shaping_frequency(Y_AXIS))),
  2155. max_factor = (top_freq * float(shaping_dividends - 3) * 2.0f) / block->nominal_rate;
  2156. NOMORE(speed_factor, max_factor);
  2157. #endif
  2158. // Correct the speed
  2159. if (speed_factor < 1.0f) {
  2160. current_speed *= speed_factor;
  2161. block->nominal_rate *= speed_factor;
  2162. block->nominal_speed *= speed_factor;
  2163. }
  2164. // Compute and limit the acceleration rate for the trapezoid generator.
  2165. const float steps_per_mm = block->step_event_count * inverse_millimeters;
  2166. uint32_t accel;
  2167. #if ENABLED(LIN_ADVANCE)
  2168. bool use_advance_lead = false;
  2169. #endif
  2170. if (NUM_AXIS_GANG(
  2171. !block->steps.a, && !block->steps.b, && !block->steps.c,
  2172. && !block->steps.i, && !block->steps.j, && !block->steps.k,
  2173. && !block->steps.u, && !block->steps.v, && !block->steps.w)
  2174. ) { // Is this a retract / recover move?
  2175. accel = CEIL(settings.retract_acceleration * steps_per_mm); // Convert to: acceleration steps/sec^2
  2176. }
  2177. else {
  2178. #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
  2179. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  2180. const uint32_t max_possible = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count / block->steps[AXIS]; \
  2181. NOMORE(accel, max_possible); \
  2182. } \
  2183. }while(0)
  2184. #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
  2185. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  2186. const float max_possible = float(max_acceleration_steps_per_s2[AXIS+INDX]) * float(block->step_event_count) / float(block->steps[AXIS]); \
  2187. NOMORE(accel, max_possible); \
  2188. } \
  2189. }while(0)
  2190. // Start with print or travel acceleration
  2191. accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm);
  2192. #if ENABLED(LIN_ADVANCE)
  2193. // Linear advance is currently not ready for HAS_I_AXIS
  2194. #define MAX_E_JERK(N) TERN(HAS_LINEAR_E_JERK, max_e_jerk[E_INDEX_N(N)], max_jerk.e)
  2195. /**
  2196. * Use LIN_ADVANCE for blocks if all these are true:
  2197. *
  2198. * esteps : This is a print move, because we checked for A, B, C steps before.
  2199. *
  2200. * extruder_advance_K[extruder] : There is an advance factor set for this extruder.
  2201. *
  2202. * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  2203. */
  2204. use_advance_lead = esteps && extruder_advance_K[E_INDEX_N(extruder)] && de > 0;
  2205. if (use_advance_lead) {
  2206. float e_D_ratio = (target_float.e - position_float.e) /
  2207. TERN(IS_KINEMATIC, block->millimeters,
  2208. SQRT(sq(target_float.x - position_float.x)
  2209. + sq(target_float.y - position_float.y)
  2210. + sq(target_float.z - position_float.z))
  2211. );
  2212. // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
  2213. // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  2214. if (e_D_ratio > 3.0f)
  2215. use_advance_lead = false;
  2216. else {
  2217. // Scale E acceleration so that it will be possible to jump to the advance speed.
  2218. const uint32_t max_accel_steps_per_s2 = MAX_E_JERK(extruder) / (extruder_advance_K[E_INDEX_N(extruder)] * e_D_ratio) * steps_per_mm;
  2219. if (TERN0(LA_DEBUG, accel > max_accel_steps_per_s2))
  2220. SERIAL_ECHOLNPGM("Acceleration limited.");
  2221. NOMORE(accel, max_accel_steps_per_s2);
  2222. }
  2223. }
  2224. #endif
  2225. // Limit acceleration per axis
  2226. if (block->step_event_count <= acceleration_long_cutoff) {
  2227. LOGICAL_AXIS_CODE(
  2228. LIMIT_ACCEL_LONG(E_AXIS, E_INDEX_N(extruder)),
  2229. LIMIT_ACCEL_LONG(A_AXIS, 0), LIMIT_ACCEL_LONG(B_AXIS, 0), LIMIT_ACCEL_LONG(C_AXIS, 0),
  2230. LIMIT_ACCEL_LONG(I_AXIS, 0), LIMIT_ACCEL_LONG(J_AXIS, 0), LIMIT_ACCEL_LONG(K_AXIS, 0),
  2231. LIMIT_ACCEL_LONG(U_AXIS, 0), LIMIT_ACCEL_LONG(V_AXIS, 0), LIMIT_ACCEL_LONG(W_AXIS, 0)
  2232. );
  2233. }
  2234. else {
  2235. LOGICAL_AXIS_CODE(
  2236. LIMIT_ACCEL_FLOAT(E_AXIS, E_INDEX_N(extruder)),
  2237. LIMIT_ACCEL_FLOAT(A_AXIS, 0), LIMIT_ACCEL_FLOAT(B_AXIS, 0), LIMIT_ACCEL_FLOAT(C_AXIS, 0),
  2238. LIMIT_ACCEL_FLOAT(I_AXIS, 0), LIMIT_ACCEL_FLOAT(J_AXIS, 0), LIMIT_ACCEL_FLOAT(K_AXIS, 0),
  2239. LIMIT_ACCEL_FLOAT(U_AXIS, 0), LIMIT_ACCEL_FLOAT(V_AXIS, 0), LIMIT_ACCEL_FLOAT(W_AXIS, 0)
  2240. );
  2241. }
  2242. }
  2243. block->acceleration_steps_per_s2 = accel;
  2244. block->acceleration = accel / steps_per_mm;
  2245. #if DISABLED(S_CURVE_ACCELERATION)
  2246. block->acceleration_rate = (uint32_t)(accel * (float(1UL << 24) / (STEPPER_TIMER_RATE)));
  2247. #endif
  2248. #if ENABLED(LIN_ADVANCE)
  2249. block->la_advance_rate = 0;
  2250. block->la_scaling = 0;
  2251. if (use_advance_lead) {
  2252. // the Bresenham algorithm will convert this step rate into extruder steps
  2253. block->la_advance_rate = extruder_advance_K[E_INDEX_N(extruder)] * block->acceleration_steps_per_s2;
  2254. // reduce LA ISR frequency by calling it only often enough to ensure that there will
  2255. // never be more than four extruder steps per call
  2256. for (uint32_t dividend = block->steps.e << 1; dividend <= (block->step_event_count >> 2); dividend <<= 1)
  2257. block->la_scaling++;
  2258. #if ENABLED(LA_DEBUG)
  2259. if (block->la_advance_rate >> block->la_scaling > 10000)
  2260. SERIAL_ECHOLNPGM("eISR running at > 10kHz: ", block->la_advance_rate);
  2261. #endif
  2262. }
  2263. #endif
  2264. float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2
  2265. #if HAS_JUNCTION_DEVIATION
  2266. /**
  2267. * Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  2268. * Let a circle be tangent to both previous and current path line segments, where the junction
  2269. * deviation is defined as the distance from the junction to the closest edge of the circle,
  2270. * colinear with the circle center. The circular segment joining the two paths represents the
  2271. * path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  2272. * radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  2273. * path width or max_jerk in the previous Grbl version. This approach does not actually deviate
  2274. * from path, but used as a robust way to compute cornering speeds, as it takes into account the
  2275. * nonlinearities of both the junction angle and junction velocity.
  2276. *
  2277. * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
  2278. * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
  2279. * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
  2280. * is exactly the same. Instead of motioning all the way to junction point, the machine will
  2281. * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
  2282. * a continuous mode path, but ARM-based microcontrollers most certainly do.
  2283. *
  2284. * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
  2285. * changed dynamically during operation nor can the line move geometry. This must be kept in
  2286. * memory in the event of a feedrate override changing the nominal speeds of blocks, which can
  2287. * change the overall maximum entry speed conditions of all blocks.
  2288. *
  2289. * #######
  2290. * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
  2291. *
  2292. * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
  2293. Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
  2294. on then on anything with less sides than an octagon. With this, and the
  2295. reverse pass actually recalculating things, a corner acceleration value
  2296. of 1000 junction deviation of .05 are pretty reasonable. If the cycles
  2297. can be spared, a better acos could be used. For all I know, it may be
  2298. already calculated in a different place. */
  2299. // Unit vector of previous path line segment
  2300. static xyze_float_t prev_unit_vec;
  2301. xyze_float_t unit_vec =
  2302. #if HAS_DIST_MM_ARG
  2303. cart_dist_mm
  2304. #else
  2305. LOGICAL_AXIS_ARRAY(steps_dist_mm.e,
  2306. steps_dist_mm.x, steps_dist_mm.y, steps_dist_mm.z,
  2307. steps_dist_mm.i, steps_dist_mm.j, steps_dist_mm.k,
  2308. steps_dist_mm.u, steps_dist_mm.v, steps_dist_mm.w)
  2309. #endif
  2310. ;
  2311. /**
  2312. * On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y].
  2313. * So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters".
  2314. * => normalize the complete junction vector.
  2315. * Elsewise, when needed JD will factor-in the E component
  2316. */
  2317. if (ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX) || esteps > 0)
  2318. normalize_junction_vector(unit_vec); // Normalize with XYZE components
  2319. else
  2320. unit_vec *= inverse_millimeters; // Use pre-calculated (1 / SQRT(x^2 + y^2 + z^2))
  2321. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  2322. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  2323. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  2324. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  2325. float junction_cos_theta = LOGICAL_AXIS_GANG(
  2326. + (-prev_unit_vec.e * unit_vec.e),
  2327. + (-prev_unit_vec.x * unit_vec.x),
  2328. + (-prev_unit_vec.y * unit_vec.y),
  2329. + (-prev_unit_vec.z * unit_vec.z),
  2330. + (-prev_unit_vec.i * unit_vec.i),
  2331. + (-prev_unit_vec.j * unit_vec.j),
  2332. + (-prev_unit_vec.k * unit_vec.k),
  2333. + (-prev_unit_vec.u * unit_vec.u),
  2334. + (-prev_unit_vec.v * unit_vec.v),
  2335. + (-prev_unit_vec.w * unit_vec.w)
  2336. );
  2337. // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
  2338. if (junction_cos_theta > 0.999999f) {
  2339. // For a 0 degree acute junction, just set minimum junction speed.
  2340. vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
  2341. }
  2342. else {
  2343. // Convert delta vector to unit vector
  2344. xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec;
  2345. normalize_junction_vector(junction_unit_vec);
  2346. const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec);
  2347. if (TERN0(HINTS_CURVE_RADIUS, hints.curve_radius)) {
  2348. TERN_(HINTS_CURVE_RADIUS, vmax_junction_sqr = junction_acceleration * hints.curve_radius);
  2349. }
  2350. else {
  2351. NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
  2352. const float sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
  2353. vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2);
  2354. #if ENABLED(JD_HANDLE_SMALL_SEGMENTS)
  2355. // For small moves with >135° junction (octagon) find speed for approximate arc
  2356. if (block->millimeters < 1 && junction_cos_theta < -0.7071067812f) {
  2357. #if ENABLED(JD_USE_MATH_ACOS)
  2358. #error "TODO: Inline maths with the MCU / FPU."
  2359. #elif ENABLED(JD_USE_LOOKUP_TABLE)
  2360. // Fast acos approximation (max. error +-0.01 rads)
  2361. // Based on LUT table and linear interpolation
  2362. /**
  2363. * // Generate the JD Lookup Table
  2364. * constexpr float c = 1.00751495f; // Correction factor to center error around 0
  2365. * for (int i = 0; i < jd_lut_count - 1; ++i) {
  2366. * const float x0 = (sq(i) - 1) / sq(i),
  2367. * y0 = acos(x0) * (i == 0 ? 1 : c),
  2368. * x1 = i < jd_lut_count - 1 ? 0.5 * x0 + 0.5 : 0.999999f,
  2369. * y1 = acos(x1) * (i < jd_lut_count - 1 ? c : 1);
  2370. * jd_lut_k[i] = (y0 - y1) / (x0 - x1);
  2371. * jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1);
  2372. * }
  2373. *
  2374. * // Compute correction factor (Set c to 1.0f first!)
  2375. * float min = INFINITY, max = -min;
  2376. * for (float t = 0; t <= 1; t += 0.0003f) {
  2377. * const float e = acos(t) / approx(t);
  2378. * if (isfinite(e)) {
  2379. * if (e < min) min = e;
  2380. * if (e > max) max = e;
  2381. * }
  2382. * }
  2383. * fprintf(stderr, "%.9gf, ", (min + max) / 2);
  2384. */
  2385. static constexpr int16_t jd_lut_count = 16;
  2386. static constexpr uint16_t jd_lut_tll = _BV(jd_lut_count - 1);
  2387. static constexpr int16_t jd_lut_tll0 = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count + 1
  2388. static constexpr float jd_lut_k[jd_lut_count] PROGMEM = {
  2389. -1.03145837f, -1.30760646f, -1.75205851f, -2.41705704f,
  2390. -3.37769222f, -4.74888992f, -6.69649887f, -9.45661736f,
  2391. -13.3640480f, -18.8928222f, -26.7136841f, -37.7754593f,
  2392. -53.4201813f, -75.5458374f, -106.836761f, -218.532821f };
  2393. static constexpr float jd_lut_b[jd_lut_count] PROGMEM = {
  2394. 1.57079637f, 1.70887053f, 2.04220939f, 2.62408352f,
  2395. 3.52467871f, 4.85302639f, 6.77020454f, 9.50875854f,
  2396. 13.4009285f, 18.9188995f, 26.7321243f, 37.7885055f,
  2397. 53.4293975f, 75.5523529f, 106.841369f, 218.534011f };
  2398. const float neg = junction_cos_theta < 0 ? -1 : 1,
  2399. t = neg * junction_cos_theta;
  2400. const int16_t idx = (t < 0.00000003f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0;
  2401. float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]);
  2402. if (neg > 0) junction_theta = RADIANS(180) - junction_theta; // acos(-t)
  2403. #else
  2404. // Fast acos(-t) approximation (max. error +-0.033rad = 1.89°)
  2405. // Based on MinMax polynomial published by W. Randolph Franklin, see
  2406. // https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html
  2407. // acos( t) = pi / 2 - asin(x)
  2408. // acos(-t) = pi - acos(t) ... pi / 2 + asin(x)
  2409. const float neg = junction_cos_theta < 0 ? -1 : 1,
  2410. t = neg * junction_cos_theta,
  2411. asinx = 0.032843707f
  2412. + t * (-1.451838349f
  2413. + t * ( 29.66153956f
  2414. + t * (-131.1123477f
  2415. + t * ( 262.8130562f
  2416. + t * (-242.7199627f
  2417. + t * ( 84.31466202f ) ))))),
  2418. junction_theta = RADIANS(90) + neg * asinx; // acos(-t)
  2419. // NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0.
  2420. #endif
  2421. const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta;
  2422. NOMORE(vmax_junction_sqr, limit_sqr);
  2423. }
  2424. #endif // JD_HANDLE_SMALL_SEGMENTS
  2425. }
  2426. }
  2427. // Get the lowest speed
  2428. vmax_junction_sqr = _MIN(vmax_junction_sqr, sq(block->nominal_speed), sq(previous_nominal_speed));
  2429. }
  2430. else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
  2431. vmax_junction_sqr = 0;
  2432. prev_unit_vec = unit_vec;
  2433. #endif
  2434. #if HAS_CLASSIC_JERK
  2435. /**
  2436. * Adapted from Průša MKS firmware
  2437. * https://github.com/prusa3d/Prusa-Firmware
  2438. */
  2439. // Exit speed limited by a jerk to full halt of a previous last segment
  2440. static float previous_safe_speed;
  2441. // Start with a safe speed (from which the machine may halt to stop immediately).
  2442. float safe_speed = block->nominal_speed;
  2443. #ifndef TRAVEL_EXTRA_XYJERK
  2444. #define TRAVEL_EXTRA_XYJERK 0
  2445. #endif
  2446. const float extra_xyjerk = TERN0(HAS_EXTRUDERS, de <= 0) ? TRAVEL_EXTRA_XYJERK : 0;
  2447. uint8_t limited = 0;
  2448. TERN(HAS_LINEAR_E_JERK, LOOP_NUM_AXES, LOOP_LOGICAL_AXES)(i) {
  2449. const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis
  2450. maxj = (max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f)); // mj : The max jerk setting for this axis
  2451. if (jerk > maxj) { // cs > mj : New current speed too fast?
  2452. if (limited) { // limited already?
  2453. const float mjerk = block->nominal_speed * maxj; // ns*mj
  2454. if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
  2455. }
  2456. else {
  2457. safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs
  2458. ++limited; // Initially limited
  2459. }
  2460. }
  2461. }
  2462. float vmax_junction;
  2463. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  2464. // Estimate a maximum velocity allowed at a joint of two successive segments.
  2465. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  2466. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  2467. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  2468. float v_factor = 1;
  2469. limited = 0;
  2470. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  2471. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  2472. float smaller_speed_factor = 1.0f;
  2473. if (block->nominal_speed < previous_nominal_speed) {
  2474. vmax_junction = block->nominal_speed;
  2475. smaller_speed_factor = vmax_junction / previous_nominal_speed;
  2476. }
  2477. else
  2478. vmax_junction = previous_nominal_speed;
  2479. // Now limit the jerk in all axes.
  2480. TERN(HAS_LINEAR_E_JERK, LOOP_NUM_AXES, LOOP_LOGICAL_AXES)(axis) {
  2481. // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
  2482. float v_exit = previous_speed[axis] * smaller_speed_factor,
  2483. v_entry = current_speed[axis];
  2484. if (limited) {
  2485. v_exit *= v_factor;
  2486. v_entry *= v_factor;
  2487. }
  2488. // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
  2489. const float jerk = (v_exit > v_entry)
  2490. ? // coasting axis reversal
  2491. ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : _MAX(v_exit, -v_entry) )
  2492. : // v_exit <= v_entry coasting axis reversal
  2493. ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : _MAX(-v_exit, v_entry) );
  2494. const float maxj = (max_jerk[axis] + (axis == X_AXIS || axis == Y_AXIS ? extra_xyjerk : 0.0f));
  2495. if (jerk > maxj) {
  2496. v_factor *= maxj / jerk;
  2497. ++limited;
  2498. }
  2499. }
  2500. if (limited) vmax_junction *= v_factor;
  2501. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  2502. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  2503. const float vmax_junction_threshold = vmax_junction * 0.99f;
  2504. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
  2505. vmax_junction = safe_speed;
  2506. }
  2507. else
  2508. vmax_junction = safe_speed;
  2509. previous_safe_speed = safe_speed;
  2510. #if HAS_JUNCTION_DEVIATION
  2511. NOMORE(vmax_junction_sqr, sq(vmax_junction)); // Throttle down to max speed
  2512. #else
  2513. vmax_junction_sqr = sq(vmax_junction); // Go up or down to the new speed
  2514. #endif
  2515. #endif // Classic Jerk Limiting
  2516. // Max entry speed of this block equals the max exit speed of the previous block.
  2517. block->max_entry_speed_sqr = vmax_junction_sqr;
  2518. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  2519. const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters);
  2520. // Start with the minimum allowed speed
  2521. block->entry_speed_sqr = sq(float(MINIMUM_PLANNER_SPEED));
  2522. // Initialize planner efficiency flags
  2523. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  2524. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  2525. // the current block and next block junction speeds are guaranteed to always be at their maximum
  2526. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  2527. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  2528. // the reverse and forward planners, the corresponding block junction speed will always be at the
  2529. // the maximum junction speed and may always be ignored for any speed reduction checks.
  2530. block->flag.set_nominal(sq(block->nominal_speed) <= v_allowable_sqr);
  2531. // Update previous path unit_vector and nominal speed
  2532. previous_speed = current_speed;
  2533. previous_nominal_speed = block->nominal_speed;
  2534. position = target; // Update the position
  2535. #if ENABLED(POWER_LOSS_RECOVERY)
  2536. block->sdpos = recovery.command_sdpos();
  2537. block->start_position = position_float.asLogical();
  2538. #endif
  2539. TERN_(HAS_POSITION_FLOAT, position_float = target_float);
  2540. TERN_(GRADIENT_MIX, mixer.gradient_control(target_float.z));
  2541. return true; // Movement was accepted
  2542. } // _populate_block()
  2543. /**
  2544. * @brief Add a block to the buffer that just updates the position
  2545. * Supports LASER_SYNCHRONOUS_M106_M107 and LASER_POWER_SYNC power sync block buffer queueing.
  2546. *
  2547. * @param sync_flag The sync flag to set, determining the type of sync the block will do
  2548. */
  2549. void Planner::buffer_sync_block(const BlockFlagBit sync_flag/*=BLOCK_BIT_SYNC_POSITION*/) {
  2550. // Wait for the next available block
  2551. uint8_t next_buffer_head;
  2552. block_t * const block = get_next_free_block(next_buffer_head);
  2553. // Clear block
  2554. block->reset();
  2555. block->flag.apply(sync_flag);
  2556. block->position = position;
  2557. #if ENABLED(BACKLASH_COMPENSATION)
  2558. LOOP_NUM_AXES(axis) block->position[axis] += backlash.get_applied_steps((AxisEnum)axis);
  2559. #endif
  2560. #if BOTH(HAS_FAN, LASER_SYNCHRONOUS_M106_M107)
  2561. FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
  2562. #endif
  2563. /**
  2564. * M3-based power setting can be processed inline with a laser power sync block.
  2565. * During active moves cutter.power is processed immediately, otherwise on the next move.
  2566. */
  2567. TERN_(LASER_POWER_SYNC, block->laser.power = cutter.power);
  2568. // If this is the first added movement, reload the delay, otherwise, cancel it.
  2569. if (block_buffer_head == block_buffer_tail) {
  2570. // If it was the first queued block, restart the 1st block delivery delay, to
  2571. // give the planner an opportunity to queue more movements and plan them
  2572. // As there are no queued movements, the Stepper ISR will not touch this
  2573. // variable, so there is no risk setting this here (but it MUST be done
  2574. // before the following line!!)
  2575. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  2576. }
  2577. block_buffer_head = next_buffer_head;
  2578. stepper.wake_up();
  2579. } // buffer_sync_block()
  2580. /**
  2581. * @brief Add a single linear movement
  2582. *
  2583. * @description Add a new linear movement to the buffer in axis units.
  2584. * Leveling and kinematics should be applied before calling this.
  2585. *
  2586. * @param abce Target position in mm and/or degrees
  2587. * @param cart_dist_mm The pre-calculated move lengths for all axes, in mm
  2588. * @param fr_mm_s (target) speed of the move
  2589. * @param extruder optional target extruder (otherwise active_extruder)
  2590. * @param hints optional parameters to aid planner calculations
  2591. *
  2592. * @return false if no segment was queued due to cleaning, cold extrusion, full queue, etc.
  2593. */
  2594. bool Planner::buffer_segment(const abce_pos_t &abce
  2595. OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm)
  2596. , const_feedRate_t fr_mm_s
  2597. , const uint8_t extruder/*=active_extruder*/
  2598. , const PlannerHints &hints/*=PlannerHints()*/
  2599. ) {
  2600. // If we are cleaning, do not accept queuing of movements
  2601. if (cleaning_buffer_counter) return false;
  2602. // When changing extruders recalculate steps corresponding to the E position
  2603. #if ENABLED(DISTINCT_E_FACTORS)
  2604. if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) {
  2605. position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * mm_per_step[E_AXIS_N(last_extruder)]);
  2606. last_extruder = extruder;
  2607. }
  2608. #endif
  2609. // The target position of the tool in absolute steps
  2610. // Calculate target position in absolute steps
  2611. const abce_long_t target = {
  2612. LOGICAL_AXIS_LIST(
  2613. int32_t(LROUND(abce.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)])),
  2614. int32_t(LROUND(abce.a * settings.axis_steps_per_mm[A_AXIS])),
  2615. int32_t(LROUND(abce.b * settings.axis_steps_per_mm[B_AXIS])),
  2616. int32_t(LROUND(abce.c * settings.axis_steps_per_mm[C_AXIS])),
  2617. int32_t(LROUND(abce.i * settings.axis_steps_per_mm[I_AXIS])),
  2618. int32_t(LROUND(abce.j * settings.axis_steps_per_mm[J_AXIS])),
  2619. int32_t(LROUND(abce.k * settings.axis_steps_per_mm[K_AXIS])),
  2620. int32_t(LROUND(abce.u * settings.axis_steps_per_mm[U_AXIS])),
  2621. int32_t(LROUND(abce.v * settings.axis_steps_per_mm[V_AXIS])),
  2622. int32_t(LROUND(abce.w * settings.axis_steps_per_mm[W_AXIS]))
  2623. )
  2624. };
  2625. #if HAS_POSITION_FLOAT
  2626. const xyze_pos_t target_float = abce;
  2627. #endif
  2628. #if HAS_EXTRUDERS
  2629. // DRYRUN prevents E moves from taking place
  2630. if (DEBUGGING(DRYRUN) || TERN0(CANCEL_OBJECTS, cancelable.skipping)) {
  2631. position.e = target.e;
  2632. TERN_(HAS_POSITION_FLOAT, position_float.e = abce.e);
  2633. }
  2634. #endif
  2635. /* <-- add a slash to enable
  2636. SERIAL_ECHOPGM(" buffer_segment FR:", fr_mm_s);
  2637. #if IS_KINEMATIC
  2638. SERIAL_ECHOPGM(" A:", abce.a, " (", position.a, "->", target.a, ") B:", abce.b);
  2639. #else
  2640. SERIAL_ECHOPGM_P(SP_X_LBL, abce.a);
  2641. SERIAL_ECHOPGM(" (", position.x, "->", target.x);
  2642. SERIAL_CHAR(')');
  2643. SERIAL_ECHOPGM_P(SP_Y_LBL, abce.b);
  2644. #endif
  2645. SERIAL_ECHOPGM(" (", position.y, "->", target.y);
  2646. #if HAS_Z_AXIS
  2647. #if ENABLED(DELTA)
  2648. SERIAL_ECHOPGM(") C:", abce.c);
  2649. #else
  2650. SERIAL_CHAR(')');
  2651. SERIAL_ECHOPGM_P(SP_Z_LBL, abce.c);
  2652. #endif
  2653. SERIAL_ECHOPGM(" (", position.z, "->", target.z);
  2654. SERIAL_CHAR(')');
  2655. #endif
  2656. #if HAS_I_AXIS
  2657. SERIAL_ECHOPGM_P(SP_I_LBL, abce.i);
  2658. SERIAL_ECHOPGM(" (", position.i, "->", target.i);
  2659. SERIAL_CHAR(')');
  2660. #endif
  2661. #if HAS_J_AXIS
  2662. SERIAL_ECHOPGM_P(SP_J_LBL, abce.j);
  2663. SERIAL_ECHOPGM(" (", position.j, "->", target.j);
  2664. SERIAL_CHAR(')');
  2665. #endif
  2666. #if HAS_K_AXIS
  2667. SERIAL_ECHOPGM_P(SP_K_LBL, abce.k);
  2668. SERIAL_ECHOPGM(" (", position.k, "->", target.k);
  2669. SERIAL_CHAR(')');
  2670. #endif
  2671. #if HAS_U_AXIS
  2672. SERIAL_ECHOPGM_P(SP_U_LBL, abce.u);
  2673. SERIAL_ECHOPGM(" (", position.u, "->", target.u);
  2674. SERIAL_CHAR(')');
  2675. #endif
  2676. #if HAS_V_AXIS
  2677. SERIAL_ECHOPGM_P(SP_V_LBL, abce.v);
  2678. SERIAL_ECHOPGM(" (", position.v, "->", target.v);
  2679. SERIAL_CHAR(')');
  2680. #endif
  2681. #if HAS_W_AXIS
  2682. SERIAL_ECHOPGM_P(SP_W_LBL, abce.w);
  2683. SERIAL_ECHOPGM(" (", position.w, "->", target.w);
  2684. SERIAL_CHAR(')');
  2685. #endif
  2686. #if HAS_EXTRUDERS
  2687. SERIAL_ECHOPGM_P(SP_E_LBL, abce.e);
  2688. SERIAL_ECHOLNPGM(" (", position.e, "->", target.e, ")");
  2689. #else
  2690. SERIAL_EOL();
  2691. #endif
  2692. //*/
  2693. // Queue the movement. Return 'false' if the move was not queued.
  2694. if (!_buffer_steps(target
  2695. OPTARG(HAS_POSITION_FLOAT, target_float)
  2696. OPTARG(HAS_DIST_MM_ARG, cart_dist_mm)
  2697. , fr_mm_s, extruder, hints
  2698. )) return false;
  2699. stepper.wake_up();
  2700. return true;
  2701. } // buffer_segment()
  2702. /**
  2703. * Add a new linear movement to the buffer.
  2704. * The target is cartesian. It's translated to
  2705. * delta/scara if needed.
  2706. *
  2707. * cart - target position in mm or degrees
  2708. * fr_mm_s - (target) speed of the move (mm/s)
  2709. * extruder - optional target extruder (otherwise active_extruder)
  2710. * hints - optional parameters to aid planner calculations
  2711. */
  2712. bool Planner::buffer_line(const xyze_pos_t &cart, const_feedRate_t fr_mm_s
  2713. , const uint8_t extruder/*=active_extruder*/
  2714. , const PlannerHints &hints/*=PlannerHints()*/
  2715. ) {
  2716. xyze_pos_t machine = cart;
  2717. TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine));
  2718. #if IS_KINEMATIC
  2719. #if HAS_JUNCTION_DEVIATION
  2720. const xyze_pos_t cart_dist_mm = LOGICAL_AXIS_ARRAY(
  2721. cart.e - position_cart.e,
  2722. cart.x - position_cart.x, cart.y - position_cart.y, cart.z - position_cart.z,
  2723. cart.i - position_cart.i, cart.j - position_cart.j, cart.k - position_cart.k,
  2724. cart.u - position_cart.u, cart.v - position_cart.v, cart.w - position_cart.w
  2725. );
  2726. #else
  2727. const xyz_pos_t cart_dist_mm = NUM_AXIS_ARRAY(
  2728. cart.x - position_cart.x, cart.y - position_cart.y, cart.z - position_cart.z,
  2729. cart.i - position_cart.i, cart.j - position_cart.j, cart.k - position_cart.k,
  2730. cart.u - position_cart.u, cart.v - position_cart.v, cart.w - position_cart.w
  2731. );
  2732. #endif
  2733. // Cartesian XYZ to kinematic ABC, stored in global 'delta'
  2734. inverse_kinematics(machine);
  2735. PlannerHints ph = hints;
  2736. if (!hints.millimeters)
  2737. ph.millimeters = (cart_dist_mm.x || cart_dist_mm.y)
  2738. ? xyz_pos_t(cart_dist_mm).magnitude()
  2739. : TERN0(HAS_Z_AXIS, ABS(cart_dist_mm.z));
  2740. #if ENABLED(SCARA_FEEDRATE_SCALING)
  2741. // For SCARA scale the feedrate from mm/s to degrees/s
  2742. // i.e., Complete the angular vector in the given time.
  2743. const float duration_recip = hints.inv_duration ?: fr_mm_s / ph.millimeters;
  2744. const xyz_pos_t diff = delta - position_float;
  2745. const feedRate_t feedrate = diff.magnitude() * duration_recip;
  2746. #else
  2747. const feedRate_t feedrate = fr_mm_s;
  2748. #endif
  2749. TERN_(HAS_EXTRUDERS, delta.e = machine.e);
  2750. if (buffer_segment(delta OPTARG(HAS_DIST_MM_ARG, cart_dist_mm), feedrate, extruder, ph)) {
  2751. position_cart = cart;
  2752. return true;
  2753. }
  2754. return false;
  2755. #else
  2756. return buffer_segment(machine, fr_mm_s, extruder, hints);
  2757. #endif
  2758. } // buffer_line()
  2759. #if ENABLED(DIRECT_STEPPING)
  2760. void Planner::buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps) {
  2761. if (!last_page_step_rate) {
  2762. kill(GET_TEXT_F(MSG_BAD_PAGE_SPEED));
  2763. return;
  2764. }
  2765. uint8_t next_buffer_head;
  2766. block_t * const block = get_next_free_block(next_buffer_head);
  2767. block->flag.reset(BLOCK_BIT_PAGE);
  2768. #if HAS_FAN
  2769. FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
  2770. #endif
  2771. E_TERN_(block->extruder = extruder);
  2772. block->page_idx = page_idx;
  2773. block->step_event_count = num_steps;
  2774. block->initial_rate = block->final_rate = block->nominal_rate = last_page_step_rate; // steps/s
  2775. block->accelerate_until = 0;
  2776. block->decelerate_after = block->step_event_count;
  2777. // Will be set to last direction later if directional format.
  2778. block->direction_bits = 0;
  2779. #define PAGE_UPDATE_DIR(AXIS) \
  2780. if (!last_page_dir[_AXIS(AXIS)]) SBI(block->direction_bits, _AXIS(AXIS));
  2781. if (!DirectStepping::Config::DIRECTIONAL) {
  2782. PAGE_UPDATE_DIR(X);
  2783. PAGE_UPDATE_DIR(Y);
  2784. PAGE_UPDATE_DIR(Z);
  2785. PAGE_UPDATE_DIR(E);
  2786. }
  2787. // If this is the first added movement, reload the delay, otherwise, cancel it.
  2788. if (block_buffer_head == block_buffer_tail) {
  2789. // If it was the first queued block, restart the 1st block delivery delay, to
  2790. // give the planner an opportunity to queue more movements and plan them
  2791. // As there are no queued movements, the Stepper ISR will not touch this
  2792. // variable, so there is no risk setting this here (but it MUST be done
  2793. // before the following line!!)
  2794. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
  2795. }
  2796. // Move buffer head
  2797. block_buffer_head = next_buffer_head;
  2798. stepper.enable_all_steppers();
  2799. stepper.wake_up();
  2800. }
  2801. #endif // DIRECT_STEPPING
  2802. /**
  2803. * Directly set the planner ABCE position (and stepper positions)
  2804. * converting mm (or angles for SCARA) into steps.
  2805. *
  2806. * The provided ABCE position is in machine units.
  2807. */
  2808. void Planner::set_machine_position_mm(const abce_pos_t &abce) {
  2809. TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);
  2810. TERN_(HAS_POSITION_FLOAT, position_float = abce);
  2811. position.set(
  2812. LOGICAL_AXIS_LIST(
  2813. LROUND(abce.e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)]),
  2814. LROUND(abce.a * settings.axis_steps_per_mm[A_AXIS]),
  2815. LROUND(abce.b * settings.axis_steps_per_mm[B_AXIS]),
  2816. LROUND(abce.c * settings.axis_steps_per_mm[C_AXIS]),
  2817. LROUND(abce.i * settings.axis_steps_per_mm[I_AXIS]),
  2818. LROUND(abce.j * settings.axis_steps_per_mm[J_AXIS]),
  2819. LROUND(abce.k * settings.axis_steps_per_mm[K_AXIS]),
  2820. LROUND(abce.u * settings.axis_steps_per_mm[U_AXIS]),
  2821. LROUND(abce.v * settings.axis_steps_per_mm[V_AXIS]),
  2822. LROUND(abce.w * settings.axis_steps_per_mm[W_AXIS])
  2823. )
  2824. );
  2825. if (has_blocks_queued()) {
  2826. //previous_nominal_speed = 0.0f; // Reset planner junction speeds. Assume start from rest.
  2827. //previous_speed.reset();
  2828. buffer_sync_block(BLOCK_BIT_SYNC_POSITION);
  2829. }
  2830. else {
  2831. #if ENABLED(BACKLASH_COMPENSATION)
  2832. abce_long_t stepper_pos = position;
  2833. LOOP_NUM_AXES(axis) stepper_pos[axis] += backlash.get_applied_steps((AxisEnum)axis);
  2834. stepper.set_position(stepper_pos);
  2835. #else
  2836. stepper.set_position(position);
  2837. #endif
  2838. }
  2839. }
  2840. void Planner::set_position_mm(const xyze_pos_t &xyze) {
  2841. xyze_pos_t machine = xyze;
  2842. TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine, true));
  2843. #if IS_KINEMATIC
  2844. position_cart = xyze;
  2845. inverse_kinematics(machine);
  2846. TERN_(HAS_EXTRUDERS, delta.e = machine.e);
  2847. set_machine_position_mm(delta);
  2848. #else
  2849. set_machine_position_mm(machine);
  2850. #endif
  2851. }
  2852. #if HAS_EXTRUDERS
  2853. /**
  2854. * Setters for planner position (also setting stepper position).
  2855. */
  2856. void Planner::set_e_position_mm(const_float_t e) {
  2857. const uint8_t axis_index = E_AXIS_N(active_extruder);
  2858. TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);
  2859. const float e_new = DIFF_TERN(FWRETRACT, e, fwretract.current_retract[active_extruder]);
  2860. position.e = LROUND(settings.axis_steps_per_mm[axis_index] * e_new);
  2861. TERN_(HAS_POSITION_FLOAT, position_float.e = e_new);
  2862. TERN_(IS_KINEMATIC, TERN_(HAS_EXTRUDERS, position_cart.e = e));
  2863. if (has_blocks_queued())
  2864. buffer_sync_block(BLOCK_BIT_SYNC_POSITION);
  2865. else
  2866. stepper.set_axis_position(E_AXIS, position.e);
  2867. }
  2868. #endif
  2869. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  2870. void Planner::refresh_acceleration_rates() {
  2871. uint32_t highest_rate = 1;
  2872. LOOP_DISTINCT_AXES(i) {
  2873. max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i];
  2874. if (TERN1(DISTINCT_E_FACTORS, i < E_AXIS || i == E_AXIS_N(active_extruder)))
  2875. NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
  2876. }
  2877. acceleration_long_cutoff = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
  2878. TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk());
  2879. }
  2880. /**
  2881. * Recalculate 'position' and 'mm_per_step'.
  2882. * Must be called whenever settings.axis_steps_per_mm changes!
  2883. */
  2884. void Planner::refresh_positioning() {
  2885. LOOP_DISTINCT_AXES(i) mm_per_step[i] = 1.0f / settings.axis_steps_per_mm[i];
  2886. set_position_mm(current_position);
  2887. refresh_acceleration_rates();
  2888. }
  2889. // Apply limits to a variable and give a warning if the value was out of range
  2890. inline void limit_and_warn(float &val, const AxisEnum axis, PGM_P const setting_name, const xyze_float_t &max_limit) {
  2891. const uint8_t lim_axis = TERN_(HAS_EXTRUDERS, axis > E_AXIS ? E_AXIS :) axis;
  2892. const float before = val;
  2893. LIMIT(val, 0.1f, max_limit[lim_axis]);
  2894. if (before != val) {
  2895. SERIAL_CHAR(AXIS_CHAR(lim_axis));
  2896. SERIAL_ECHOPGM(" Max ");
  2897. SERIAL_ECHOPGM_P(setting_name);
  2898. SERIAL_ECHOLNPGM(" limited to ", val);
  2899. }
  2900. }
  2901. /**
  2902. * For the specified 'axis' set the Maximum Acceleration to the given value (mm/s^2)
  2903. * The value may be limited with warning feedback, if configured.
  2904. * Calls refresh_acceleration_rates to precalculate planner terms in steps.
  2905. *
  2906. * This hard limit is applied as a block is being added to the planner queue.
  2907. */
  2908. void Planner::set_max_acceleration(const AxisEnum axis, float inMaxAccelMMS2) {
  2909. #if ENABLED(LIMITED_MAX_ACCEL_EDITING)
  2910. #ifdef MAX_ACCEL_EDIT_VALUES
  2911. constexpr xyze_float_t max_accel_edit = MAX_ACCEL_EDIT_VALUES;
  2912. const xyze_float_t &max_acc_edit_scaled = max_accel_edit;
  2913. #else
  2914. constexpr xyze_float_t max_accel_edit = DEFAULT_MAX_ACCELERATION;
  2915. const xyze_float_t max_acc_edit_scaled = max_accel_edit * 2;
  2916. #endif
  2917. limit_and_warn(inMaxAccelMMS2, axis, PSTR("Acceleration"), max_acc_edit_scaled);
  2918. #endif
  2919. settings.max_acceleration_mm_per_s2[axis] = inMaxAccelMMS2;
  2920. // Update steps per s2 to agree with the units per s2 (since they are used in the planner)
  2921. refresh_acceleration_rates();
  2922. }
  2923. /**
  2924. * For the specified 'axis' set the Maximum Feedrate to the given value (mm/s)
  2925. * The value may be limited with warning feedback, if configured.
  2926. *
  2927. * This hard limit is applied as a block is being added to the planner queue.
  2928. */
  2929. void Planner::set_max_feedrate(const AxisEnum axis, float inMaxFeedrateMMS) {
  2930. #if ENABLED(LIMITED_MAX_FR_EDITING)
  2931. #ifdef MAX_FEEDRATE_EDIT_VALUES
  2932. constexpr xyze_float_t max_fr_edit = MAX_FEEDRATE_EDIT_VALUES;
  2933. const xyze_float_t &max_fr_edit_scaled = max_fr_edit;
  2934. #else
  2935. constexpr xyze_float_t max_fr_edit = DEFAULT_MAX_FEEDRATE;
  2936. const xyze_float_t max_fr_edit_scaled = max_fr_edit * 2;
  2937. #endif
  2938. limit_and_warn(inMaxFeedrateMMS, axis, PSTR("Feedrate"), max_fr_edit_scaled);
  2939. #endif
  2940. settings.max_feedrate_mm_s[axis] = inMaxFeedrateMMS;
  2941. }
  2942. #if HAS_CLASSIC_JERK
  2943. /**
  2944. * For the specified 'axis' set the Maximum Jerk (instant change) to the given value (mm/s)
  2945. * The value may be limited with warning feedback, if configured.
  2946. *
  2947. * This hard limit is applied (to the block start speed) as the block is being added to the planner queue.
  2948. */
  2949. void Planner::set_max_jerk(const AxisEnum axis, float inMaxJerkMMS) {
  2950. #if ENABLED(LIMITED_JERK_EDITING)
  2951. constexpr xyze_float_t max_jerk_edit =
  2952. #ifdef MAX_JERK_EDIT_VALUES
  2953. MAX_JERK_EDIT_VALUES
  2954. #else
  2955. { (DEFAULT_XJERK) * 2, (DEFAULT_YJERK) * 2,
  2956. (DEFAULT_ZJERK) * 2, (DEFAULT_EJERK) * 2 }
  2957. #endif
  2958. ;
  2959. limit_and_warn(inMaxJerkMMS, axis, PSTR("Jerk"), max_jerk_edit);
  2960. #endif
  2961. max_jerk[axis] = inMaxJerkMMS;
  2962. }
  2963. #endif
  2964. #if HAS_WIRED_LCD
  2965. uint16_t Planner::block_buffer_runtime() {
  2966. #ifdef __AVR__
  2967. // Protect the access to the variable. Only required for AVR, as
  2968. // any 32bit CPU offers atomic access to 32bit variables
  2969. const bool was_enabled = stepper.suspend();
  2970. #endif
  2971. uint32_t bbru = block_buffer_runtime_us;
  2972. #ifdef __AVR__
  2973. // Reenable Stepper ISR
  2974. if (was_enabled) stepper.wake_up();
  2975. #endif
  2976. // To translate µs to ms a division by 1000 would be required.
  2977. // We introduce 2.4% error here by dividing by 1024.
  2978. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  2979. bbru >>= 10;
  2980. // limit to about a minute.
  2981. NOMORE(bbru, 0x0000FFFFUL);
  2982. return bbru;
  2983. }
  2984. void Planner::clear_block_buffer_runtime() {
  2985. #ifdef __AVR__
  2986. // Protect the access to the variable. Only required for AVR, as
  2987. // any 32bit CPU offers atomic access to 32bit variables
  2988. const bool was_enabled = stepper.suspend();
  2989. #endif
  2990. block_buffer_runtime_us = 0;
  2991. #ifdef __AVR__
  2992. // Reenable Stepper ISR
  2993. if (was_enabled) stepper.wake_up();
  2994. #endif
  2995. }
  2996. #endif