My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 48KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. constexpr uint16_t ADV_NEVER = 65535;
  79. uint16_t Stepper::nextMainISR = 0,
  80. Stepper::nextAdvanceISR = ADV_NEVER,
  81. Stepper::eISR_Rate = ADV_NEVER;
  82. #if ENABLED(LIN_ADVANCE)
  83. volatile int Stepper::e_steps[E_STEPPERS];
  84. int Stepper::final_estep_rate,
  85. Stepper::current_estep_rate[E_STEPPERS],
  86. Stepper::current_adv_steps[E_STEPPERS];
  87. #else
  88. long Stepper::e_steps[E_STEPPERS],
  89. Stepper::final_advance = 0,
  90. Stepper::old_advance = 0,
  91. Stepper::advance_rate,
  92. Stepper::advance;
  93. #endif
  94. #define ADV_RATE(T, L) (e_steps[TOOL_E_INDEX] ? (T) * (L) / abs(e_steps[TOOL_E_INDEX]) : ADV_NEVER)
  95. #endif
  96. long Stepper::acceleration_time, Stepper::deceleration_time;
  97. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  98. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  99. #if ENABLED(MIXING_EXTRUDER)
  100. long Stepper::counter_m[MIXING_STEPPERS];
  101. #endif
  102. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  103. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  104. unsigned short Stepper::OCR1A_nominal;
  105. volatile long Stepper::endstops_trigsteps[XYZ];
  106. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  107. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  108. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  109. #elif ENABLED(DUAL_X_CARRIAGE)
  110. #define X_APPLY_DIR(v,ALWAYS) \
  111. if (extruder_duplication_enabled || ALWAYS) { \
  112. X_DIR_WRITE(v); \
  113. X2_DIR_WRITE(v); \
  114. } \
  115. else { \
  116. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  117. }
  118. #define X_APPLY_STEP(v,ALWAYS) \
  119. if (extruder_duplication_enabled || ALWAYS) { \
  120. X_STEP_WRITE(v); \
  121. X2_STEP_WRITE(v); \
  122. } \
  123. else { \
  124. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  125. }
  126. #else
  127. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  128. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  129. #endif
  130. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  131. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  132. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  133. #else
  134. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  135. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  136. #endif
  137. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  138. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  139. #if ENABLED(Z_DUAL_ENDSTOPS)
  140. #define Z_APPLY_STEP(v,Q) \
  141. if (performing_homing) { \
  142. if (Z_HOME_DIR < 0) { \
  143. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  144. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  145. } \
  146. else { \
  147. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  148. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  149. } \
  150. } \
  151. else { \
  152. Z_STEP_WRITE(v); \
  153. Z2_STEP_WRITE(v); \
  154. }
  155. #else
  156. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  157. #endif
  158. #else
  159. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  160. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  161. #endif
  162. #if DISABLED(MIXING_EXTRUDER)
  163. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  164. #endif
  165. // intRes = longIn1 * longIn2 >> 24
  166. // uses:
  167. // r26 to store 0
  168. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  169. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  170. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  171. // B0 A0 are bits 24-39 and are the returned value
  172. // C1 B1 A1 is longIn1
  173. // D2 C2 B2 A2 is longIn2
  174. //
  175. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  176. asm volatile ( \
  177. "clr r26 \n\t" \
  178. "mul %A1, %B2 \n\t" \
  179. "mov r27, r1 \n\t" \
  180. "mul %B1, %C2 \n\t" \
  181. "movw %A0, r0 \n\t" \
  182. "mul %C1, %C2 \n\t" \
  183. "add %B0, r0 \n\t" \
  184. "mul %C1, %B2 \n\t" \
  185. "add %A0, r0 \n\t" \
  186. "adc %B0, r1 \n\t" \
  187. "mul %A1, %C2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %B1, %B2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %C1, %A2 \n\t" \
  196. "add r27, r0 \n\t" \
  197. "adc %A0, r1 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "mul %B1, %A2 \n\t" \
  200. "add r27, r1 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "lsr r27 \n\t" \
  204. "adc %A0, r26 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %D2, %A1 \n\t" \
  207. "add %A0, r0 \n\t" \
  208. "adc %B0, r1 \n\t" \
  209. "mul %D2, %B1 \n\t" \
  210. "add %B0, r0 \n\t" \
  211. "clr r1 \n\t" \
  212. : \
  213. "=&r" (intRes) \
  214. : \
  215. "d" (longIn1), \
  216. "d" (longIn2) \
  217. : \
  218. "r26" , "r27" \
  219. )
  220. // Some useful constants
  221. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  222. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  223. /**
  224. * __________________________
  225. * /| |\ _________________ ^
  226. * / | | \ /| |\ |
  227. * / | | \ / | | \ s
  228. * / | | | | | \ p
  229. * / | | | | | \ e
  230. * +-----+------------------------+---+--+---------------+----+ e
  231. * | BLOCK 1 | BLOCK 2 | d
  232. *
  233. * time ----->
  234. *
  235. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  236. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  237. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  238. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  239. */
  240. void Stepper::wake_up() {
  241. // TCNT1 = 0;
  242. ENABLE_STEPPER_DRIVER_INTERRUPT();
  243. }
  244. /**
  245. * Set the stepper direction of each axis
  246. *
  247. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  248. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  249. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  250. */
  251. void Stepper::set_directions() {
  252. #define SET_STEP_DIR(AXIS) \
  253. if (motor_direction(AXIS ##_AXIS)) { \
  254. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  255. count_direction[AXIS ##_AXIS] = -1; \
  256. } \
  257. else { \
  258. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  259. count_direction[AXIS ##_AXIS] = 1; \
  260. }
  261. #if HAS_X_DIR
  262. SET_STEP_DIR(X); // A
  263. #endif
  264. #if HAS_Y_DIR
  265. SET_STEP_DIR(Y); // B
  266. #endif
  267. #if HAS_Z_DIR
  268. SET_STEP_DIR(Z); // C
  269. #endif
  270. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  271. if (motor_direction(E_AXIS)) {
  272. REV_E_DIR();
  273. count_direction[E_AXIS] = -1;
  274. }
  275. else {
  276. NORM_E_DIR();
  277. count_direction[E_AXIS] = 1;
  278. }
  279. #endif // !ADVANCE && !LIN_ADVANCE
  280. }
  281. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  282. extern volatile uint8_t e_hit;
  283. #endif
  284. /**
  285. * Stepper Driver Interrupt
  286. *
  287. * Directly pulses the stepper motors at high frequency.
  288. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  289. *
  290. * OCR1A Frequency
  291. * 1 2 MHz
  292. * 50 40 KHz
  293. * 100 20 KHz - capped max rate
  294. * 200 10 KHz - nominal max rate
  295. * 2000 1 KHz - sleep rate
  296. * 4000 500 Hz - init rate
  297. */
  298. ISR(TIMER1_COMPA_vect) {
  299. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  300. Stepper::advance_isr_scheduler();
  301. #else
  302. Stepper::isr();
  303. #endif
  304. }
  305. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  306. void Stepper::isr() {
  307. uint16_t ocr_val;
  308. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  309. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  310. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  311. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  312. CBI(TIMSK0, OCIE0B); // Temperature ISR
  313. DISABLE_STEPPER_DRIVER_INTERRUPT();
  314. sei();
  315. #endif
  316. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  317. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  318. #define SPLIT(L) _SPLIT(L)
  319. #else // sample endstops in between step pulses
  320. static uint32_t step_remaining = 0;
  321. #define SPLIT(L) do { \
  322. _SPLIT(L); \
  323. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  324. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  325. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  326. step_remaining = (uint16_t)L - ocr_val; \
  327. } \
  328. } while(0)
  329. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  330. endstops.update();
  331. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  332. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  333. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  334. }
  335. else {
  336. ocr_val = step_remaining;
  337. step_remaining = 0; // last one before the ISR that does the step
  338. }
  339. _NEXT_ISR(ocr_val);
  340. NOLESS(OCR1A, TCNT1 + 16);
  341. _ENABLE_ISRs(); // re-enable ISRs
  342. return;
  343. }
  344. #endif
  345. if (cleaning_buffer_counter) {
  346. --cleaning_buffer_counter;
  347. current_block = NULL;
  348. planner.discard_current_block();
  349. #ifdef SD_FINISHED_RELEASECOMMAND
  350. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  351. #endif
  352. _NEXT_ISR(200); // Run at max speed - 10 KHz
  353. _ENABLE_ISRs(); // re-enable ISRs
  354. return;
  355. }
  356. // If there is no current block, attempt to pop one from the buffer
  357. if (!current_block) {
  358. // Anything in the buffer?
  359. current_block = planner.get_current_block();
  360. if (current_block) {
  361. trapezoid_generator_reset();
  362. // Initialize Bresenham counters to 1/2 the ceiling
  363. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  364. #if ENABLED(MIXING_EXTRUDER)
  365. MIXING_STEPPERS_LOOP(i)
  366. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  367. #endif
  368. step_events_completed = 0;
  369. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  370. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  371. // No 'change' can be detected.
  372. #endif
  373. #if ENABLED(Z_LATE_ENABLE)
  374. if (current_block->steps[Z_AXIS] > 0) {
  375. enable_Z();
  376. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  377. _ENABLE_ISRs(); // re-enable ISRs
  378. return;
  379. }
  380. #endif
  381. // #if ENABLED(ADVANCE)
  382. // e_steps[TOOL_E_INDEX] = 0;
  383. // #endif
  384. }
  385. else {
  386. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  387. _ENABLE_ISRs(); // re-enable ISRs
  388. return;
  389. }
  390. }
  391. // Update endstops state, if enabled
  392. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  393. if (e_hit && ENDSTOPS_ENABLED) {
  394. endstops.update();
  395. e_hit--;
  396. }
  397. #else
  398. if (ENDSTOPS_ENABLED) endstops.update();
  399. #endif
  400. // Take multiple steps per interrupt (For high speed moves)
  401. bool all_steps_done = false;
  402. for (uint8_t i = step_loops; i--;) {
  403. #if ENABLED(LIN_ADVANCE)
  404. counter_E += current_block->steps[E_AXIS];
  405. if (counter_E > 0) {
  406. counter_E -= current_block->step_event_count;
  407. #if DISABLED(MIXING_EXTRUDER)
  408. // Don't step E here for mixing extruder
  409. count_position[E_AXIS] += count_direction[E_AXIS];
  410. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  411. #endif
  412. }
  413. #if ENABLED(MIXING_EXTRUDER)
  414. // Step mixing steppers proportionally
  415. const bool dir = motor_direction(E_AXIS);
  416. MIXING_STEPPERS_LOOP(j) {
  417. counter_m[j] += current_block->steps[E_AXIS];
  418. if (counter_m[j] > 0) {
  419. counter_m[j] -= current_block->mix_event_count[j];
  420. dir ? --e_steps[j] : ++e_steps[j];
  421. }
  422. }
  423. #endif
  424. #elif ENABLED(ADVANCE)
  425. // Always count the unified E axis
  426. counter_E += current_block->steps[E_AXIS];
  427. if (counter_E > 0) {
  428. counter_E -= current_block->step_event_count;
  429. #if DISABLED(MIXING_EXTRUDER)
  430. // Don't step E here for mixing extruder
  431. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  432. #endif
  433. }
  434. #if ENABLED(MIXING_EXTRUDER)
  435. // Step mixing steppers proportionally
  436. const bool dir = motor_direction(E_AXIS);
  437. MIXING_STEPPERS_LOOP(j) {
  438. counter_m[j] += current_block->steps[E_AXIS];
  439. if (counter_m[j] > 0) {
  440. counter_m[j] -= current_block->mix_event_count[j];
  441. dir ? --e_steps[j] : ++e_steps[j];
  442. }
  443. }
  444. #endif // MIXING_EXTRUDER
  445. #endif // ADVANCE or LIN_ADVANCE
  446. #define _COUNTER(AXIS) counter_## AXIS
  447. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  448. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  449. // Advance the Bresenham counter; start a pulse if the axis needs a step
  450. #define PULSE_START(AXIS) \
  451. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  452. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  453. // Stop an active pulse, reset the Bresenham counter, update the position
  454. #define PULSE_STOP(AXIS) \
  455. if (_COUNTER(AXIS) > 0) { \
  456. _COUNTER(AXIS) -= current_block->step_event_count; \
  457. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  458. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  459. }
  460. /**
  461. * Estimate the number of cycles that the stepper logic already takes
  462. * up between the start and stop of the X stepper pulse.
  463. *
  464. * Currently this uses very modest estimates of around 5 cycles.
  465. * True values may be derived by careful testing.
  466. *
  467. * Once any delay is added, the cost of the delay code itself
  468. * may be subtracted from this value to get a more accurate delay.
  469. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  470. * Longer delays use a loop. The resolution is 8 cycles.
  471. */
  472. #if HAS_X_STEP
  473. #define _CYCLE_APPROX_1 5
  474. #else
  475. #define _CYCLE_APPROX_1 0
  476. #endif
  477. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  478. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  479. #else
  480. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  481. #endif
  482. #if HAS_Y_STEP
  483. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  484. #else
  485. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  486. #endif
  487. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  488. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  489. #else
  490. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  491. #endif
  492. #if HAS_Z_STEP
  493. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  494. #else
  495. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  496. #endif
  497. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  498. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  499. #else
  500. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  501. #endif
  502. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  503. #if ENABLED(MIXING_EXTRUDER)
  504. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  505. #else
  506. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  507. #endif
  508. #else
  509. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  510. #endif
  511. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  512. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  513. /**
  514. * If a minimum pulse time was specified get the timer 0 value.
  515. *
  516. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  517. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  518. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  519. * 10µs = 160 or 200 cycles.
  520. */
  521. #if EXTRA_CYCLES_XYZE > 20
  522. uint32_t pulse_start = TCNT0;
  523. #endif
  524. #if HAS_X_STEP
  525. PULSE_START(X);
  526. #endif
  527. #if HAS_Y_STEP
  528. PULSE_START(Y);
  529. #endif
  530. #if HAS_Z_STEP
  531. PULSE_START(Z);
  532. #endif
  533. // For non-advance use linear interpolation for E also
  534. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  535. #if ENABLED(MIXING_EXTRUDER)
  536. // Keep updating the single E axis
  537. counter_E += current_block->steps[E_AXIS];
  538. // Tick the counters used for this mix
  539. MIXING_STEPPERS_LOOP(j) {
  540. // Step mixing steppers (proportionally)
  541. counter_m[j] += current_block->steps[E_AXIS];
  542. // Step when the counter goes over zero
  543. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  544. }
  545. #else // !MIXING_EXTRUDER
  546. PULSE_START(E);
  547. #endif
  548. #endif // !ADVANCE && !LIN_ADVANCE
  549. // For minimum pulse time wait before stopping pulses
  550. #if EXTRA_CYCLES_XYZE > 20
  551. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  552. pulse_start = TCNT0;
  553. #elif EXTRA_CYCLES_XYZE > 0
  554. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  555. #endif
  556. #if HAS_X_STEP
  557. PULSE_STOP(X);
  558. #endif
  559. #if HAS_Y_STEP
  560. PULSE_STOP(Y);
  561. #endif
  562. #if HAS_Z_STEP
  563. PULSE_STOP(Z);
  564. #endif
  565. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  566. #if ENABLED(MIXING_EXTRUDER)
  567. // Always step the single E axis
  568. if (counter_E > 0) {
  569. counter_E -= current_block->step_event_count;
  570. count_position[E_AXIS] += count_direction[E_AXIS];
  571. }
  572. MIXING_STEPPERS_LOOP(j) {
  573. if (counter_m[j] > 0) {
  574. counter_m[j] -= current_block->mix_event_count[j];
  575. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  576. }
  577. }
  578. #else // !MIXING_EXTRUDER
  579. PULSE_STOP(E);
  580. #endif
  581. #endif // !ADVANCE && !LIN_ADVANCE
  582. if (++step_events_completed >= current_block->step_event_count) {
  583. all_steps_done = true;
  584. break;
  585. }
  586. // For minimum pulse time wait after stopping pulses also
  587. #if EXTRA_CYCLES_XYZE > 20
  588. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  589. #elif EXTRA_CYCLES_XYZE > 0
  590. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  591. #endif
  592. } // steps_loop
  593. #if ENABLED(LIN_ADVANCE)
  594. if (current_block->use_advance_lead) {
  595. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  596. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  597. #if ENABLED(MIXING_EXTRUDER)
  598. // Mixing extruders apply advance lead proportionally
  599. MIXING_STEPPERS_LOOP(j)
  600. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  601. #else
  602. // For most extruders, advance the single E stepper
  603. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  604. #endif
  605. }
  606. #endif
  607. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  608. // If we have esteps to execute, fire the next advance_isr "now"
  609. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  610. #endif
  611. // Calculate new timer value
  612. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  613. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  614. acc_step_rate += current_block->initial_rate;
  615. // upper limit
  616. NOMORE(acc_step_rate, current_block->nominal_rate);
  617. // step_rate to timer interval
  618. const uint16_t timer = calc_timer(acc_step_rate);
  619. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  620. _NEXT_ISR(ocr_val);
  621. acceleration_time += timer;
  622. #if ENABLED(LIN_ADVANCE)
  623. if (current_block->use_advance_lead) {
  624. #if ENABLED(MIXING_EXTRUDER)
  625. MIXING_STEPPERS_LOOP(j)
  626. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  627. #else
  628. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  629. #endif
  630. }
  631. #elif ENABLED(ADVANCE)
  632. advance += advance_rate * step_loops;
  633. //NOLESS(advance, current_block->advance);
  634. const long advance_whole = advance >> 8,
  635. advance_factor = advance_whole - old_advance;
  636. // Do E steps + advance steps
  637. #if ENABLED(MIXING_EXTRUDER)
  638. // ...for mixing steppers proportionally
  639. MIXING_STEPPERS_LOOP(j)
  640. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  641. #else
  642. // ...for the active extruder
  643. e_steps[TOOL_E_INDEX] += advance_factor;
  644. #endif
  645. old_advance = advance_whole;
  646. #endif // ADVANCE or LIN_ADVANCE
  647. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  648. eISR_Rate = ADV_RATE(timer, step_loops);
  649. #endif
  650. }
  651. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  652. uint16_t step_rate;
  653. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  654. if (step_rate < acc_step_rate) { // Still decelerating?
  655. step_rate = acc_step_rate - step_rate;
  656. NOLESS(step_rate, current_block->final_rate);
  657. }
  658. else
  659. step_rate = current_block->final_rate;
  660. // step_rate to timer interval
  661. const uint16_t timer = calc_timer(step_rate);
  662. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  663. _NEXT_ISR(ocr_val);
  664. deceleration_time += timer;
  665. #if ENABLED(LIN_ADVANCE)
  666. if (current_block->use_advance_lead) {
  667. #if ENABLED(MIXING_EXTRUDER)
  668. MIXING_STEPPERS_LOOP(j)
  669. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  670. #else
  671. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  672. #endif
  673. }
  674. #elif ENABLED(ADVANCE)
  675. advance -= advance_rate * step_loops;
  676. NOLESS(advance, final_advance);
  677. // Do E steps + advance steps
  678. const long advance_whole = advance >> 8,
  679. advance_factor = advance_whole - old_advance;
  680. #if ENABLED(MIXING_EXTRUDER)
  681. MIXING_STEPPERS_LOOP(j)
  682. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  683. #else
  684. e_steps[TOOL_E_INDEX] += advance_factor;
  685. #endif
  686. old_advance = advance_whole;
  687. #endif // ADVANCE or LIN_ADVANCE
  688. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  689. eISR_Rate = ADV_RATE(timer, step_loops);
  690. #endif
  691. }
  692. else {
  693. #if ENABLED(LIN_ADVANCE)
  694. if (current_block->use_advance_lead)
  695. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  696. eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
  697. #endif
  698. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  699. _NEXT_ISR(ocr_val);
  700. // ensure we're running at the correct step rate, even if we just came off an acceleration
  701. step_loops = step_loops_nominal;
  702. }
  703. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  704. NOLESS(OCR1A, TCNT1 + 16);
  705. #endif
  706. // If current block is finished, reset pointer
  707. if (all_steps_done) {
  708. current_block = NULL;
  709. planner.discard_current_block();
  710. }
  711. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  712. _ENABLE_ISRs(); // re-enable ISRs
  713. #endif
  714. }
  715. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  716. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  717. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  718. // Timer interrupt for E. e_steps is set in the main routine;
  719. void Stepper::advance_isr() {
  720. nextAdvanceISR = eISR_Rate;
  721. #define SET_E_STEP_DIR(INDEX) \
  722. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  723. #define START_E_PULSE(INDEX) \
  724. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  725. #define STOP_E_PULSE(INDEX) \
  726. if (e_steps[INDEX]) { \
  727. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  728. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  729. }
  730. SET_E_STEP_DIR(0);
  731. #if E_STEPPERS > 1
  732. SET_E_STEP_DIR(1);
  733. #if E_STEPPERS > 2
  734. SET_E_STEP_DIR(2);
  735. #if E_STEPPERS > 3
  736. SET_E_STEP_DIR(3);
  737. #endif
  738. #endif
  739. #endif
  740. // Step all E steppers that have steps
  741. for (uint8_t i = step_loops; i--;) {
  742. #if EXTRA_CYCLES_E > 20
  743. uint32_t pulse_start = TCNT0;
  744. #endif
  745. START_E_PULSE(0);
  746. #if E_STEPPERS > 1
  747. START_E_PULSE(1);
  748. #if E_STEPPERS > 2
  749. START_E_PULSE(2);
  750. #if E_STEPPERS > 3
  751. START_E_PULSE(3);
  752. #endif
  753. #endif
  754. #endif
  755. // For minimum pulse time wait before stopping pulses
  756. #if EXTRA_CYCLES_E > 20
  757. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  758. pulse_start = TCNT0;
  759. #elif EXTRA_CYCLES_E > 0
  760. DELAY_NOPS(EXTRA_CYCLES_E);
  761. #endif
  762. STOP_E_PULSE(0);
  763. #if E_STEPPERS > 1
  764. STOP_E_PULSE(1);
  765. #if E_STEPPERS > 2
  766. STOP_E_PULSE(2);
  767. #if E_STEPPERS > 3
  768. STOP_E_PULSE(3);
  769. #endif
  770. #endif
  771. #endif
  772. // For minimum pulse time wait before looping
  773. #if EXTRA_CYCLES_E > 20
  774. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  775. #elif EXTRA_CYCLES_E > 0
  776. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  777. #endif
  778. } // steps_loop
  779. }
  780. void Stepper::advance_isr_scheduler() {
  781. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  782. CBI(TIMSK0, OCIE0B); // Temperature ISR
  783. DISABLE_STEPPER_DRIVER_INTERRUPT();
  784. sei();
  785. // Run main stepping ISR if flagged
  786. if (!nextMainISR) isr();
  787. // Run Advance stepping ISR if flagged
  788. if (!nextAdvanceISR) advance_isr();
  789. // Is the next advance ISR scheduled before the next main ISR?
  790. if (nextAdvanceISR <= nextMainISR) {
  791. // Set up the next interrupt
  792. OCR1A = nextAdvanceISR;
  793. // New interval for the next main ISR
  794. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  795. // Will call Stepper::advance_isr on the next interrupt
  796. nextAdvanceISR = 0;
  797. }
  798. else {
  799. // The next main ISR comes first
  800. OCR1A = nextMainISR;
  801. // New interval for the next advance ISR, if any
  802. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  803. nextAdvanceISR -= nextMainISR;
  804. // Will call Stepper::isr on the next interrupt
  805. nextMainISR = 0;
  806. }
  807. // Don't run the ISR faster than possible
  808. NOLESS(OCR1A, TCNT1 + 16);
  809. // Restore original ISR settings
  810. _ENABLE_ISRs();
  811. }
  812. #endif // ADVANCE or LIN_ADVANCE
  813. void Stepper::init() {
  814. // Init Digipot Motor Current
  815. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  816. digipot_init();
  817. #endif
  818. // Init Microstepping Pins
  819. #if HAS_MICROSTEPS
  820. microstep_init();
  821. #endif
  822. // Init TMC Steppers
  823. #if ENABLED(HAVE_TMCDRIVER)
  824. tmc_init();
  825. #endif
  826. // Init TMC2130 Steppers
  827. #if ENABLED(HAVE_TMC2130)
  828. tmc2130_init();
  829. #endif
  830. // Init L6470 Steppers
  831. #if ENABLED(HAVE_L6470DRIVER)
  832. L6470_init();
  833. #endif
  834. // Init Dir Pins
  835. #if HAS_X_DIR
  836. X_DIR_INIT;
  837. #endif
  838. #if HAS_X2_DIR
  839. X2_DIR_INIT;
  840. #endif
  841. #if HAS_Y_DIR
  842. Y_DIR_INIT;
  843. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  844. Y2_DIR_INIT;
  845. #endif
  846. #endif
  847. #if HAS_Z_DIR
  848. Z_DIR_INIT;
  849. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  850. Z2_DIR_INIT;
  851. #endif
  852. #endif
  853. #if HAS_E0_DIR
  854. E0_DIR_INIT;
  855. #endif
  856. #if HAS_E1_DIR
  857. E1_DIR_INIT;
  858. #endif
  859. #if HAS_E2_DIR
  860. E2_DIR_INIT;
  861. #endif
  862. #if HAS_E3_DIR
  863. E3_DIR_INIT;
  864. #endif
  865. #if HAS_E4_DIR
  866. E4_DIR_INIT;
  867. #endif
  868. // Init Enable Pins - steppers default to disabled.
  869. #if HAS_X_ENABLE
  870. X_ENABLE_INIT;
  871. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  872. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  873. X2_ENABLE_INIT;
  874. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  875. #endif
  876. #endif
  877. #if HAS_Y_ENABLE
  878. Y_ENABLE_INIT;
  879. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  880. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  881. Y2_ENABLE_INIT;
  882. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  883. #endif
  884. #endif
  885. #if HAS_Z_ENABLE
  886. Z_ENABLE_INIT;
  887. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  888. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  889. Z2_ENABLE_INIT;
  890. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  891. #endif
  892. #endif
  893. #if HAS_E0_ENABLE
  894. E0_ENABLE_INIT;
  895. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  896. #endif
  897. #if HAS_E1_ENABLE
  898. E1_ENABLE_INIT;
  899. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  900. #endif
  901. #if HAS_E2_ENABLE
  902. E2_ENABLE_INIT;
  903. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  904. #endif
  905. #if HAS_E3_ENABLE
  906. E3_ENABLE_INIT;
  907. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  908. #endif
  909. #if HAS_E4_ENABLE
  910. E4_ENABLE_INIT;
  911. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  912. #endif
  913. // Init endstops and pullups
  914. endstops.init();
  915. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  916. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  917. #define _DISABLE(AXIS) disable_## AXIS()
  918. #define AXIS_INIT(AXIS, PIN) \
  919. _STEP_INIT(AXIS); \
  920. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  921. _DISABLE(AXIS)
  922. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  923. // Init Step Pins
  924. #if HAS_X_STEP
  925. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  926. X2_STEP_INIT;
  927. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  928. #endif
  929. AXIS_INIT(X, X);
  930. #endif
  931. #if HAS_Y_STEP
  932. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  933. Y2_STEP_INIT;
  934. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  935. #endif
  936. AXIS_INIT(Y, Y);
  937. #endif
  938. #if HAS_Z_STEP
  939. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  940. Z2_STEP_INIT;
  941. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  942. #endif
  943. AXIS_INIT(Z, Z);
  944. #endif
  945. #if HAS_E0_STEP
  946. E_AXIS_INIT(0);
  947. #endif
  948. #if HAS_E1_STEP
  949. E_AXIS_INIT(1);
  950. #endif
  951. #if HAS_E2_STEP
  952. E_AXIS_INIT(2);
  953. #endif
  954. #if HAS_E3_STEP
  955. E_AXIS_INIT(3);
  956. #endif
  957. #if HAS_E4_STEP
  958. E_AXIS_INIT(4);
  959. #endif
  960. // waveform generation = 0100 = CTC
  961. SET_WGM(1, CTC_OCRnA);
  962. // output mode = 00 (disconnected)
  963. SET_COMA(1, NORMAL);
  964. // Set the timer pre-scaler
  965. // Generally we use a divider of 8, resulting in a 2MHz timer
  966. // frequency on a 16MHz MCU. If you are going to change this, be
  967. // sure to regenerate speed_lookuptable.h with
  968. // create_speed_lookuptable.py
  969. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  970. // Init Stepper ISR to 122 Hz for quick starting
  971. OCR1A = 0x4000;
  972. TCNT1 = 0;
  973. ENABLE_STEPPER_DRIVER_INTERRUPT();
  974. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  975. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  976. #if ENABLED(LIN_ADVANCE)
  977. ZERO(current_adv_steps);
  978. #endif
  979. #endif // ADVANCE || LIN_ADVANCE
  980. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  981. sei();
  982. set_directions(); // Init directions to last_direction_bits = 0
  983. }
  984. /**
  985. * Block until all buffered steps are executed
  986. */
  987. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  988. /**
  989. * Set the stepper positions directly in steps
  990. *
  991. * The input is based on the typical per-axis XYZ steps.
  992. * For CORE machines XYZ needs to be translated to ABC.
  993. *
  994. * This allows get_axis_position_mm to correctly
  995. * derive the current XYZ position later on.
  996. */
  997. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  998. synchronize(); // Bad to set stepper counts in the middle of a move
  999. CRITICAL_SECTION_START;
  1000. #if CORE_IS_XY
  1001. // corexy positioning
  1002. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  1003. count_position[A_AXIS] = a + b;
  1004. count_position[B_AXIS] = CORESIGN(a - b);
  1005. count_position[Z_AXIS] = c;
  1006. #elif CORE_IS_XZ
  1007. // corexz planning
  1008. count_position[A_AXIS] = a + c;
  1009. count_position[Y_AXIS] = b;
  1010. count_position[C_AXIS] = CORESIGN(a - c);
  1011. #elif CORE_IS_YZ
  1012. // coreyz planning
  1013. count_position[X_AXIS] = a;
  1014. count_position[B_AXIS] = b + c;
  1015. count_position[C_AXIS] = CORESIGN(b - c);
  1016. #else
  1017. // default non-h-bot planning
  1018. count_position[X_AXIS] = a;
  1019. count_position[Y_AXIS] = b;
  1020. count_position[Z_AXIS] = c;
  1021. #endif
  1022. count_position[E_AXIS] = e;
  1023. CRITICAL_SECTION_END;
  1024. }
  1025. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1026. CRITICAL_SECTION_START;
  1027. count_position[axis] = v;
  1028. CRITICAL_SECTION_END;
  1029. }
  1030. void Stepper::set_e_position(const long &e) {
  1031. CRITICAL_SECTION_START;
  1032. count_position[E_AXIS] = e;
  1033. CRITICAL_SECTION_END;
  1034. }
  1035. /**
  1036. * Get a stepper's position in steps.
  1037. */
  1038. long Stepper::position(AxisEnum axis) {
  1039. CRITICAL_SECTION_START;
  1040. const long count_pos = count_position[axis];
  1041. CRITICAL_SECTION_END;
  1042. return count_pos;
  1043. }
  1044. /**
  1045. * Get an axis position according to stepper position(s)
  1046. * For CORE machines apply translation from ABC to XYZ.
  1047. */
  1048. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1049. float axis_steps;
  1050. #if IS_CORE
  1051. // Requesting one of the "core" axes?
  1052. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1053. CRITICAL_SECTION_START;
  1054. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1055. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1056. axis_steps = 0.5f * (
  1057. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1058. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1059. );
  1060. CRITICAL_SECTION_END;
  1061. }
  1062. else
  1063. axis_steps = position(axis);
  1064. #else
  1065. axis_steps = position(axis);
  1066. #endif
  1067. return axis_steps * planner.steps_to_mm[axis];
  1068. }
  1069. void Stepper::finish_and_disable() {
  1070. synchronize();
  1071. disable_all_steppers();
  1072. }
  1073. void Stepper::quick_stop() {
  1074. cleaning_buffer_counter = 5000;
  1075. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1076. while (planner.blocks_queued()) planner.discard_current_block();
  1077. current_block = NULL;
  1078. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1079. #if ENABLED(ULTRA_LCD)
  1080. planner.clear_block_buffer_runtime();
  1081. #endif
  1082. }
  1083. void Stepper::endstop_triggered(AxisEnum axis) {
  1084. #if IS_CORE
  1085. endstops_trigsteps[axis] = 0.5f * (
  1086. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1087. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1088. );
  1089. #else // !COREXY && !COREXZ && !COREYZ
  1090. endstops_trigsteps[axis] = count_position[axis];
  1091. #endif // !COREXY && !COREXZ && !COREYZ
  1092. kill_current_block();
  1093. }
  1094. void Stepper::report_positions() {
  1095. CRITICAL_SECTION_START;
  1096. const long xpos = count_position[X_AXIS],
  1097. ypos = count_position[Y_AXIS],
  1098. zpos = count_position[Z_AXIS];
  1099. CRITICAL_SECTION_END;
  1100. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1101. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1102. #else
  1103. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1104. #endif
  1105. SERIAL_PROTOCOL(xpos);
  1106. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1107. SERIAL_PROTOCOLPGM(" B:");
  1108. #else
  1109. SERIAL_PROTOCOLPGM(" Y:");
  1110. #endif
  1111. SERIAL_PROTOCOL(ypos);
  1112. #if CORE_IS_XZ || CORE_IS_YZ
  1113. SERIAL_PROTOCOLPGM(" C:");
  1114. #else
  1115. SERIAL_PROTOCOLPGM(" Z:");
  1116. #endif
  1117. SERIAL_PROTOCOL(zpos);
  1118. SERIAL_EOL;
  1119. }
  1120. #if ENABLED(BABYSTEPPING)
  1121. #if ENABLED(DELTA)
  1122. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1123. #else
  1124. #define CYCLES_EATEN_BABYSTEP 0
  1125. #endif
  1126. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1127. #define _ENABLE(AXIS) enable_## AXIS()
  1128. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1129. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1130. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1131. #if EXTRA_CYCLES_BABYSTEP > 20
  1132. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1133. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1134. #else
  1135. #define _SAVE_START NOOP
  1136. #if EXTRA_CYCLES_BABYSTEP > 0
  1137. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1138. #elif STEP_PULSE_CYCLES > 0
  1139. #define _PULSE_WAIT NOOP
  1140. #elif ENABLED(DELTA)
  1141. #define _PULSE_WAIT delayMicroseconds(2);
  1142. #else
  1143. #define _PULSE_WAIT delayMicroseconds(4);
  1144. #endif
  1145. #endif
  1146. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1147. const uint8_t old_dir = _READ_DIR(AXIS); \
  1148. _ENABLE(AXIS); \
  1149. _SAVE_START; \
  1150. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1151. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1152. _PULSE_WAIT; \
  1153. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1154. _APPLY_DIR(AXIS, old_dir); \
  1155. }
  1156. // MUST ONLY BE CALLED BY AN ISR,
  1157. // No other ISR should ever interrupt this!
  1158. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1159. cli();
  1160. uint8_t old_dir;
  1161. switch (axis) {
  1162. #if ENABLED(BABYSTEP_XY)
  1163. case X_AXIS:
  1164. BABYSTEP_AXIS(X, false);
  1165. break;
  1166. case Y_AXIS:
  1167. BABYSTEP_AXIS(Y, false);
  1168. break;
  1169. #endif
  1170. case Z_AXIS: {
  1171. #if DISABLED(DELTA)
  1172. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1173. #else // DELTA
  1174. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1175. enable_X();
  1176. enable_Y();
  1177. enable_Z();
  1178. const uint8_t old_x_dir_pin = X_DIR_READ,
  1179. old_y_dir_pin = Y_DIR_READ,
  1180. old_z_dir_pin = Z_DIR_READ;
  1181. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1182. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1183. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1184. _SAVE_START;
  1185. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1186. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1187. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1188. _PULSE_WAIT;
  1189. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1190. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1191. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1192. // Restore direction bits
  1193. X_DIR_WRITE(old_x_dir_pin);
  1194. Y_DIR_WRITE(old_y_dir_pin);
  1195. Z_DIR_WRITE(old_z_dir_pin);
  1196. #endif
  1197. } break;
  1198. default: break;
  1199. }
  1200. sei();
  1201. }
  1202. #endif // BABYSTEPPING
  1203. /**
  1204. * Software-controlled Stepper Motor Current
  1205. */
  1206. #if HAS_DIGIPOTSS
  1207. // From Arduino DigitalPotControl example
  1208. void Stepper::digitalPotWrite(int address, int value) {
  1209. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1210. SPI.transfer(address); // send in the address and value via SPI:
  1211. SPI.transfer(value);
  1212. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1213. //delay(10);
  1214. }
  1215. #endif // HAS_DIGIPOTSS
  1216. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1217. void Stepper::digipot_init() {
  1218. #if HAS_DIGIPOTSS
  1219. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1220. SPI.begin();
  1221. SET_OUTPUT(DIGIPOTSS_PIN);
  1222. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1223. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1224. digipot_current(i, digipot_motor_current[i]);
  1225. }
  1226. #elif HAS_MOTOR_CURRENT_PWM
  1227. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1228. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1229. digipot_current(0, motor_current_setting[0]);
  1230. #endif
  1231. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1232. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1233. digipot_current(1, motor_current_setting[1]);
  1234. #endif
  1235. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1236. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1237. digipot_current(2, motor_current_setting[2]);
  1238. #endif
  1239. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1240. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1241. #endif
  1242. }
  1243. void Stepper::digipot_current(uint8_t driver, int current) {
  1244. #if HAS_DIGIPOTSS
  1245. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1246. digitalPotWrite(digipot_ch[driver], current);
  1247. #elif HAS_MOTOR_CURRENT_PWM
  1248. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1249. switch (driver) {
  1250. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1251. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1252. #endif
  1253. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1254. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1255. #endif
  1256. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1257. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1258. #endif
  1259. }
  1260. #endif
  1261. }
  1262. #endif
  1263. #if HAS_MICROSTEPS
  1264. /**
  1265. * Software-controlled Microstepping
  1266. */
  1267. void Stepper::microstep_init() {
  1268. SET_OUTPUT(X_MS1_PIN);
  1269. SET_OUTPUT(X_MS2_PIN);
  1270. #if HAS_Y_MICROSTEPS
  1271. SET_OUTPUT(Y_MS1_PIN);
  1272. SET_OUTPUT(Y_MS2_PIN);
  1273. #endif
  1274. #if HAS_Z_MICROSTEPS
  1275. SET_OUTPUT(Z_MS1_PIN);
  1276. SET_OUTPUT(Z_MS2_PIN);
  1277. #endif
  1278. #if HAS_E0_MICROSTEPS
  1279. SET_OUTPUT(E0_MS1_PIN);
  1280. SET_OUTPUT(E0_MS2_PIN);
  1281. #endif
  1282. #if HAS_E1_MICROSTEPS
  1283. SET_OUTPUT(E1_MS1_PIN);
  1284. SET_OUTPUT(E1_MS2_PIN);
  1285. #endif
  1286. #if HAS_E2_MICROSTEPS
  1287. SET_OUTPUT(E2_MS1_PIN);
  1288. SET_OUTPUT(E2_MS2_PIN);
  1289. #endif
  1290. #if HAS_E3_MICROSTEPS
  1291. SET_OUTPUT(E3_MS1_PIN);
  1292. SET_OUTPUT(E3_MS2_PIN);
  1293. #endif
  1294. #if HAS_E4_MICROSTEPS
  1295. SET_OUTPUT(E4_MS1_PIN);
  1296. SET_OUTPUT(E4_MS2_PIN);
  1297. #endif
  1298. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1299. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1300. microstep_mode(i, microstep_modes[i]);
  1301. }
  1302. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1303. if (ms1 >= 0) switch (driver) {
  1304. case 0: WRITE(X_MS1_PIN, ms1); break;
  1305. #if HAS_Y_MICROSTEPS
  1306. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1307. #endif
  1308. #if HAS_Z_MICROSTEPS
  1309. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1310. #endif
  1311. #if HAS_E0_MICROSTEPS
  1312. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1313. #endif
  1314. #if HAS_E1_MICROSTEPS
  1315. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1316. #endif
  1317. #if HAS_E2_MICROSTEPS
  1318. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1319. #endif
  1320. #if HAS_E3_MICROSTEPS
  1321. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1322. #endif
  1323. #if HAS_E4_MICROSTEPS
  1324. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1325. #endif
  1326. }
  1327. if (ms2 >= 0) switch (driver) {
  1328. case 0: WRITE(X_MS2_PIN, ms2); break;
  1329. #if HAS_Y_MICROSTEPS
  1330. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1331. #endif
  1332. #if HAS_Z_MICROSTEPS
  1333. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1334. #endif
  1335. #if HAS_E0_MICROSTEPS
  1336. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1337. #endif
  1338. #if HAS_E1_MICROSTEPS
  1339. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1340. #endif
  1341. #if HAS_E2_MICROSTEPS
  1342. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1343. #endif
  1344. #if HAS_E3_MICROSTEPS
  1345. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1346. #endif
  1347. #if HAS_E4_MICROSTEPS
  1348. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1349. #endif
  1350. }
  1351. }
  1352. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1353. switch (stepping_mode) {
  1354. case 1: microstep_ms(driver, MICROSTEP1); break;
  1355. case 2: microstep_ms(driver, MICROSTEP2); break;
  1356. case 4: microstep_ms(driver, MICROSTEP4); break;
  1357. case 8: microstep_ms(driver, MICROSTEP8); break;
  1358. case 16: microstep_ms(driver, MICROSTEP16); break;
  1359. }
  1360. }
  1361. void Stepper::microstep_readings() {
  1362. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1363. SERIAL_PROTOCOLPGM("X: ");
  1364. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1365. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1366. #if HAS_Y_MICROSTEPS
  1367. SERIAL_PROTOCOLPGM("Y: ");
  1368. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1369. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1370. #endif
  1371. #if HAS_Z_MICROSTEPS
  1372. SERIAL_PROTOCOLPGM("Z: ");
  1373. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1374. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1375. #endif
  1376. #if HAS_E0_MICROSTEPS
  1377. SERIAL_PROTOCOLPGM("E0: ");
  1378. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1379. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1380. #endif
  1381. #if HAS_E1_MICROSTEPS
  1382. SERIAL_PROTOCOLPGM("E1: ");
  1383. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1384. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1385. #endif
  1386. #if HAS_E2_MICROSTEPS
  1387. SERIAL_PROTOCOLPGM("E2: ");
  1388. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1389. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1390. #endif
  1391. #if HAS_E3_MICROSTEPS
  1392. SERIAL_PROTOCOLPGM("E3: ");
  1393. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1394. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1395. #endif
  1396. #if HAS_E4_MICROSTEPS
  1397. SERIAL_PROTOCOLPGM("E4: ");
  1398. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1399. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1400. #endif
  1401. }
  1402. #endif // HAS_MICROSTEPS