123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * stepper.cpp - A singleton object to execute motion plans using stepper motors
- * Marlin Firmware
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
-
- #include "Marlin.h"
- #include "stepper.h"
- #include "endstops.h"
- #include "planner.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "cardreader.h"
- #include "speed_lookuptable.h"
-
- #if HAS_DIGIPOTSS
- #include <SPI.h>
- #endif
-
- Stepper stepper; // Singleton
-
- // public:
-
- block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
-
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
- bool Stepper::abort_on_endstop_hit = false;
- #endif
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::performing_homing = false;
- #endif
-
- // private:
-
- unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
- unsigned int Stepper::cleaning_buffer_counter = 0;
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::locked_z_motor = false;
- bool Stepper::locked_z2_motor = false;
- #endif
-
- long Stepper::counter_X = 0,
- Stepper::counter_Y = 0,
- Stepper::counter_Z = 0,
- Stepper::counter_E = 0;
-
- volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
-
- constexpr uint16_t ADV_NEVER = 65535;
-
- uint16_t Stepper::nextMainISR = 0,
- Stepper::nextAdvanceISR = ADV_NEVER,
- Stepper::eISR_Rate = ADV_NEVER;
-
- #if ENABLED(LIN_ADVANCE)
- volatile int Stepper::e_steps[E_STEPPERS];
- int Stepper::final_estep_rate,
- Stepper::current_estep_rate[E_STEPPERS],
- Stepper::current_adv_steps[E_STEPPERS];
- #else
- long Stepper::e_steps[E_STEPPERS],
- Stepper::final_advance = 0,
- Stepper::old_advance = 0,
- Stepper::advance_rate,
- Stepper::advance;
- #endif
-
- #define ADV_RATE(T, L) (e_steps[TOOL_E_INDEX] ? (T) * (L) / abs(e_steps[TOOL_E_INDEX]) : ADV_NEVER)
-
- #endif
-
- long Stepper::acceleration_time, Stepper::deceleration_time;
-
- volatile long Stepper::count_position[NUM_AXIS] = { 0 };
- volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
-
- #if ENABLED(MIXING_EXTRUDER)
- long Stepper::counter_m[MIXING_STEPPERS];
- #endif
-
- unsigned short Stepper::acc_step_rate; // needed for deceleration start point
- uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
- unsigned short Stepper::OCR1A_nominal;
-
- volatile long Stepper::endstops_trigsteps[XYZ];
-
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
- #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
- #elif ENABLED(DUAL_X_CARRIAGE)
- #define X_APPLY_DIR(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_DIR_WRITE(v); \
- X2_DIR_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
- }
- #define X_APPLY_STEP(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_STEP_WRITE(v); \
- X2_STEP_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
- }
- #else
- #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
- #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
- #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
- #else
- #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
- #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
- #if ENABLED(Z_DUAL_ENDSTOPS)
- #define Z_APPLY_STEP(v,Q) \
- if (performing_homing) { \
- if (Z_HOME_DIR < 0) { \
- if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } \
- else { \
- if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } \
- } \
- else { \
- Z_STEP_WRITE(v); \
- Z2_STEP_WRITE(v); \
- }
- #else
- #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
- #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
- #endif
-
- #if DISABLED(MIXING_EXTRUDER)
- #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
- #endif
-
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
- // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
- // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
- // B0 A0 are bits 24-39 and are the returned value
- // C1 B1 A1 is longIn1
- // D2 C2 B2 A2 is longIn2
- //
- #define MultiU24X32toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %D2, %A1 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %D2, %B1 \n\t" \
- "add %B0, r0 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
-
- // Some useful constants
-
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
-
- /**
- * __________________________
- * /| |\ _________________ ^
- * / | | \ /| |\ |
- * / | | \ / | | \ s
- * / | | | | | \ p
- * / | | | | | \ e
- * +-----+------------------------+---+--+---------------+----+ e
- * | BLOCK 1 | BLOCK 2 | d
- *
- * time ----->
- *
- * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- * first block->accelerate_until step_events_completed, then keeps going at constant speed until
- * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
- */
- void Stepper::wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- /**
- * Set the stepper direction of each axis
- *
- * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
- * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
- * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
- */
- void Stepper::set_directions() {
-
- #define SET_STEP_DIR(AXIS) \
- if (motor_direction(AXIS ##_AXIS)) { \
- AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = -1; \
- } \
- else { \
- AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = 1; \
- }
-
- #if HAS_X_DIR
- SET_STEP_DIR(X); // A
- #endif
- #if HAS_Y_DIR
- SET_STEP_DIR(Y); // B
- #endif
- #if HAS_Z_DIR
- SET_STEP_DIR(Z); // C
- #endif
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- if (motor_direction(E_AXIS)) {
- REV_E_DIR();
- count_direction[E_AXIS] = -1;
- }
- else {
- NORM_E_DIR();
- count_direction[E_AXIS] = 1;
- }
- #endif // !ADVANCE && !LIN_ADVANCE
- }
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- extern volatile uint8_t e_hit;
- #endif
-
- /**
- * Stepper Driver Interrupt
- *
- * Directly pulses the stepper motors at high frequency.
- * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
- *
- * OCR1A Frequency
- * 1 2 MHz
- * 50 40 KHz
- * 100 20 KHz - capped max rate
- * 200 10 KHz - nominal max rate
- * 2000 1 KHz - sleep rate
- * 4000 500 Hz - init rate
- */
- ISR(TIMER1_COMPA_vect) {
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- Stepper::advance_isr_scheduler();
- #else
- Stepper::isr();
- #endif
- }
-
- #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
-
- void Stepper::isr() {
-
- uint16_t ocr_val;
-
- #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
- #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- CBI(TIMSK0, OCIE0B); // Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- sei();
- #endif
-
- #define _SPLIT(L) (ocr_val = (uint16_t)L)
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- #define SPLIT(L) _SPLIT(L)
- #else // sample endstops in between step pulses
- static uint32_t step_remaining = 0;
- #define SPLIT(L) do { \
- _SPLIT(L); \
- if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
- const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
- ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
- step_remaining = (uint16_t)L - ocr_val; \
- } \
- } while(0)
-
- if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
- endstops.update();
- if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
- step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
- ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
- }
- else {
- ocr_val = step_remaining;
- step_remaining = 0; // last one before the ISR that does the step
- }
-
- _NEXT_ISR(ocr_val);
-
- NOLESS(OCR1A, TCNT1 + 16);
-
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- #endif
-
- if (cleaning_buffer_counter) {
- --cleaning_buffer_counter;
- current_block = NULL;
- planner.discard_current_block();
- #ifdef SD_FINISHED_RELEASECOMMAND
- if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
- #endif
- _NEXT_ISR(200); // Run at max speed - 10 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
-
- // If there is no current block, attempt to pop one from the buffer
- if (!current_block) {
- // Anything in the buffer?
- current_block = planner.get_current_block();
- if (current_block) {
- trapezoid_generator_reset();
-
- // Initialize Bresenham counters to 1/2 the ceiling
- counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
-
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(i)
- counter_m[i] = -(current_block->mix_event_count[i] >> 1);
- #endif
-
- step_events_completed = 0;
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
- // No 'change' can be detected.
- #endif
-
- #if ENABLED(Z_LATE_ENABLE)
- if (current_block->steps[Z_AXIS] > 0) {
- enable_Z();
- _NEXT_ISR(2000); // Run at slow speed - 1 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- #endif
-
- // #if ENABLED(ADVANCE)
- // e_steps[TOOL_E_INDEX] = 0;
- // #endif
- }
- else {
- _NEXT_ISR(2000); // Run at slow speed - 1 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- }
-
- // Update endstops state, if enabled
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- if (e_hit && ENDSTOPS_ENABLED) {
- endstops.update();
- e_hit--;
- }
- #else
- if (ENDSTOPS_ENABLED) endstops.update();
- #endif
-
- // Take multiple steps per interrupt (For high speed moves)
- bool all_steps_done = false;
- for (uint8_t i = step_loops; i--;) {
- #if ENABLED(LIN_ADVANCE)
-
- counter_E += current_block->steps[E_AXIS];
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- #if DISABLED(MIXING_EXTRUDER)
- // Don't step E here for mixing extruder
- count_position[E_AXIS] += count_direction[E_AXIS];
- motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
- #endif
- }
-
- #if ENABLED(MIXING_EXTRUDER)
- // Step mixing steppers proportionally
- const bool dir = motor_direction(E_AXIS);
- MIXING_STEPPERS_LOOP(j) {
- counter_m[j] += current_block->steps[E_AXIS];
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- dir ? --e_steps[j] : ++e_steps[j];
- }
- }
- #endif
-
- #elif ENABLED(ADVANCE)
-
- // Always count the unified E axis
- counter_E += current_block->steps[E_AXIS];
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- #if DISABLED(MIXING_EXTRUDER)
- // Don't step E here for mixing extruder
- motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
- #endif
- }
-
- #if ENABLED(MIXING_EXTRUDER)
-
- // Step mixing steppers proportionally
- const bool dir = motor_direction(E_AXIS);
- MIXING_STEPPERS_LOOP(j) {
- counter_m[j] += current_block->steps[E_AXIS];
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- dir ? --e_steps[j] : ++e_steps[j];
- }
- }
-
- #endif // MIXING_EXTRUDER
-
- #endif // ADVANCE or LIN_ADVANCE
-
- #define _COUNTER(AXIS) counter_## AXIS
- #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
- #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
-
- // Advance the Bresenham counter; start a pulse if the axis needs a step
- #define PULSE_START(AXIS) \
- _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
- if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
-
- // Stop an active pulse, reset the Bresenham counter, update the position
- #define PULSE_STOP(AXIS) \
- if (_COUNTER(AXIS) > 0) { \
- _COUNTER(AXIS) -= current_block->step_event_count; \
- count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
- }
-
- /**
- * Estimate the number of cycles that the stepper logic already takes
- * up between the start and stop of the X stepper pulse.
- *
- * Currently this uses very modest estimates of around 5 cycles.
- * True values may be derived by careful testing.
- *
- * Once any delay is added, the cost of the delay code itself
- * may be subtracted from this value to get a more accurate delay.
- * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
- * Longer delays use a loop. The resolution is 8 cycles.
- */
- #if HAS_X_STEP
- #define _CYCLE_APPROX_1 5
- #else
- #define _CYCLE_APPROX_1 0
- #endif
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
- #else
- #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
- #endif
- #if HAS_Y_STEP
- #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
- #else
- #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
- #endif
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
- #else
- #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
- #endif
- #if HAS_Z_STEP
- #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
- #else
- #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
- #endif
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
- #else
- #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
- #endif
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
- #else
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
- #endif
- #else
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
- #endif
-
- #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
- #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
-
- /**
- * If a minimum pulse time was specified get the timer 0 value.
- *
- * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
- * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
- * 20 counts of TCNT0 -by itself- is a good pulse delay.
- * 10µs = 160 or 200 cycles.
- */
- #if EXTRA_CYCLES_XYZE > 20
- uint32_t pulse_start = TCNT0;
- #endif
-
- #if HAS_X_STEP
- PULSE_START(X);
- #endif
- #if HAS_Y_STEP
- PULSE_START(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_START(Z);
- #endif
-
- // For non-advance use linear interpolation for E also
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- // Keep updating the single E axis
- counter_E += current_block->steps[E_AXIS];
- // Tick the counters used for this mix
- MIXING_STEPPERS_LOOP(j) {
- // Step mixing steppers (proportionally)
- counter_m[j] += current_block->steps[E_AXIS];
- // Step when the counter goes over zero
- if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
- }
- #else // !MIXING_EXTRUDER
- PULSE_START(E);
- #endif
- #endif // !ADVANCE && !LIN_ADVANCE
-
- // For minimum pulse time wait before stopping pulses
- #if EXTRA_CYCLES_XYZE > 20
- while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- pulse_start = TCNT0;
- #elif EXTRA_CYCLES_XYZE > 0
- DELAY_NOPS(EXTRA_CYCLES_XYZE);
- #endif
-
- #if HAS_X_STEP
- PULSE_STOP(X);
- #endif
- #if HAS_Y_STEP
- PULSE_STOP(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_STOP(Z);
- #endif
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- // Always step the single E axis
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- count_position[E_AXIS] += count_direction[E_AXIS];
- }
- MIXING_STEPPERS_LOOP(j) {
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- En_STEP_WRITE(j, INVERT_E_STEP_PIN);
- }
- }
- #else // !MIXING_EXTRUDER
- PULSE_STOP(E);
- #endif
- #endif // !ADVANCE && !LIN_ADVANCE
-
- if (++step_events_completed >= current_block->step_event_count) {
- all_steps_done = true;
- break;
- }
-
- // For minimum pulse time wait after stopping pulses also
- #if EXTRA_CYCLES_XYZE > 20
- if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- #elif EXTRA_CYCLES_XYZE > 0
- if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
- #endif
-
- } // steps_loop
-
- #if ENABLED(LIN_ADVANCE)
- if (current_block->use_advance_lead) {
- const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
- current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
- #if ENABLED(MIXING_EXTRUDER)
- // Mixing extruders apply advance lead proportionally
- MIXING_STEPPERS_LOOP(j)
- e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
- #else
- // For most extruders, advance the single E stepper
- e_steps[TOOL_E_INDEX] += delta_adv_steps;
- #endif
- }
- #endif
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- // If we have esteps to execute, fire the next advance_isr "now"
- if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
- #endif
-
- // Calculate new timer value
- if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
-
- MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- NOMORE(acc_step_rate, current_block->nominal_rate);
-
- // step_rate to timer interval
- const uint16_t timer = calc_timer(acc_step_rate);
-
- SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- acceleration_time += timer;
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead) {
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
- #else
- current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
-
- #elif ENABLED(ADVANCE)
-
- advance += advance_rate * step_loops;
- //NOLESS(advance, current_block->advance);
-
- const long advance_whole = advance >> 8,
- advance_factor = advance_whole - old_advance;
-
- // Do E steps + advance steps
- #if ENABLED(MIXING_EXTRUDER)
- // ...for mixing steppers proportionally
- MIXING_STEPPERS_LOOP(j)
- e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
- #else
- // ...for the active extruder
- e_steps[TOOL_E_INDEX] += advance_factor;
- #endif
-
- old_advance = advance_whole;
-
- #endif // ADVANCE or LIN_ADVANCE
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- eISR_Rate = ADV_RATE(timer, step_loops);
- #endif
- }
- else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
- uint16_t step_rate;
- MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
-
- if (step_rate < acc_step_rate) { // Still decelerating?
- step_rate = acc_step_rate - step_rate;
- NOLESS(step_rate, current_block->final_rate);
- }
- else
- step_rate = current_block->final_rate;
-
- // step_rate to timer interval
- const uint16_t timer = calc_timer(step_rate);
-
- SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- deceleration_time += timer;
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead) {
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
- #else
- current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
-
- #elif ENABLED(ADVANCE)
-
- advance -= advance_rate * step_loops;
- NOLESS(advance, final_advance);
-
- // Do E steps + advance steps
- const long advance_whole = advance >> 8,
- advance_factor = advance_whole - old_advance;
-
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
- #else
- e_steps[TOOL_E_INDEX] += advance_factor;
- #endif
-
- old_advance = advance_whole;
-
- #endif // ADVANCE or LIN_ADVANCE
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- eISR_Rate = ADV_RATE(timer, step_loops);
- #endif
- }
- else {
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead)
- current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
-
- eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
-
- #endif
-
- SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- // ensure we're running at the correct step rate, even if we just came off an acceleration
- step_loops = step_loops_nominal;
- }
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- NOLESS(OCR1A, TCNT1 + 16);
- #endif
-
- // If current block is finished, reset pointer
- if (all_steps_done) {
- current_block = NULL;
- planner.discard_current_block();
- }
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- _ENABLE_ISRs(); // re-enable ISRs
- #endif
- }
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
-
- #define CYCLES_EATEN_E (E_STEPPERS * 5)
- #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
-
- // Timer interrupt for E. e_steps is set in the main routine;
-
- void Stepper::advance_isr() {
-
- nextAdvanceISR = eISR_Rate;
-
- #define SET_E_STEP_DIR(INDEX) \
- if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
-
- #define START_E_PULSE(INDEX) \
- if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
-
- #define STOP_E_PULSE(INDEX) \
- if (e_steps[INDEX]) { \
- e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
- E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
- }
-
- SET_E_STEP_DIR(0);
- #if E_STEPPERS > 1
- SET_E_STEP_DIR(1);
- #if E_STEPPERS > 2
- SET_E_STEP_DIR(2);
- #if E_STEPPERS > 3
- SET_E_STEP_DIR(3);
- #endif
- #endif
- #endif
-
- // Step all E steppers that have steps
- for (uint8_t i = step_loops; i--;) {
-
- #if EXTRA_CYCLES_E > 20
- uint32_t pulse_start = TCNT0;
- #endif
-
- START_E_PULSE(0);
- #if E_STEPPERS > 1
- START_E_PULSE(1);
- #if E_STEPPERS > 2
- START_E_PULSE(2);
- #if E_STEPPERS > 3
- START_E_PULSE(3);
- #endif
- #endif
- #endif
-
- // For minimum pulse time wait before stopping pulses
- #if EXTRA_CYCLES_E > 20
- while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- pulse_start = TCNT0;
- #elif EXTRA_CYCLES_E > 0
- DELAY_NOPS(EXTRA_CYCLES_E);
- #endif
-
- STOP_E_PULSE(0);
- #if E_STEPPERS > 1
- STOP_E_PULSE(1);
- #if E_STEPPERS > 2
- STOP_E_PULSE(2);
- #if E_STEPPERS > 3
- STOP_E_PULSE(3);
- #endif
- #endif
- #endif
-
- // For minimum pulse time wait before looping
- #if EXTRA_CYCLES_E > 20
- if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- #elif EXTRA_CYCLES_E > 0
- if (i) DELAY_NOPS(EXTRA_CYCLES_E);
- #endif
-
- } // steps_loop
- }
-
- void Stepper::advance_isr_scheduler() {
- // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- CBI(TIMSK0, OCIE0B); // Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- sei();
-
- // Run main stepping ISR if flagged
- if (!nextMainISR) isr();
-
- // Run Advance stepping ISR if flagged
- if (!nextAdvanceISR) advance_isr();
-
- // Is the next advance ISR scheduled before the next main ISR?
- if (nextAdvanceISR <= nextMainISR) {
- // Set up the next interrupt
- OCR1A = nextAdvanceISR;
- // New interval for the next main ISR
- if (nextMainISR) nextMainISR -= nextAdvanceISR;
- // Will call Stepper::advance_isr on the next interrupt
- nextAdvanceISR = 0;
- }
- else {
- // The next main ISR comes first
- OCR1A = nextMainISR;
- // New interval for the next advance ISR, if any
- if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
- nextAdvanceISR -= nextMainISR;
- // Will call Stepper::isr on the next interrupt
- nextMainISR = 0;
- }
-
- // Don't run the ISR faster than possible
- NOLESS(OCR1A, TCNT1 + 16);
-
- // Restore original ISR settings
- _ENABLE_ISRs();
- }
-
- #endif // ADVANCE or LIN_ADVANCE
-
- void Stepper::init() {
-
- // Init Digipot Motor Current
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- digipot_init();
- #endif
-
- // Init Microstepping Pins
- #if HAS_MICROSTEPS
- microstep_init();
- #endif
-
- // Init TMC Steppers
- #if ENABLED(HAVE_TMCDRIVER)
- tmc_init();
- #endif
-
- // Init TMC2130 Steppers
- #if ENABLED(HAVE_TMC2130)
- tmc2130_init();
- #endif
-
- // Init L6470 Steppers
- #if ENABLED(HAVE_L6470DRIVER)
- L6470_init();
- #endif
-
- // Init Dir Pins
- #if HAS_X_DIR
- X_DIR_INIT;
- #endif
- #if HAS_X2_DIR
- X2_DIR_INIT;
- #endif
- #if HAS_Y_DIR
- Y_DIR_INIT;
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
- Y2_DIR_INIT;
- #endif
- #endif
- #if HAS_Z_DIR
- Z_DIR_INIT;
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
- Z2_DIR_INIT;
- #endif
- #endif
- #if HAS_E0_DIR
- E0_DIR_INIT;
- #endif
- #if HAS_E1_DIR
- E1_DIR_INIT;
- #endif
- #if HAS_E2_DIR
- E2_DIR_INIT;
- #endif
- #if HAS_E3_DIR
- E3_DIR_INIT;
- #endif
- #if HAS_E4_DIR
- E4_DIR_INIT;
- #endif
-
- // Init Enable Pins - steppers default to disabled.
- #if HAS_X_ENABLE
- X_ENABLE_INIT;
- if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
- #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
- X2_ENABLE_INIT;
- if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Y_ENABLE
- Y_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
- Y2_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Z_ENABLE
- Z_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
- Z2_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_E0_ENABLE
- E0_ENABLE_INIT;
- if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E1_ENABLE
- E1_ENABLE_INIT;
- if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E2_ENABLE
- E2_ENABLE_INIT;
- if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E3_ENABLE
- E3_ENABLE_INIT;
- if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E4_ENABLE
- E4_ENABLE_INIT;
- if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
- #endif
-
- // Init endstops and pullups
- endstops.init();
-
- #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
- #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
- #define _DISABLE(AXIS) disable_## AXIS()
-
- #define AXIS_INIT(AXIS, PIN) \
- _STEP_INIT(AXIS); \
- _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
- _DISABLE(AXIS)
-
- #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
-
- // Init Step Pins
- #if HAS_X_STEP
- #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
- X2_STEP_INIT;
- X2_STEP_WRITE(INVERT_X_STEP_PIN);
- #endif
- AXIS_INIT(X, X);
- #endif
-
- #if HAS_Y_STEP
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- Y2_STEP_INIT;
- Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
- #endif
- AXIS_INIT(Y, Y);
- #endif
-
- #if HAS_Z_STEP
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- Z2_STEP_INIT;
- Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
- #endif
- AXIS_INIT(Z, Z);
- #endif
-
- #if HAS_E0_STEP
- E_AXIS_INIT(0);
- #endif
- #if HAS_E1_STEP
- E_AXIS_INIT(1);
- #endif
- #if HAS_E2_STEP
- E_AXIS_INIT(2);
- #endif
- #if HAS_E3_STEP
- E_AXIS_INIT(3);
- #endif
- #if HAS_E4_STEP
- E_AXIS_INIT(4);
- #endif
-
- // waveform generation = 0100 = CTC
- SET_WGM(1, CTC_OCRnA);
-
- // output mode = 00 (disconnected)
- SET_COMA(1, NORMAL);
-
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
-
- // Init Stepper ISR to 122 Hz for quick starting
- OCR1A = 0x4000;
- TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
- #if ENABLED(LIN_ADVANCE)
- ZERO(current_adv_steps);
- #endif
- #endif // ADVANCE || LIN_ADVANCE
-
- endstops.enable(true); // Start with endstops active. After homing they can be disabled
- sei();
-
- set_directions(); // Init directions to last_direction_bits = 0
- }
-
-
- /**
- * Block until all buffered steps are executed
- */
- void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
-
- /**
- * Set the stepper positions directly in steps
- *
- * The input is based on the typical per-axis XYZ steps.
- * For CORE machines XYZ needs to be translated to ABC.
- *
- * This allows get_axis_position_mm to correctly
- * derive the current XYZ position later on.
- */
- void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
-
- synchronize(); // Bad to set stepper counts in the middle of a move
-
- CRITICAL_SECTION_START;
-
- #if CORE_IS_XY
- // corexy positioning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- count_position[A_AXIS] = a + b;
- count_position[B_AXIS] = CORESIGN(a - b);
- count_position[Z_AXIS] = c;
- #elif CORE_IS_XZ
- // corexz planning
- count_position[A_AXIS] = a + c;
- count_position[Y_AXIS] = b;
- count_position[C_AXIS] = CORESIGN(a - c);
- #elif CORE_IS_YZ
- // coreyz planning
- count_position[X_AXIS] = a;
- count_position[B_AXIS] = b + c;
- count_position[C_AXIS] = CORESIGN(b - c);
- #else
- // default non-h-bot planning
- count_position[X_AXIS] = a;
- count_position[Y_AXIS] = b;
- count_position[Z_AXIS] = c;
- #endif
-
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_position(const AxisEnum &axis, const long &v) {
- CRITICAL_SECTION_START;
- count_position[axis] = v;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_e_position(const long &e) {
- CRITICAL_SECTION_START;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- /**
- * Get a stepper's position in steps.
- */
- long Stepper::position(AxisEnum axis) {
- CRITICAL_SECTION_START;
- const long count_pos = count_position[axis];
- CRITICAL_SECTION_END;
- return count_pos;
- }
-
- /**
- * Get an axis position according to stepper position(s)
- * For CORE machines apply translation from ABC to XYZ.
- */
- float Stepper::get_axis_position_mm(AxisEnum axis) {
- float axis_steps;
- #if IS_CORE
- // Requesting one of the "core" axes?
- if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
- CRITICAL_SECTION_START;
- // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
- // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
- axis_steps = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
- CRITICAL_SECTION_END;
- }
- else
- axis_steps = position(axis);
- #else
- axis_steps = position(axis);
- #endif
- return axis_steps * planner.steps_to_mm[axis];
- }
-
- void Stepper::finish_and_disable() {
- synchronize();
- disable_all_steppers();
- }
-
- void Stepper::quick_stop() {
- cleaning_buffer_counter = 5000;
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- while (planner.blocks_queued()) planner.discard_current_block();
- current_block = NULL;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- #if ENABLED(ULTRA_LCD)
- planner.clear_block_buffer_runtime();
- #endif
- }
-
- void Stepper::endstop_triggered(AxisEnum axis) {
-
- #if IS_CORE
-
- endstops_trigsteps[axis] = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
-
- #else // !COREXY && !COREXZ && !COREYZ
-
- endstops_trigsteps[axis] = count_position[axis];
-
- #endif // !COREXY && !COREXZ && !COREYZ
-
- kill_current_block();
- }
-
- void Stepper::report_positions() {
- CRITICAL_SECTION_START;
- const long xpos = count_position[X_AXIS],
- ypos = count_position[Y_AXIS],
- zpos = count_position[Z_AXIS];
- CRITICAL_SECTION_END;
-
- #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
- SERIAL_PROTOCOLPGM(MSG_COUNT_A);
- #else
- SERIAL_PROTOCOLPGM(MSG_COUNT_X);
- #endif
- SERIAL_PROTOCOL(xpos);
-
- #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
- SERIAL_PROTOCOLPGM(" B:");
- #else
- SERIAL_PROTOCOLPGM(" Y:");
- #endif
- SERIAL_PROTOCOL(ypos);
-
- #if CORE_IS_XZ || CORE_IS_YZ
- SERIAL_PROTOCOLPGM(" C:");
- #else
- SERIAL_PROTOCOLPGM(" Z:");
- #endif
- SERIAL_PROTOCOL(zpos);
-
- SERIAL_EOL;
- }
-
- #if ENABLED(BABYSTEPPING)
-
- #if ENABLED(DELTA)
- #define CYCLES_EATEN_BABYSTEP (2 * 15)
- #else
- #define CYCLES_EATEN_BABYSTEP 0
- #endif
- #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
-
- #define _ENABLE(AXIS) enable_## AXIS()
- #define _READ_DIR(AXIS) AXIS ##_DIR_READ
- #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
- #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
-
- #if EXTRA_CYCLES_BABYSTEP > 20
- #define _SAVE_START const uint32_t pulse_start = TCNT0
- #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- #else
- #define _SAVE_START NOOP
- #if EXTRA_CYCLES_BABYSTEP > 0
- #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
- #elif STEP_PULSE_CYCLES > 0
- #define _PULSE_WAIT NOOP
- #elif ENABLED(DELTA)
- #define _PULSE_WAIT delayMicroseconds(2);
- #else
- #define _PULSE_WAIT delayMicroseconds(4);
- #endif
- #endif
-
- #define BABYSTEP_AXIS(AXIS, INVERT) { \
- const uint8_t old_dir = _READ_DIR(AXIS); \
- _ENABLE(AXIS); \
- _SAVE_START; \
- _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
- _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
- _PULSE_WAIT; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
- _APPLY_DIR(AXIS, old_dir); \
- }
-
- // MUST ONLY BE CALLED BY AN ISR,
- // No other ISR should ever interrupt this!
- void Stepper::babystep(const AxisEnum axis, const bool direction) {
- cli();
- uint8_t old_dir;
-
- switch (axis) {
-
- #if ENABLED(BABYSTEP_XY)
-
- case X_AXIS:
- BABYSTEP_AXIS(X, false);
- break;
-
- case Y_AXIS:
- BABYSTEP_AXIS(Y, false);
- break;
-
- #endif
-
- case Z_AXIS: {
-
- #if DISABLED(DELTA)
-
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
-
- #else // DELTA
-
- const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
-
- enable_X();
- enable_Y();
- enable_Z();
-
- const uint8_t old_x_dir_pin = X_DIR_READ,
- old_y_dir_pin = Y_DIR_READ,
- old_z_dir_pin = Z_DIR_READ;
-
- X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
- Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
- Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
-
- _SAVE_START;
-
- X_STEP_WRITE(!INVERT_X_STEP_PIN);
- Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
-
- _PULSE_WAIT;
-
- X_STEP_WRITE(INVERT_X_STEP_PIN);
- Y_STEP_WRITE(INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(INVERT_Z_STEP_PIN);
-
- // Restore direction bits
- X_DIR_WRITE(old_x_dir_pin);
- Y_DIR_WRITE(old_y_dir_pin);
- Z_DIR_WRITE(old_z_dir_pin);
-
- #endif
-
- } break;
-
- default: break;
- }
- sei();
- }
-
- #endif // BABYSTEPPING
-
- /**
- * Software-controlled Stepper Motor Current
- */
-
- #if HAS_DIGIPOTSS
-
- // From Arduino DigitalPotControl example
- void Stepper::digitalPotWrite(int address, int value) {
- WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
- SPI.transfer(address); // send in the address and value via SPI:
- SPI.transfer(value);
- WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
- //delay(10);
- }
-
- #endif // HAS_DIGIPOTSS
-
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
-
- void Stepper::digipot_init() {
- #if HAS_DIGIPOTSS
- static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
- SPI.begin();
- SET_OUTPUT(DIGIPOTSS_PIN);
- for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
- //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
- digipot_current(i, digipot_motor_current[i]);
- }
- #elif HAS_MOTOR_CURRENT_PWM
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
- digipot_current(0, motor_current_setting[0]);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
- digipot_current(1, motor_current_setting[1]);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
- digipot_current(2, motor_current_setting[2]);
- #endif
- //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
- #endif
- }
-
- void Stepper::digipot_current(uint8_t driver, int current) {
- #if HAS_DIGIPOTSS
- const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
- digitalPotWrite(digipot_ch[driver], current);
- #elif HAS_MOTOR_CURRENT_PWM
- #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
- switch (driver) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
- #endif
- }
- #endif
- }
-
- #endif
-
- #if HAS_MICROSTEPS
-
- /**
- * Software-controlled Microstepping
- */
-
- void Stepper::microstep_init() {
- SET_OUTPUT(X_MS1_PIN);
- SET_OUTPUT(X_MS2_PIN);
- #if HAS_Y_MICROSTEPS
- SET_OUTPUT(Y_MS1_PIN);
- SET_OUTPUT(Y_MS2_PIN);
- #endif
- #if HAS_Z_MICROSTEPS
- SET_OUTPUT(Z_MS1_PIN);
- SET_OUTPUT(Z_MS2_PIN);
- #endif
- #if HAS_E0_MICROSTEPS
- SET_OUTPUT(E0_MS1_PIN);
- SET_OUTPUT(E0_MS2_PIN);
- #endif
- #if HAS_E1_MICROSTEPS
- SET_OUTPUT(E1_MS1_PIN);
- SET_OUTPUT(E1_MS2_PIN);
- #endif
- #if HAS_E2_MICROSTEPS
- SET_OUTPUT(E2_MS1_PIN);
- SET_OUTPUT(E2_MS2_PIN);
- #endif
- #if HAS_E3_MICROSTEPS
- SET_OUTPUT(E3_MS1_PIN);
- SET_OUTPUT(E3_MS2_PIN);
- #endif
- #if HAS_E4_MICROSTEPS
- SET_OUTPUT(E4_MS1_PIN);
- SET_OUTPUT(E4_MS2_PIN);
- #endif
- static const uint8_t microstep_modes[] = MICROSTEP_MODES;
- for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
- microstep_mode(i, microstep_modes[i]);
- }
-
- void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
- if (ms1 >= 0) switch (driver) {
- case 0: WRITE(X_MS1_PIN, ms1); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS1_PIN, ms1); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS1_PIN, ms1); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS1_PIN, ms1); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS1_PIN, ms1); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS1_PIN, ms1); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS1_PIN, ms1); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS1_PIN, ms1); break;
- #endif
- }
- if (ms2 >= 0) switch (driver) {
- case 0: WRITE(X_MS2_PIN, ms2); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS2_PIN, ms2); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS2_PIN, ms2); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS2_PIN, ms2); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS2_PIN, ms2); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS2_PIN, ms2); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS2_PIN, ms2); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS2_PIN, ms2); break;
- #endif
- }
- }
-
- void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
- switch (stepping_mode) {
- case 1: microstep_ms(driver, MICROSTEP1); break;
- case 2: microstep_ms(driver, MICROSTEP2); break;
- case 4: microstep_ms(driver, MICROSTEP4); break;
- case 8: microstep_ms(driver, MICROSTEP8); break;
- case 16: microstep_ms(driver, MICROSTEP16); break;
- }
- }
-
- void Stepper::microstep_readings() {
- SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL(READ(X_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
- #if HAS_Y_MICROSTEPS
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL(READ(Y_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
- #endif
- #if HAS_Z_MICROSTEPS
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL(READ(Z_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
- #endif
- #if HAS_E0_MICROSTEPS
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL(READ(E0_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
- #endif
- #if HAS_E1_MICROSTEPS
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL(READ(E1_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
- #endif
- #if HAS_E2_MICROSTEPS
- SERIAL_PROTOCOLPGM("E2: ");
- SERIAL_PROTOCOL(READ(E2_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
- #endif
- #if HAS_E3_MICROSTEPS
- SERIAL_PROTOCOLPGM("E3: ");
- SERIAL_PROTOCOL(READ(E3_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
- #endif
- #if HAS_E4_MICROSTEPS
- SERIAL_PROTOCOLPGM("E4: ");
- SERIAL_PROTOCOL(READ(E4_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
- #endif
- }
-
- #endif // HAS_MICROSTEPS
|