My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

settings.cpp 112KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V82"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #if ENABLED(DWIN_CREALITY_LCD)
  48. #include "../lcd/dwin/e3v2/dwin.h"
  49. #endif
  50. #include "../lcd/ultralcd.h"
  51. #include "../libs/vector_3.h" // for matrix_3x3
  52. #include "../gcode/gcode.h"
  53. #include "../MarlinCore.h"
  54. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  55. #include "../HAL/shared/eeprom_api.h"
  56. #endif
  57. #include "probe.h"
  58. #if HAS_LEVELING
  59. #include "../feature/bedlevel/bedlevel.h"
  60. #endif
  61. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  62. #include "../feature/z_stepper_align.h"
  63. #endif
  64. #if ENABLED(EXTENSIBLE_UI)
  65. #include "../lcd/extui/ui_api.h"
  66. #endif
  67. #if HAS_SERVOS
  68. #include "servo.h"
  69. #endif
  70. #if HAS_SERVOS && HAS_SERVO_ANGLES
  71. #define EEPROM_NUM_SERVOS NUM_SERVOS
  72. #else
  73. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  74. #endif
  75. #include "../feature/fwretract.h"
  76. #if ENABLED(POWER_LOSS_RECOVERY)
  77. #include "../feature/powerloss.h"
  78. #endif
  79. #if HAS_POWER_MONITOR
  80. #include "../feature/power_monitor.h"
  81. #endif
  82. #include "../feature/pause.h"
  83. #if ENABLED(BACKLASH_COMPENSATION)
  84. #include "../feature/backlash.h"
  85. #endif
  86. #if HAS_FILAMENT_SENSOR
  87. #include "../feature/runout.h"
  88. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  89. #define FIL_RUNOUT_ENABLED_DEFAULT true
  90. #endif
  91. #endif
  92. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  93. extern float other_extruder_advance_K[EXTRUDERS];
  94. #endif
  95. #if HAS_MULTI_EXTRUDER
  96. #include "tool_change.h"
  97. void M217_report(const bool eeprom);
  98. #endif
  99. #if ENABLED(BLTOUCH)
  100. #include "../feature/bltouch.h"
  101. #endif
  102. #if HAS_TRINAMIC_CONFIG
  103. #include "stepper/indirection.h"
  104. #include "../feature/tmc_util.h"
  105. #endif
  106. #if ENABLED(PROBE_TEMP_COMPENSATION)
  107. #include "../feature/probe_temp_comp.h"
  108. #endif
  109. #include "../feature/controllerfan.h"
  110. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  111. void M710_report(const bool forReplay);
  112. #endif
  113. #if ENABLED(CASE_LIGHT_ENABLE) && DISABLED(CASE_LIGHT_NO_BRIGHTNESS)
  114. #include "../feature/caselight.h"
  115. #define HAS_CASE_LIGHT_BRIGHTNESS 1
  116. #endif
  117. #if ENABLED(PASSWORD_FEATURE)
  118. #include "../feature/password/password.h"
  119. #endif
  120. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  121. #include "../lcd/tft/touch.h"
  122. #endif
  123. #pragma pack(push, 1) // No padding between variables
  124. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  125. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  126. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  127. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  128. // Limit an index to an array size
  129. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  130. // Defaults for reset / fill in on load
  131. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  132. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  133. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  134. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  135. /**
  136. * Current EEPROM Layout
  137. *
  138. * Keep this data structure up to date so
  139. * EEPROM size is known at compile time!
  140. */
  141. typedef struct SettingsDataStruct {
  142. char version[4]; // Vnn\0
  143. uint16_t crc; // Data Checksum
  144. //
  145. // DISTINCT_E_FACTORS
  146. //
  147. uint8_t esteppers; // XYZE_N - XYZ
  148. planner_settings_t planner_settings;
  149. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  150. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  151. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  152. #if HAS_HOTEND_OFFSET
  153. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  154. #endif
  155. //
  156. // FILAMENT_RUNOUT_SENSOR
  157. //
  158. bool runout_sensor_enabled; // M412 S
  159. float runout_distance_mm; // M412 D
  160. //
  161. // ENABLE_LEVELING_FADE_HEIGHT
  162. //
  163. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  164. //
  165. // MESH_BED_LEVELING
  166. //
  167. float mbl_z_offset; // mbl.z_offset
  168. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  169. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  170. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  171. //
  172. // HAS_BED_PROBE
  173. //
  174. xyz_pos_t probe_offset;
  175. //
  176. // ABL_PLANAR
  177. //
  178. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  179. //
  180. // AUTO_BED_LEVELING_BILINEAR
  181. //
  182. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  183. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  184. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  185. bed_mesh_t z_values; // G29
  186. #else
  187. float z_values[3][3];
  188. #endif
  189. //
  190. // AUTO_BED_LEVELING_UBL
  191. //
  192. bool planner_leveling_active; // M420 S planner.leveling_active
  193. int8_t ubl_storage_slot; // ubl.storage_slot
  194. //
  195. // SERVO_ANGLES
  196. //
  197. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  198. //
  199. // Temperature first layer compensation values
  200. //
  201. #if ENABLED(PROBE_TEMP_COMPENSATION)
  202. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  203. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  204. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  205. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  206. #endif
  207. ;
  208. #endif
  209. //
  210. // BLTOUCH
  211. //
  212. bool bltouch_last_written_mode;
  213. //
  214. // DELTA / [XYZ]_DUAL_ENDSTOPS
  215. //
  216. #if ENABLED(DELTA)
  217. float delta_height; // M666 H
  218. abc_float_t delta_endstop_adj; // M666 X Y Z
  219. float delta_radius, // M665 R
  220. delta_diagonal_rod, // M665 L
  221. delta_segments_per_second; // M665 S
  222. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  223. delta_diagonal_rod_trim; // M665 A B C
  224. #elif HAS_EXTRA_ENDSTOPS
  225. float x2_endstop_adj, // M666 X
  226. y2_endstop_adj, // M666 Y
  227. z2_endstop_adj, // M666 (S2) Z
  228. z3_endstop_adj, // M666 (S3) Z
  229. z4_endstop_adj; // M666 (S4) Z
  230. #endif
  231. //
  232. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  233. //
  234. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  235. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  236. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  237. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  238. #endif
  239. #endif
  240. //
  241. // Material Presets
  242. //
  243. #if PREHEAT_COUNT
  244. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  245. #endif
  246. //
  247. // PIDTEMP
  248. //
  249. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  250. int16_t lpq_len; // M301 L
  251. //
  252. // PIDTEMPBED
  253. //
  254. PID_t bedPID; // M304 PID / M303 E-1 U
  255. //
  256. // User-defined Thermistors
  257. //
  258. #if HAS_USER_THERMISTORS
  259. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  260. #endif
  261. //
  262. // Power monitor
  263. //
  264. uint8_t power_monitor_flags; // M430 I V W
  265. //
  266. // HAS_LCD_CONTRAST
  267. //
  268. int16_t lcd_contrast; // M250 C
  269. //
  270. // Controller fan settings
  271. //
  272. controllerFan_settings_t controllerFan_settings; // M710
  273. //
  274. // POWER_LOSS_RECOVERY
  275. //
  276. bool recovery_enabled; // M413 S
  277. //
  278. // FWRETRACT
  279. //
  280. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  281. bool autoretract_enabled; // M209 S
  282. //
  283. // !NO_VOLUMETRIC
  284. //
  285. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  286. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  287. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  288. //
  289. // HAS_TRINAMIC_CONFIG
  290. //
  291. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  292. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  293. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  294. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  295. //
  296. // LIN_ADVANCE
  297. //
  298. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  299. //
  300. // HAS_MOTOR_CURRENT_PWM
  301. //
  302. #ifndef MOTOR_CURRENT_COUNT
  303. #define MOTOR_CURRENT_COUNT 3
  304. #endif
  305. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
  306. //
  307. // CNC_COORDINATE_SYSTEMS
  308. //
  309. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  310. //
  311. // SKEW_CORRECTION
  312. //
  313. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  314. //
  315. // ADVANCED_PAUSE_FEATURE
  316. //
  317. #if EXTRUDERS
  318. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  319. #endif
  320. //
  321. // Tool-change settings
  322. //
  323. #if HAS_MULTI_EXTRUDER
  324. toolchange_settings_t toolchange_settings; // M217 S P R
  325. #endif
  326. //
  327. // BACKLASH_COMPENSATION
  328. //
  329. xyz_float_t backlash_distance_mm; // M425 X Y Z
  330. uint8_t backlash_correction; // M425 F
  331. float backlash_smoothing_mm; // M425 S
  332. //
  333. // EXTENSIBLE_UI
  334. //
  335. #if ENABLED(EXTENSIBLE_UI)
  336. // This is a significant hardware change; don't reserve space when not present
  337. uint8_t extui_data[ExtUI::eeprom_data_size];
  338. #endif
  339. //
  340. // HAS_CASE_LIGHT_BRIGHTNESS
  341. //
  342. #if HAS_CASE_LIGHT_BRIGHTNESS
  343. uint8_t caselight_brightness; // M355 P
  344. #endif
  345. //
  346. // PASSWORD_FEATURE
  347. //
  348. #if ENABLED(PASSWORD_FEATURE)
  349. bool password_is_set;
  350. uint32_t password_value;
  351. #endif
  352. //
  353. // TOUCH_SCREEN_CALIBRATION
  354. //
  355. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  356. touch_calibration_t touch_calibration;
  357. #endif
  358. } SettingsData;
  359. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  360. MarlinSettings settings;
  361. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  362. /**
  363. * Post-process after Retrieve or Reset
  364. */
  365. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  366. float new_z_fade_height;
  367. #endif
  368. void MarlinSettings::postprocess() {
  369. xyze_pos_t oldpos = current_position;
  370. // steps per s2 needs to be updated to agree with units per s2
  371. planner.reset_acceleration_rates();
  372. // Make sure delta kinematics are updated before refreshing the
  373. // planner position so the stepper counts will be set correctly.
  374. TERN_(DELTA, recalc_delta_settings());
  375. TERN_(PIDTEMP, thermalManager.updatePID());
  376. #if DISABLED(NO_VOLUMETRICS)
  377. planner.calculate_volumetric_multipliers();
  378. #elif EXTRUDERS
  379. for (uint8_t i = COUNT(planner.e_factor); i--;)
  380. planner.refresh_e_factor(i);
  381. #endif
  382. // Software endstops depend on home_offset
  383. LOOP_XYZ(i) {
  384. update_workspace_offset((AxisEnum)i);
  385. update_software_endstops((AxisEnum)i);
  386. }
  387. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  388. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  389. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  390. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  391. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  392. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.update_brightness());
  393. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  394. // and init stepper.count[], planner.position[] with current_position
  395. planner.refresh_positioning();
  396. // Various factors can change the current position
  397. if (oldpos != current_position)
  398. report_current_position();
  399. }
  400. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  401. #include "printcounter.h"
  402. static_assert(
  403. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  404. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  405. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  406. );
  407. #endif
  408. #if ENABLED(SD_FIRMWARE_UPDATE)
  409. #if ENABLED(EEPROM_SETTINGS)
  410. static_assert(
  411. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  412. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  413. );
  414. #endif
  415. bool MarlinSettings::sd_update_status() {
  416. uint8_t val;
  417. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  418. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  419. }
  420. bool MarlinSettings::set_sd_update_status(const bool enable) {
  421. if (enable != sd_update_status())
  422. persistentStore.write_data(
  423. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  424. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  425. );
  426. return true;
  427. }
  428. #endif // SD_FIRMWARE_UPDATE
  429. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  430. static_assert(
  431. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  432. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  433. );
  434. #endif
  435. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  436. #include "../core/debug_out.h"
  437. #if ENABLED(EEPROM_SETTINGS)
  438. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  439. int eeprom_index = EEPROM_OFFSET
  440. #define EEPROM_FINISH() persistentStore.access_finish()
  441. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  442. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  443. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  444. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  445. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  446. #if ENABLED(DEBUG_EEPROM_READWRITE)
  447. #define _FIELD_TEST(FIELD) \
  448. EEPROM_ASSERT( \
  449. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  450. "Field " STRINGIFY(FIELD) " mismatch." \
  451. )
  452. #else
  453. #define _FIELD_TEST(FIELD) NOOP
  454. #endif
  455. const char version[4] = EEPROM_VERSION;
  456. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  457. bool MarlinSettings::size_error(const uint16_t size) {
  458. if (size != datasize()) {
  459. DEBUG_ERROR_MSG("EEPROM datasize error.");
  460. return true;
  461. }
  462. return false;
  463. }
  464. /**
  465. * M500 - Store Configuration
  466. */
  467. bool MarlinSettings::save() {
  468. float dummyf = 0;
  469. char ver[4] = "ERR";
  470. uint16_t working_crc = 0;
  471. EEPROM_START();
  472. eeprom_error = false;
  473. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  474. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  475. EEPROM_SKIP(working_crc); // Skip the checksum slot
  476. working_crc = 0; // clear before first "real data"
  477. _FIELD_TEST(esteppers);
  478. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  479. EEPROM_WRITE(esteppers);
  480. //
  481. // Planner Motion
  482. //
  483. {
  484. EEPROM_WRITE(planner.settings);
  485. #if HAS_CLASSIC_JERK
  486. EEPROM_WRITE(planner.max_jerk);
  487. #if HAS_LINEAR_E_JERK
  488. dummyf = float(DEFAULT_EJERK);
  489. EEPROM_WRITE(dummyf);
  490. #endif
  491. #else
  492. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  493. EEPROM_WRITE(planner_max_jerk);
  494. #endif
  495. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  496. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  497. }
  498. //
  499. // Home Offset
  500. //
  501. {
  502. _FIELD_TEST(home_offset);
  503. #if HAS_SCARA_OFFSET
  504. EEPROM_WRITE(scara_home_offset);
  505. #else
  506. #if !HAS_HOME_OFFSET
  507. const xyz_pos_t home_offset{0};
  508. #endif
  509. EEPROM_WRITE(home_offset);
  510. #endif
  511. }
  512. //
  513. // Hotend Offsets, if any
  514. //
  515. {
  516. #if HAS_HOTEND_OFFSET
  517. // Skip hotend 0 which must be 0
  518. LOOP_S_L_N(e, 1, HOTENDS)
  519. EEPROM_WRITE(hotend_offset[e]);
  520. #endif
  521. }
  522. //
  523. // Filament Runout Sensor
  524. //
  525. {
  526. #if HAS_FILAMENT_SENSOR
  527. const bool &runout_sensor_enabled = runout.enabled;
  528. #else
  529. constexpr int8_t runout_sensor_enabled = -1;
  530. #endif
  531. _FIELD_TEST(runout_sensor_enabled);
  532. EEPROM_WRITE(runout_sensor_enabled);
  533. #if HAS_FILAMENT_RUNOUT_DISTANCE
  534. const float &runout_distance_mm = runout.runout_distance();
  535. #else
  536. constexpr float runout_distance_mm = 0;
  537. #endif
  538. EEPROM_WRITE(runout_distance_mm);
  539. }
  540. //
  541. // Global Leveling
  542. //
  543. {
  544. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  545. EEPROM_WRITE(zfh);
  546. }
  547. //
  548. // Mesh Bed Leveling
  549. //
  550. {
  551. #if ENABLED(MESH_BED_LEVELING)
  552. static_assert(
  553. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  554. "MBL Z array is the wrong size."
  555. );
  556. #else
  557. dummyf = 0;
  558. #endif
  559. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  560. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  561. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  562. EEPROM_WRITE(mesh_num_x);
  563. EEPROM_WRITE(mesh_num_y);
  564. #if ENABLED(MESH_BED_LEVELING)
  565. EEPROM_WRITE(mbl.z_values);
  566. #else
  567. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  568. #endif
  569. }
  570. //
  571. // Probe XYZ Offsets
  572. //
  573. {
  574. _FIELD_TEST(probe_offset);
  575. #if HAS_BED_PROBE
  576. const xyz_pos_t &zpo = probe.offset;
  577. #else
  578. constexpr xyz_pos_t zpo{0};
  579. #endif
  580. EEPROM_WRITE(zpo);
  581. }
  582. //
  583. // Planar Bed Leveling matrix
  584. //
  585. {
  586. #if ABL_PLANAR
  587. EEPROM_WRITE(planner.bed_level_matrix);
  588. #else
  589. dummyf = 0;
  590. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  591. #endif
  592. }
  593. //
  594. // Bilinear Auto Bed Leveling
  595. //
  596. {
  597. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  598. static_assert(
  599. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  600. "Bilinear Z array is the wrong size."
  601. );
  602. #else
  603. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  604. #endif
  605. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  606. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  607. EEPROM_WRITE(grid_max_x);
  608. EEPROM_WRITE(grid_max_y);
  609. EEPROM_WRITE(bilinear_grid_spacing);
  610. EEPROM_WRITE(bilinear_start);
  611. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  612. EEPROM_WRITE(z_values); // 9-256 floats
  613. #else
  614. dummyf = 0;
  615. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  616. #endif
  617. }
  618. //
  619. // Unified Bed Leveling
  620. //
  621. {
  622. _FIELD_TEST(planner_leveling_active);
  623. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  624. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  625. EEPROM_WRITE(ubl_active);
  626. EEPROM_WRITE(storage_slot);
  627. }
  628. //
  629. // Servo Angles
  630. //
  631. {
  632. _FIELD_TEST(servo_angles);
  633. #if !HAS_SERVO_ANGLES
  634. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  635. #endif
  636. EEPROM_WRITE(servo_angles);
  637. }
  638. //
  639. // Thermal first layer compensation values
  640. //
  641. #if ENABLED(PROBE_TEMP_COMPENSATION)
  642. EEPROM_WRITE(temp_comp.z_offsets_probe);
  643. EEPROM_WRITE(temp_comp.z_offsets_bed);
  644. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  645. EEPROM_WRITE(temp_comp.z_offsets_ext);
  646. #endif
  647. #else
  648. // No placeholder data for this feature
  649. #endif
  650. //
  651. // BLTOUCH
  652. //
  653. {
  654. _FIELD_TEST(bltouch_last_written_mode);
  655. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  656. EEPROM_WRITE(bltouch_last_written_mode);
  657. }
  658. //
  659. // DELTA Geometry or Dual Endstops offsets
  660. //
  661. {
  662. #if ENABLED(DELTA)
  663. _FIELD_TEST(delta_height);
  664. EEPROM_WRITE(delta_height); // 1 float
  665. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  666. EEPROM_WRITE(delta_radius); // 1 float
  667. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  668. EEPROM_WRITE(delta_segments_per_second); // 1 float
  669. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  670. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  671. #elif HAS_EXTRA_ENDSTOPS
  672. _FIELD_TEST(x2_endstop_adj);
  673. // Write dual endstops in X, Y, Z order. Unused = 0.0
  674. dummyf = 0;
  675. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  676. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  677. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  678. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  679. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  680. #else
  681. EEPROM_WRITE(dummyf);
  682. #endif
  683. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  684. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  685. #else
  686. EEPROM_WRITE(dummyf);
  687. #endif
  688. #endif
  689. }
  690. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  691. EEPROM_WRITE(z_stepper_align.xy);
  692. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  693. EEPROM_WRITE(z_stepper_align.stepper_xy);
  694. #endif
  695. #endif
  696. //
  697. // LCD Preheat settings
  698. //
  699. #if PREHEAT_COUNT
  700. _FIELD_TEST(ui_material_preset);
  701. EEPROM_WRITE(ui.material_preset);
  702. #endif
  703. //
  704. // PIDTEMP
  705. //
  706. {
  707. _FIELD_TEST(hotendPID);
  708. HOTEND_LOOP() {
  709. PIDCF_t pidcf = {
  710. #if DISABLED(PIDTEMP)
  711. NAN, NAN, NAN,
  712. NAN, NAN
  713. #else
  714. PID_PARAM(Kp, e),
  715. unscalePID_i(PID_PARAM(Ki, e)),
  716. unscalePID_d(PID_PARAM(Kd, e)),
  717. PID_PARAM(Kc, e),
  718. PID_PARAM(Kf, e)
  719. #endif
  720. };
  721. EEPROM_WRITE(pidcf);
  722. }
  723. _FIELD_TEST(lpq_len);
  724. #if DISABLED(PID_EXTRUSION_SCALING)
  725. const int16_t lpq_len = 20;
  726. #endif
  727. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  728. }
  729. //
  730. // PIDTEMPBED
  731. //
  732. {
  733. _FIELD_TEST(bedPID);
  734. const PID_t bed_pid = {
  735. #if DISABLED(PIDTEMPBED)
  736. NAN, NAN, NAN
  737. #else
  738. // Store the unscaled PID values
  739. thermalManager.temp_bed.pid.Kp,
  740. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  741. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  742. #endif
  743. };
  744. EEPROM_WRITE(bed_pid);
  745. }
  746. //
  747. // User-defined Thermistors
  748. //
  749. #if HAS_USER_THERMISTORS
  750. {
  751. _FIELD_TEST(user_thermistor);
  752. EEPROM_WRITE(thermalManager.user_thermistor);
  753. }
  754. #endif
  755. //
  756. // Power monitor
  757. //
  758. {
  759. #if HAS_POWER_MONITOR
  760. const uint8_t &power_monitor_flags = power_monitor.flags;
  761. #else
  762. constexpr uint8_t power_monitor_flags = 0x00;
  763. #endif
  764. _FIELD_TEST(power_monitor_flags);
  765. EEPROM_WRITE(power_monitor_flags);
  766. }
  767. //
  768. // LCD Contrast
  769. //
  770. {
  771. _FIELD_TEST(lcd_contrast);
  772. const int16_t lcd_contrast =
  773. #if HAS_LCD_CONTRAST
  774. ui.contrast
  775. #else
  776. 127
  777. #endif
  778. ;
  779. EEPROM_WRITE(lcd_contrast);
  780. }
  781. //
  782. // Controller Fan
  783. //
  784. {
  785. _FIELD_TEST(controllerFan_settings);
  786. #if ENABLED(USE_CONTROLLER_FAN)
  787. const controllerFan_settings_t &cfs = controllerFan.settings;
  788. #else
  789. controllerFan_settings_t cfs = controllerFan_defaults;
  790. #endif
  791. EEPROM_WRITE(cfs);
  792. }
  793. //
  794. // Power-Loss Recovery
  795. //
  796. {
  797. _FIELD_TEST(recovery_enabled);
  798. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  799. EEPROM_WRITE(recovery_enabled);
  800. }
  801. //
  802. // Firmware Retraction
  803. //
  804. {
  805. _FIELD_TEST(fwretract_settings);
  806. #if DISABLED(FWRETRACT)
  807. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  808. #endif
  809. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  810. #if DISABLED(FWRETRACT_AUTORETRACT)
  811. const bool autoretract_enabled = false;
  812. #endif
  813. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  814. }
  815. //
  816. // Volumetric & Filament Size
  817. //
  818. {
  819. _FIELD_TEST(parser_volumetric_enabled);
  820. #if DISABLED(NO_VOLUMETRICS)
  821. EEPROM_WRITE(parser.volumetric_enabled);
  822. EEPROM_WRITE(planner.filament_size);
  823. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  824. EEPROM_WRITE(planner.volumetric_extruder_limit);
  825. #else
  826. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  827. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  828. #endif
  829. #else
  830. const bool volumetric_enabled = false;
  831. EEPROM_WRITE(volumetric_enabled);
  832. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  833. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  834. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  835. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  836. #endif
  837. }
  838. //
  839. // TMC Configuration
  840. //
  841. {
  842. _FIELD_TEST(tmc_stepper_current);
  843. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  844. #if HAS_TRINAMIC_CONFIG
  845. #if AXIS_IS_TMC(X)
  846. tmc_stepper_current.X = stepperX.getMilliamps();
  847. #endif
  848. #if AXIS_IS_TMC(Y)
  849. tmc_stepper_current.Y = stepperY.getMilliamps();
  850. #endif
  851. #if AXIS_IS_TMC(Z)
  852. tmc_stepper_current.Z = stepperZ.getMilliamps();
  853. #endif
  854. #if AXIS_IS_TMC(X2)
  855. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  856. #endif
  857. #if AXIS_IS_TMC(Y2)
  858. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  859. #endif
  860. #if AXIS_IS_TMC(Z2)
  861. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  862. #endif
  863. #if AXIS_IS_TMC(Z3)
  864. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  865. #endif
  866. #if AXIS_IS_TMC(Z4)
  867. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  868. #endif
  869. #if MAX_EXTRUDERS
  870. #if AXIS_IS_TMC(E0)
  871. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  872. #endif
  873. #if MAX_EXTRUDERS > 1
  874. #if AXIS_IS_TMC(E1)
  875. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  876. #endif
  877. #if MAX_EXTRUDERS > 2
  878. #if AXIS_IS_TMC(E2)
  879. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  880. #endif
  881. #if MAX_EXTRUDERS > 3
  882. #if AXIS_IS_TMC(E3)
  883. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  884. #endif
  885. #if MAX_EXTRUDERS > 4
  886. #if AXIS_IS_TMC(E4)
  887. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  888. #endif
  889. #if MAX_EXTRUDERS > 5
  890. #if AXIS_IS_TMC(E5)
  891. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  892. #endif
  893. #if MAX_EXTRUDERS > 6
  894. #if AXIS_IS_TMC(E6)
  895. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  896. #endif
  897. #if MAX_EXTRUDERS > 7
  898. #if AXIS_IS_TMC(E7)
  899. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  900. #endif
  901. #endif // MAX_EXTRUDERS > 7
  902. #endif // MAX_EXTRUDERS > 6
  903. #endif // MAX_EXTRUDERS > 5
  904. #endif // MAX_EXTRUDERS > 4
  905. #endif // MAX_EXTRUDERS > 3
  906. #endif // MAX_EXTRUDERS > 2
  907. #endif // MAX_EXTRUDERS > 1
  908. #endif // MAX_EXTRUDERS
  909. #endif
  910. EEPROM_WRITE(tmc_stepper_current);
  911. }
  912. //
  913. // TMC Hybrid Threshold, and placeholder values
  914. //
  915. {
  916. _FIELD_TEST(tmc_hybrid_threshold);
  917. #if ENABLED(HYBRID_THRESHOLD)
  918. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  919. #if AXIS_HAS_STEALTHCHOP(X)
  920. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  921. #endif
  922. #if AXIS_HAS_STEALTHCHOP(Y)
  923. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  924. #endif
  925. #if AXIS_HAS_STEALTHCHOP(Z)
  926. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  927. #endif
  928. #if AXIS_HAS_STEALTHCHOP(X2)
  929. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  930. #endif
  931. #if AXIS_HAS_STEALTHCHOP(Y2)
  932. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  933. #endif
  934. #if AXIS_HAS_STEALTHCHOP(Z2)
  935. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  936. #endif
  937. #if AXIS_HAS_STEALTHCHOP(Z3)
  938. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  939. #endif
  940. #if AXIS_HAS_STEALTHCHOP(Z4)
  941. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  942. #endif
  943. #if MAX_EXTRUDERS
  944. #if AXIS_HAS_STEALTHCHOP(E0)
  945. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  946. #endif
  947. #if MAX_EXTRUDERS > 1
  948. #if AXIS_HAS_STEALTHCHOP(E1)
  949. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  950. #endif
  951. #if MAX_EXTRUDERS > 2
  952. #if AXIS_HAS_STEALTHCHOP(E2)
  953. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  954. #endif
  955. #if MAX_EXTRUDERS > 3
  956. #if AXIS_HAS_STEALTHCHOP(E3)
  957. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  958. #endif
  959. #if MAX_EXTRUDERS > 4
  960. #if AXIS_HAS_STEALTHCHOP(E4)
  961. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  962. #endif
  963. #if MAX_EXTRUDERS > 5
  964. #if AXIS_HAS_STEALTHCHOP(E5)
  965. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  966. #endif
  967. #if MAX_EXTRUDERS > 6
  968. #if AXIS_HAS_STEALTHCHOP(E6)
  969. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  970. #endif
  971. #if MAX_EXTRUDERS > 7
  972. #if AXIS_HAS_STEALTHCHOP(E7)
  973. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  974. #endif
  975. #endif // MAX_EXTRUDERS > 7
  976. #endif // MAX_EXTRUDERS > 6
  977. #endif // MAX_EXTRUDERS > 5
  978. #endif // MAX_EXTRUDERS > 4
  979. #endif // MAX_EXTRUDERS > 3
  980. #endif // MAX_EXTRUDERS > 2
  981. #endif // MAX_EXTRUDERS > 1
  982. #endif // MAX_EXTRUDERS
  983. #else
  984. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  985. .X = 100, .Y = 100, .Z = 3,
  986. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  987. .E0 = 30, .E1 = 30, .E2 = 30,
  988. .E3 = 30, .E4 = 30, .E5 = 30
  989. };
  990. #endif
  991. EEPROM_WRITE(tmc_hybrid_threshold);
  992. }
  993. //
  994. // TMC StallGuard threshold
  995. //
  996. {
  997. tmc_sgt_t tmc_sgt{0};
  998. #if USE_SENSORLESS
  999. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  1000. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1001. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  1002. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1003. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  1004. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1005. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1006. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1007. #endif
  1008. EEPROM_WRITE(tmc_sgt);
  1009. }
  1010. //
  1011. // TMC stepping mode
  1012. //
  1013. {
  1014. _FIELD_TEST(tmc_stealth_enabled);
  1015. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  1016. #if HAS_STEALTHCHOP
  1017. #if AXIS_HAS_STEALTHCHOP(X)
  1018. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop_status();
  1019. #endif
  1020. #if AXIS_HAS_STEALTHCHOP(Y)
  1021. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop_status();
  1022. #endif
  1023. #if AXIS_HAS_STEALTHCHOP(Z)
  1024. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop_status();
  1025. #endif
  1026. #if AXIS_HAS_STEALTHCHOP(X2)
  1027. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop_status();
  1028. #endif
  1029. #if AXIS_HAS_STEALTHCHOP(Y2)
  1030. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop_status();
  1031. #endif
  1032. #if AXIS_HAS_STEALTHCHOP(Z2)
  1033. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop_status();
  1034. #endif
  1035. #if AXIS_HAS_STEALTHCHOP(Z3)
  1036. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop_status();
  1037. #endif
  1038. #if AXIS_HAS_STEALTHCHOP(Z4)
  1039. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop_status();
  1040. #endif
  1041. #if MAX_EXTRUDERS
  1042. #if AXIS_HAS_STEALTHCHOP(E0)
  1043. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop_status();
  1044. #endif
  1045. #if MAX_EXTRUDERS > 1
  1046. #if AXIS_HAS_STEALTHCHOP(E1)
  1047. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop_status();
  1048. #endif
  1049. #if MAX_EXTRUDERS > 2
  1050. #if AXIS_HAS_STEALTHCHOP(E2)
  1051. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop_status();
  1052. #endif
  1053. #if MAX_EXTRUDERS > 3
  1054. #if AXIS_HAS_STEALTHCHOP(E3)
  1055. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop_status();
  1056. #endif
  1057. #if MAX_EXTRUDERS > 4
  1058. #if AXIS_HAS_STEALTHCHOP(E4)
  1059. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop_status();
  1060. #endif
  1061. #if MAX_EXTRUDERS > 5
  1062. #if AXIS_HAS_STEALTHCHOP(E5)
  1063. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop_status();
  1064. #endif
  1065. #if MAX_EXTRUDERS > 6
  1066. #if AXIS_HAS_STEALTHCHOP(E6)
  1067. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop_status();
  1068. #endif
  1069. #if MAX_EXTRUDERS > 7
  1070. #if AXIS_HAS_STEALTHCHOP(E7)
  1071. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop_status();
  1072. #endif
  1073. #endif // MAX_EXTRUDERS > 7
  1074. #endif // MAX_EXTRUDERS > 6
  1075. #endif // MAX_EXTRUDERS > 5
  1076. #endif // MAX_EXTRUDERS > 4
  1077. #endif // MAX_EXTRUDERS > 3
  1078. #endif // MAX_EXTRUDERS > 2
  1079. #endif // MAX_EXTRUDERS > 1
  1080. #endif // MAX_EXTRUDERS
  1081. #endif
  1082. EEPROM_WRITE(tmc_stealth_enabled);
  1083. }
  1084. //
  1085. // Linear Advance
  1086. //
  1087. {
  1088. _FIELD_TEST(planner_extruder_advance_K);
  1089. #if ENABLED(LIN_ADVANCE)
  1090. EEPROM_WRITE(planner.extruder_advance_K);
  1091. #else
  1092. dummyf = 0;
  1093. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1094. #endif
  1095. }
  1096. //
  1097. // Motor Current PWM
  1098. //
  1099. {
  1100. _FIELD_TEST(motor_current_setting);
  1101. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1102. EEPROM_WRITE(stepper.motor_current_setting);
  1103. #else
  1104. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1105. EEPROM_WRITE(no_current);
  1106. #endif
  1107. }
  1108. //
  1109. // CNC Coordinate Systems
  1110. //
  1111. _FIELD_TEST(coordinate_system);
  1112. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1113. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1114. #endif
  1115. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1116. //
  1117. // Skew correction factors
  1118. //
  1119. _FIELD_TEST(planner_skew_factor);
  1120. EEPROM_WRITE(planner.skew_factor);
  1121. //
  1122. // Advanced Pause filament load & unload lengths
  1123. //
  1124. #if EXTRUDERS
  1125. {
  1126. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1127. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1128. #endif
  1129. _FIELD_TEST(fc_settings);
  1130. EEPROM_WRITE(fc_settings);
  1131. }
  1132. #endif
  1133. //
  1134. // Multiple Extruders
  1135. //
  1136. #if HAS_MULTI_EXTRUDER
  1137. _FIELD_TEST(toolchange_settings);
  1138. EEPROM_WRITE(toolchange_settings);
  1139. #endif
  1140. //
  1141. // Backlash Compensation
  1142. //
  1143. {
  1144. #if ENABLED(BACKLASH_GCODE)
  1145. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1146. const uint8_t &backlash_correction = backlash.correction;
  1147. #else
  1148. const xyz_float_t backlash_distance_mm{0};
  1149. const uint8_t backlash_correction = 0;
  1150. #endif
  1151. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1152. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1153. #else
  1154. const float backlash_smoothing_mm = 3;
  1155. #endif
  1156. _FIELD_TEST(backlash_distance_mm);
  1157. EEPROM_WRITE(backlash_distance_mm);
  1158. EEPROM_WRITE(backlash_correction);
  1159. EEPROM_WRITE(backlash_smoothing_mm);
  1160. }
  1161. //
  1162. // Extensible UI User Data
  1163. //
  1164. #if ENABLED(EXTENSIBLE_UI)
  1165. {
  1166. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1167. ExtUI::onStoreSettings(extui_data);
  1168. _FIELD_TEST(extui_data);
  1169. EEPROM_WRITE(extui_data);
  1170. }
  1171. #endif
  1172. //
  1173. // Case Light Brightness
  1174. //
  1175. #if HAS_CASE_LIGHT_BRIGHTNESS
  1176. EEPROM_WRITE(caselight.brightness);
  1177. #endif
  1178. //
  1179. // Password feature
  1180. //
  1181. #if ENABLED(PASSWORD_FEATURE)
  1182. EEPROM_WRITE(password.is_set);
  1183. EEPROM_WRITE(password.value);
  1184. #endif
  1185. //
  1186. // TOUCH_SCREEN_CALIBRATION
  1187. //
  1188. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1189. EEPROM_WRITE(touch.calibration);
  1190. #endif
  1191. //
  1192. // Validate CRC and Data Size
  1193. //
  1194. if (!eeprom_error) {
  1195. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1196. final_crc = working_crc;
  1197. // Write the EEPROM header
  1198. eeprom_index = EEPROM_OFFSET;
  1199. EEPROM_WRITE(version);
  1200. EEPROM_WRITE(final_crc);
  1201. // Report storage size
  1202. DEBUG_ECHO_START();
  1203. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1204. eeprom_error |= size_error(eeprom_size);
  1205. }
  1206. EEPROM_FINISH();
  1207. //
  1208. // UBL Mesh
  1209. //
  1210. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1211. if (ubl.storage_slot >= 0)
  1212. store_mesh(ubl.storage_slot);
  1213. #endif
  1214. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1215. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1216. return !eeprom_error;
  1217. }
  1218. /**
  1219. * M501 - Retrieve Configuration
  1220. */
  1221. bool MarlinSettings::_load() {
  1222. uint16_t working_crc = 0;
  1223. EEPROM_START();
  1224. char stored_ver[4];
  1225. EEPROM_READ_ALWAYS(stored_ver);
  1226. uint16_t stored_crc;
  1227. EEPROM_READ_ALWAYS(stored_crc);
  1228. // Version has to match or defaults are used
  1229. if (strncmp(version, stored_ver, 3) != 0) {
  1230. if (stored_ver[3] != '\0') {
  1231. stored_ver[0] = '?';
  1232. stored_ver[1] = '\0';
  1233. }
  1234. DEBUG_ECHO_START();
  1235. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1236. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_version());
  1237. eeprom_error = true;
  1238. }
  1239. else {
  1240. float dummyf = 0;
  1241. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1242. _FIELD_TEST(esteppers);
  1243. // Number of esteppers may change
  1244. uint8_t esteppers;
  1245. EEPROM_READ_ALWAYS(esteppers);
  1246. //
  1247. // Planner Motion
  1248. //
  1249. {
  1250. // Get only the number of E stepper parameters previously stored
  1251. // Any steppers added later are set to their defaults
  1252. uint32_t tmp1[XYZ + esteppers];
  1253. float tmp2[XYZ + esteppers];
  1254. feedRate_t tmp3[XYZ + esteppers];
  1255. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1256. EEPROM_READ(planner.settings.min_segment_time_us);
  1257. EEPROM_READ(tmp2); // axis_steps_per_mm
  1258. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1259. if (!validating) LOOP_XYZE_N(i) {
  1260. const bool in = (i < esteppers + XYZ);
  1261. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1262. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1263. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1264. }
  1265. EEPROM_READ(planner.settings.acceleration);
  1266. EEPROM_READ(planner.settings.retract_acceleration);
  1267. EEPROM_READ(planner.settings.travel_acceleration);
  1268. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1269. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1270. #if HAS_CLASSIC_JERK
  1271. EEPROM_READ(planner.max_jerk);
  1272. #if HAS_LINEAR_E_JERK
  1273. EEPROM_READ(dummyf);
  1274. #endif
  1275. #else
  1276. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1277. #endif
  1278. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1279. }
  1280. //
  1281. // Home Offset (M206 / M665)
  1282. //
  1283. {
  1284. _FIELD_TEST(home_offset);
  1285. #if HAS_SCARA_OFFSET
  1286. EEPROM_READ(scara_home_offset);
  1287. #else
  1288. #if !HAS_HOME_OFFSET
  1289. xyz_pos_t home_offset;
  1290. #endif
  1291. EEPROM_READ(home_offset);
  1292. #endif
  1293. }
  1294. //
  1295. // Hotend Offsets, if any
  1296. //
  1297. {
  1298. #if HAS_HOTEND_OFFSET
  1299. // Skip hotend 0 which must be 0
  1300. LOOP_S_L_N(e, 1, HOTENDS)
  1301. EEPROM_READ(hotend_offset[e]);
  1302. #endif
  1303. }
  1304. //
  1305. // Filament Runout Sensor
  1306. //
  1307. {
  1308. int8_t runout_sensor_enabled;
  1309. _FIELD_TEST(runout_sensor_enabled);
  1310. EEPROM_READ(runout_sensor_enabled);
  1311. #if HAS_FILAMENT_SENSOR
  1312. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1313. #endif
  1314. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1315. float runout_distance_mm;
  1316. EEPROM_READ(runout_distance_mm);
  1317. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1318. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1319. #endif
  1320. }
  1321. //
  1322. // Global Leveling
  1323. //
  1324. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1325. //
  1326. // Mesh (Manual) Bed Leveling
  1327. //
  1328. {
  1329. uint8_t mesh_num_x, mesh_num_y;
  1330. EEPROM_READ(dummyf);
  1331. EEPROM_READ_ALWAYS(mesh_num_x);
  1332. EEPROM_READ_ALWAYS(mesh_num_y);
  1333. #if ENABLED(MESH_BED_LEVELING)
  1334. if (!validating) mbl.z_offset = dummyf;
  1335. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1336. // EEPROM data fits the current mesh
  1337. EEPROM_READ(mbl.z_values);
  1338. }
  1339. else {
  1340. // EEPROM data is stale
  1341. if (!validating) mbl.reset();
  1342. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1343. }
  1344. #else
  1345. // MBL is disabled - skip the stored data
  1346. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1347. #endif // MESH_BED_LEVELING
  1348. }
  1349. //
  1350. // Probe Z Offset
  1351. //
  1352. {
  1353. _FIELD_TEST(probe_offset);
  1354. #if HAS_BED_PROBE
  1355. const xyz_pos_t &zpo = probe.offset;
  1356. #else
  1357. xyz_pos_t zpo;
  1358. #endif
  1359. EEPROM_READ(zpo);
  1360. }
  1361. //
  1362. // Planar Bed Leveling matrix
  1363. //
  1364. {
  1365. #if ABL_PLANAR
  1366. EEPROM_READ(planner.bed_level_matrix);
  1367. #else
  1368. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1369. #endif
  1370. }
  1371. //
  1372. // Bilinear Auto Bed Leveling
  1373. //
  1374. {
  1375. uint8_t grid_max_x, grid_max_y;
  1376. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1377. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1378. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1379. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1380. if (!validating) set_bed_leveling_enabled(false);
  1381. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1382. EEPROM_READ(bilinear_start); // 2 ints
  1383. EEPROM_READ(z_values); // 9 to 256 floats
  1384. }
  1385. else // EEPROM data is stale
  1386. #endif // AUTO_BED_LEVELING_BILINEAR
  1387. {
  1388. // Skip past disabled (or stale) Bilinear Grid data
  1389. xy_pos_t bgs, bs;
  1390. EEPROM_READ(bgs);
  1391. EEPROM_READ(bs);
  1392. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1393. }
  1394. }
  1395. //
  1396. // Unified Bed Leveling active state
  1397. //
  1398. {
  1399. _FIELD_TEST(planner_leveling_active);
  1400. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1401. const bool &planner_leveling_active = planner.leveling_active;
  1402. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1403. #else
  1404. bool planner_leveling_active;
  1405. int8_t ubl_storage_slot;
  1406. #endif
  1407. EEPROM_READ(planner_leveling_active);
  1408. EEPROM_READ(ubl_storage_slot);
  1409. }
  1410. //
  1411. // SERVO_ANGLES
  1412. //
  1413. {
  1414. _FIELD_TEST(servo_angles);
  1415. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1416. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1417. #else
  1418. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1419. #endif
  1420. EEPROM_READ(servo_angles_arr);
  1421. }
  1422. //
  1423. // Thermal first layer compensation values
  1424. //
  1425. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1426. EEPROM_READ(temp_comp.z_offsets_probe);
  1427. EEPROM_READ(temp_comp.z_offsets_bed);
  1428. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1429. EEPROM_READ(temp_comp.z_offsets_ext);
  1430. #endif
  1431. temp_comp.reset_index();
  1432. #else
  1433. // No placeholder data for this feature
  1434. #endif
  1435. //
  1436. // BLTOUCH
  1437. //
  1438. {
  1439. _FIELD_TEST(bltouch_last_written_mode);
  1440. #if ENABLED(BLTOUCH)
  1441. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1442. #else
  1443. bool bltouch_last_written_mode;
  1444. #endif
  1445. EEPROM_READ(bltouch_last_written_mode);
  1446. }
  1447. //
  1448. // DELTA Geometry or Dual Endstops offsets
  1449. //
  1450. {
  1451. #if ENABLED(DELTA)
  1452. _FIELD_TEST(delta_height);
  1453. EEPROM_READ(delta_height); // 1 float
  1454. EEPROM_READ(delta_endstop_adj); // 3 floats
  1455. EEPROM_READ(delta_radius); // 1 float
  1456. EEPROM_READ(delta_diagonal_rod); // 1 float
  1457. EEPROM_READ(delta_segments_per_second); // 1 float
  1458. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1459. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1460. #elif HAS_EXTRA_ENDSTOPS
  1461. _FIELD_TEST(x2_endstop_adj);
  1462. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1463. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1464. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1465. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1466. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1467. #else
  1468. EEPROM_READ(dummyf);
  1469. #endif
  1470. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1471. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1472. #else
  1473. EEPROM_READ(dummyf);
  1474. #endif
  1475. #endif
  1476. }
  1477. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1478. EEPROM_READ(z_stepper_align.xy);
  1479. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1480. EEPROM_READ(z_stepper_align.stepper_xy);
  1481. #endif
  1482. #endif
  1483. //
  1484. // LCD Preheat settings
  1485. //
  1486. #if PREHEAT_COUNT
  1487. _FIELD_TEST(ui_material_preset);
  1488. EEPROM_READ(ui.material_preset);
  1489. #endif
  1490. //
  1491. // Hotend PID
  1492. //
  1493. {
  1494. HOTEND_LOOP() {
  1495. PIDCF_t pidcf;
  1496. EEPROM_READ(pidcf);
  1497. #if ENABLED(PIDTEMP)
  1498. if (!validating && !isnan(pidcf.Kp)) {
  1499. // Scale PID values since EEPROM values are unscaled
  1500. PID_PARAM(Kp, e) = pidcf.Kp;
  1501. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1502. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1503. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1504. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1505. }
  1506. #endif
  1507. }
  1508. }
  1509. //
  1510. // PID Extrusion Scaling
  1511. //
  1512. {
  1513. _FIELD_TEST(lpq_len);
  1514. #if ENABLED(PID_EXTRUSION_SCALING)
  1515. const int16_t &lpq_len = thermalManager.lpq_len;
  1516. #else
  1517. int16_t lpq_len;
  1518. #endif
  1519. EEPROM_READ(lpq_len);
  1520. }
  1521. //
  1522. // Heated Bed PID
  1523. //
  1524. {
  1525. PID_t pid;
  1526. EEPROM_READ(pid);
  1527. #if ENABLED(PIDTEMPBED)
  1528. if (!validating && !isnan(pid.Kp)) {
  1529. // Scale PID values since EEPROM values are unscaled
  1530. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1531. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1532. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1533. }
  1534. #endif
  1535. }
  1536. //
  1537. // User-defined Thermistors
  1538. //
  1539. #if HAS_USER_THERMISTORS
  1540. {
  1541. _FIELD_TEST(user_thermistor);
  1542. EEPROM_READ(thermalManager.user_thermistor);
  1543. }
  1544. #endif
  1545. //
  1546. // Power monitor
  1547. //
  1548. {
  1549. #if HAS_POWER_MONITOR
  1550. uint8_t &power_monitor_flags = power_monitor.flags;
  1551. #else
  1552. uint8_t power_monitor_flags;
  1553. #endif
  1554. _FIELD_TEST(power_monitor_flags);
  1555. EEPROM_READ(power_monitor_flags);
  1556. }
  1557. //
  1558. // LCD Contrast
  1559. //
  1560. {
  1561. _FIELD_TEST(lcd_contrast);
  1562. int16_t lcd_contrast;
  1563. EEPROM_READ(lcd_contrast);
  1564. if (!validating) {
  1565. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1566. }
  1567. }
  1568. //
  1569. // Controller Fan
  1570. //
  1571. {
  1572. _FIELD_TEST(controllerFan_settings);
  1573. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1574. const controllerFan_settings_t &cfs = controllerFan.settings;
  1575. #else
  1576. controllerFan_settings_t cfs = { 0 };
  1577. #endif
  1578. EEPROM_READ(cfs);
  1579. }
  1580. //
  1581. // Power-Loss Recovery
  1582. //
  1583. {
  1584. _FIELD_TEST(recovery_enabled);
  1585. #if ENABLED(POWER_LOSS_RECOVERY)
  1586. const bool &recovery_enabled = recovery.enabled;
  1587. #else
  1588. bool recovery_enabled;
  1589. #endif
  1590. EEPROM_READ(recovery_enabled);
  1591. }
  1592. //
  1593. // Firmware Retraction
  1594. //
  1595. {
  1596. _FIELD_TEST(fwretract_settings);
  1597. #if ENABLED(FWRETRACT)
  1598. EEPROM_READ(fwretract.settings);
  1599. #else
  1600. fwretract_settings_t fwretract_settings;
  1601. EEPROM_READ(fwretract_settings);
  1602. #endif
  1603. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1604. EEPROM_READ(fwretract.autoretract_enabled);
  1605. #else
  1606. bool autoretract_enabled;
  1607. EEPROM_READ(autoretract_enabled);
  1608. #endif
  1609. }
  1610. //
  1611. // Volumetric & Filament Size
  1612. //
  1613. {
  1614. struct {
  1615. bool volumetric_enabled;
  1616. float filament_size[EXTRUDERS];
  1617. float volumetric_extruder_limit[EXTRUDERS];
  1618. } storage;
  1619. _FIELD_TEST(parser_volumetric_enabled);
  1620. EEPROM_READ(storage);
  1621. #if DISABLED(NO_VOLUMETRICS)
  1622. if (!validating) {
  1623. parser.volumetric_enabled = storage.volumetric_enabled;
  1624. COPY(planner.filament_size, storage.filament_size);
  1625. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1626. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1627. #endif
  1628. }
  1629. #endif
  1630. }
  1631. //
  1632. // TMC Stepper Settings
  1633. //
  1634. if (!validating) reset_stepper_drivers();
  1635. // TMC Stepper Current
  1636. {
  1637. _FIELD_TEST(tmc_stepper_current);
  1638. tmc_stepper_current_t currents;
  1639. EEPROM_READ(currents);
  1640. #if HAS_TRINAMIC_CONFIG
  1641. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1642. if (!validating) {
  1643. #if AXIS_IS_TMC(X)
  1644. SET_CURR(X);
  1645. #endif
  1646. #if AXIS_IS_TMC(Y)
  1647. SET_CURR(Y);
  1648. #endif
  1649. #if AXIS_IS_TMC(Z)
  1650. SET_CURR(Z);
  1651. #endif
  1652. #if AXIS_IS_TMC(X2)
  1653. SET_CURR(X2);
  1654. #endif
  1655. #if AXIS_IS_TMC(Y2)
  1656. SET_CURR(Y2);
  1657. #endif
  1658. #if AXIS_IS_TMC(Z2)
  1659. SET_CURR(Z2);
  1660. #endif
  1661. #if AXIS_IS_TMC(Z3)
  1662. SET_CURR(Z3);
  1663. #endif
  1664. #if AXIS_IS_TMC(Z4)
  1665. SET_CURR(Z4);
  1666. #endif
  1667. #if AXIS_IS_TMC(E0)
  1668. SET_CURR(E0);
  1669. #endif
  1670. #if AXIS_IS_TMC(E1)
  1671. SET_CURR(E1);
  1672. #endif
  1673. #if AXIS_IS_TMC(E2)
  1674. SET_CURR(E2);
  1675. #endif
  1676. #if AXIS_IS_TMC(E3)
  1677. SET_CURR(E3);
  1678. #endif
  1679. #if AXIS_IS_TMC(E4)
  1680. SET_CURR(E4);
  1681. #endif
  1682. #if AXIS_IS_TMC(E5)
  1683. SET_CURR(E5);
  1684. #endif
  1685. #if AXIS_IS_TMC(E6)
  1686. SET_CURR(E6);
  1687. #endif
  1688. #if AXIS_IS_TMC(E7)
  1689. SET_CURR(E7);
  1690. #endif
  1691. }
  1692. #endif
  1693. }
  1694. // TMC Hybrid Threshold
  1695. {
  1696. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1697. _FIELD_TEST(tmc_hybrid_threshold);
  1698. EEPROM_READ(tmc_hybrid_threshold);
  1699. #if ENABLED(HYBRID_THRESHOLD)
  1700. if (!validating) {
  1701. #if AXIS_HAS_STEALTHCHOP(X)
  1702. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1703. #endif
  1704. #if AXIS_HAS_STEALTHCHOP(Y)
  1705. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1706. #endif
  1707. #if AXIS_HAS_STEALTHCHOP(Z)
  1708. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1709. #endif
  1710. #if AXIS_HAS_STEALTHCHOP(X2)
  1711. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1712. #endif
  1713. #if AXIS_HAS_STEALTHCHOP(Y2)
  1714. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1715. #endif
  1716. #if AXIS_HAS_STEALTHCHOP(Z2)
  1717. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1718. #endif
  1719. #if AXIS_HAS_STEALTHCHOP(Z3)
  1720. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1721. #endif
  1722. #if AXIS_HAS_STEALTHCHOP(Z4)
  1723. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1724. #endif
  1725. #if AXIS_HAS_STEALTHCHOP(E0)
  1726. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1727. #endif
  1728. #if AXIS_HAS_STEALTHCHOP(E1)
  1729. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1730. #endif
  1731. #if AXIS_HAS_STEALTHCHOP(E2)
  1732. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1733. #endif
  1734. #if AXIS_HAS_STEALTHCHOP(E3)
  1735. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1736. #endif
  1737. #if AXIS_HAS_STEALTHCHOP(E4)
  1738. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1739. #endif
  1740. #if AXIS_HAS_STEALTHCHOP(E5)
  1741. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1742. #endif
  1743. #if AXIS_HAS_STEALTHCHOP(E6)
  1744. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1745. #endif
  1746. #if AXIS_HAS_STEALTHCHOP(E7)
  1747. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1748. #endif
  1749. }
  1750. #endif
  1751. }
  1752. //
  1753. // TMC StallGuard threshold.
  1754. //
  1755. {
  1756. tmc_sgt_t tmc_sgt;
  1757. _FIELD_TEST(tmc_sgt);
  1758. EEPROM_READ(tmc_sgt);
  1759. #if USE_SENSORLESS
  1760. if (!validating) {
  1761. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1762. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1763. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1764. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1765. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1766. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1767. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1768. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1769. }
  1770. #endif
  1771. }
  1772. // TMC stepping mode
  1773. {
  1774. _FIELD_TEST(tmc_stealth_enabled);
  1775. tmc_stealth_enabled_t tmc_stealth_enabled;
  1776. EEPROM_READ(tmc_stealth_enabled);
  1777. #if HAS_TRINAMIC_CONFIG
  1778. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1779. if (!validating) {
  1780. #if AXIS_HAS_STEALTHCHOP(X)
  1781. SET_STEPPING_MODE(X);
  1782. #endif
  1783. #if AXIS_HAS_STEALTHCHOP(Y)
  1784. SET_STEPPING_MODE(Y);
  1785. #endif
  1786. #if AXIS_HAS_STEALTHCHOP(Z)
  1787. SET_STEPPING_MODE(Z);
  1788. #endif
  1789. #if AXIS_HAS_STEALTHCHOP(X2)
  1790. SET_STEPPING_MODE(X2);
  1791. #endif
  1792. #if AXIS_HAS_STEALTHCHOP(Y2)
  1793. SET_STEPPING_MODE(Y2);
  1794. #endif
  1795. #if AXIS_HAS_STEALTHCHOP(Z2)
  1796. SET_STEPPING_MODE(Z2);
  1797. #endif
  1798. #if AXIS_HAS_STEALTHCHOP(Z3)
  1799. SET_STEPPING_MODE(Z3);
  1800. #endif
  1801. #if AXIS_HAS_STEALTHCHOP(Z4)
  1802. SET_STEPPING_MODE(Z4);
  1803. #endif
  1804. #if AXIS_HAS_STEALTHCHOP(E0)
  1805. SET_STEPPING_MODE(E0);
  1806. #endif
  1807. #if AXIS_HAS_STEALTHCHOP(E1)
  1808. SET_STEPPING_MODE(E1);
  1809. #endif
  1810. #if AXIS_HAS_STEALTHCHOP(E2)
  1811. SET_STEPPING_MODE(E2);
  1812. #endif
  1813. #if AXIS_HAS_STEALTHCHOP(E3)
  1814. SET_STEPPING_MODE(E3);
  1815. #endif
  1816. #if AXIS_HAS_STEALTHCHOP(E4)
  1817. SET_STEPPING_MODE(E4);
  1818. #endif
  1819. #if AXIS_HAS_STEALTHCHOP(E5)
  1820. SET_STEPPING_MODE(E5);
  1821. #endif
  1822. #if AXIS_HAS_STEALTHCHOP(E6)
  1823. SET_STEPPING_MODE(E6);
  1824. #endif
  1825. #if AXIS_HAS_STEALTHCHOP(E7)
  1826. SET_STEPPING_MODE(E7);
  1827. #endif
  1828. }
  1829. #endif
  1830. }
  1831. //
  1832. // Linear Advance
  1833. //
  1834. {
  1835. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1836. _FIELD_TEST(planner_extruder_advance_K);
  1837. EEPROM_READ(extruder_advance_K);
  1838. #if ENABLED(LIN_ADVANCE)
  1839. if (!validating)
  1840. COPY(planner.extruder_advance_K, extruder_advance_K);
  1841. #endif
  1842. }
  1843. //
  1844. // Motor Current PWM
  1845. //
  1846. {
  1847. _FIELD_TEST(motor_current_setting);
  1848. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1849. #if HAS_MOTOR_CURRENT_SPI
  1850. = DIGIPOT_MOTOR_CURRENT
  1851. #endif
  1852. ;
  1853. DEBUG_ECHOLNPGM("DIGIPOTS Loading");
  1854. EEPROM_READ(motor_current_setting);
  1855. DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
  1856. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1857. if (!validating)
  1858. COPY(stepper.motor_current_setting, motor_current_setting);
  1859. #endif
  1860. }
  1861. //
  1862. // CNC Coordinate System
  1863. //
  1864. {
  1865. _FIELD_TEST(coordinate_system);
  1866. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1867. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1868. EEPROM_READ(gcode.coordinate_system);
  1869. #else
  1870. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1871. EEPROM_READ(coordinate_system);
  1872. #endif
  1873. }
  1874. //
  1875. // Skew correction factors
  1876. //
  1877. {
  1878. skew_factor_t skew_factor;
  1879. _FIELD_TEST(planner_skew_factor);
  1880. EEPROM_READ(skew_factor);
  1881. #if ENABLED(SKEW_CORRECTION_GCODE)
  1882. if (!validating) {
  1883. planner.skew_factor.xy = skew_factor.xy;
  1884. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1885. planner.skew_factor.xz = skew_factor.xz;
  1886. planner.skew_factor.yz = skew_factor.yz;
  1887. #endif
  1888. }
  1889. #endif
  1890. }
  1891. //
  1892. // Advanced Pause filament load & unload lengths
  1893. //
  1894. #if EXTRUDERS
  1895. {
  1896. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1897. fil_change_settings_t fc_settings[EXTRUDERS];
  1898. #endif
  1899. _FIELD_TEST(fc_settings);
  1900. EEPROM_READ(fc_settings);
  1901. }
  1902. #endif
  1903. //
  1904. // Tool-change settings
  1905. //
  1906. #if HAS_MULTI_EXTRUDER
  1907. _FIELD_TEST(toolchange_settings);
  1908. EEPROM_READ(toolchange_settings);
  1909. #endif
  1910. //
  1911. // Backlash Compensation
  1912. //
  1913. {
  1914. #if ENABLED(BACKLASH_GCODE)
  1915. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1916. const uint8_t &backlash_correction = backlash.correction;
  1917. #else
  1918. float backlash_distance_mm[XYZ];
  1919. uint8_t backlash_correction;
  1920. #endif
  1921. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1922. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1923. #else
  1924. float backlash_smoothing_mm;
  1925. #endif
  1926. _FIELD_TEST(backlash_distance_mm);
  1927. EEPROM_READ(backlash_distance_mm);
  1928. EEPROM_READ(backlash_correction);
  1929. EEPROM_READ(backlash_smoothing_mm);
  1930. }
  1931. //
  1932. // Extensible UI User Data
  1933. //
  1934. #if ENABLED(EXTENSIBLE_UI)
  1935. // This is a significant hardware change; don't reserve EEPROM space when not present
  1936. {
  1937. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1938. _FIELD_TEST(extui_data);
  1939. EEPROM_READ(extui_data);
  1940. if (!validating) ExtUI::onLoadSettings(extui_data);
  1941. }
  1942. #endif
  1943. //
  1944. // Case Light Brightness
  1945. //
  1946. #if HAS_CASE_LIGHT_BRIGHTNESS
  1947. _FIELD_TEST(caselight_brightness);
  1948. EEPROM_READ(caselight.brightness);
  1949. #endif
  1950. //
  1951. // Password feature
  1952. //
  1953. #if ENABLED(PASSWORD_FEATURE)
  1954. _FIELD_TEST(password_is_set);
  1955. EEPROM_READ(password.is_set);
  1956. EEPROM_READ(password.value);
  1957. #endif
  1958. //
  1959. // TOUCH_SCREEN_CALIBRATION
  1960. //
  1961. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1962. _FIELD_TEST(touch.calibration);
  1963. EEPROM_READ(touch.calibration);
  1964. #endif
  1965. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1966. if (eeprom_error) {
  1967. DEBUG_ECHO_START();
  1968. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1969. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_index());
  1970. }
  1971. else if (working_crc != stored_crc) {
  1972. eeprom_error = true;
  1973. DEBUG_ERROR_START();
  1974. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1975. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_crc());
  1976. }
  1977. else if (!validating) {
  1978. DEBUG_ECHO_START();
  1979. DEBUG_ECHO(version);
  1980. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1981. }
  1982. if (!validating && !eeprom_error) postprocess();
  1983. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1984. if (!validating) {
  1985. ubl.report_state();
  1986. if (!ubl.sanity_check()) {
  1987. SERIAL_EOL();
  1988. #if ENABLED(EEPROM_CHITCHAT)
  1989. ubl.echo_name();
  1990. DEBUG_ECHOLNPGM(" initialized.\n");
  1991. #endif
  1992. }
  1993. else {
  1994. eeprom_error = true;
  1995. #if ENABLED(EEPROM_CHITCHAT)
  1996. DEBUG_ECHOPGM("?Can't enable ");
  1997. ubl.echo_name();
  1998. DEBUG_ECHOLNPGM(".");
  1999. #endif
  2000. ubl.reset();
  2001. }
  2002. if (ubl.storage_slot >= 0) {
  2003. load_mesh(ubl.storage_slot);
  2004. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2005. }
  2006. else {
  2007. ubl.reset();
  2008. DEBUG_ECHOLNPGM("UBL reset");
  2009. }
  2010. }
  2011. #endif
  2012. }
  2013. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2014. // Report the EEPROM settings
  2015. if (!validating && (DISABLED(EEPROM_BOOT_SILENT) || IsRunning())) report();
  2016. #endif
  2017. EEPROM_FINISH();
  2018. return !eeprom_error;
  2019. }
  2020. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2021. extern bool restoreEEPROM();
  2022. #endif
  2023. bool MarlinSettings::validate() {
  2024. validating = true;
  2025. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2026. bool success = _load();
  2027. if (!success && restoreEEPROM()) {
  2028. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2029. success = _load();
  2030. }
  2031. #else
  2032. const bool success = _load();
  2033. #endif
  2034. validating = false;
  2035. return success;
  2036. }
  2037. bool MarlinSettings::load() {
  2038. if (validate()) {
  2039. const bool success = _load();
  2040. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2041. return success;
  2042. }
  2043. reset();
  2044. #if ENABLED(EEPROM_AUTO_INIT)
  2045. (void)save();
  2046. SERIAL_ECHO_MSG("EEPROM Initialized");
  2047. #endif
  2048. return false;
  2049. }
  2050. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2051. inline void ubl_invalid_slot(const int s) {
  2052. #if ENABLED(EEPROM_CHITCHAT)
  2053. DEBUG_ECHOLNPGM("?Invalid slot.");
  2054. DEBUG_ECHO(s);
  2055. DEBUG_ECHOLNPGM(" mesh slots available.");
  2056. #else
  2057. UNUSED(s);
  2058. #endif
  2059. }
  2060. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2061. // is a placeholder for the size of the MAT; the MAT will always
  2062. // live at the very end of the eeprom
  2063. uint16_t MarlinSettings::meshes_start_index() {
  2064. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2065. // or down a little bit without disrupting the mesh data
  2066. }
  2067. uint16_t MarlinSettings::calc_num_meshes() {
  2068. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  2069. }
  2070. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2071. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  2072. }
  2073. void MarlinSettings::store_mesh(const int8_t slot) {
  2074. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2075. const int16_t a = calc_num_meshes();
  2076. if (!WITHIN(slot, 0, a - 1)) {
  2077. ubl_invalid_slot(a);
  2078. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2079. DEBUG_EOL();
  2080. return;
  2081. }
  2082. int pos = mesh_slot_offset(slot);
  2083. uint16_t crc = 0;
  2084. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2085. persistentStore.access_start();
  2086. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  2087. persistentStore.access_finish();
  2088. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2089. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2090. #else
  2091. // Other mesh types
  2092. #endif
  2093. }
  2094. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2095. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2096. const int16_t a = settings.calc_num_meshes();
  2097. if (!WITHIN(slot, 0, a - 1)) {
  2098. ubl_invalid_slot(a);
  2099. return;
  2100. }
  2101. int pos = mesh_slot_offset(slot);
  2102. uint16_t crc = 0;
  2103. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2104. persistentStore.access_start();
  2105. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2106. persistentStore.access_finish();
  2107. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2108. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2109. EEPROM_FINISH();
  2110. #else
  2111. // Other mesh types
  2112. #endif
  2113. }
  2114. //void MarlinSettings::delete_mesh() { return; }
  2115. //void MarlinSettings::defrag_meshes() { return; }
  2116. #endif // AUTO_BED_LEVELING_UBL
  2117. #else // !EEPROM_SETTINGS
  2118. bool MarlinSettings::save() {
  2119. DEBUG_ERROR_MSG("EEPROM disabled");
  2120. return false;
  2121. }
  2122. #endif // !EEPROM_SETTINGS
  2123. /**
  2124. * M502 - Reset Configuration
  2125. */
  2126. void MarlinSettings::reset() {
  2127. LOOP_XYZE_N(i) {
  2128. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2129. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2130. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2131. }
  2132. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2133. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2134. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2135. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2136. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2137. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2138. #if HAS_CLASSIC_JERK
  2139. #ifndef DEFAULT_XJERK
  2140. #define DEFAULT_XJERK 0
  2141. #endif
  2142. #ifndef DEFAULT_YJERK
  2143. #define DEFAULT_YJERK 0
  2144. #endif
  2145. #ifndef DEFAULT_ZJERK
  2146. #define DEFAULT_ZJERK 0
  2147. #endif
  2148. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2149. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2150. #endif
  2151. #if HAS_JUNCTION_DEVIATION
  2152. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2153. #endif
  2154. #if HAS_SCARA_OFFSET
  2155. scara_home_offset.reset();
  2156. #elif HAS_HOME_OFFSET
  2157. home_offset.reset();
  2158. #endif
  2159. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2160. //
  2161. // Filament Runout Sensor
  2162. //
  2163. #if HAS_FILAMENT_SENSOR
  2164. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2165. runout.reset();
  2166. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2167. #endif
  2168. //
  2169. // Tool-change Settings
  2170. //
  2171. #if HAS_MULTI_EXTRUDER
  2172. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2173. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2174. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2175. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2176. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2177. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2178. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2179. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2180. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2181. #endif
  2182. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2183. enable_first_prime = false;
  2184. #endif
  2185. #if ENABLED(TOOLCHANGE_PARK)
  2186. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2187. toolchange_settings.enable_park = true;
  2188. toolchange_settings.change_point = tpxy;
  2189. #endif
  2190. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2191. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2192. migration = migration_defaults;
  2193. #endif
  2194. #endif
  2195. #if ENABLED(BACKLASH_GCODE)
  2196. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2197. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2198. backlash.distance_mm = tmp;
  2199. #ifdef BACKLASH_SMOOTHING_MM
  2200. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2201. #endif
  2202. #endif
  2203. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2204. //
  2205. // Case Light Brightness
  2206. //
  2207. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2208. //
  2209. // TOUCH_SCREEN_CALIBRATION
  2210. //
  2211. TERN_(TOUCH_SCREEN_CALIBRATION, touch.calibration_reset());
  2212. //
  2213. // Magnetic Parking Extruder
  2214. //
  2215. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2216. //
  2217. // Global Leveling
  2218. //
  2219. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2220. TERN_(HAS_LEVELING, reset_bed_level());
  2221. #if HAS_BED_PROBE
  2222. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2223. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2224. #if HAS_PROBE_XY_OFFSET
  2225. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2226. #else
  2227. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2228. #endif
  2229. #endif
  2230. //
  2231. // Z Stepper Auto-alignment points
  2232. //
  2233. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2234. //
  2235. // Servo Angles
  2236. //
  2237. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2238. //
  2239. // BLTOUCH
  2240. //
  2241. //#if ENABLED(BLTOUCH)
  2242. // bltouch.last_written_mode;
  2243. //#endif
  2244. //
  2245. // Endstop Adjustments
  2246. //
  2247. #if ENABLED(DELTA)
  2248. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2249. delta_height = DELTA_HEIGHT;
  2250. delta_endstop_adj = adj;
  2251. delta_radius = DELTA_RADIUS;
  2252. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2253. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2254. delta_tower_angle_trim = dta;
  2255. delta_diagonal_rod_trim = ddr;
  2256. #endif
  2257. #if ENABLED(X_DUAL_ENDSTOPS)
  2258. #ifndef X2_ENDSTOP_ADJUSTMENT
  2259. #define X2_ENDSTOP_ADJUSTMENT 0
  2260. #endif
  2261. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2262. #endif
  2263. #if ENABLED(Y_DUAL_ENDSTOPS)
  2264. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2265. #define Y2_ENDSTOP_ADJUSTMENT 0
  2266. #endif
  2267. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2268. #endif
  2269. #if ENABLED(Z_MULTI_ENDSTOPS)
  2270. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2271. #define Z2_ENDSTOP_ADJUSTMENT 0
  2272. #endif
  2273. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2274. #if NUM_Z_STEPPER_DRIVERS >= 3
  2275. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2276. #define Z3_ENDSTOP_ADJUSTMENT 0
  2277. #endif
  2278. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2279. #endif
  2280. #if NUM_Z_STEPPER_DRIVERS >= 4
  2281. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2282. #define Z4_ENDSTOP_ADJUSTMENT 0
  2283. #endif
  2284. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2285. #endif
  2286. #endif
  2287. //
  2288. // Preheat parameters
  2289. //
  2290. #if PREHEAT_COUNT
  2291. #if HAS_HOTEND
  2292. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2293. #endif
  2294. #if HAS_HEATED_BED
  2295. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2296. #endif
  2297. #if HAS_FAN
  2298. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2299. #endif
  2300. LOOP_L_N(i, PREHEAT_COUNT) {
  2301. #if HAS_HOTEND
  2302. ui.material_preset[i].hotend_temp = hpre[i];
  2303. #endif
  2304. #if HAS_HEATED_BED
  2305. ui.material_preset[i].bed_temp = bpre[i];
  2306. #endif
  2307. #if HAS_FAN
  2308. ui.material_preset[i].fan_speed = fpre[i];
  2309. #endif
  2310. }
  2311. #endif
  2312. //
  2313. // Hotend PID
  2314. //
  2315. #if ENABLED(PIDTEMP)
  2316. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2317. constexpr float defKp[] =
  2318. #ifdef DEFAULT_Kp_LIST
  2319. DEFAULT_Kp_LIST
  2320. #else
  2321. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2322. #endif
  2323. , defKi[] =
  2324. #ifdef DEFAULT_Ki_LIST
  2325. DEFAULT_Ki_LIST
  2326. #else
  2327. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2328. #endif
  2329. , defKd[] =
  2330. #ifdef DEFAULT_Kd_LIST
  2331. DEFAULT_Kd_LIST
  2332. #else
  2333. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2334. #endif
  2335. ;
  2336. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2337. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2338. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2339. #if ENABLED(PID_EXTRUSION_SCALING)
  2340. constexpr float defKc[] =
  2341. #ifdef DEFAULT_Kc_LIST
  2342. DEFAULT_Kc_LIST
  2343. #else
  2344. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2345. #endif
  2346. ;
  2347. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2348. #endif
  2349. #if ENABLED(PID_FAN_SCALING)
  2350. constexpr float defKf[] =
  2351. #ifdef DEFAULT_Kf_LIST
  2352. DEFAULT_Kf_LIST
  2353. #else
  2354. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2355. #endif
  2356. ;
  2357. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2358. #endif
  2359. #define PID_DEFAULT(N,E) def##N[E]
  2360. #else
  2361. #define PID_DEFAULT(N,E) DEFAULT_##N
  2362. #endif
  2363. HOTEND_LOOP() {
  2364. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2365. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2366. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2367. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2368. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2369. }
  2370. #endif
  2371. //
  2372. // PID Extrusion Scaling
  2373. //
  2374. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2375. //
  2376. // Heated Bed PID
  2377. //
  2378. #if ENABLED(PIDTEMPBED)
  2379. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2380. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2381. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2382. #endif
  2383. //
  2384. // User-Defined Thermistors
  2385. //
  2386. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2387. //
  2388. // Power Monitor
  2389. //
  2390. TERN_(POWER_MONITOR, power_monitor.reset());
  2391. //
  2392. // LCD Contrast
  2393. //
  2394. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2395. //
  2396. // Controller Fan
  2397. //
  2398. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2399. //
  2400. // Power-Loss Recovery
  2401. //
  2402. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2403. //
  2404. // Firmware Retraction
  2405. //
  2406. TERN_(FWRETRACT, fwretract.reset());
  2407. //
  2408. // Volumetric & Filament Size
  2409. //
  2410. #if DISABLED(NO_VOLUMETRICS)
  2411. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2412. LOOP_L_N(q, COUNT(planner.filament_size))
  2413. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2414. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2415. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2416. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2417. #endif
  2418. #endif
  2419. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2420. reset_stepper_drivers();
  2421. //
  2422. // Linear Advance
  2423. //
  2424. #if ENABLED(LIN_ADVANCE)
  2425. LOOP_L_N(i, EXTRUDERS) {
  2426. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2427. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2428. }
  2429. #endif
  2430. //
  2431. // Motor Current PWM
  2432. //
  2433. #if HAS_MOTOR_CURRENT_PWM
  2434. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2435. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2436. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2437. #endif
  2438. //
  2439. // DIGIPOTS
  2440. //
  2441. #if HAS_MOTOR_CURRENT_SPI
  2442. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2443. DEBUG_ECHOLNPGM("Writing Digipot");
  2444. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2445. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2446. DEBUG_ECHOLNPGM("Digipot Written");
  2447. #endif
  2448. //
  2449. // CNC Coordinate System
  2450. //
  2451. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2452. //
  2453. // Skew Correction
  2454. //
  2455. #if ENABLED(SKEW_CORRECTION_GCODE)
  2456. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2457. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2458. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2459. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2460. #endif
  2461. #endif
  2462. //
  2463. // Advanced Pause filament load & unload lengths
  2464. //
  2465. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2466. LOOP_L_N(e, EXTRUDERS) {
  2467. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2468. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2469. }
  2470. #endif
  2471. #if ENABLED(PASSWORD_FEATURE)
  2472. #ifdef PASSWORD_DEFAULT_VALUE
  2473. password.is_set = true;
  2474. password.value = PASSWORD_DEFAULT_VALUE;
  2475. #else
  2476. password.is_set = false;
  2477. #endif
  2478. #endif
  2479. postprocess();
  2480. DEBUG_ECHO_START();
  2481. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2482. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2483. }
  2484. #if DISABLED(DISABLE_M503)
  2485. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2486. if (!repl) {
  2487. SERIAL_ECHO_START();
  2488. SERIAL_ECHOPGM("; ");
  2489. serialprintPGM(pstr);
  2490. if (eol) SERIAL_EOL();
  2491. }
  2492. }
  2493. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2494. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2495. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2496. #if HAS_TRINAMIC_CONFIG
  2497. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2498. #if HAS_STEALTHCHOP
  2499. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2500. CONFIG_ECHO_START();
  2501. SERIAL_ECHOPGM(" M569 S1");
  2502. if (etc) {
  2503. SERIAL_CHAR(' ');
  2504. serialprintPGM(etc);
  2505. }
  2506. if (newLine) SERIAL_EOL();
  2507. }
  2508. #endif
  2509. #if ENABLED(HYBRID_THRESHOLD)
  2510. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2511. #endif
  2512. #if USE_SENSORLESS
  2513. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2514. #endif
  2515. #endif
  2516. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2517. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2518. #endif
  2519. inline void say_units(const bool colon) {
  2520. serialprintPGM(
  2521. #if ENABLED(INCH_MODE_SUPPORT)
  2522. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2523. #endif
  2524. PSTR(" (mm)")
  2525. );
  2526. if (colon) SERIAL_ECHOLNPGM(":");
  2527. }
  2528. void report_M92(const bool echo=true, const int8_t e=-1);
  2529. /**
  2530. * M503 - Report current settings in RAM
  2531. *
  2532. * Unless specifically disabled, M503 is available even without EEPROM
  2533. */
  2534. void MarlinSettings::report(const bool forReplay) {
  2535. /**
  2536. * Announce current units, in case inches are being displayed
  2537. */
  2538. CONFIG_ECHO_START();
  2539. #if ENABLED(INCH_MODE_SUPPORT)
  2540. SERIAL_ECHOPGM(" G2");
  2541. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2542. SERIAL_ECHOPGM(" ;");
  2543. say_units(false);
  2544. #else
  2545. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2546. say_units(false);
  2547. #endif
  2548. SERIAL_EOL();
  2549. #if HAS_LCD_MENU
  2550. // Temperature units - for Ultipanel temperature options
  2551. CONFIG_ECHO_START();
  2552. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2553. SERIAL_ECHOPGM(" M149 ");
  2554. SERIAL_CHAR(parser.temp_units_code());
  2555. SERIAL_ECHOPGM(" ; Units in ");
  2556. serialprintPGM(parser.temp_units_name());
  2557. #else
  2558. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2559. #endif
  2560. #endif
  2561. SERIAL_EOL();
  2562. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2563. /**
  2564. * Volumetric extrusion M200
  2565. */
  2566. if (!forReplay) {
  2567. config_heading(forReplay, PSTR("Filament settings:"), false);
  2568. if (parser.volumetric_enabled)
  2569. SERIAL_EOL();
  2570. else
  2571. SERIAL_ECHOLNPGM(" Disabled");
  2572. }
  2573. #if EXTRUDERS == 1
  2574. CONFIG_ECHO_START();
  2575. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
  2576. , " D", LINEAR_UNIT(planner.filament_size[0])
  2577. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2578. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2579. #endif
  2580. );
  2581. #else
  2582. LOOP_L_N(i, EXTRUDERS) {
  2583. CONFIG_ECHO_START();
  2584. SERIAL_ECHOLNPAIR(" M200 T", int(i)
  2585. , " D", LINEAR_UNIT(planner.filament_size[i])
  2586. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2587. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2588. #endif
  2589. );
  2590. }
  2591. CONFIG_ECHO_START();
  2592. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
  2593. #endif
  2594. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2595. CONFIG_ECHO_HEADING("Steps per unit:");
  2596. report_M92(!forReplay);
  2597. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2598. CONFIG_ECHO_START();
  2599. SERIAL_ECHOLNPAIR_P(
  2600. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2601. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2602. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2603. #if DISABLED(DISTINCT_E_FACTORS)
  2604. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2605. #endif
  2606. );
  2607. #if ENABLED(DISTINCT_E_FACTORS)
  2608. LOOP_L_N(i, E_STEPPERS) {
  2609. CONFIG_ECHO_START();
  2610. SERIAL_ECHOLNPAIR_P(
  2611. PSTR(" M203 T"), (int)i
  2612. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2613. );
  2614. }
  2615. #endif
  2616. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2617. CONFIG_ECHO_START();
  2618. SERIAL_ECHOLNPAIR_P(
  2619. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2620. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2621. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2622. #if DISABLED(DISTINCT_E_FACTORS)
  2623. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2624. #endif
  2625. );
  2626. #if ENABLED(DISTINCT_E_FACTORS)
  2627. LOOP_L_N(i, E_STEPPERS) {
  2628. CONFIG_ECHO_START();
  2629. SERIAL_ECHOLNPAIR_P(
  2630. PSTR(" M201 T"), (int)i
  2631. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2632. );
  2633. }
  2634. #endif
  2635. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2636. CONFIG_ECHO_START();
  2637. SERIAL_ECHOLNPAIR_P(
  2638. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2639. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2640. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2641. );
  2642. CONFIG_ECHO_HEADING(
  2643. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2644. #if HAS_JUNCTION_DEVIATION
  2645. " J<junc_dev>"
  2646. #endif
  2647. #if HAS_CLASSIC_JERK
  2648. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2649. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2650. #endif
  2651. );
  2652. CONFIG_ECHO_START();
  2653. SERIAL_ECHOLNPAIR_P(
  2654. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2655. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2656. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2657. #if HAS_JUNCTION_DEVIATION
  2658. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2659. #endif
  2660. #if HAS_CLASSIC_JERK
  2661. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2662. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2663. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2664. #if HAS_CLASSIC_E_JERK
  2665. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2666. #endif
  2667. #endif
  2668. );
  2669. #if HAS_M206_COMMAND
  2670. CONFIG_ECHO_HEADING("Home offset:");
  2671. CONFIG_ECHO_START();
  2672. SERIAL_ECHOLNPAIR_P(
  2673. #if IS_CARTESIAN
  2674. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2675. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2676. , SP_Z_STR
  2677. #else
  2678. PSTR(" M206 Z")
  2679. #endif
  2680. , LINEAR_UNIT(home_offset.z)
  2681. );
  2682. #endif
  2683. #if HAS_HOTEND_OFFSET
  2684. CONFIG_ECHO_HEADING("Hotend offsets:");
  2685. CONFIG_ECHO_START();
  2686. LOOP_S_L_N(e, 1, HOTENDS) {
  2687. SERIAL_ECHOPAIR_P(
  2688. PSTR(" M218 T"), (int)e,
  2689. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2690. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2691. );
  2692. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2693. }
  2694. #endif
  2695. /**
  2696. * Bed Leveling
  2697. */
  2698. #if HAS_LEVELING
  2699. #if ENABLED(MESH_BED_LEVELING)
  2700. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2701. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2702. config_heading(forReplay, PSTR(""), false);
  2703. if (!forReplay) {
  2704. ubl.echo_name();
  2705. SERIAL_CHAR(':');
  2706. SERIAL_EOL();
  2707. }
  2708. #elif HAS_ABL_OR_UBL
  2709. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2710. #endif
  2711. CONFIG_ECHO_START();
  2712. SERIAL_ECHOLNPAIR_P(
  2713. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2714. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2715. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2716. #endif
  2717. );
  2718. #if ENABLED(MESH_BED_LEVELING)
  2719. if (leveling_is_valid()) {
  2720. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2721. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2722. CONFIG_ECHO_START();
  2723. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2724. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2725. }
  2726. }
  2727. CONFIG_ECHO_START();
  2728. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2729. }
  2730. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2731. if (!forReplay) {
  2732. SERIAL_EOL();
  2733. ubl.report_state();
  2734. SERIAL_EOL();
  2735. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2736. SERIAL_ECHOLN(ubl.storage_slot);
  2737. config_heading(false, PSTR("EEPROM can hold "), false);
  2738. SERIAL_ECHO(calc_num_meshes());
  2739. SERIAL_ECHOLNPGM(" meshes.\n");
  2740. }
  2741. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2742. // solution needs to be found.
  2743. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2744. if (leveling_is_valid()) {
  2745. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2746. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2747. CONFIG_ECHO_START();
  2748. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2749. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2750. }
  2751. }
  2752. }
  2753. #endif
  2754. #endif // HAS_LEVELING
  2755. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2756. CONFIG_ECHO_HEADING("Servo Angles:");
  2757. LOOP_L_N(i, NUM_SERVOS) {
  2758. switch (i) {
  2759. #if ENABLED(SWITCHING_EXTRUDER)
  2760. case SWITCHING_EXTRUDER_SERVO_NR:
  2761. #if EXTRUDERS > 3
  2762. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2763. #endif
  2764. #elif ENABLED(SWITCHING_NOZZLE)
  2765. case SWITCHING_NOZZLE_SERVO_NR:
  2766. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2767. case Z_PROBE_SERVO_NR:
  2768. #endif
  2769. CONFIG_ECHO_START();
  2770. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2771. default: break;
  2772. }
  2773. }
  2774. #endif // EDITABLE_SERVO_ANGLES
  2775. #if HAS_SCARA_OFFSET
  2776. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2777. CONFIG_ECHO_START();
  2778. SERIAL_ECHOLNPAIR_P(
  2779. PSTR(" M665 S"), delta_segments_per_second
  2780. , SP_P_STR, scara_home_offset.a
  2781. , SP_T_STR, scara_home_offset.b
  2782. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2783. );
  2784. #elif ENABLED(DELTA)
  2785. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2786. CONFIG_ECHO_START();
  2787. SERIAL_ECHOLNPAIR_P(
  2788. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2789. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2790. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2791. );
  2792. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2793. CONFIG_ECHO_START();
  2794. SERIAL_ECHOLNPAIR_P(
  2795. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2796. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2797. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2798. , PSTR(" S"), delta_segments_per_second
  2799. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2800. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2801. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2802. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2803. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2804. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2805. );
  2806. #elif HAS_EXTRA_ENDSTOPS
  2807. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2808. CONFIG_ECHO_START();
  2809. SERIAL_ECHOPGM(" M666");
  2810. #if ENABLED(X_DUAL_ENDSTOPS)
  2811. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2812. #endif
  2813. #if ENABLED(Y_DUAL_ENDSTOPS)
  2814. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2815. #endif
  2816. #if ENABLED(Z_MULTI_ENDSTOPS)
  2817. #if NUM_Z_STEPPER_DRIVERS >= 3
  2818. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2819. CONFIG_ECHO_START();
  2820. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2821. #if NUM_Z_STEPPER_DRIVERS >= 4
  2822. CONFIG_ECHO_START();
  2823. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2824. #endif
  2825. #else
  2826. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2827. #endif
  2828. #endif
  2829. #endif // [XYZ]_DUAL_ENDSTOPS
  2830. #if PREHEAT_COUNT
  2831. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2832. LOOP_L_N(i, PREHEAT_COUNT) {
  2833. CONFIG_ECHO_START();
  2834. SERIAL_ECHOLNPAIR_P(
  2835. PSTR(" M145 S"), (int)i
  2836. #if HAS_HOTEND
  2837. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2838. #endif
  2839. #if HAS_HEATED_BED
  2840. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2841. #endif
  2842. #if HAS_FAN
  2843. , PSTR(" F"), ui.material_preset[i].fan_speed
  2844. #endif
  2845. );
  2846. }
  2847. #endif
  2848. #if HAS_PID_HEATING
  2849. CONFIG_ECHO_HEADING("PID settings:");
  2850. #if ENABLED(PIDTEMP)
  2851. HOTEND_LOOP() {
  2852. CONFIG_ECHO_START();
  2853. SERIAL_ECHOPAIR_P(
  2854. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2855. PSTR(" M301 E"), e,
  2856. SP_P_STR
  2857. #else
  2858. PSTR(" M301 P")
  2859. #endif
  2860. , PID_PARAM(Kp, e)
  2861. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2862. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2863. );
  2864. #if ENABLED(PID_EXTRUSION_SCALING)
  2865. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2866. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2867. #endif
  2868. #if ENABLED(PID_FAN_SCALING)
  2869. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2870. #endif
  2871. SERIAL_EOL();
  2872. }
  2873. #endif // PIDTEMP
  2874. #if ENABLED(PIDTEMPBED)
  2875. CONFIG_ECHO_START();
  2876. SERIAL_ECHOLNPAIR(
  2877. " M304 P", thermalManager.temp_bed.pid.Kp
  2878. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2879. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2880. );
  2881. #endif
  2882. #endif // PIDTEMP || PIDTEMPBED
  2883. #if HAS_USER_THERMISTORS
  2884. CONFIG_ECHO_HEADING("User thermistors:");
  2885. LOOP_L_N(i, USER_THERMISTORS)
  2886. thermalManager.log_user_thermistor(i, true);
  2887. #endif
  2888. #if HAS_LCD_CONTRAST
  2889. CONFIG_ECHO_HEADING("LCD Contrast:");
  2890. CONFIG_ECHO_START();
  2891. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2892. #endif
  2893. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2894. #if ENABLED(POWER_LOSS_RECOVERY)
  2895. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2896. CONFIG_ECHO_START();
  2897. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2898. #endif
  2899. #if ENABLED(FWRETRACT)
  2900. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2901. CONFIG_ECHO_START();
  2902. SERIAL_ECHOLNPAIR_P(
  2903. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2904. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2905. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2906. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2907. );
  2908. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2909. CONFIG_ECHO_START();
  2910. SERIAL_ECHOLNPAIR(
  2911. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2912. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2913. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2914. );
  2915. #if ENABLED(FWRETRACT_AUTORETRACT)
  2916. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2917. CONFIG_ECHO_START();
  2918. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2919. #endif // FWRETRACT_AUTORETRACT
  2920. #endif // FWRETRACT
  2921. /**
  2922. * Probe Offset
  2923. */
  2924. #if HAS_BED_PROBE
  2925. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2926. if (!forReplay) say_units(true);
  2927. CONFIG_ECHO_START();
  2928. SERIAL_ECHOLNPAIR_P(
  2929. #if HAS_PROBE_XY_OFFSET
  2930. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2931. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2932. SP_Z_STR
  2933. #else
  2934. PSTR(" M851 X0 Y0 Z")
  2935. #endif
  2936. , LINEAR_UNIT(probe.offset.z)
  2937. );
  2938. #endif
  2939. /**
  2940. * Bed Skew Correction
  2941. */
  2942. #if ENABLED(SKEW_CORRECTION_GCODE)
  2943. CONFIG_ECHO_HEADING("Skew Factor: ");
  2944. CONFIG_ECHO_START();
  2945. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2946. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2947. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2948. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2949. #else
  2950. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2951. #endif
  2952. #endif
  2953. #if HAS_TRINAMIC_CONFIG
  2954. /**
  2955. * TMC stepper driver current
  2956. */
  2957. CONFIG_ECHO_HEADING("Stepper driver current:");
  2958. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2959. say_M906(forReplay);
  2960. #if AXIS_IS_TMC(X)
  2961. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2962. #endif
  2963. #if AXIS_IS_TMC(Y)
  2964. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2965. #endif
  2966. #if AXIS_IS_TMC(Z)
  2967. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2968. #endif
  2969. SERIAL_EOL();
  2970. #endif
  2971. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2972. say_M906(forReplay);
  2973. SERIAL_ECHOPGM(" I1");
  2974. #if AXIS_IS_TMC(X2)
  2975. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2976. #endif
  2977. #if AXIS_IS_TMC(Y2)
  2978. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2979. #endif
  2980. #if AXIS_IS_TMC(Z2)
  2981. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2982. #endif
  2983. SERIAL_EOL();
  2984. #endif
  2985. #if AXIS_IS_TMC(Z3)
  2986. say_M906(forReplay);
  2987. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2988. #endif
  2989. #if AXIS_IS_TMC(Z4)
  2990. say_M906(forReplay);
  2991. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  2992. #endif
  2993. #if AXIS_IS_TMC(E0)
  2994. say_M906(forReplay);
  2995. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2996. #endif
  2997. #if AXIS_IS_TMC(E1)
  2998. say_M906(forReplay);
  2999. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3000. #endif
  3001. #if AXIS_IS_TMC(E2)
  3002. say_M906(forReplay);
  3003. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3004. #endif
  3005. #if AXIS_IS_TMC(E3)
  3006. say_M906(forReplay);
  3007. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3008. #endif
  3009. #if AXIS_IS_TMC(E4)
  3010. say_M906(forReplay);
  3011. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3012. #endif
  3013. #if AXIS_IS_TMC(E5)
  3014. say_M906(forReplay);
  3015. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3016. #endif
  3017. #if AXIS_IS_TMC(E6)
  3018. say_M906(forReplay);
  3019. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3020. #endif
  3021. #if AXIS_IS_TMC(E7)
  3022. say_M906(forReplay);
  3023. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3024. #endif
  3025. SERIAL_EOL();
  3026. /**
  3027. * TMC Hybrid Threshold
  3028. */
  3029. #if ENABLED(HYBRID_THRESHOLD)
  3030. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3031. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3032. say_M913(forReplay);
  3033. #if AXIS_HAS_STEALTHCHOP(X)
  3034. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3035. #endif
  3036. #if AXIS_HAS_STEALTHCHOP(Y)
  3037. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3038. #endif
  3039. #if AXIS_HAS_STEALTHCHOP(Z)
  3040. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3041. #endif
  3042. SERIAL_EOL();
  3043. #endif
  3044. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3045. say_M913(forReplay);
  3046. SERIAL_ECHOPGM(" I1");
  3047. #if AXIS_HAS_STEALTHCHOP(X2)
  3048. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3049. #endif
  3050. #if AXIS_HAS_STEALTHCHOP(Y2)
  3051. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3052. #endif
  3053. #if AXIS_HAS_STEALTHCHOP(Z2)
  3054. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3055. #endif
  3056. SERIAL_EOL();
  3057. #endif
  3058. #if AXIS_HAS_STEALTHCHOP(Z3)
  3059. say_M913(forReplay);
  3060. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3061. #endif
  3062. #if AXIS_HAS_STEALTHCHOP(Z4)
  3063. say_M913(forReplay);
  3064. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3065. #endif
  3066. #if AXIS_HAS_STEALTHCHOP(E0)
  3067. say_M913(forReplay);
  3068. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3069. #endif
  3070. #if AXIS_HAS_STEALTHCHOP(E1)
  3071. say_M913(forReplay);
  3072. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3073. #endif
  3074. #if AXIS_HAS_STEALTHCHOP(E2)
  3075. say_M913(forReplay);
  3076. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3077. #endif
  3078. #if AXIS_HAS_STEALTHCHOP(E3)
  3079. say_M913(forReplay);
  3080. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3081. #endif
  3082. #if AXIS_HAS_STEALTHCHOP(E4)
  3083. say_M913(forReplay);
  3084. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3085. #endif
  3086. #if AXIS_HAS_STEALTHCHOP(E5)
  3087. say_M913(forReplay);
  3088. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3089. #endif
  3090. #if AXIS_HAS_STEALTHCHOP(E6)
  3091. say_M913(forReplay);
  3092. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3093. #endif
  3094. #if AXIS_HAS_STEALTHCHOP(E7)
  3095. say_M913(forReplay);
  3096. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3097. #endif
  3098. SERIAL_EOL();
  3099. #endif // HYBRID_THRESHOLD
  3100. /**
  3101. * TMC Sensorless homing thresholds
  3102. */
  3103. #if USE_SENSORLESS
  3104. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3105. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3106. CONFIG_ECHO_START();
  3107. say_M914();
  3108. #if X_SENSORLESS
  3109. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3110. #endif
  3111. #if Y_SENSORLESS
  3112. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3113. #endif
  3114. #if Z_SENSORLESS
  3115. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3116. #endif
  3117. SERIAL_EOL();
  3118. #endif
  3119. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3120. CONFIG_ECHO_START();
  3121. say_M914();
  3122. SERIAL_ECHOPGM(" I1");
  3123. #if X2_SENSORLESS
  3124. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3125. #endif
  3126. #if Y2_SENSORLESS
  3127. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3128. #endif
  3129. #if Z2_SENSORLESS
  3130. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3131. #endif
  3132. SERIAL_EOL();
  3133. #endif
  3134. #if Z3_SENSORLESS
  3135. CONFIG_ECHO_START();
  3136. say_M914();
  3137. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3138. #endif
  3139. #if Z4_SENSORLESS
  3140. CONFIG_ECHO_START();
  3141. say_M914();
  3142. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3143. #endif
  3144. #endif // USE_SENSORLESS
  3145. /**
  3146. * TMC stepping mode
  3147. */
  3148. #if HAS_STEALTHCHOP
  3149. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3150. #if AXIS_HAS_STEALTHCHOP(X)
  3151. const bool chop_x = stepperX.get_stored_stealthChop_status();
  3152. #else
  3153. constexpr bool chop_x = false;
  3154. #endif
  3155. #if AXIS_HAS_STEALTHCHOP(Y)
  3156. const bool chop_y = stepperY.get_stored_stealthChop_status();
  3157. #else
  3158. constexpr bool chop_y = false;
  3159. #endif
  3160. #if AXIS_HAS_STEALTHCHOP(Z)
  3161. const bool chop_z = stepperZ.get_stored_stealthChop_status();
  3162. #else
  3163. constexpr bool chop_z = false;
  3164. #endif
  3165. if (chop_x || chop_y || chop_z) {
  3166. say_M569(forReplay);
  3167. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3168. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3169. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3170. SERIAL_EOL();
  3171. }
  3172. #if AXIS_HAS_STEALTHCHOP(X2)
  3173. const bool chop_x2 = stepperX2.get_stored_stealthChop_status();
  3174. #else
  3175. constexpr bool chop_x2 = false;
  3176. #endif
  3177. #if AXIS_HAS_STEALTHCHOP(Y2)
  3178. const bool chop_y2 = stepperY2.get_stored_stealthChop_status();
  3179. #else
  3180. constexpr bool chop_y2 = false;
  3181. #endif
  3182. #if AXIS_HAS_STEALTHCHOP(Z2)
  3183. const bool chop_z2 = stepperZ2.get_stored_stealthChop_status();
  3184. #else
  3185. constexpr bool chop_z2 = false;
  3186. #endif
  3187. if (chop_x2 || chop_y2 || chop_z2) {
  3188. say_M569(forReplay, PSTR("I1"));
  3189. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3190. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3191. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3192. SERIAL_EOL();
  3193. }
  3194. #if AXIS_HAS_STEALTHCHOP(Z3)
  3195. if (stepperZ3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3196. #endif
  3197. #if AXIS_HAS_STEALTHCHOP(Z4)
  3198. if (stepperZ4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3199. #endif
  3200. #if AXIS_HAS_STEALTHCHOP(E0)
  3201. if (stepperE0.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3202. #endif
  3203. #if AXIS_HAS_STEALTHCHOP(E1)
  3204. if (stepperE1.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3205. #endif
  3206. #if AXIS_HAS_STEALTHCHOP(E2)
  3207. if (stepperE2.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3208. #endif
  3209. #if AXIS_HAS_STEALTHCHOP(E3)
  3210. if (stepperE3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3211. #endif
  3212. #if AXIS_HAS_STEALTHCHOP(E4)
  3213. if (stepperE4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3214. #endif
  3215. #if AXIS_HAS_STEALTHCHOP(E5)
  3216. if (stepperE5.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3217. #endif
  3218. #if AXIS_HAS_STEALTHCHOP(E6)
  3219. if (stepperE6.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3220. #endif
  3221. #if AXIS_HAS_STEALTHCHOP(E7)
  3222. if (stepperE7.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3223. #endif
  3224. #endif // HAS_STEALTHCHOP
  3225. #endif // HAS_TRINAMIC_CONFIG
  3226. /**
  3227. * Linear Advance
  3228. */
  3229. #if ENABLED(LIN_ADVANCE)
  3230. CONFIG_ECHO_HEADING("Linear Advance:");
  3231. #if EXTRUDERS < 2
  3232. CONFIG_ECHO_START();
  3233. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3234. #else
  3235. LOOP_L_N(i, EXTRUDERS) {
  3236. CONFIG_ECHO_START();
  3237. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3238. }
  3239. #endif
  3240. #endif
  3241. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  3242. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3243. CONFIG_ECHO_START();
  3244. #if HAS_MOTOR_CURRENT_PWM
  3245. SERIAL_ECHOLNPAIR_P(
  3246. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3247. , SP_Z_STR, stepper.motor_current_setting[1]
  3248. , SP_E_STR, stepper.motor_current_setting[2]
  3249. );
  3250. #elif HAS_MOTOR_CURRENT_SPI
  3251. SERIAL_ECHOPGM(" M907");
  3252. LOOP_L_N(q, MOTOR_CURRENT_COUNT) {
  3253. SERIAL_CHAR(' ');
  3254. SERIAL_CHAR(axis_codes[q]);
  3255. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3256. }
  3257. #endif
  3258. #endif
  3259. /**
  3260. * Advanced Pause filament load & unload lengths
  3261. */
  3262. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3263. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3264. #if EXTRUDERS == 1
  3265. say_M603(forReplay);
  3266. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3267. #else
  3268. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3269. REPEAT(EXTRUDERS, _ECHO_603)
  3270. #endif
  3271. #endif
  3272. #if HAS_MULTI_EXTRUDER
  3273. CONFIG_ECHO_HEADING("Tool-changing:");
  3274. CONFIG_ECHO_START();
  3275. M217_report(true);
  3276. #endif
  3277. #if ENABLED(BACKLASH_GCODE)
  3278. CONFIG_ECHO_HEADING("Backlash compensation:");
  3279. CONFIG_ECHO_START();
  3280. SERIAL_ECHOLNPAIR_P(
  3281. PSTR(" M425 F"), backlash.get_correction()
  3282. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3283. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3284. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3285. #ifdef BACKLASH_SMOOTHING_MM
  3286. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3287. #endif
  3288. );
  3289. #endif
  3290. #if HAS_FILAMENT_SENSOR
  3291. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3292. CONFIG_ECHO_START();
  3293. SERIAL_ECHOLNPAIR(
  3294. " M412 S", int(runout.enabled)
  3295. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3296. , " D", LINEAR_UNIT(runout.runout_distance())
  3297. #endif
  3298. );
  3299. #endif
  3300. }
  3301. #endif // !DISABLE_M503
  3302. #pragma pack(pop)