My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

motion.h 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * motion.h
  25. *
  26. * High-level motion commands to feed the planner
  27. * Some of these methods may migrate to the planner class.
  28. */
  29. #include "../inc/MarlinConfig.h"
  30. #if IS_SCARA
  31. #include "scara.h"
  32. #endif
  33. // Axis homed and known-position states
  34. extern uint8_t axis_homed, axis_known_position;
  35. constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
  36. FORCE_INLINE bool no_axes_homed() { return !axis_homed; }
  37. FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
  38. FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
  39. FORCE_INLINE void set_all_homed() { axis_homed = axis_known_position = xyz_bits; }
  40. FORCE_INLINE void set_all_unhomed() { axis_homed = axis_known_position = 0; }
  41. FORCE_INLINE bool homing_needed() {
  42. return !TERN(HOME_AFTER_DEACTIVATE, all_axes_known, all_axes_homed)();
  43. }
  44. // Error margin to work around float imprecision
  45. constexpr float fslop = 0.0001;
  46. extern bool relative_mode;
  47. extern xyze_pos_t current_position, // High-level current tool position
  48. destination; // Destination for a move
  49. // G60/G61 Position Save and Return
  50. #if SAVED_POSITIONS
  51. extern uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3];
  52. extern xyz_pos_t stored_position[SAVED_POSITIONS];
  53. #endif
  54. // Scratch space for a cartesian result
  55. extern xyz_pos_t cartes;
  56. // Until kinematics.cpp is created, declare this here
  57. #if IS_KINEMATIC
  58. extern abc_pos_t delta;
  59. #endif
  60. #if HAS_ABL_NOT_UBL
  61. extern float xy_probe_feedrate_mm_s;
  62. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  63. #elif defined(XY_PROBE_SPEED)
  64. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  65. #else
  66. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  67. #endif
  68. #if ENABLED(Z_SAFE_HOMING)
  69. constexpr xy_float_t safe_homing_xy = { Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT };
  70. #endif
  71. /**
  72. * Feed rates are often configured with mm/m
  73. * but the planner and stepper like mm/s units.
  74. */
  75. extern const feedRate_t homing_feedrate_mm_s[XYZ];
  76. FORCE_INLINE feedRate_t homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  77. feedRate_t get_homing_bump_feedrate(const AxisEnum axis);
  78. extern feedRate_t feedrate_mm_s;
  79. /**
  80. * Feedrate scaling
  81. */
  82. extern int16_t feedrate_percentage;
  83. // The active extruder (tool). Set with T<extruder> command.
  84. #if HAS_MULTI_EXTRUDER
  85. extern uint8_t active_extruder;
  86. #else
  87. constexpr uint8_t active_extruder = 0;
  88. #endif
  89. #if ENABLED(LCD_SHOW_E_TOTAL)
  90. extern float e_move_accumulator;
  91. #endif
  92. #ifdef __IMXRT1062__
  93. #define DEFS_PROGMEM
  94. #else
  95. #define DEFS_PROGMEM PROGMEM
  96. #endif
  97. inline float pgm_read_any(const float *p) { return TERN(__IMXRT1062__, *p, pgm_read_float(p)); }
  98. inline int8_t pgm_read_any(const int8_t *p) { return TERN(__IMXRT1062__, *p, pgm_read_byte(p)); }
  99. #define XYZ_DEFS(T, NAME, OPT) \
  100. inline T NAME(const AxisEnum axis) { \
  101. static const XYZval<T> NAME##_P DEFS_PROGMEM = { X_##OPT, Y_##OPT, Z_##OPT }; \
  102. return pgm_read_any(&NAME##_P[axis]); \
  103. }
  104. XYZ_DEFS(float, base_min_pos, MIN_POS);
  105. XYZ_DEFS(float, base_max_pos, MAX_POS);
  106. XYZ_DEFS(float, base_home_pos, HOME_POS);
  107. XYZ_DEFS(float, max_length, MAX_LENGTH);
  108. XYZ_DEFS(int8_t, home_dir, HOME_DIR);
  109. inline float home_bump_mm(const AxisEnum axis) {
  110. static const xyz_pos_t home_bump_mm_P DEFS_PROGMEM = HOMING_BUMP_MM;
  111. return pgm_read_any(&home_bump_mm_P[axis]);
  112. }
  113. #if HAS_WORKSPACE_OFFSET
  114. void update_workspace_offset(const AxisEnum axis);
  115. #else
  116. inline void update_workspace_offset(const AxisEnum) {}
  117. #endif
  118. #if HAS_HOTEND_OFFSET
  119. extern xyz_pos_t hotend_offset[HOTENDS];
  120. void reset_hotend_offsets();
  121. #elif HOTENDS
  122. constexpr xyz_pos_t hotend_offset[HOTENDS] = { { 0 } };
  123. #else
  124. constexpr xyz_pos_t hotend_offset[1] = { { 0 } };
  125. #endif
  126. #if HAS_SOFTWARE_ENDSTOPS
  127. typedef struct {
  128. xyz_pos_t min, max;
  129. struct {
  130. bool _enabled:1;
  131. bool _loose:1;
  132. };
  133. bool enabled() { return _enabled && !_loose; }
  134. void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) {
  135. amin = -100000; amax = 100000; // "No limits"
  136. #if HAS_SOFTWARE_ENDSTOPS
  137. if (enabled()) switch (axis) {
  138. case X_AXIS:
  139. TERN_(MIN_SOFTWARE_ENDSTOP_X, amin = min.x);
  140. TERN_(MAX_SOFTWARE_ENDSTOP_X, amax = max.x);
  141. break;
  142. case Y_AXIS:
  143. TERN_(MIN_SOFTWARE_ENDSTOP_Y, amin = min.y);
  144. TERN_(MAX_SOFTWARE_ENDSTOP_Y, amax = max.y);
  145. break;
  146. case Z_AXIS:
  147. TERN_(MIN_SOFTWARE_ENDSTOP_Z, amin = min.z);
  148. TERN_(MAX_SOFTWARE_ENDSTOP_Z, amax = max.z);
  149. default: break;
  150. }
  151. #endif
  152. }
  153. } soft_endstops_t;
  154. extern soft_endstops_t soft_endstop;
  155. void apply_motion_limits(xyz_pos_t &target);
  156. void update_software_endstops(const AxisEnum axis
  157. #if HAS_HOTEND_OFFSET
  158. , const uint8_t old_tool_index=0, const uint8_t new_tool_index=0
  159. #endif
  160. );
  161. #define SET_SOFT_ENDSTOP_LOOSE(loose) (soft_endstop._loose = loose)
  162. #else // !HAS_SOFTWARE_ENDSTOPS
  163. typedef struct {
  164. bool enabled() { return false; }
  165. void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) {
  166. // No limits
  167. amin = current_position[axis] - 1000;
  168. amax = current_position[axis] + 1000;
  169. }
  170. } soft_endstops_t;
  171. extern soft_endstops_t soft_endstop;
  172. #define apply_motion_limits(V) NOOP
  173. #define update_software_endstops(...) NOOP
  174. #define SET_SOFT_ENDSTOP_LOOSE() NOOP
  175. #endif // !HAS_SOFTWARE_ENDSTOPS
  176. void report_real_position();
  177. void report_current_position();
  178. void report_current_position_projected();
  179. void get_cartesian_from_steppers();
  180. void set_current_from_steppers_for_axis(const AxisEnum axis);
  181. /**
  182. * sync_plan_position
  183. *
  184. * Set the planner/stepper positions directly from current_position with
  185. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  186. */
  187. void sync_plan_position();
  188. void sync_plan_position_e();
  189. /**
  190. * Move the planner to the current position from wherever it last moved
  191. * (or from wherever it has been told it is located).
  192. */
  193. void line_to_current_position(const feedRate_t &fr_mm_s=feedrate_mm_s);
  194. #if EXTRUDERS
  195. void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s);
  196. #endif
  197. void prepare_line_to_destination();
  198. void _internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f
  199. #if IS_KINEMATIC
  200. , const bool is_fast=false
  201. #endif
  202. );
  203. inline void prepare_internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f) {
  204. _internal_move_to_destination(fr_mm_s);
  205. }
  206. #if IS_KINEMATIC
  207. void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s=MMS_SCALED(feedrate_mm_s));
  208. inline void prepare_internal_fast_move_to_destination(const feedRate_t &fr_mm_s=0.0f) {
  209. _internal_move_to_destination(fr_mm_s, true);
  210. }
  211. #endif
  212. /**
  213. * Blocking movement and shorthand functions
  214. */
  215. void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s=0.0f);
  216. void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  217. void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  218. void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  219. void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s=0.0f);
  220. void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s=0.0f);
  221. void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s=0.0f);
  222. void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s=0.0f);
  223. void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  224. FORCE_INLINE void do_blocking_move_to_xy(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); }
  225. FORCE_INLINE void do_blocking_move_to_xy(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); }
  226. void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f);
  227. FORCE_INLINE void do_blocking_move_to_xy_z(const xyz_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); }
  228. FORCE_INLINE void do_blocking_move_to_xy_z(const xyze_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); }
  229. void remember_feedrate_and_scaling();
  230. void remember_feedrate_scaling_off();
  231. void restore_feedrate_and_scaling();
  232. void do_z_clearance(const float &zclear, const bool z_known=true, const bool raise_on_unknown=true, const bool lower_allowed=false);
  233. //
  234. // Homing
  235. //
  236. void homeaxis(const AxisEnum axis);
  237. void set_axis_is_at_home(const AxisEnum axis);
  238. void set_axis_never_homed(const AxisEnum axis);
  239. uint8_t axes_should_home(uint8_t axis_bits=0x07);
  240. bool homing_needed_error(uint8_t axis_bits=0x07);
  241. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  242. #define MOTION_CONDITIONS (IsRunning() && !homing_needed_error())
  243. #else
  244. #define MOTION_CONDITIONS IsRunning()
  245. #endif
  246. /**
  247. * Workspace offsets
  248. */
  249. #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT
  250. #if HAS_HOME_OFFSET
  251. extern xyz_pos_t home_offset;
  252. #endif
  253. #if HAS_POSITION_SHIFT
  254. extern xyz_pos_t position_shift;
  255. #endif
  256. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  257. extern xyz_pos_t workspace_offset;
  258. #define _WS workspace_offset
  259. #elif HAS_HOME_OFFSET
  260. #define _WS home_offset
  261. #else
  262. #define _WS position_shift
  263. #endif
  264. #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + _WS[AXIS])
  265. #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - _WS[AXIS])
  266. FORCE_INLINE void toLogical(xy_pos_t &raw) { raw += _WS; }
  267. FORCE_INLINE void toLogical(xyz_pos_t &raw) { raw += _WS; }
  268. FORCE_INLINE void toLogical(xyze_pos_t &raw) { raw += _WS; }
  269. FORCE_INLINE void toNative(xy_pos_t &raw) { raw -= _WS; }
  270. FORCE_INLINE void toNative(xyz_pos_t &raw) { raw -= _WS; }
  271. FORCE_INLINE void toNative(xyze_pos_t &raw) { raw -= _WS; }
  272. #else
  273. #define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
  274. #define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
  275. FORCE_INLINE void toLogical(xy_pos_t&) {}
  276. FORCE_INLINE void toLogical(xyz_pos_t&) {}
  277. FORCE_INLINE void toLogical(xyze_pos_t&) {}
  278. FORCE_INLINE void toNative(xy_pos_t&) {}
  279. FORCE_INLINE void toNative(xyz_pos_t&) {}
  280. FORCE_INLINE void toNative(xyze_pos_t&) {}
  281. #endif
  282. #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
  283. #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
  284. #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
  285. #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
  286. #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
  287. #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
  288. /**
  289. * position_is_reachable family of functions
  290. */
  291. #if IS_KINEMATIC // (DELTA or SCARA)
  292. #if HAS_SCARA_OFFSET
  293. extern abc_pos_t scara_home_offset; // A and B angular offsets, Z mm offset
  294. #endif
  295. // Return true if the given point is within the printable area
  296. inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
  297. #if ENABLED(DELTA)
  298. return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop);
  299. #elif IS_SCARA
  300. const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
  301. return (
  302. R2 <= sq(L1 + L2) - inset
  303. #if MIDDLE_DEAD_ZONE_R > 0
  304. && R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
  305. #endif
  306. );
  307. #endif
  308. }
  309. inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) {
  310. return position_is_reachable(pos.x, pos.y, inset);
  311. }
  312. #else // CARTESIAN
  313. // Return true if the given position is within the machine bounds.
  314. inline bool position_is_reachable(const float &rx, const float &ry) {
  315. if (!WITHIN(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false;
  316. #if ENABLED(DUAL_X_CARRIAGE)
  317. if (active_extruder)
  318. return WITHIN(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop);
  319. else
  320. return WITHIN(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop);
  321. #else
  322. return WITHIN(rx, X_MIN_POS - fslop, X_MAX_POS + fslop);
  323. #endif
  324. }
  325. inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); }
  326. #endif // CARTESIAN
  327. /**
  328. * Duplication mode
  329. */
  330. #if HAS_DUPLICATION_MODE
  331. extern bool extruder_duplication_enabled, // Used in Dual X mode 2
  332. mirrored_duplication_mode; // Used in Dual X mode 3
  333. #if ENABLED(MULTI_NOZZLE_DUPLICATION)
  334. extern uint8_t duplication_e_mask;
  335. #endif
  336. #endif
  337. /**
  338. * Dual X Carriage
  339. */
  340. #if ENABLED(DUAL_X_CARRIAGE)
  341. enum DualXMode : char {
  342. DXC_FULL_CONTROL_MODE,
  343. DXC_AUTO_PARK_MODE,
  344. DXC_DUPLICATION_MODE,
  345. DXC_MIRRORED_MODE
  346. };
  347. extern DualXMode dual_x_carriage_mode;
  348. extern float inactive_extruder_x_pos, // Used in mode 0 & 1
  349. duplicate_extruder_x_offset; // Used in mode 2 & 3
  350. extern xyz_pos_t raised_parked_position; // Used in mode 1
  351. extern bool active_extruder_parked; // Used in mode 1, 2 & 3
  352. extern millis_t delayed_move_time; // Used in mode 1
  353. extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3
  354. FORCE_INLINE bool dxc_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; }
  355. float x_home_pos(const uint8_t extruder);
  356. FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  357. #else
  358. #if ENABLED(MULTI_NOZZLE_DUPLICATION)
  359. enum DualXMode : char { DXC_DUPLICATION_MODE = 2 };
  360. #endif
  361. FORCE_INLINE int x_home_dir(const uint8_t) { return home_dir(X_AXIS); }
  362. #endif
  363. #if HAS_M206_COMMAND
  364. void set_home_offset(const AxisEnum axis, const float v);
  365. #endif
  366. #if USE_SENSORLESS
  367. struct sensorless_t;
  368. sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis);
  369. void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth);
  370. #endif